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Abstract
1.	 Vision is the dominant sense for many animals, and there is an enormous diversity 

in visual capabilities. Understanding the visual abilities of a given species can 
therefore be key for investigating its behaviour and evolution. However, many 
techniques for quantifying visual capability are expensive, require specialized 
equipment or are terminal for the animal.

2.	 Here, we discuss how to measure the optomotor (or optokinetic) response, an 
innate response that can be elicited without any training in a wide range of taxa, 
and which is quantifiable, accessible and non-invasive, and provide guidance for 
carrying out optomotor experiments.

3.	 We provide instructions for building a customizable, programmable optomotor 
apparatus using 3D-printed and low-cost materials, discuss experimental design 
considerations for optomotor assays, including a guide that calculates the dimen-
sions of stimuli of varying spatial frequency, and provide a table summarizing ex-
perimental parameters in prior optomotor experiments across a range of species.

4.	 Ultimately, making this simple technique more accessible will allow more research-
ers to incorporate measures of visual capability into their work. Additionally, the 
low cost and ease of construction of our apparatus will allow educators in a vari-
ety of settings to include optomotor assays in classroom activities or demonstra-
tions. Although here we focus on using optomotor to measure visual acuity—the 
ability to perceive detail—the apparatus and stimuli described here can be adapted 
to measure visual capabilities including spectral, contrast and polarization sensi-
tivity, as well as motion detection, among others.

K E Y W O R D S

behavioral assay, optokinetic reflex, spatial resolution, temporal resolution, visual acuity, 
visual ecology

1  | INTRODUC TION

Animal visual capabilities are diverse, meaning it is important to 
incorporate species-specific measures of visual function into 

studies of visually guided behaviour. Such measures are useful for 
studies of the function, ontogeny or pathologies of visual systems, 
and for interpreting the results of behavioural assays. However, 
many methods for quantifying visual capability require specialized, 
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expensive equipment, involve a dissection of the eye, and/or are 
terminal for the animal, restricting their use. By contrast, the op-
tomotor response is an established, non-invasive, accessible and 
inexpensive method of quantifying visual capability that requires 
no prior training of the animal (see Table 1 for a glossary of terms). 
Here, we (a) provide instructions for building a customizable, pro-
grammable optomotor apparatus using low-cost and 3D-printed 
materials; (b) discuss design considerations for optomotor exper-
iments; (c) include a guide for creating square-wave stimuli and (d) 
summarize the experimental parameters used in previous optomo-
tor studies.

The optomotor response is a response to wide-field visual 
stimulation that can be elicited by placing an animal in a rotating 
drum surrounded by a stimulus (Figure  1). As the drum rotates, 
the animal reflexively turns or moves its body, head or eyes (op-
tokinetic or eye nystagmus) to track the rotation (McCann and 
MacGinitie 1965). The optomotor response is absent if the drum 
is still, or if the animal cannot detect visual features on which to 
fixate. Comparing responses to a series of incremental stimuli can 
therefore be used to determine detection limits. The optomotor 
response is innate and present in diverse taxa, including mammals 
(e.g. Abdeljalil et al., 2005; Suthers, 1966), birds (e.g. Goller et al., 

2019), crustaceans (e.g. Caves, Frank, & Johnsen, 2016), insects 
(e.g. Hassenstein, 1951; Reichardt & Guo, 1986), cephalopods (e.g. 
Groeger, Cotton, & Williamson, 2005), fish (e.g. Neave, 1984), am-
phibians (e.g. Manteuffel & Himstedt, 1978) and reptiles (e.g. Lev-
Ari, Katz, Lustig, & Katzir, 2017)

Visual acuity, the ability to perceive detail, is an ecologically im-
portant visual parameter that can be quantified using the optomotor 
response. Acuity is highly variable across species, ranging over at least 
four orders of magnitude and correlating strongly with eye size (Caves 
et al. 2018). Several morphological and ecological factors, however, 
can also influence acuity, including eye type (Land and Nilsson 2002); 
diet type (e.g., Litherland & Collin, 2008; Veilleux & Kirk, 2014) and 
habitat spatial complexity (e.g., Caves, Sutton, & Johnsen, 2017). Thus, 
obtaining acuity estimates from species of interest—rather than rely-
ing on estimates from related species—is best practice.

Although here we focus on acuity, the apparatus and methods 
described can be adapted to study spectral sensitivity (by varying 
stimulus chromatic contrast; e.g. Schaerer & Neumeyer, 1996), con-
trast sensitivity (by varying achromatic contrast between neighbour-
ing stripes; e.g. Rinner, Rick, & Neuhauss, 2005), motion detection 
(by rotating low-frequency, high-contrast stimuli at different speeds; 
e.g. Carvalho, Noltie, & Tillitt, 2002) and polarization sensitivity (by 
varying the polarization e-vector; e.g. Dacke, Doan, & O'Carroll, 
2001). Additionally, the stimuli described here can be used in oper-
ant conditioning paradigms that measure acuity, for example training 
animals to discriminate vertical from horizontal gratings (e.g. Champ, 
Wallis, Vorobyev, Siebeck, & Marshall, 2014).

2  | MATERIAL S AND METHODS

Various parameters must be considered when designing optomotor 
experiments. We discuss these in brief below with respect to our 
design and provide a full worked example as a supplement.

TA B L E  1   Glossary of important terms

Term Definition

Visual acuity The ability of a visual system to resolve static 
spatial detail

Cycles per degree 
(cpd)

The number of black and white stripe pairs 
within a single degree of visual angle. As 
a measure of acuity, the number of black 
and white stripe pairs that an animal can 
discriminate in one degree of visual angle

Minimum 
resolvable angle 
(MRA or αmin)

Another measure of visual acuity; the angular 
width of the narrowest black and white 
stripe pair that can be discerned. When 
given in degrees, its inverse is cpd

Optomotor 
response

An innate orienting response evoked by wide-
field visual motion

Optokinetic 
response

A combination of slow- and fast-phase eye 
movements elicited by motion. The slow-
phase movements occur as the eyes slowly 
track a stimulus out of the field of view, and 
the fast-phase movements occur as the eyes 
reset to their original position

Nystagmus Rapid involuntary movements of the eyes

Square wave A periodic wave that varies abruptly in 
amplitude between two fixed values. In the 
context of optomotor, square-wave stimuli 
consist of alternating, vertical black and 
white stripes of equal width, with abrupt 
borders between neighbouring stripes

Sine wave A continuous, periodic wave that involves 
smooth periodic oscillation. In the context 
of optomotor, sine-wave stimuli are those in 
which neighbouring stripes blend together in 
continuous gradient from white to black

F I G U R E  1   Schematic of optomotor setup. The high-contrast, 
square-wave stimuli (vertical stripes) rotate around the stationary 
cylindrical testing arena. Here, viewing distance is fixed by placing 
the animal inside a second, smaller arena
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2.1 | Constructing an optomotor apparatus  
and stimuli

Quantifying acuity using the optomotor response requires (a) a cir-
cular ‘drum’ on which to display stimuli comprising high-contrast 
vertical stripes of varying spatial frequency; (b) an optomotor appa-
ratus, comprising a rotating platform for the stimuli and a program-
mable motor to control the speed and direction of rotation and (c) a 
circular arena which does not rotate, in which to place the animal, 
and sometimes a restraining device for the animal.

2.1.1 | Stimuli

Stimuli can be sine or square waves (Table 1), and there is precedent 
for the use of either (sine waves: e.g. Haug, Biehlmaier, Mueller, & 
Neuhauss, 2010; Kretschmer, Tariq, Chatila, Wu, & Badea, 2017; 
square waves: e.g. Caves et al., 2016; Goller et al., 2019; Neave, 
1984). Square waves comprise all spatial frequencies up to the 
wavelength of a given stimulus, whereas sine waves comprise only 
one spatial frequency; thus, square waves may elicit stronger re-
sponses when measuring acuity (see e.g. Maffei & Fiorentini, 1973). 
Additionally, square-wave stimuli are substantially easier to create 
using standard printers and paper.

We recommend creating paper stimuli rather than projecting 
stimuli on screens, because if using a screen one must consider (a) 
refresh rate, since animals with higher temporal acuity than humans 
may not perceive motion on a screen as fluid; (b) pixel size, as animals 
with high acuity may be able to resolve individual pixels; (c) that LCD 
screens are polarized; (d) that chromatic and luminance information 
vary with viewing angle, between screens, and to different animal 
viewers and (e) that monitor edges make it difficult to achieve the 
appearance of uninterrupted 360° rotation (see Fleishman & Endler 
[2000] for a relevant discussion of these factors).

To select spatial frequencies to use in an optomotor experi-
ment, a useful starting point is to estimate a likely acuity value 
using data from closely related species that have the same eye type 
and similar eye size and ecology as the species of interest (see re-
cent reviews of acuity in fish [Caves et al. 2017], mammals [Veilleux 
and Kirk 2014], birds [Martin 2017] and insects [Land 1997]). The 
units of acuity are cycles per degree (cpd; Table 1), although many 
studies report minimum resolvable angle (Table 1) using degrees, 
radians or arc minutes (1/60 of one degree). We suggest reporting 
acuity in cpd, as the units are unambiguous (cpd is always the in-
verse of degrees). If reporting MRA, always specify if it is given in 
radians or degrees.

To assist with creating stimuli, we provide two supplementary 
files. One calculates the dimensions for cycles of differing spatial 
frequencies after the user provides the stimulus drum diameter 
(Cycle Width Calculation Supplement), and the second is a stimulus 
template. For high-frequency stimuli, printer resolution may give rise 
to Moiré effects (Figure S3); in the supplemental Worked Example, 
we discuss how to overcome these visual distortions.

2.1.2 | Optomotor apparatus: Motor and platform

A full parts list (Table S1), 3D models, assembly instructions, and mi-
crocontroller code are provided at the GitHub repository (https:// 
github.com/trosc​ianko/​optom​otor, https://doi.org/10.5281/zenodo. 
3840063). A construction guide, step-by-step video guide and user 
forum are available at http://www.empir​icali​maging.com/optom​
otor/. Free, open-source software is used throughout, and the 
Arduino microcontroller and AccelStepper library (v1.59) are open 
source. All 3D-printed parts were designed in Blender (v2.81) and 
printed using a Prusa i3 MK3 in ABS plastic. This is a standard fused 
deposition printer; however, many online services allow uploading 
of 3D models and delivery via post. The 3D parts are designed to at-
tach to an aluminium base frame made from widely available parts, 
although alternatives (such as a wooden frame) would be suitable.

Briefly, the apparatus (Figure  2) consists of a drum and arena 
supported by a central column, which is attached via a pully to a 

F I G U R E  2   Photographs of (A) the 3D-printed and constructed 
parts of the optomotor apparatus and (B) the arena and stimuli. The 
central column and support (a) hold the arena in which an animal 
is placed, and the circular frame (b) supports the stimuli. Rotation 
of the circular frame is driven by a stepper motor (c) connected to 
the central column via a pulley (d). The stepper motor is driven by 
a driver board (e) and Arduino microcontroller (f; Genuino Uno, 
although many other variants will be suitable). The experimenter 
can control the equipment remotely using an infrared remote 
control (g). (B) The central column and support were designed to 
hold the weight of a 30 cm diameter arena (h; 7 kg when filled with 
water). Stimuli (i) are supported by the circular frame

(A)

(B)

https://github.com/troscianko/optomotor
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stepper motor that is driven by a driver board and microcontroller, 
allowing the stimuli to rotate. ‘Microstepping’ allows the setup to 
achieve 3,200 steps per revolution for smooth control at low drum 
rotation speeds, and the supplied code allows the remote control 
buttons to start and stop rotation, change rotation speed or execute 
specific commands coded by the user.

2.1.3 | Experimental arena

The experimental arena is a non-rotating cylinder where the animal 
is placed during trials. The arena should be transparent and allow 
the subject to see the stimuli with the minimum of visual distortion. 
Extruded clear acrylic (PMMA) tube is widely available and ideal for 
this purpose, and has the added advantage of a low refractive index, 
thus causing minimal visual distortion when submerged underwa-
ter for testing aquatic species. The arena dimensions will depend on 
the species of interest (see Table S2), but importantly, the angular 
width of the stripes will change with distance between viewer and 
stimulus. Thus, it is preferable where possible to employ a restraint 
or second, smaller arena (Figure 1; Table S2) that restricts movement 
towards or away from the stimulus. Alternatively, it is possible to 
video record trials and calculate angular widths in real time as the 
animal moves around the arena. The setup shown here can accom-
modate stimuli up to 35 cm in diameter, although the design can be 
scaled up by increasing the drum size (simply using a larger base), 
and/or by scaling up the wheel 3D-printed components. Additional 
weight can be accommodated by printing the base bracket with 
thicker walls, or in solid plastic.

2.2 | Additional experimental considerations

Acuity estimates from optomotor assays should agree with ana-
tomical estimates ‘whenever the experimental conditions have been 
selected carefully enough’ (Wehner 1981). We discuss those experi-
mental conditions here.

2.2.1 | Acclimation to optomotor apparatus and 
light environment

First, acuity is generally lower in dimmer light (e.g. Abdeljalil et al., 
2005; Caves et al., 2016; Groeger et al., 2005; but see Rahmann et al., 
1979; Vestal, 1973). Thus, experimental light levels should be bright 
enough to ensure normal visual functioning for the study organism 
(unless one is purposely manipulating light levels, e.g. Abdeljalil et al., 
2005). Light adaptation state can also affect the optomotor response. 
For example, mice allowed 10 min to acclimate to experimental light-
ing displayed robust, reproducible optomotor responses (Abdeljalil 
et al. 2005), but mice adapted for only 30  s showed inconsistent, 
weak optomotor responses (Thaung et al. 2002). Additionally, animals 
that are stressed from being moved into an optomotor arena could 

display weak optomotor responses, so at the very least acclimation 
time should be sufficient to reduce stress in the focal animal.

The use of thermally stable (non-flickering) light sources such as 
arc lamps or LEDs powered via voltage regulators is highly recom-
mended, as flickering light sources may elicit temporal aliasing arte-
facts (e.g. causing an optomotor response in the opposite direction as 
the drum). LEDs that run straight from mains (i.e. wired in series with-
out the use of a low-voltage ballast) and fluorescent tube lights should 
be avoided because they flash at various temporal frequencies.

2.2.2 | Stimulus rotation speed

Rotating the stimulus too fast will conflate acuity with motion de-
tection. It is highly recommended that preliminary trials identify the 
lowest practical speed which elicits a strong, reproducible response 
at a range of spatial frequencies. See Table S2 for a table of rotation 
speeds in published studies that examine the optomotor response 
across a diversity of taxa.

2.2.3 | Criteria for positive optomotor response

Generally, an optomotor response can be classed as positive if one 
or more of the following criteria are met: (a) smooth tracking of 
stimulus rotation by the body, head or eyes; (b) changing tracking 
direction with changes in the direction of stimulus rotation and (c) 
stopping movement when the stimulus stops rotating. Preliminary 
trials will help determine what criteria constitute a positive response 
in a given species. Usually, each stimulus is presented multiple times 
in different directions of rotation. Some species exhibit latency (30 s 
or more, e.g. chameleons, Lev-Ari et al., 2017) to begin responding 
to stimuli, and the optomotor response can be prone to habituation, 
so the length and number of trials over which an animal maintains a 
robust response will vary with the species in question.

3  | CONCLUDING REMARKS

The optomotor response provides an accessible way to probe visual 
function in a variety of organisms. Although care should be taken in 
extrapolating from the results of an optomotor assay to more com-
plex behaviours such as feeding, schooling or signalling, quantifying 
acuity will allow for a more thorough understanding of a given spe-
cies' ecology and behaviour and will contribute invaluable data to 
our understanding of broader trends in acuity across species.
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