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Natural light cycles are being eroded over large areas of the globe by the direct emissions and 23	

the sky brightening that result from sources of artificial nighttime light. This is predicted to 24	

affect wild organisms, particularly because of the central role that light regimes play in 25	

determining the timing of biological activity. Although numerous empirical studies have 26	

reported such effects, these have focussed on particular species or local communities and have 27	

thus been unable to provide a general evaluation of the overall frequency and strength of 28	

these impacts. Using a new database of published studies, we show that exposure to artificial 29	

light at night induces strong responses for physiological measures, daily activity patterns and 30	

life-history traits. We found particularly strong responses for hormone levels, the onset of 31	

daily activity in diurnal species, and life-history traits such as offspring number, predation, 32	

cognition and sea-finding (in turtles). There have been few studies so far on the impact of 33	

artificial light at night on ecosystem functions. The breadth and often strength of biological 34	

impacts we reveal highlights the need for outdoor artificial nighttime lighting to be limited to 35	

the places and forms (such as timing, intensity, spectrum) in which it is genuinely required by 36	

the people using it to minimise ecological impacts. 37	

 38	

The development of electric lighting technology has transformed human societies, lengthening the 39	

available time both for work and pleasure1. Associated with human settlement, transport networks 40	

and industry, it has also profoundly altered the natural nighttime environment. Large areas of the 41	

Earth now experience light that differs from natural regimes in timing, intensity and spectrum2,3. 42	

Nearly a quarter of the global land area already lies under artificially light-polluted nighttime skies4. 43	

The area experiencing direct emissions from artificial light sources is estimated currently to be 44	

expanding at c.2% per annum, with localities that were previously lit brightening further at a similar 45	

rate5. 46	

 47	
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Artificial light at night (ALAN) is predicted to constitute a significant anthropogenic pressure on 48	

natural biological systems because (i) such systems are organised foremost by light, and particularly 49	

by daily and seasonal cycles of light and dark6-8, and (ii) there have been no natural analogues, at 50	

any timescale, to the form, extent, distribution, timing or rate of spread of artificial lighting3. More 51	

obvious impacts like delayed retention of leaves on trees close to streetlights and attraction of 52	

insects and birds to outdoor lights, have long been documented9-11. However, particularly the last 53	

decade has seen rapid growth in the numbers of empirical studies testing for impacts of ALAN on a 54	

broad array of biological phenomena across a wide diversity of organisms (e.g. 12-16). Although 55	

there have been qualitative reviews of this literature2,17,18, quantitative analyses and understanding 56	

of the frequency and strength of biological impacts of ALAN are lacking.	57	

 58	

Here we report the results of a meta-analysis, which takes into account the hierarchical structure of 59	

data due to non-independence of several outcomes coming from the same study19,20, to build a 60	

quantitative understanding of the biological impacts of ALAN on a variety of responses from 61	

organisms and ecological communities. Following a systematic search, we identified 126 62	

publications from the peer-reviewed literature testing for the impact of ALAN on organisms. Each 63	

individual measure was assigned to one of five major response categories: physiology, seasonal 64	

phenology, life-history traits, daily activity patterns, and population/community. The entire data set 65	

covered a wide range of different measurements for each of the five categories and of different 66	

study organisms and habitats, and included field and laboratory studies. 67	

 68	

Results and Discussion 69	

Overall, the dataset was dominated by physiological, life-history trait and population/community-70	

based measures, ranging from strong negative to strong positive responses to ALAN exposure (Fig. 71	

1). Thirty-five studies documented 338 observations reporting the impact on organismal 72	

physiology, seven studies yielded 35 observations reporting the impact on organismal phenology, 73	
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58 studies reported 411 life-history measures, 27 studies described 139 daily activity measures, and 74	

42 studies gave 381 observations of the impact on populations and ecological communities. We 75	

organised these measures into subcategories within each of the five main response categories (see 76	

Methods and Fig. 2). This led to the exclusion of 196 measures from the analysis of subcategories 77	

because these were only included if they had measures from at least five different studies. 78	

 79	

Of the physiological measures, effect sizes for hormone levels (mostly melatonin) indicated that 80	

these were consistently and markedly reduced across all studies included (Fig. 2). By contrast, gene 81	

expression varied markedly in effect sizes, including a number of very strong positive responses 82	

(Fig. 2a). The impact on these two measures is important as this can have knock-on effects on other 83	

physiological parameters such as health and alertness. The other three physiological measures 84	

(immune and stress responses and glands/structures) did not show an overall response to ALAN, 85	

however the frequency distributions of effect sizes for immune and stress responses (Fig. 2c,d,e) 86	

show that this does not mean that ALAN has no impact, but rather that depending on the conditions 87	

of the study the response may be either positive or negative. For stress responses, the frequency 88	

distribution of effect sizes appears bimodal, with peaks at low negative and higher positive values 89	

(Fig. 2d). 90	

	91	

While single studies find evidence of phenological shifts in plants under ALAN exposure21, our 92	

dataset suggests that across plants and birds both positive and negative effect sizes for phenology 93	

have been documented (Fig. 2f) with no evidence for an overall consistent directional shift. 94	

 95	

Amongst measures of life-history traits (the term being used here broadly), overall measures of 96	

cognition (mostly the performance of rodents in experimental tests) and offspring number were 97	

negatively impacted by ALAN, and measures of predation were positively impacted (Fig. 2). Most 98	

conspicuously, and including some high effect sizes, measures of sea-finding by young turtles (i.e. 99	
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the ability to find the right direction towards the sea) were regularly strongly impacted by ALAN 100	

(Fig. 2n), reflecting movement towards the (landward) light source. This has significant 101	

consequences for turtle survival, although the impact can to some degree be mitigated by careful 102	

design, positioning and shielding of lights22.	103	

 104	

ALAN impacts were particularly marked for daily activity patterns with, overall, the onset of 105	

activity being pushed earlier and its cessation being delayed (Fig. 2). This did not manifest as an 106	

overall strong effect of ALAN on the duration of diurnal or nocturnal activity, however in both 107	

cases the impacts were very varied and included strong positive and negative effect sizes (Fig. 108	

2p,q). This highlights the diversity of influences of ALAN on different species, increasing the 109	

duration of activity of some while reducing it for others23,24, and acting as an attractor for some 110	

while as a repellent for others25. We looked in more detail at this directional variation for two 111	

animal groups, rodents and birds, that have been disproportionately well studied. For rodents, the 112	

duration of activity of both diurnal and nocturnal species tended to be reduced by exposure to 113	

ALAN (Fig. 3a). In contrast, for birds - with all of those included strictly diurnal - ALAN was more 114	

likely to lead to an extension of the duration of their activity, with onset and cessation of singing 115	

and foraging showing especially marked responses. This can go further in some groups, such that 116	

diurnal species can use the so-called “nighttime niche” to extend their activity into the nighttime15. 117	

 118	

We found little evidence for a strong overall or net impact of ALAN on the abundance of species or 119	

the diversity of communities (Fig. 2). This outcome could potentially be explained as a consequence 120	

of the variation in, and possible trade-offs and synergies between, individual-level physiological, 121	

phenology, life-history and activity responses. Indeed, abundance responses showed some of the 122	

greatest variation in effect sizes, from strongly negative to strongly positive, of any measured 123	

biological impacts of ALAN (Fig. 2r). For bats, for which the impacts of ALAN have attracted 124	

disproportionate scientific and policy attention26, activity (here used as a measure of the presence or 125	
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abundance of species, rather than of the timing of individual movements) did not show an overall 126	

strong negative response (Fig. 2). However, whilst some effect sizes were positive there was also a 127	

long tail of marked negative responses, highlighting that some bat species are strongly repelled by 128	

artificial light (Fig. 2g). Such complex patterns of responses may be typical of many taxonomic 129	

groups, with the overall response being driven by those species that are most dominant. 130	

 131	

Species interactions are an important building block of ecological community structure. Predation, 132	

the most frequently studied interaction, was typically increased by ALAN exposure (Fig. 2l), 133	

indicating that interactions between species can be highly sensitive to ALAN and are key for 134	

understanding of how whole communities are impacted (as shown in food webs15 and also 135	

pollination networks13). This seems likely in turn to lead to impacts of ALAN on ecosystem 136	

functions, but so far these have been little studied13,15 and could not therefore, be separately 137	

addressed in this metanalysis. 138	

 139	

ALAN might be predicted to impact nocturnal species more strongly than diurnal ones because the 140	

loss of light conditions (dark or light) under which organisms are active seems likely to be more 141	

limiting than is their extension. There is evidence in our data set that this is indeed the case. For 142	

life-history and activity measures the mean effect sizes were more negative for nocturnal species 143	

than for diurnal ones (Fig. 3b), however there was a more negative response for physiological 144	

measures in diurnal species. 145	

	146	

Overall, for most variables we did not find evidence for publication bias in effect sizes, in particular 147	

there was no evidence of p-hacking in any of the variables and no evidence of funnel plot 148	

asymmetry for most of them (Supplementary Table 1 and Supplementary Fig. 1). There was some 149	

statistical evidence for funnel plot asymmetry for hormone levels, sea-finding by turtles, and 150	

activity on and offset (and also for gene expression, gland structure and bat activity, but these 151	
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showed no strong overall directional effect size; Supplementary Table 1 and Supplementary Fig. 1). 152	

However, in all of these cases this asymmetry may be driven by the biological nature of these 153	

responses rather than being the result of publication bias. For example, effect sizes for hormone 154	

levels predominantly concern the suppression of melatonin levels by artificial light, with 155	

overproduction being an unlikely outcome. Likewise, for sea-finding in turtles any diversion of 156	

movement from the direction of the sea is negative for the individuals concerned and results in a 157	

negative effect size, and any normal movement would be regarded as an absence of effect (rather 158	

than a positive one). 159	

 160	

Across the different studies, levels of ALAN used in the experiments and observations were skewed 161	

toward low lighting of around 1-2 lux (such levels can occur ~10-20m from an isolated streetlight) 162	

but covered the whole range up to 100 lux (similar to levels beneath stadium-type floodlighting), 163	

which we set as the upper limit for realistic ALAN exposure in nature. Lux is a measure of 164	

luminous flux per unit area based on human photopic vision but is typically used in studies of the 165	

biological effects of ALAN because it enables a direct link to illuminance as commonly measured 166	

in the environment and employed in the design and mitigation of artificial lighting systems. A meta-167	

regression analysis found no relationship between the intensity of artificial light and effect size 168	

magnitude for the responses across all categories (Fig. 3c). Thus, while positive dose-response 169	

relationships have been documented for some individual physiological and behavioural responses to 170	

ALAN27, there is little evidence for an overall effect across a diversity of such responses. This is 171	

likely because of the wide variation in the form of dose-response relationships for individual 172	

biological responses to ALAN, because in some cases no simple such relations exist, and because of 173	

variation in spectral sensitivities. The biological impact of even low intensities of ALAN may, in 174	

consequence, be marked15,28. 175	

 176	
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Notwithstanding the widespread nature of the biological effects of ALAN demonstrated by the 177	

results reported here, marked biases continue to exist in the taxonomic groups and regions for which 178	

empirical studies of these effects have been conducted. Of the 1304 effect sizes included in the 179	

meta-analysis, 24 were for microbial communities, 143 for plants, 388 for invertebrates and 746 for 180	

vertebrates. The dataset includes almost double the number of field studies (82) as compared to 181	

laboratory experiments (42), with the majority of field studies in the meta-analysis from Europe 182	

(46), North America (17) and Australia (7). Tropical regions were markedly under-represented, 183	

despite the prediction that effects of ALAN could be particularly strong at low latitudes because of 184	

the limited natural seasonal variation in the lengths of daylight and nighttime6. Further, more 185	

research is needed on the response of whole ecological communities and their functions to ALAN 186	

exposure29; the strong response of trophic behaviour to ALAN suggests that species interactions 187	

change, and with them whole community structures and their functions will shift. Interactions with 188	

other human pressures, especially climate change are of particular interest, as for species that 189	

exploit the nighttime niche their behaviour at night is often temperature dependent. 190	

 191	

Conclusion 192	

The results reported here have significant implications for the much-discussed mitigation of the 193	

effects of ALAN on the natural environment30,31. First, they underline how widespread these effects 194	

are, including on diurnal species, and that where possible mitigation should be routine rather than 195	

limited to places and times when taxa perceived to be of particular concern (e.g. bats) are active. 196	

Second, they highlight the challenge of making recommendations for regulation of the maximum 197	

intensities of particular kinds of lighting, given that marked biological impacts of ALAN occur 198	

across a wide range of intensities including very low lighting levels (below 1 lux). Third, we show 199	

that ALAN especially changes the physiology and behaviour of organisms by affecting hormone 200	

levels, onset of daily activity, feeding and phototaxis but typically with a less strong impact on 201	

particular community responses such as abundance and species richness, and this suggests that the 202	
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impact on community structure and diversity might be less clear and depends on the impacts on key 203	

players (species or groups29).	Although species richness was not systematically affected in our 204	

study, it is possible that ALAN is often altering community composition (i.e. beta diversity) so that 205	

sensitive species are being replaced.	206	

 207	

Concern has repeatedly been expressed about the impacts of the loss of natural nighttime light 208	

cycles on humans that span from their physiology to their psychological sense of place9. Here we 209	

show that a broad array of marked impacts also occur on other organisms. 210	

 211	

METHODS 212	

Literature search. We identified relevant literature using keyword searches in Web of Science (we 213	

used “All databases” including Web of Science Core Collection, BIOSIS Citation Index, KCI-214	

Korean Journal Database, MEDLINE, Russian Science Citation Index and SciELO Citation Index) 215	

and Scopus, finding any available papers published until 22 October 2019 (we constrained our 216	

searches to these databases to focus on peer-reviewed studies, and tested for publication bias – see 217	

below). We used the terms: "TS= (("Artificial light* at night" OR "Light* pollution" OR "Light* at 218	

night" OR "night time light*") AND ("species" OR "ecosystem*" OR "ecological commun") AND 219	

("abundance" OR "behaviour" OR "richness" OR “reproduction" OR "mating" OR "*diversity" OR 220	

"composition" OR "predation" OR "herbivory" OR "activity" OR "timing" OR "physiology" OR 221	

"flight to light*" OR "melatonin" OR "development" OR "trophic" OR "biomass" OR 222	

"pollination"))”. After removing 352 duplicates, combining the searches resulted in 614 223	

publications that were screened for inclusion criteria. To be included in the meta-analysis, studies 224	

needed to (1) test for ALAN effects on organisms either in the field or the lab; (2) have a control 225	

group that was exposed to natural light levels at night (or a dark control) and treatment groups with 226	

exposure to ALAN up to 100 lux - studies with higher levels were excluded as these are unlikely to 227	

occur in the field; (3) have at least 2 replicates per treatment; and (4) contain data on means, an 228	
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estimation of variation and sample size. If only box plots were presented, we extracted the median 229	

and interquartile range32. This resulted in 126 papers, with a total of 1304 effect size measures (refs 230	

12,13,15,16,25,27,28,33-151). 231	

 232	

Effect size categorizing. We categorised the effect size measures into five different main groups: 233	

response to exposure to artificial light at night of (i) organismal physiology, (ii) phenology, (iii) 234	

organismal life history traits, (iv) activity (e.g. daily diurnal, nocturnal activity), or (v) populations 235	

and communities. For the analyses, we were interested in which factors drive the response within 236	

each category. We selected subcategories within each of the five major categories that we think 237	

describe the dataset best. For each subcategory to be included in the analysis it needed to have data 238	

that were extracted from at least five different studies. Below we briefly explain the subcategories. 239	

 240	

Physiology. Several studies measured the impact of ALAN on the level of gene expression, and 241	

hormones produced. We also included immune response and stress response. Gland structure 242	

includes the size of glands, but also of structures adjacent to them, and neuronal structures. 243	

	244	

Phenology. This describes seasonal timings of events such as the flowering dates in plants and egg-245	

laying in birds (measured in Julian days). 246	

	247	

Life history traits. Life-history traits are traits that affect the life table of an organism and therefore 248	

its fitness. Based on the biology of the different species studied, the different effect sizes have been 249	

classified as either having a positive or negative relationship with fitness. To express the fitness 250	

consequences of all effect sizes, effect sizes were multiplied by -1 when the relationship between 251	

the trait and fitness was negative. Effect sizes larger than zero thus express a benefit for the 252	

organism, whereas the opposite is true for values lower than zero. A total of six categories were 253	
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considered: Sea finding in turtles, Predation risk, Body size, Cognition, Feeding, Predation, and 254	

Reproductive output. 255	

 256	

A large number of effect sizes concern sea turtles and their ability to find the sea after emerging 257	

from eggs, or after egg laying by females. Turtles are expected to reach the sea as fast as possible to 258	

avoid predation and other risks so increased time or distance in doing so and large differences in the 259	

direction of a straight line between egg emergence or laying and the sea are considered as 260	

negatively related with fitness. Predation risk is a trait negatively related to survival, which has been 261	

measured in many ways. In this category, most effect sizes come from studies of pairwise predator-262	

prey interactions. Predation risk has been measured as (the sign following the trait expresses 263	

whether the trait is positively or negatively associated with fitness): attacks suffered by prey (-), 264	

attack attempts by predators (-), activity of predators (-), anti-predatory behaviours shown by prey 265	

(+) and abundance of prey in response to experimental exposure to predators (+). Size has been 266	

considered as having a positive effect on fitness as larger individuals are usually more fecund and 267	

live longer. Although considered as an independent category, cognition strongly relates to feeding 268	

efficiency and survival because individuals with poor cognition are less likely to forage efficiently, 269	

escape predation and ultimately to survive. Cognition has been measured with the following traits 270	

(the sign following the trait expresses whether the trait is positively or negatively related to fitness). 271	

In rodents, cognition has been measured as the time spent to escape from a maze (-) and in birds as 272	

the time to solve a cognition test (-). Indirect measures of cognition include measuring sleep debt by 273	

either estimating sleep debt directly on animals (-) or by estimating the concentration of Oxalic acid 274	

in blood (i.e. a molecule that signals sleep debt) (-). For primary consumers, the traits included are 275	

preference over the habitual food source, food consumption, time spent eating and food absorption 276	

efficiency. Reproduction includes reproductive output, but also pre and post-reproductive 277	

behaviours. 278	

	279	



12		

Activity. The data for daily activity patterns contains measures of when animals started or ceased 280	

their activity (mostly measured against sunrise and sunset) and the duration of their activity. This 281	

resulted in four subcategories: activity cessation, activity onset, diurnal activity duration, nocturnal 282	

activity duration. One study measured the time spend inactive, this was included in activity duration 283	

by changing the sign of the effect size. 284	

	285	

Population/community. This category mostly contained data on the abundance of single species and 286	

communities (groups of species, such as functional groups) in the presence and absence of ALAN. 287	

Bat density is usually estimated indirectly as the number of passes, a variable that does not really 288	

describe activity but an indication of abundance. A few studies looked at species richness of 289	

communities (diversity).	290	

 291	

Data analysis. The meta-analysis was conducted in R version 3.6.0152 using the package metafor153  292	

to estimate the standardized mean difference (Hedges’ d) and corresponding sampling variance for 293	

each data point using the “escalc(measure= "SMDH")” command. These values were then used to 294	

fit a meta-analytic model in MCMCglmm19. To achieve this, the random term idh(SE):units was 295	

fixed to one in the prior so that all measurement errors could be considered as independent of each 296	

other. In addition, to account for study level non-independence due to multiple measurements per 297	

study, “Study” was included as a random effect. The MCMC chain ran for 150,000 iterations, and it 298	

was sampled every 50 iterations with the first 50,000 removed as burn-in to prevent autocorrelation 299	

among subsequent iterations. Autocorrelation between consecutive samples was always lower than 300	

0.1, and convergence of the chains was inspected visually to ensure that there were no trends in the 301	

chain and that posterior distributions were not skewed. Significance is reported as the pMCMC 302	

statistic19,154. As we did not have any a priori knowledge on the distribution of our data, we used a 303	

flat prior: the inverse-Gamma prior (V = 1, nu = 0.002). Hedges’ d was used to compare measures 304	

of the variables between treatment and control. We present the mean effect size and 95% credible 305	
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intervals; the mean effect size was considered significantly different from 0 if its 95% CI did not 306	

include 0. 307	

 308	

Further, additional analyses used light intensity in lux as a moderator (equivalent to main effects in 309	

standard linear models). 310	

 311	

Testing for publication bias. For all variables in the meta-analysis we assessed evidence of 312	

publication bias. Publication bias implies that studies with low effect sizes were less likely to be 313	

published than studies with larger effect sizes155. These assumptions, however, are not always valid 314	

and some authors suggest that publication bias is mostly caused by significance levels and p-315	

hacking156. The first form of bias was tested using asymmetry in funnel plots of meta-analytic 316	

residuals against the inverse of their precision (defined as 1/sampling variance)157. For multilevel 317	

meta-analysis models, funnel plots based on meta-analytic residuals (the sum of effect-size-level 318	

effects and sampling-variance effects) are better suited than those based on effect sizes158. We 319	

interpreted asymmetry in funnel plots carefully given the small sample sizes for some variables, and 320	

the lack of bidirectional outcomes for light impact on some traits, which will inevitably lead to a 321	

biased plot. For example, for turtles, if there is an impact of exposure to ALAN on seafinding this 322	

will always be negative. Further, we ran Egger’s regressions using the meta-analytic residuals as the 323	

response variable, and precision as the moderator158. If the intercept of the Egger’s regression does 324	

not overlap zero, estimates from the opposite direction to the meta-analytic mean might be missing 325	

which can be evidence of publication bias158. P-value hacking was tested with the p-curve 326	

technique, which can provide evidence of p-hacking if values close to the significance level 0.05 are 327	

overrepresented in the data156,159. The p-curve was performed with the function pcurve from the 328	

dmetar package160. 329	

 330	

Data availability 331	
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All data generated or analysed during this study are available from the Dryad Digital Repository161.  332	

 333	

Code availability 334	

The computer code for the meta-analysis is available from the Dryad Digital Repository161. 335	

 336	
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Figure 1. Physiological, phenological, life-history trait, activity pattern and 777	

population/community based responses to ALAN exposure. Single effect size measures 778	

(Hedges’ d with 95 % CI) with responses from organismal physiology (blue), phenology (grey), 779	

life-history traits (light blue), activity patterns (orange) and population/community (red) arranged in 780	

sequence according to increasing effect size (negative to positive). Circle dashed line indicates zero 781	

effect size, solid lines at effect sizes of 10 and -10. The pie chart indicates the proportion of 782	

measures belonging to each of the five categories. 783	

 784	

Figure 2. Effect sizes for the measures from the main categories. Effect sizes (Hedges’ d) with 785	

post mean and 95% credible intervals based on results from MCMCglmm’s for each variable from 786	

the five main categories (physiology, phenology, life-history traits, activity, and 787	

population/community). Numbers in brackets indicate the sample size and * the significance level 788	

for pMCMC, with ***<0.001, **<0.01, *<0.05). Histograms a-t show the distribution of the effect 789	

sizes for each of the categories, with the black dashed line indicating the zero x-axis intercept, the 790	

range of effect size values on the x-axis and frequency on the y-axis.	791	

 792	

Figure 3. Activity patterns and light intensity. (a) Impact of ALAN on rodent and bird activity. 793	

Effect sizes (Hedges’ d) with post mean and 95% credible intervals based on results from 794	

MCMCglmm’s for each variable. (b) Impact of ALAN on diurnal and nocturnal species for the 795	

categories: physiology, life-history traits and activity. (c) Meta regression of effect sizes and 796	

artificial light intensity levels for organismal physiology (blue), phenology (grey), life-history traits 797	

(light blue), activity (orange) and population/communities (red). Numbers in brackets indicate the 798	

sample size and * the significance level for pMCMC, with ***<0.001, **<0.01,*<0.05, (*) <0.06).	799	
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