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Abstract 

Timing of activity can reveal an organism’s efforts to optimize foraging either by minimizing energy 

loss through passive movement or by maximizing energetic gain through foraging. Here, we assess 

whether signals of either of these strategies are detectable in the timing of activity of daily, local 

movements by birds. We compare the similarities of timing of movement activity among species 

using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, 

relative speed at midday, number of movement bouts, bout duration, and proportion of active 

daytime hours. We test for the influence of flight mode and foraging habitat on the timing of 

movement activity across avian guilds. We used 64570 days of GPS movement data collected 

between 2002 and 2019 for local (non-migratory) movements of 991 birds from 49 species, 

representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight 

mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring 

or flapping birds. Broad-scale foraging habitat explained less of the clustering patterns because of 

divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, 

surface foragers were active throughout the day while diving foragers matched their active hours 

more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging 

distances, which was consistent with their daytime activity patterns. This study demonstrates that 

flight mode and foraging habitat influence temporal patterns of daily movement activity of birds. 

Keywords: temporal, movement ecology, nonmigratory, multispecies, flight mode, foraging  
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Introduction 

An animal’s movement behavior is heavily influenced by its evolutionary history, which affects 

movement capacity and behavior (Norberg and Norberg 1988, Tobalske 2001). An animal’s 

movement path is based, in part, on the distribution of resources (Fryxell et al. 2004), which is 

determined by their environment. These interact when animals forage, as they need to traverse the 

landscape according to their movement capacities to locate resources distributed non-randomly in 

the environment (Suryan et al. 2008). To maximize energetic gains from foraging, the timing of an 

animal’s foraging movements is expected to correspond to either the temporal availability of its 

resources (Rydell et al. 1996, Lang et al. 2018) or the quantity and quality of resources required 

(Jetz et al. 2004, Ramesh et al. 2015, Cid et al. 2020). Alternatively, animals can reduce their 

energy expenditure by timing their foraging activity when their movements are most energetically 

efficient (Chapman et al. 2011, Shepard et al. 2013) via behavioral thermoregulation (Matern et al. 

2000) and passive movement (Krupczynski and Schuster 2008). Both strategies are used by 

animals to forage optimally (Stephens and Krebs 1986), but these strategies have yet to be 

evaluated together within any group of animals. 

Birds are distinct from other vertebrates because most birds are volant and most fly actively (i.e., by 

flapping) while a smaller number fly passively (i.e., by soaring). Soaring birds save energy by using 

updrafts (Baudinette and Schmidt-Nielsen 1974) to move across the landscape. One tradeoff faced 

by terrestrial soaring birds is that the availability of updrafts is skewed towards daylight hours 

(Pennycuick 1978).  Switching to flapping flight can further extend the activity of soaring birds (Stark 

and Liechti 1993, Harel et al. 2016) as flapping flight is self-powered and can therefore be used in a 

broader suite of conditions.  

When animals can be flexible in the timing of their movements, their activity 

is expected to be driven more by ecological interactions and the need to 

acquire resources. These needs can manifest as temporal matching between 

consumers and their resources. For example, Black‐legged Kittiwakes (Rissa 
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tridactyla) time their foraging concurrently with tidal cycles, when prey are 

most accessible (Irons 1998). Alternatively, the amount of movement activity 

may be due to resource quality. When high quality food items are available, 

animals can spend more time resting as their energetic needs are met more 

quickly (Saj et al. 1999, Fleischer Jr et al. 2003, Ménard et al. 2013). Despite 

long lasting interest in the factors that shape animal activity times, it is still 

poorly understood how internal traits and external conditions jointly shape 

the timing of movement across avian species. 

Using daily movement activity data from a wide range of avian species, we 

tested for broad-scale differences in the temporal patterns by flight mode 

and foraging habitat. Temporal patterns do not only describe when 

individuals are moving, but they also convey information about the 

behaviors driving those movements (Pasquaretta et al. 2020). Therefore, 

temporal patterns of movement activity are best described using a suite of 

variables. First, we evaluated the similarity of temporal patterns among 

species using multivariate analyses and test for signals of foraging habitat 

and flight mode among clusters of species in ordinal space. Due to 

geographic and dietary segregation, we expected to find the greatest 

differences in multivariate space to be between birds from terrestrial and 

pelagic foraging habitats.  

Second, we hypothesized that the timing of daily movement activity is more 

restricted for species that soar, because the flight performance of soaring 

birds varies within a day (Mellone et al. 2012) due to temporal variation in 
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availability of environmentally derived updrafts (Spiegel et al. 2013). We 

predicted start and end times of movement activities would differ between 

flight modes. Flapping birds are unrestricted in their capacity to move and 

therefore can be active before sunrise and after sunset; in contrast, we 

expected terrestrial soaring birds to be limited to daylight hours. Soaring 

flight is most beneficial for large-bodied birds (Hedenström 1993), which are 

often raptorial (Schoener 1968); consequently, the use of soaring flight 

covaries with trophic level and morphology (Viscor and Fuster 1987, Baliga 

et al. 2019). We also predicted that pelagic soaring birds would be less 

temporally restricted than non-soaring birds as dynamic soaring is not 

driven directly by solar energy but by wind and wave energy (Pennycuick 

1982). 

Material and Methods 

Data 

We compiled GPS tracking data for 49 bird species whose movements were 

studied between 2002 and 2019. We obtained data from Movebank 

(www.movebank.org; Wikelski and Kays 2018) or through direct 

contributions by co-authors (Supplementary material Appendix 1). For 

quality control, we removed anomalous locations with speeds greater than 

80       for flapping species and locations with speeds greater than 100 

      for soaring species. All speeds were calculated as the speed between 

points. We calculated UTM zones from coordinates. To evaluate the timing of 
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movement relative to local sunrise and sunset, all timestamps were 

converted from GMT to local time. 

Our dataset included movements from 49 species (Supplementary material 

Appendix 1). These species represent 14 orders: Accipitriformes, 

Anseriformes, Bucerotiformes, Charadriiformes, Ciconiiformes, 

Falconiformes, Gruiformes, Otidiformes, Passeriformes, Pelecaniformes, 

Phaethontiformes, Phoenicopteriformes, Procellariiformes, and Suliformes. 

Most (n=46) species were non-Passeriformes, and all Passeriformes were 

from the same genus (Corvus). 

We analyzed movement data at the daily scale. Most of the data were sampled at hourly time 

intervals, so we subsampled high resolution data to an hourly scale with location intervals   57 min 

(mean time between locations: 79.5     31.1 min). To accurately assess active and inactive states 

while maximizing number of sampling days, we excluded sampling intervals   180 min. We did not 

interpolate missing points. 

Days included in the analysis had a minimum of eight locations per day. We selected eight-hour 

minimum time periods to represent the daily scale because many telemetry units do not sample 

continuously and, instead, cycle on and off to save battery life. To avoid any potential bias in 

movements due to handling during tagging, we excluded the first day of tracking for all studies. We 

included species with at least 20 days of data. Full sampling information is provided in 

Supplementary material (Appendix 1). 

Due to known intra-specific differences that occur in association with migration (Cagnacci et al. 

2016), our analyses explore non-migratory daily foraging movements. To compare local, foraging 

movements of birds, we standardized the data to include only non-migratory movements by 

excluding migrations from individuals with range shifts > 500 km. We intentionally selected a high 
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threshold to avoid removing exploratory and foraging movements by individuals that did not migrate 

in partially migratory populations. 

Movement characteristics 

Measurement errors due to error in calculations of latitude and longitude by global positioning 

system (GPS) are inherent in movement tracking studies (Frair et al. 2010) and can inflate 

estimates of movement activity. After comparing the distributions of location errors across species, 

we characterized locations as either ‘active’ or ‘inactive’ according to their mean speed. Species 

with a mean speed < 9       had an activity threshold of 50     . This threshold was 

conservative relative to the distributions of mean location errors across most of the species 

(Supplementary material Appendix 2). Species with a mean speed > 9       had an activity 

threshold of 300     .   

These different thresholds allowed us to identify active versus inactive periods for terrestrial and 

pelagic birds, which forage at different spatial scales (Schoener 1968, Oppel et al. 2018). To 

confirm our results were not sensitive to spatial scale, we compared our results using a smaller 

threshold (25     ) and found no difference in the change in activity levels (Supplementary 

material Appendix 2). To determine if the sampling frequency affected the activity patterns of any 

groups of species, we compared our results to a 20 min sampling scheme. The differences between 

these two sampling schemes were linear; our results are therefore robust to temporal sampling  

(Supplementary material Appendix 2). 

Based on these daily, active hours, we summarized temporal characteristics 

of daily movements using six variables, defined in Table 1. The objective of 

these measures was not to reliably estimate species averages for these 

temporal variables, but to provide standard, relative measures that could 

allow for multispecies comparisons. We included the timing of activity 

relative to sunrise and sunset to understand the relationship between activity 
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and light availability, while accounting for variation in latitudes and time of 

year across datasets. Several sampling regimes were set to collect data 

between sunrise and sunset, which limit our interpretations. However, these 

intervals were selected by experts on the focal species’ biology, so we do 

not expect that the true mean start and end times of activity would differ 

strongly from our results. We list species with limited sampling periods (i.e., 

mean start or end of sampling time were within the hour of local sunrise and 

sunset) in Supplementary material Appendix 2. The distributions of the 

timing of movement activity for each species are reported in Supplementary 

material Appendix 3. 

To determine if movements were clustered in time or dispersed throughout 

the day, we defined number of movement bouts as the number of groups of 

consecutive active hours. We used the duration of these groups of 

consecutive active hours to represent activity duration. To determine how 

active species are at midday, for each day we calculated relative speed, 

which is the speed at solar noon divided by their speed averaged across all 

active bouts. Last, to compare activity among species, we calculated the 

proportion of time birds were active during the day, which was the 

proportion of hours between sunrise and sunset where the individual 

exceeded the speed threshold. We calculated this metric using the number of 

hours during daytime, rather than hours during the full day, because species 

with limited sampling periods would have artificially high activity levels. We 

first calculated each temporal variable at the daily scale and then found the 
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mean of each temporal variable at the species level (Supplementary material 

Appendix 1). 

Morphological and ecological characteristics 

Ecological characteristic data were taken from the Elton 1.0 database 

(Wilman et al. 2016), which broadly describes the feeding ecology of all 

extant bird species in terms of the percent contribution of diet items and of 

different foraging habitats. We combined variables that were redundant for 

the species in our dataset; Table 2 lists the variables used and how they 

were derived. 

Foraging habitats were collapsed to five levels: above ground, ground, 

freshwater, pelagic surface, and pelagic diver. Similarly, several diet 

variables were collapsed to six levels: herbivore, frugivore, carnivore, 

piscivore, invertivore, and scavenger. 

Flight mode was described as either flapping or soaring. Although many 

species may occasionally be observed soaring, we included only species 

that soar regularly. We further subdivided soaring into obligate, facultative, 

and pelagic soaring. All other species were categorized as flapping. 

We gathered morphometric data for three variables: body mass (kg), wing span (m), and wing area 

(  ). Where wing area values were missing, but wing span was known, we calculated wing area 

using aspect ratio (                  ) from a closely related species. Then, using known 

wingspan and estimated aspect ratio, we were able to derive wing area and relative wing loading 

(Pennycuick 2008). Wing spans were unknown for two species (Anas poecilorhyncha and Grus 
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nigricollis), which we excluded from the analyses of morphological characteristics. We controlled for 

the effect of body size by using relative wing loading (                    ; Norberg and 

Norberg 1988). We used only relative wing loading and aspect ratio in our analyses. All species’ 

morphological data and sources, as well as ecological character data, are provided in the 

Supplementary material (Appendix 4). 

Analysis 

To determine which guilds were most similar in the timing of movement activity, we quantified 

dissimilarity across the suite of temporal variables (listed in Table 1) using non-metric 

multidimensional scaling (NMDS). NMDS is a distance-based ordination that maximizes rank order 

correlation, which is suitable for non-parametric data. Accipitriformes and Anseriformes were over-

represented in our dataset, making our dataset phylogenetically uneven.  

To correct for this, we bootstrapped our NMDS analysis by randomly subsampling four species (the 

median size of other orders with multiple individuals) within each order, iterated 100 times. For each 

iteration, we then tested for any significant diet, foraging, flight, and morphological correlates of the 

NMDS (Table 2). Our final analysis included only variables that were significant predictors for at 

least 20% of subsampled datasets. This allowed us to exclude any predictors that would have been 

significant only due to the skewedness of our dataset. As many behaviors and adaptations have 

coevolved, we also report any highly correlated predictors. 

To test our flight mode hypothesis, we used one-way ANOVAs followed by TukeyHSD post-hoc 

tests. We excluded one species that was an outlier with regards to daytime movement activity, 

Cory’s shearwater (Calonectris diomedea), as our estimates of activity duration exceeded those of 

known activity budgets (Ramos et al. 2019). To explore the drivers of clustering among foraging 

habitats in ordinal space, we compared the distributions of active hours among foraging groups. To 

assess if the differences in activity level are due to physiological limitations of flight speed, we 

included a post-hoc analysis of the mean daily net squared displacement, a measurement of daily 

foraging distance, according to foraging habitat. Due to insufficient sample size, terrestrial above 
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ground foragers were excluded from this analysis. We report summary statistics as mean and 

standard deviation. We performed analyses using R version 3.6.3 (2020-02-29) (R Core Team 

2020); a list of R packages used can be found in the Supplementary material (Appendix 5). 

Results 

We summarized 64570 days of movement data for 991 birds. For three 

species, movement data came from fewer than three individuals 

(Supplementary material Appendix 1). Wing spans ranged from 0.71 to 2.81 m 

and body mass ranged from 0.44 to 9.87 kg, a range that includes the body 

masses of 28% of all volant non-Passeriformes. 

We found several continuous covariates related to the clustering of species 

according to the suite of temporal variables. Variation along NMDS1 was 

largely attributed to terrestrial ground foragers and pelagic surface foragers 

(Figure 1a). Terrestrial ground foragers were largely comprised of 

Accipitriformes and were therefore correlated with obligate and facultative 

soaring birds, scavenging (r=0.63), and carnivorous diets (r=0.71). Pelagic 

surface foragers were comprised of Procellariiformes and some Suliformes 

(i.e., Frigatebirds), which were positively correlated with high aspect ratio 

wings (r = 0.76), pelagic soaring, and invertivores. However, there was no 

separation between terrestrial and pelagic foragers in ordinal space. The 

greatest separation between foraging groups was between pelagic diving 

and pelagic surface foragers (Figure 1b). Variation along NMDS2 was largely 

attributed to flapping versus soaring flight (Figure 1c). In our dataset, body 
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size was related to flight mode (soaring 3.65  ± 2.76 kg, flapping 1.20  ± 0.60 

kg). 

Soaring birds had higher relative speeds than flapping birds at midday 

(soaring: 0.901 ± 0.232; flapping: 0.568  ± 0.211; F = 26.28, df = 1, p <0.001). 

Obligate soaring birds began activity later than flapping birds (obligate 

soaring: 3.250  ± 1.035 h; flapping: 0.750  ± 1.943 h; F = 14.542, df = 3, p < 

0.001; TukeyHSD p=0.017; Figure 2a). Similarly, obligate soaring birds 

stopped activity earlier than did flapping birds (obligate soaring: -1.286  ± 

0.881 h; flapping: 0.850  ± 1.755 h; F = 6.777, df = 3, p < 0.001; TukeyHSD p= 

0.018; Figure 2b). The same pattern was observed for pelagic soaring birds. 

Obligate soaring birds began activity later than pelagic soaring birds (pelagic 

soaring: -3.143  ± 3.532 h; TukeyHSD p < 0.001; Figure 2a) and obligate 

soaring birds stopped activity earlier than pelagic soaring birds (pelagic 

soaring: 2.429  ± 2.37 h; TukeyHSD p <0.001; Figure 2b). Post-hoc tests did 

not reveal significant differences in the start or end times between obligate 

and facultative soaring birds (sunrise p = 0.159, sunset p = 0.224), but 

obligate soaring birds were active for a shorter range of hours in the day 

(Figure 2).  

Activity distributions differed by foraging habitats (Figure 3a). Pelagic 

surface foragers were active most continuously throughout the day and 

terrestrial ground foragers had the narrowest range of active hours. 

Differences in the activity patterns of pelagic surface foragers and diving 

foragers corresponded to differences in daily foraging distances (Figure 3c). 
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Daily maximum net squared displacement was greatest among pelagic 

surface foragers, indicating they travelled the furthest within a day of any 

foraging group (F = 3.373, df = 3, p = 0.027). These differences were not due 

to differences in mean flight speed (Figure 3b). Pelagic foragers had greater 

mean flight speeds than terrestrial foragers, but this was partially an artifact 

of our methods requiring different activity thresholds. 

Discussion 

In this study we have combined a rich GPS tracking data set, spanning over several species and 

guilds, and used a multispecies comparative approach to test for intrinsic factors that shape the 

timing of activity by birds. We found broad-scale differences in the timing of avian daily movement 

activity between flight modes, supporting our hypothesis. Movements of Accipitriformes, which 

represent the largest proportion of soaring birds in our broad dataset, were largely restricted to 

daytime hours. This effect was even stronger among obligate soaring birds (i.e. Old World and New 

World vultures). Soaring species were further differentiated from flapping species by higher relative 

speeds at midday. These findings were not surprising as updrafts are stronger around midday than 

in the morning or late afternoon, supporting previous research suggesting their activity is more 

strongly linked to the temporal availability of updrafts (Mandel and Bildstein 2007, Bildstein et al. 

2009, Nathan et al. 2012, Sur et al. 2017) than to their spatial availability (Mallon et al. 2015). 

Flapping species were characterized by a lower percent of activity during the 

day. This suggests either flapping species are less active than soaring 

species, or they are similarly active, but on different spatial scales. Flapping 

species were largely represented by Anseriformes (i.e., ducks and geese) 

and Pelecaniformes (i.e., herons), which forage locally (e.g. < 1 km) by 

walking, stalking, dabbling, or grazing. These species generally feed on 
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abundant or localized resources (i.e., herbivores and granivores), and 

therefore spend greater amounts of time foraging within a given area 

(Mueller and Fagan 2008).  

Other species either face less temporal predictability of resources or have greater spatial 

heterogeneity of resources and are more mobile as a consequence (Mueller and Fagan 2008). This 

is true of soaring species, many of which use a fly-and-forage strategy where birds spend 

substantial time in flight searching for food over large spatial scales (e.g. 10’s of kms; Ruxton and 

Houston 2004). This is consistent with other findings concerning foraging space use: large-bodied 

birds, which tend to feed on high-quality resources and forage over large spatial scales (Schoener 

1968), travel farther in homogeneous environments than heterogeneous environments (Tucker et 

al. 2019). Among mammals, trophic level is correlated with home range size (Jetz et al. 2004), 

which is positively correlated with activity levels (Cid et al. 2020), suggesting a positive relationship 

between space use and activity levels over large scales.  

Like our results for terrestrial species, the temporal patterns we observed of 

pelagic species are a consequence of the spatial scale they forage over. 

While flight mode is related to the same morphological adaptations that allow 

pelagic species to specialize as surface or diving foragers (Ashmole 1971), 

we argue instead that the differences in timing among pelagic birds are not 

due to flight mode but to foraging behavior. In our dataset, pelagic surface 

foragers were comprised of Suliformes (i.e. boobies and frigatebirds) and 

Procellariiformes (i.e. albatrosses and shearwaters), which forage over 

different spatial scales (Oppel et al. 2018). Although in other colonies, 

Suliformes respond to intraspecific competition by traveling further from the 

colony to forage (Oppel et al. 2015), Suliformes in our dataset forage closer 
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to their colonies relative to the Procellariiformes, which frequently forage in 

open ocean. This difference in space use also likely drives the observed 

differences in the temporal patterns of their movement activity. To travel 

further, but at similar flight speeds, Procellariiformes have longer foraging 

trips that often extend overnight. This resulted in Suliformes appearing to be 

relatively less active, as their foraging trips in our dataset were always < 24 

h. The predominantly diurnal activities of Suliformes contributed greatly to 

the overlap in temporal activity patterns between pelagic and terrestrial 

foragers. There was better contrast among pelagic birds when comparing 

foraging groups, as frigatebirds are not diving foragers like other Suliformes, 

but are surface foragers that behave more like Procellariiformes. Frigatebirds 

in our dataset did move at night but are diurnal foragers that sleep on the 

wing (Rattenborg et al. 2016). This, in part, explains why the differences in 

start times between pelagic surface and diving foragers were more distinct 

than between Procellariiformes and Suliformes alone. 

At least for some species, the relative significance of flight mode and 

foraging habitat may not be clear cut. The timing of their movements may not 

be driven by food availability, but instead by foraging restrictions. For 

example, in arid climates, some birds reduce their activity during midday as 

a means of behavioral thermoregulation (Silva et al. 2015, Gudka et al. 2019). 

Likewise, visually orienting species are limited by the availability of light. As 

such, although fruits and seeds are available at all hours, Passerines begin 

activity at dawn when there is sufficient light to detect their food resources 
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(Roth and Lima 2007). Temporal segregation of foraging can also be driven 

by pressures to avoid predators or kleptoparasites (Baglione and Canestrari 

2009), such as frigatebirds. Such adaptive behavior is thought to have 

contributed to the evolution of nocturnal foraging behaviors by some pelagic 

species (Hailman 1964). 

Interpretation of our results is limited as we compiled our dataset from several different studies, 

which were biased towards larger, data-rich species that can support the weight of telemetry units. 

Also, sampling schemes across studies were uneven in terms of inter-location frequency and effort; 

this required us to use data averaged at the species level. If our data could be resolved on the 

scales specific to each guild, rather than standardized across species, we might have identified 

other ecological variables, such as diet, as important drivers of movement activity. Nevertheless, 

our approach provided standardized activity metrics for 49 bird species, which allowed us to 

compare intrinsic drivers of movement activity across a diversity of avian guilds.  

Although our analyses were restricted to temporal attributes of movement, the relationship between 

physiological limitations on flight speed and activity duration lead us to hypothesize that the spatial 

scales animals forage over is an important driver of the timing of movement activity. Our results 

show that animals have predictable, intrinsic patterns to the timing of local movements that make up 

the large-scale behaviors we are interested in studying.  Recognizing that spatial scale indirectly 

influences the timing of movement activity, future studies that focus on the spatial attributes of 

animal movement should consider the temporal attributes of movement as well. For example, 

studying spatial and temporal patterns in concert may reveal intraspecific differences due to 

personality influences on movement behavior (Spiegel et al. 2017, Hertel et al. 2019). With the 

development of smaller, high-resolution tracking devices, future research may apply analyses such 

as ours to the full diversity of birds, filling gaps of our knowledge on granivorous, frugivorous and 

insectivorous species (e.g., passerines, shorebirds, swifts, etc.), which may reveal interesting new 

phylogenetic or allometric predictors of movement. 
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R code used in analyses can be accessed at  datadryad.com (insert doi here). 

Most of the data used are publicly available at www.movebank.org.  
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Figure Legends 

Figure 1: The NMDS ordination indicates inter-specific similarities within 

temporal activity patterns, among all 49 species. (a) NMDS annotated with 

environmental fit loadings (included if significant at p-value <0.05). 

Environmental fit loadings were bootstrapped to correct for an uneven 

sample across phylogeny. Ground foragers were correlated with carnivorous 

diets (r =0.71) and scavenging diets (r =0.63) and both were omitted from the 

environmental loadings for clarity. Pelagic surface foragers were correlated 

with high aspect ratio wings (r =0.76), which was removed for clarity. NMDS 

annotated by (b) pelagic foraging habitats and (c) flight mode. Ellipses 

represent 90% confidence interval around the centroid of each group. (b) 

There is little overlap between the pelagic foraging groups, indicating that 

pelagic divers (purple) have different activity patterns than pelagic surface 

foragers (green). Terrestrial foragers (grey) had high overlap with pelagic 

foragers, indicating little differences between terrestrial and pelagic foragers, 

overall. (c) There is little overlap between flight modes, indicating that 

soaring species (light green) have different activity patterns than flapping 

species (blue). Stress value is 0.15 
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Figure 2: Dot plots of flapping, terrestrial (obligate and facultative), and 

pelagic soaring birds by (a) start of activity relative to sunrise and (b) end of 

activity relative to sunset, with units in hours. (a) Terrestrial soaring birds 

began activity after sunrise, with obligate soaring birds beginning activity 

later than facultative soaring birds. (b) Terrestrial soaring birds ceased 

activity before or at sunset, with obligate soaring birds stopping activity 

earlier than facultative soaring birds. Sunrise and sunset times were similar 

for facultative soaring and flapping birds.  
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Figure 3: Foraging habitats by (a) active time, (b) mean speed, and (c) 

distance. For all plots, terrestrial above ground foragers were excluded due 

to small sample size (n = 2). (a) Distributions of active (black) and inactive 

(grey) hours by foraging habitat. Pelagic surface foragers were active a 

greater proportion of the day than pelagic diving and terrestrial foragers, 

whose activity was more clustered during midday. (b) Mean speed between 

points. There is no difference in maximum speeds among pelagic foraging 

habitats. (c) Post-hoc analyses of log-transformed squared net displacement 

(in meters) of daily foraging trips according to foraging habitat. Pelagic 

surface foragers travel farther than pelagic divers on daily foraging trips, 

suggesting differences in their activity levels is driven by their respective 

foraging distances. 
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Table Legends 

Table 1: Temporal variables and their definitions. 

Variable Definition 

Sunrise Activity The time difference between first activity and 

sunrise 

Sunset Activity The time difference between last activity and 

sunset 

Relative Speed at 

Midday 

Speed at solar noon relative to mean speed 

Number of Movement 

Bouts 

Number of groups with 1+ consecutive, active 

hours 

Activity Duration The length of time between non-active locations 

Proportion of Daytime 

Activity 

Number of daytime active locations / total number 

of daytime locations 
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Table 2: Ecological variables used in analysis. Data sourced from Elton 

database (Wilman et al. 2016). Where variables are combined, sample sizes 

are indicated in parentheses. Final sample size used in analyses are in 

column N. 

Variable Category N Definition 

Foraging 

Habitat 

Above 

Ground 

7 midcanopy (6) + canopy (3) + aerial (6) 

 Ground 34 ground (34) + understory (5) 

 Water (other) 29 freshwater or non-obligate pelagic 

species that forage below (4) + around 

surf (18) 

 Pelagic 

Surface 

7 pelagic specialist that forage around surf 

 Pelagic Diver 8 pelagic specialist that forage below surf 

    

Diet Herbivore 17 plant (17) + seed (14) 

 Frugivore 6 fruit 

 Carnivore 33 endotherms (18) + ectotherms (14) + 

unknown (4) 

 Piscivore 25 fish 

 Invertivore 32 invertebrates 

 Scavenger 20 carrion 
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Flight Mode Pelagic 

Soaring 

7 pelagic birds that soar >20% of the time 

 Obligate 

Soaring 

8 terrestrial birds that cannot sustain 

flapping flight 

 Facultative 

Soaring 

14 terrestrial birds that soar >20% of the time 

 Flapping 20 birds that flap >80% of the time 
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