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Abstract  1 

Whilst traditional approaches to geochemistry provide valuable insights into magmatic processes such as 2 

melting and element fractionation, by considering entire regional data sets on an objective basis using 3 

machine learning algorithms (MLA), we can highlight new facets within the broader data structure and 4 

significantly enhance previous geochemical interpretations. The platinum-group element (PGE) budget of lavas 5 

in the North Atlantic Igneous Province (NAIP) have been shown to vary systematically according to age, 6 

geographic location and geodynamic environment. Given the large multi-element geochemical data set 7 

available for the region, MLA was employed to explore the magmatic controls on these shifting concentrations. 8 

The key advantage of using machine learning in analysis is its ability to cluster samples across multi-9 

dimensional (i.e., multi-element) space. The NAIP data set is manipulated using Principal Component Analysis 10 

(PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE) techniques to increase separability in the 11 

data alongside clustering using the k-means MLA. The new multi-element classification is compared to the 12 

original geographic classification to assess the performance of both approaches. The workflow provides a 13 

means for creating an objective high-dimensional investigation on a geochemical data set and particularly 14 

enhances the identification of metallogenic anomalies across the region. The techniques used highlight three 15 

distinct multi-element end-members which successfully capture the variability of the majority of elements 16 

included as input variables. These end-members are seen to fluctuate in prominence throughout the NAIP, 17 

which we propose reflects the changing geodynamic environment and melting source. Crucially, the variability 18 

of Pt and Pd are not reflected in MLA-based clustering trends, suggesting that they vary independently through 19 

controls not readily demonstrated by the NAIP major or trace element data structure (i.e., other proxies for 20 

magmatic differentiation). This data science approach thus highlights that PGE (here signalled by Pt/Pd ratio) 21 

may be used to identify otherwise localised or cryptic geochemical inputs from the subcontinental lithospheric 22 

mantle (SCLM) during the ascent of plume-derived magma, and thereby impact upon the resulting 23 

metallogenic basket.  24 

Keywords: Platinum-group elements; machine learning; plume; geochemistry; metallogenesis; mantle 25 

Abbreviations: platinum-group element(s) (PGE); North Atlantic Igneous Province (NAIP); Principal Component 26 

Analysis (PCA); t-stochastic neighbour embedding (t-SNE); subcontinental lithospheric mantle (SCLM); machine 27 

learning algorithm(s) (MLA); base metal sulphide(s) (BMS) 28 
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1. Introduction 29 

1.1 Data science in geochemistry 30 

Machine learning is a powerful data science tool used to investigate large datasets and is 31 

increasingly integrated into novel scientific applications. Bulk geochemical data sets are excellent 32 

targets to analyse using machine learning algorithms (MLAs) considering they often comprise large 33 

sample sets with a multitude of elements measured for each sample. Furthermore, global and 34 

regional geochemical data sets are becoming less expensive to create, and more accessible through 35 

analytical development and data sharing capabilities. Previous studies have successfully 36 

implemented MLA-based methodologies to investigate geochemical domains on Mars (Taylor et al., 37 

2010), hazardous groundwater geochemistry (Farnham et al., 2002), and Pb behaviour in the Kerman 38 

Copper Belt, Iran (Ghannadpour et al., 2013). Recently, efforts have been made to enhance the link 39 

between traditional geochemical investigations and data science, such as the revisiting of traditional 40 

basalt geochemical sub-groups (Iwamori et al., 2017) and mapping mineral distributions in lunar 41 

basalts (Cone et al., 2020) using multivariate statistical analyses.  42 

Herein, this paper tests a combined classical and MLA approach applied to a large magmatic 43 

geochemical data set, with the aim to establish a framework that can be replicated for a variety of 44 

studies in the field of geochemistry. The comparison of descriptor-based labelling (e.g., geographic 45 

location or lithological classification) and algorithmic clusters is of particular interest in 46 

geochemistry, since geochemical studies often partition data based on a small number of variables 47 

selected by the user and do not incorporate the larger-scale similarities across all variables. In this 48 

respect, simplifying data sets may resolve major trends, but bypass more subtle relationships that 49 

exist across multiple elements and that could enhance the interpretation. Machine learning provides 50 

a means for more sophisticated analysis alongside classical geochemical techniques. 51 

By exploring an example data set, the bulk geochemistry of North Atlantic Igneous Province (NAIP) 52 

lavas, we contribute to the discussion surrounding mantle plume and subcontinental lithospheric 53 



3 
 

mantle (SCLM) controls on platinum-group element (PGE) and precious metal abundances in basaltic 54 

magmas. The application of data science techniques such as MLAs allows for the critical examination 55 

of elemental concentrations from a different, objective perspective by analysing geochemistry in 56 

multi-dimensional space – something not attainable through traditional geochemical data analyses. 57 

The workflow presented in this paper, including dimensionality reduction methods and clustering 58 

MLA, can be used for a variety of similar studies alongside prior or concurrent classical discriminant 59 

diagrams, for example, forming a framework for comparisons of mantle plume geochemical 60 

signatures at a global scale. 61 

 62 

1.2 Geological background 63 

1.2.1 Mantle plumes and continent break-up 64 

Mantle plumes are hot upwellings from the lowermost portions of the silicate Earth. Initiated by 65 

chemical or physical instability at depth (Kellogg and King, 1993; Bercovici and Kelly, 1997; Jellinek 66 

and Manga, 2004), they form rising diapirs of buoyant high-temperature mantle material that can 67 

induce decompression-driven partial melting of the upper mantle, asthenosphere and lithosphere 68 

(Griffiths and Campbell, 1990). Continental landmasses uplifted and thinned by impinging plumes 69 

will eventually extend and rift apart, ultimately leading to the formation of oceanic lithosphere 70 

(Pirajno and Santosh, 2015). The material melted by plumes under continental crust changes 71 

through their lifetime as the geodynamic environment shifts towards an oceanic setting, and the 72 

geochemistry of subsequent lavas produced from plume magmas will reflect these changes 73 

(Howarth and Harris, 2017). Decompression models for flood basalt melting predict < 5% of the 74 

lithosphere is involved in melt generation, and this is isolated to the initiation stages (i.e., when the 75 

continental lithosphere is available to melt prior to rifting; McKenzie and White, 1989; White and 76 

McKenzie, 1995). If the lithosphere is thick, larger amounts of crust and the SCLM are involved in 77 

melt generation; underneath lithosphere thinned by extension, melts will incorporate higher 78 
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proportions of asthenospheric (i.e. plume-derived) material (Turner et al., 1996). In addition to the 79 

reduction of continental contamination of plume magmas with time, initial melts coinciding with the 80 

buoyant, laterally expansive and voluminous plume head are typically interpreted to have stemmed 81 

from higher degrees of partial melting and produced extensive eruption of flood basalts (Campbell 82 

and Griffiths, 1990). With time, the degree of partial melting may decrease as the narrower plume 83 

tail becomes the primary melting source (e.g., Griffiths & Campbell, 1990; Trela et al., 2015).  84 

 85 

1.2.2 The North Atlantic Igneous Province  86 

The Icelandic hotspot, the surface expression of the underlying (proto-)Icelandic mantle plume, first 87 

erupted lava c. 65 Ma (Berggren et al., 1995), heralding the opening of the North Atlantic Ocean in 88 

the Palaeogene (Hole and Natland, 2019). Greenland and the British Isles began to rift apart while 89 

mantle plume-derived magmas fed volcanism persisting into the newly opened ocean basin 90 

(Saunders et al., 1997; Kent and Fitton, 2000). Collectively, the igneous rocks produced from this 91 

event belong to the NAIP (Horni et al., 2017) – Figure 1a. Today, intraplate and rift volcanism are 92 

active simultaneously on Iceland (McKenzie and White, 1989; White and McKenzie, 1995; Momme 93 

et al., 2003), and the plume has transitioned through continental to oceanic geodynamic settings 94 

throughout the last ~ 62 Myr (Fig 1b).  95 

The Icelandic hotspot extruded (and continues to extrude) unusually high volumes of lava with 96 

respect to similar plumes around the world (Courtillot et al., 2003), especially in its earlier stages 97 

(e.g., Greenland and the British Palaeogene Igneous Province or BPIP) (Larsen and Pedersen, 2000). 98 

Lavas in the region are primarily basaltic but range from picrites to more evolved andesites and 99 

rhyolites (Kent and Fitton, 2000). The region is recognised as having high potential for hosting Ni-Cu-100 

PGE deposits, partly attributed to its plume setting (Andersen et al., 2002) and has been a focus for 101 

PGE research in the last two decades. In some PGE-mineralised localities elsewhere in the world, 102 

such as the Bushveld (South Africa) and Stillwater (North America) complexes the suggestion that 103 
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the SCLM plays a key role in contaminating plume magmas with the metals that form ore deposits 104 

through mineralisation remains controversial, yet persistent (e.g., Maier and Groves, 2011 and 105 

references therein). Intrusive complexes in the NAIP, such as Skaergaard in East Greenland and the 106 

Rum Layered Complex in western Scotland, host mineralised PGE reefs and a key debate concerns 107 

the source of these metals within the NAIP magmatic system (e.g., Andersen et al., 1998, 2002; 108 

Butcher et al., 1999; Pirrie et al., 2000; Hughes et al., 2015, 2017). 109 

In one study, Hughes et al. (2015) demonstrated a systematic shift in the relative PGE abundances of 110 

NAIP basaltic lavas from oldest to youngest (e.g., continental to oceanic). Lavas in West Greenland 111 

and the BPIP (the earliest products of plume magmatism) typically have Pt/Pd ratios of 1.9; later 112 

lavas in East Greenland and its offshore regions have Pt/Pd ~ 0.79; and contemporary Icelandic lavas 113 

have Pt/Pd ~ 0.4 (Fig. 1a). The metal signature of NAIP plume-derived melts (i.e., the metal basket) 114 

appears to have changed alongside the chemo-dynamic setting. After critiquing a variety of possible 115 

explanations for this Pt/Pd shift, Hughes et al. (2015) suggested the contaminating influence of 116 

SCLM-derived melts and metals on the plume-derived basaltic magmas was the most likely control. 117 

More specifically, mantle peridotite xenoliths entrained within Scottish lamprophyre dykes, 118 

representative of the mineralogy of the SCLM underneath the current margins of the North Atlantic 119 

craton, contain two populations of base metal sulphides, one of which is notably Pt-rich due to their 120 

inclusion of PtS, the platinum-group mineral cooperite (Hughes et al., 2017). If plume magmas from 121 

the earlier stages on the NAIP (e.g., West Greenland and Scotland) incorporated portions of the 122 

SCLM during asthenospheric melting, assimilation of such platinum-group minerals (PGM) would be 123 

reflected in higher Pt/Pd in bulk geochemistry of the lavas produced. This effect would reduce in line 124 

with the progressively decreasing role of SCLM contamination of plume-derived magmas in oceanic 125 

settings (e.g., more recent East Greenland offshore and Iceland lavas), reducing Pt/Pd ratio and 126 

therefore signalling an inherent linkage between enriched mantle keels and metal prospectivity (e.g., 127 

Hawkesworth and Scherstén, 2007; Hughes et al., 2014).   128 
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In this paper, we seek to test the validity of the apparent shift in Pt/Pd ratio by assessing the 129 

precious metal compositions of NAIP lavas in context with their major and trace element 130 

geochemistry across multi-dimensional (multi-element) space. By using ML to objectively classify the 131 

high-dimensional trends in the data, we seek to comment on the major processes captured in a 132 

regional-scale magmatic differentiation system and whether controls on metallogenesis are truly 133 

localised according to geodynamic setting. 134 

 135 

2. Methods 136 

The purpose of using machine learning to analyse the NAIP data set is to explore different facets and 137 

enhance our understanding of a previously-studied geochemical system. Geochemistry has, until 138 

recently, rarely been coupled with data science (Zuo, 2017) and there are significant opportunities to 139 

develop an integrated geochemical workflow for high-dimensional data analysis using MLAs, as 140 

proposed in Figure 2. Traditional geochemical investigations are essential for understanding the 141 

geological processes behind magma compositions, but a data science approach is hereby used to 142 

maximise the information obtained from such data sets and complement findings from earlier 143 

investigations. Dimensionality reduction techniques like Principal Component Analysis (PCA) and t-144 

Distributed Stochastic Neighbour Embedding (t-SNE) describe the large-scale variability of a large 145 

data set in an intuitive way. A variety of MLAs process large amounts of data and identify high-146 

dimensional trends unresolvable to a human analyst.  147 

The ratio of Pt/Pd changes across NAIP lavas is documented by Hughes et al. (2015), as reflected in 148 

their changing geography. By using a data science approach supported by dimensionality reduction, 149 

we investigate how elemental concentrations behave with respect to each other and geographic 150 

information. The large-scale structure of the data will inform the investigation of controls on shifting 151 

PGE ratios (and other elemental concentrations) while directly comparing the new findings to those 152 

from earlier studies.  153 



7 
 

 154 

2.1. Data   155 

The NAIP data set from Hughes et al. (2015) contains new bulk concentrations of 49 major and trace 156 

elements from Scottish basalts in addition to existing literature data for basaltic lavas from West and 157 

East Greenland, offshore Greenland, and Iceland (Table 1; Figure 1). Hughes et al. (2015) used their 158 

own data alongside a compilation of other PGE-bearing data sets from across the NAIP for their 159 

study (Table 1) – the amalgamated data set is presented in Supplementary Data A. The data were 160 

classified by locality (i.e. five categories) and the study compared major, trace and PGE 161 

concentrations in lavas between these locations. Our study uses new methods to produce different 162 

categories based on multi-element geochemical variability, to determine how well sample localities 163 

(and by extension, geodynamic stages in the NAIP) are reflected in numerical clustering techniques. 164 

The dimensionality reduction and machine learning techniques used in this study necessitate a 165 

complete data set with no missing information. The number of elements analysed and available in 166 

each of the five sample sets varied greatly, leaving eleven variables present in every North Atlantic 167 

locality with mainly non-zero concentrations – major element oxides Fe2O3, MgO and TiO2, and trace 168 

elements Cr, Ni, Cu, Ir, Ru, Rh, Pt, and Pd. This is by no means an exhaustive variable set, missing 169 

lithophiles, alkalis and rare earth elements, but by itself can provide a great deal of information 170 

towards large-scale plume melting processes. The eleven modelled elements are important proxies 171 

for magmatic differentiation processes in mafic magmatic systems and are key for mineralisation of 172 

Ni-Cu-PGE ores, explaining their consistent inclusion in all five sample sets. 173 

Of these selected variables, where occasional blank/non-numerical observations existed, a process 174 

of rounded-zero imputation was applied following the approach by Martín-Fernández et al (2012), 175 

using the mean least-squares regression values against all other variables. This gives previously 176 

missing observation cells meaningful concentrations below the elemental detection limits, without 177 

implying detectable concentrations or disrupting the variance of the data as a whole. The final data 178 
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set used is supplied in Supplementary Data A. The following sections describe the workflow used to 179 

analyse the data. 180 

To avoid biasing the clustering through variables with mixed-unit concentrations (major oxides in 181 

percent, minors in ppm and PGE in ppb) z-scores were generated for the data set as a 182 

standardisation procedure. The following equation was used to produce z-scores for all data 183 

observations (as per Kreyszig, 1979) when z is the z-score, x is the raw concentration, μ is the 184 

population mean and σ is the standard deviation of the population: 185 

 186 

Standardising the data ensures that variability in a given variable can be directly compared to 187 

another, regardless of raw data units, leading to more effective clustering. 188 

 189 

2.2 Principal Component Analysis  190 

Popularised by Hotelling (1933) after Pearson (1901), PCA is a multivariate analysis tool commonly 191 

used to transform a data set in such a way that the variances of each dependent variable can be 192 

viewed in unison in a low dimensional space (Davis, 2002; Jolliffe, 2002 and references therein). It 193 

functions as an effective linear dimensionality reduction technique. The method creates individual 194 

Principal Components (PCs), which describe the contributions to data variance, where the first order 195 

PC is aligned to capture the maximum variance in the data spread, the second order PC will then be 196 

aligned orthogonal to the first and so on. The main purpose of using PCA for the NAIP geochemical 197 

data set is to determine how elemental concentrations in the basaltic lavas are correlated to these 198 

PCs and by extension, which concentrations are controlled by similar factors. PCA also allows us to 199 

display multi-element information in biplots (Hyvärinen et al., 2001) and effectively discuss the 200 

structure of the data set using minimal dimensions (Chang, 1983). For a large geochemical data set, 201 

PCA can describe the contribution from each element to the overall variance of the data set, 202 
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allowing for a simple comparison of correlations between elemental concentrations, analogous to 203 

the relationships for the eleven NAIP elements shown in a correlation matrix (Fig. 3). Elements with 204 

high correlation coefficients will likely be represented in the same PCs, and thus, similar reflect 205 

underlying controls. 206 

 207 

2.3 t-SNE 208 

Similar to PCA, t-SNE is a dimensionality reduction technique used to display multi-dimensional data 209 

in an easily interpretable manner. The algorithm was developed by van der Maaten & Hinton (2008) 210 

and translates high-dimensional data (with each dimension representing one variable from the data 211 

set) into a low-dimensional bivariate space using two new computed features referred to as 212 

embeddings. Using the Kullback-Leibler Divergence (Kullback and Leibler, 1959), the algorithm 213 

maximises the similarity between the positions of all data points in high-dimensional space and their 214 

position in the embedding plot. The advantage of this approach is that it retains the original data 215 

structure while significantly reducing dimensionality, compared to PCA. Data points with similar 216 

multi-element concentrations will plot closely in the resulting two-dimensional embedding (van der 217 

Maaten and Hinton, 2008; van der Maaten, 2014). This technique acts as a data structure map and 218 

the transformed data points can be overlain with their MLA-based or descriptor-based 219 

classifications. Contributing element concentrations can also be mapped on to the embedding space, 220 

to determine how their abundances are distributed through the overall data structure..  221 

Studies have successfully used t-SNE as a geochemical discriminant tool for alteration indicators 222 

(Horrocks et al., 2019) and geological domain mapping (Balamurali and Melkumyan, 2016), and the 223 

method is applied in a similar fashion to the NAIP data to identify metallogenic signatures. Here, we 224 

use the t-SNE algorithm from the sci-kit learn package in Python 3.7.4 (Pedregosa et al., 2011) to 225 

resolve and display the z-scored elemental contributions to overall NAIP data structure, with close 226 

reference to PCA results derived herein. Key input parameters were set up is as follows: perplexity of 227 
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80, 5000 maximum iterations and learning rate of 200, based on recommendations for 259 samples 228 

by Krijth (2015). Geographic categories from Hughes et al. (2015) and MLA-based clusters developed 229 

in this study are overlain on the generated t-SNE embedding, to allow for a simple comparison of the 230 

different clustering methods. 231 

 232 

2.4 k-means Clustering 233 

Machine learning techniques fall into three major categories: supervised learning, in which you train 234 

an algorithm on a portion of a data set to analyse or make predictions about the remaining portion; 235 

unsupervised learning, in which the algorithm finds its own structure in the data without the need 236 

for class labels; and reinforcement learning, where algorithms perform sequences of decisions based 237 

on both exploration and exploitation of knowledge (e.g., Hastie et al., 2009; Marsland, 2009; Witten 238 

et al., 2016). One of many unsupervised machine learning algorithms used to cluster multivariate 239 

data is the k-means clustering technique (MacQueen, 1967) which has been selected as an analytical 240 

technique for the NAIP data set on account of its versatility, ease of use and ability to cluster data 241 

based on user-selected parameters. The distance-based algorithm partitions a data set based on 242 

similarities amongst a large number of variables so that occurrences within the same grouping are 243 

more similar to each other than occurrences in another grouping (e.g., Michie et al., 1994;  Hastie et 244 

al., 2009; Marsland, 2009). The analyst must select the desired number of clusters (k) and the 245 

algorithm then randomly assigns k centroids to the data set. All observations are attributed to the 246 

nearest centroid to form clusters. The algorithm repositions the centroids and iterates until the sum 247 

of square Euclidian distances from each data point to their mean centre are minimised across the 248 

entire data set, to find the optimum centroid positions and corresponding clustering formation 249 

(Howarth, 1983). Crucially, this technique can be used with a high-dimensional data set, something 250 

unattainable via manual interpretations, and consequently will produce more objective and 251 
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statistically-robust clusters than a manual clustering exercise. For the chosen set of variables, 252 

screening of outliers was unnecessary. 253 

The unsupervised algorithm does not require a priori sample labels to produce clusters and as such, 254 

the optimum k can be difficult to discern; a heuristic approach is recommended when selecting k-255 

values, which promotes running the model multiple times with different input parameters to achieve 256 

a satisfactory result. The Davies-Bouldin Index (DBI) (Davies and Bouldin, 1979) can be used to 257 

retrospectively assess the statistical performance of different input parameter setups in a model, but 258 

model selection should also consider more subjective qualifiers in the context of the data set. 259 

Ideally, classifications should have small intra-cluster distances and high inter-cluster distances. In 260 

this study, the k-means algorithm from the sci-kit learn package in Python 3.7.4 (Pedregosa et al., 261 

2011) was implemented including the z-scores of (i) all 11 available variables, (ii) PGE and trace 262 

elements Cr, Ni and Cu, (iii) PGE only, and (iv) a selection of generated PCs (non-z-score), to observe 263 

the differences these inputs had on cluster size, shape, placement and DBI.  264 

 265 

3. Results 266 

3.1 Dimensionality reduction 267 

3.1.1 Principal Components 268 

PCA was performed for the eleven elements in the NAIP data set. PCs 1 through 6 account for 269 

92.17% of the variability in the NAIP data set combined (43.99%, 20.06%, 13.53%, 6.78%, 5.11% and 270 

2.70%, respectively).  A scree plot is provided in Figure 4a that summarises the relative importance 271 

of each PC. As a rough guide, eigenvalues beyond ~90% cumulative contribution are normally 272 

considered to be background noise and not substantially adding to data set variability, denoted by 273 

the flattening of the scree slope. PC7 and onwards are superfluous and not discussed herein. Full 274 

PCA statistics, including eigenvalues, eigenvectors and scaled co-ordinates are displayed in 275 

Supplementary Data B. Figure 4b-d displays PC score biplots (combined variable and sample 276 
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information) for (b) PC1-PC2, (c) PC3-PC4, and (d) PC5-PC6. Eigenvectors for each element are 277 

plotted as lines from the origin, and individual samples are plotted and attributed to their 278 

geographic categories (Hughes et al., 2015). Biplots allow for simultaneous interpretation of both 279 

element and sample variance. Vector lengths and directions represent the degree to which each PC 280 

describes the variability of the corresponding element.   281 

As shown in Figure 4b, there are three major element vector groups in the PC1-PC2 space:  MgO, Ni, 282 

Cr, Ir and Ru, positively attributed to PC1; Fe2O3, TiO2 and Cu, positively attributed to PC2; and Pd, Pt 283 

and Rh, positively attributed to both PC1 and PC2. In Figure 3, these groups tend to have positive 284 

correlation coefficients with other members of their group. In Figure 4c, Pt, Pd and Rh retain their 285 

association from Figure 4b and are the only variables to plot strongly positively against PC3; all other 286 

elements plot to the left hand side of the PC3-PC4 space, with the MgO-Ni-Cr-Ru-Ir group displaying 287 

shorter vector lengths than the Fe2O3-TiO2-Cu group. The majority of the variables have negligible to 288 

negative association with PC4, with only Pt, Ir and Fe2O3 vectors plotting positively. In Figure 4d, Pt 289 

and Pd appear correlated with the previously identified MgO-Ni-Cr group in the negative direction of 290 

both PC5 and PC6. In this space, TiO2 exhibits an opposite vector direction to Fe2O3 and Cu. Finally, 291 

Ir, Ru and Rh exhibit positive trends with PC5, with increasing vector length in that order; Ir and Ru 292 

are positively correlated with PC6. In terms of sample variance, onshore West and East Greenlandic 293 

lavas are coupled with MgO and its correlated vectors discussed above, while East Greenlandic 294 

(offshore), Icelandic and BPIP lavas plot opposed to most multi-elemental vector groups in higher 295 

order PCs (Fig. 4b and 4c). It appears that in some instances (Fig. 4c and d), extreme West 296 

Greenlandic outliers with high single-element contributions (notably Pt, TiO2 and Rh) have an 297 

influence on eigenvector length. 298 

                  299 

3.1.2 Embedding 300 
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A t-SNE analysis of the NAIP data set created using the z-scores of all eleven elements as input 301 

variables is displayed in Figure 5. The transformed data distribution is coloured by the individual 302 

elemental concentrations for each data point, giving an account of how each element contributes to 303 

the variability of the entire data set. The newly computed features, Embedding 1 and 2, arrange the 304 

data points in a roughly spherical shape with prominent protrusions on the top-left, top-right and 305 

bottom-middle of the distribution. Elements that exhibit clear bimodality through the embedding 306 

significantly contribute to the data set structure and corresponding low-dimensional shape 307 

(Horrocks et al., 2019). For example, high concentrations of MgO are found in the bottom of the 308 

embedding, and data points outside this zone have reduced MgO content comparatively. From this 309 

logic, the inverse relationship between MgO-Ni-Cr-Ir-Ru and TiO2-Fe2O3-Cu-Pd trends from PCA (Fig. 310 

4b-d) is clear along the length of Embedding 2 in the form of opposed bimodal distributions. A 311 

smaller separation is also visible between Cu (top-left), TiO2 (top-right) and Fe2O3 (top-spread) the 312 

uppermost zone of the embedding. A third group of Pd, Pt and Rh express bimodality along 313 

Embedding 1, particularly the former, with all three plotting highest values on the left of the 314 

embedding. This is in direct opposition to the major bimodality distribution shown in the other 315 

elements. Extreme outlier values of Pt and Rh concentrations do not interfere with this trend. The 316 

ratio of Pt/Pd does not appear to have any distinctive trends in the embedding. As per their 317 

correlation in Figure 3, Pd and Cu are seen to have reasonable overlap in the embedding. In addition 318 

to overall trends, t-SNE can isolate data set anomalies within the context of the data structure and 319 

attribute their segregated nature to single or multi-element concentrations. Sub-clusters can be 320 

seen to host distinctive concentrations pertaining to either the MgO or TiO2-led trends from Figure 321 

4, and high single element concentrations define individual outlier samples e.g., the segregated high-322 

Ni (top-centre), high-Rh (bottom-right) and Pt (bottom-left) occurrences in the embedding.  323 

 324 

3.2 MLA model selection  325 
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The NAIP data set was clustered using the k-means algorithm for k-values of 2, 3, 4 and 5, with the 326 

different variable arrays detailed in the methodology, including variable z-scores and PC1-6 (selected 327 

as per Fig. 4a). Davies-Bouldin Indices, which account of cluster performance of all configurations, 328 

are shown in Figure 6. A high Davies-Bouldin Index (DBI) signifies that the density function of each 329 

defined cluster is larger, meaning more diffuse or looser clustering. In this instance, a low DBI is 330 

desirable, reflecting tighter, more well-defined clusters (Davies and Bouldin, 1979).  331 

Models using k-values of 2, whilst consistently having some of the lowest Davies-Bouldin Indices of 332 

the model set (< 1.40), appear too simplistic to describe the evolving geochemistry of the NAIP lavas, 333 

especially considering the number of groups defined by Hughes et al. (2015) were either 3 (Pt/Pd 334 

subdivisions) or 5 (geographic categories). After discounting k=2 models due to their simplicity, and 335 

all models using z-scores of raw concentrations as variables due to their higher Davies-Bouldin 336 

Indices, the parameter setup of k=3 with PC1-6 as input variables is selected as the best model 337 

(highlighted by the black square in Fig. 6). It is clear that in data sets with large variable numbers, 338 

using new features produced via dimensionality reduction is vital to help focus high-dimensional 339 

trends, recognise multivariate structures and create robust clustering models (Nguyen and Holmes, 340 

2019). Figure 7 shows a comparison of clustering models using PC1-6 as variables and k ranging from 341 

2 to 5. This is useful to demonstrate how high-dimensional clusters from different parameter set-ups 342 

relate in a bivariate space, in the case of Figure 7, PC1 against PC2. Surplus models are displayed in 343 

Supplementary Data C and all clustering results compiled in Supplementary Data D. 344 

 345 

3.3 Clustering   346 

The clusters created by the chosen k-means algorithm are referred to as Group 1 (red circles), Group 347 

2 (blue squares) and Group 3 (yellow diamonds). It is convenient to display newly assigned 348 

multivariate cluster information in bivariate plots to determine the relative contributions each 349 

element’s variability made to the overall cluster formation. Elements that are important to overall 350 
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data structure will have easily identifiable and distinct clusters along the corresponding axes of a 351 

bivariate plot. Figure 8 displays algorithm-clustered bivariate plots of elemental concentrations from 352 

the NAIP data set. Major element oxides MgO and TiO2 cluster with a progressive negative trend 353 

(Fig. 8a). By contrast, Fe2O3 does not exhibit a linear trend, with Groups 1 and 2 perhaps exhibiting 354 

slightly higher concentrations in a wider range than Group 3 (Fig. 8b).  355 

Trace elements Cr and Ni, and Ir, Ru and Rh from the PGE all cluster neatly in Figures 4b-f, with the 356 

highest concentrations of each belonging to Group 3 (corresponding to higher MgO and lower TiO2); 357 

this again reflects their high correlation coefficients with each other in Figure 3. Copper does not 358 

cluster as distinctly as the other trace elements, but a slight negative relationship with Ni is visible, 359 

with the highest Cu concentrations in Group 1 and comparable low concentrations in Groups 2 and 3 360 

(Fig. 8c). The correlation matrix for the NAIP data set (Fig. 3) accordingly describes Cu as lacking in 361 

strong affinity with any other elements other than TiO2 and Pd. It appears that Group 2, the smallest 362 

by sample number, exists as an intermediate cluster with no significant enrichments, whereas 363 

Groups 1 and 3 have enrichments in elements from opposing PCA and t-SNE trends (Figs. 4b-d and 5) 364 

and act as geochemical end-members in the system. Overall, Group 1 is defined by higher 365 

concentrations of TiO2, Fe2O3 and Cu, Group 2 is defined by background to very low concentrations 366 

for most elements and Group 3 is defined by higher concentrations of MgO, Ni, Cr, Ir Ru and Rh. 367 

There are no distinct clustering trends in two particular variables – Pt and Pd. Figure 9a shows an 368 

MLA-clustered bivariate plot of Pt and Pd, and highlights the lack of definition in both variables. 369 

Group 2 appears to host the lowest concentrations for both elements, although all three groups 370 

share similar distribution of higher concentrations and clusters are indistinct. Figure 9b illustrates a 371 

similar absence of trend in terms of Pt/Pd ratio as a function of Pd. 372 

Overall, the k-means model successfully clustered data in nine elements based on the chosen input 373 

parameters of k=3 and PC1-6 as variables. The remaining two elements, Pt and Pd, present an 374 

interesting anomaly in the clustering process, and this would appear to be in agreement with the 375 
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lack of strong correlation coefficients (Fig. 3), unique PCA characters (Fig. 4) and t-SNE concentration 376 

trends opposed to all other elements (Fig. 5) for these two elements, with a weak to moderate 377 

relationship with Rh in some cases.  378 

 379 

3.4 Comparison to prior NAIP categories 380 

A key check on the effectiveness of using the MLA-integrated workflow as a geochemical tool is 381 

comparing algorithm-based clustering to information already established by classical studies using 382 

discriminant plots, to identify similarities and differences in element behaviour. Figure 10 displays a 383 

histogram of the five geographic groups and their new equivalent cluster distribution based on the 384 

chosen k-means model. The Iceland group comprises similar proportions of Group 1, 2 and 3 385 

samples (roughly a third of each). BPIP lavas are 51% within Group 1, 24% within Group 2 and 25% 386 

within Group 3, making a roughly 2:1:1 split. East Greenland offshore and onshore lavas belong 387 

largely to the Group 1 end-member (71% and 75%, respectively); they differ in that the former 388 

contains small proportions of Group 2 and 3 and the latter is completely devoid of Group 2 in the 389 

chosen clustering set-up. Finally, West Greenland contains the largest proportion of Group 3 390 

samples (48%) and the smallest proportion of Group 1 samples (29%) in the region. 391 

A further effective visual comparison of the MLA workflow results can be achieved by overlaying 392 

data distributions in bivariate plots and t-SNE embeddings with new clusters and geographic 393 

categories. A selection of key bivariate PGE relationships is shown in Figure 11. Trends and 394 

anomalies in the newly clustered classifications both complement and differ from the NAIP 395 

geographic categories in a variety of manners.  396 

As shown in Figure 11a, the average Pt/Pd ratios neatly described by geographic groupings (Figs. 1a 397 

and 11b) by Hughes et al. (2015) do not form as clear a trend with the k-means clustering method, 398 

which echoes the lack of distinct clusters for those individual variables in Figure 9. A very slight 399 
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decrease in average Pt/Pd is observed from Group 3 to 2 to 1, but this is on a much smaller degree 400 

than the trends in geographic categories. It should be noted that although the regression lines for 401 

Pt/Pd in East Greenland (onshore) lavas were not as distinct as other localities in the original study 402 

(Momme et al., 2002; Hughes et al., 2015), the basic age-progressive reduction in average Pt/Pd 403 

does persist throughout, using the data available. 404 

In Figure 11c and 11d, plots of Ir vs. Pd/Ir ratio convey trends typical of olivine accumulation and 405 

incompatible element fractionation as controls on PGE distribution within magmas. Group 1 plots 406 

neatly along the incompatible fractionation trend and Group 3 plots with olivine accumulation. 407 

Group 2 does not appear to have a strong affinity with either trend, plotting in low Ir regions far 408 

from the major fractionation population (Fig. 11c). In Figure 11d, West Greenlandic lava Pt/Pd ratio 409 

is attributed mainly to olivine accumulation (and thus, correlated with Group 3 as per Figure 10). 410 

East Greenlandic (onshore) and, to a lesser extent, Icelandic samples correspond well with Group 1 411 

being driven by the fractionation of elements incompatible in modal silicate minerals (e.g., Cu and 412 

Pd as per Keays & Lightfoot, 2007; Naldrett, 2004). The geochemistry of the East Greenlandic 413 

(offshore) lavas, BPIP lavas and a portion of the Icelandic lavas do not correspond well with either 414 

control, with a comparable distribution to Group 2 (Fig. 11c) off the main trend axis – these locations 415 

also have the highest proportion of points designated to Group 2 in Figure 10. 416 

Figure 12 displays the embedding from Figure 5 created using t-SNE, with all data points classified by 417 

(a) k-means clustering using the selected model and (b) geographic groupings, summarising how the 418 

different clusters interact with the broad structure of the data set. As detailed in van der Maaten & 419 

Hinton (2008), t-SNE retains important multivariate data information in a bivariate plot. Groups 1, 2 420 

and 3 plot in distinct regions within the newly created embedding in Figure 12a, with Group 1 421 

distributed mainly in the centre and left, Group 2 in the upper right and Group 3 in the bottom of 422 

the distribution. One notable outlier of Group 2 is located in the far right of the embedding. The split 423 

between Group 3 and the other two clusters is similar to their relationships in Figure 8, where Group 424 
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3 often plots distinctly from all other points. Groups 1 exhibits the largest spread in variability, 425 

physically taking up the most space in the embedding. In contrast, Groups 2 and 3 have much more 426 

concentrated distributions in the embedding, which likely relates to their more consistent individual 427 

element concentrations throughout Figure 8. Group 3 generally acts as the ‘anomalous’ cluster of 428 

highest MgO, Ni, Cr, Ir and Ru, and lowest Fe2O3, TiO2 and Cu concentrations (Fig. 8a-f), and these 429 

enrichments and depletions evidently create a distinctive character for each group’s chemistry in 430 

Figure 12a in strong agreement with individual element trends in Figure 5. Although less distinct, 431 

Group 1 shares a sector of the embedding with higher concentrations of Fe2O3, TiO2 and Cu (Fig. 5). 432 

In general, the t-SNE embedding is not clustered as clearly when classified by geographic location in 433 

Figure 12b, but structures are still observable. The majority West Greenlandic lavas (bottom-right) 434 

have multi-elemental compositions physically opposed to onshore and offshore East Greenlandic 435 

lavas (centre and top-left) in the embedding. Icelandic lavas are concentrated in the boundary 436 

between West Greenland and East Greenland (offshore) in the centre of the embedding, and the 437 

bulk of BPIP samples appear in the top of the embedding. A large proportion of West Greenland 438 

lavas and around half of Icelandic lavas plot in the section of the embedding strongly associated with 439 

high MgO, Ni, Cr, Ir, Ru and Rh in Figure 5 and Group 3 in Figure 12a (which agrees with large 440 

proportions of their lavas belonging to Group 3 in Fig. 10). East Greenland (offshore and onshore) 441 

are associated with high Fe2O3, TiO2 and Cu (Fig. 5) and Group 1 (Fig. 12), as per Figure 10 (< 70% 442 

Group 1 lavas). BPIP appears evenly spread between prior identified regions in the embedding. 443 

Individual sub-clusters forming distinct populations outside and within the main data structure and 444 

can be observed in Figure 12a and 12b. These were defined subjectively as breaks from the 445 

otherwise continuous cumulative variability map and are always dominated by a particular high 446 

concentration in Figure 5, a particular Group in Figure 12a or a particular locality in Figure 12b. 447 

Selected prominent sub-clusters are indicated by numbered annotations.  448 
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A series of summary box-and-whisker plots with elemental concentrations for each MLA-based 449 

cluster is given in Figure 13 to summarise their typical geochemical signatures. Even in these simple 450 

plots, the lack of significant inter-cluster Pt and Pd variations are clear when compared to the other 451 

elements, which normally see reasonable shifts in quartile ranges between Groups 1, 2 and 3. 452 

     453 

4 Discussion 454 

4.1 Performance of MLA-based geochemical workflow 455 

Utilising data science techniques to explore the NAIP data set has allowed us to analyse and display 456 

data in a variety of ways not attainable by a classic interrogation of geochemistry. Not only does 457 

establishing a MLA-integrated workflow save processing time and provide a framework easily 458 

applied to other data sets, it reveals unique information about how elemental concentrations vary 459 

alongside each other. The correlation matrix (Fig. 3) delineates which elements varied with respect 460 

to each other, expanded upon by PCA in Figure 4. At least two multi-elemental geochemical end-461 

member associations exist within the broad data structure – a high MgO group, and a high-TiO2 462 

group. t-SNE displayed complete chemical variability information about NAIP lavas across eleven 463 

elements, while simultaneously identifying anomalous multi-element sub-clusters distinct from the 464 

main population and attributed to a particular grouping. The technique further reduced 465 

dimensionality and independently replicates the MgO- and TiO2-led end-members identified by PCA 466 

in the context of data structure. In both PCA and t-SNE dimensionality reduction results, Rh, Pt and 467 

Pd are highlighted as not strongly conforming to either of the major end-member groups. Sub-468 

clusters identified by t-SNE can be investigated in isolation and are often attributed to individual 469 

sample localities; it is likely that these distinct masses represent a unique chemistry still conforming 470 

to the overall algorithm-based clusters but with individual elemental concentrations outside the 471 

norm. This finding agrees with Figure 5, in which sub-clusters can often be explained by particularly 472 

high concentrations of a single variable.  473 
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Using machine learning to cluster the data set beyond arbitrary single element concentrations 474 

further explores these multi-elemental end-members and classifies data points broadly in line with 475 

findings from dimensionality reduction. The intricacies of a high-dimensional data set can be 476 

resolved and presented in a logical manner, with the three techniques complementing and 477 

enhancing the findings from other steps; multi-element patterns can be observed through all three 478 

techniques (Figs. 4, 5 and 8), PC features were directly used in the best-fit clustering model (Figs. 6-479 

9), and t-SNE was used to visualise overall differences in MLA-based classifications and geographic 480 

categories from other steps in the workflow (Fig. 12). Whilst the NAIP variable set of eleven 481 

elements is certainly large enough to merit exploration using a MLA approach and the applicability 482 

of dimensionality reduction prior to clustering is reflected in Figure 6, this would become 483 

increasingly relevant as a data set integrates more variables. By condensing large-scale elemental 484 

behaviour into fewer features whilst retaining variability information, the workflow makes 485 

geochemical interrogation significantly more manageable. 486 

Despite the success of the workflow results, some caveats must be acknowledged when utilising 487 

clustering algorithms and dimensionality reduction for geochemistry. The selection of input 488 

parameters for most machine learning techniques is an analyst-dependent pursuit – k-means 489 

clustering cannot optimise parameters and model selection requires a set of considerations unique 490 

to the job the algorithm will be applied to. Furthermore, while clustering data points based on a 491 

large set of elements can be viewed as objective by encompassing all variable concentrations, 492 

elements that do not conform to the overall variance of the data set can impede perceived 493 

algorithm success. Similarly, if certain input parameter set-ups are chosen (e.g., with inefficient k-494 

value and t-SNE input parameters, non-normalised data or incomplete variable sets) any of the 495 

models used in this study may be unsuccessful or unrepresentative. However, as long as 496 

considerations are made regarding the set-up of the methodology, a MLA approach does not 497 

become a ‘black box’ process, and offers new prospects in understanding a data set. While data 498 

science provides important and unique information about a data set, a reasonable knowledge of the 499 
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subject being investigated is essential to aid in the interpretation of results – a careful balance must 500 

be maintained between sensible user input to drive MLA success and background geochemical 501 

understanding of the project without bias. The following discussion takes findings from the NAIP 502 

workflow – namely the three multi-element clusters and the seemingly isolated behaviour of certain 503 

PGE – and contextualises them by relating data anomalies and trends to geochemical processes.  504 

 505 

4.2 MLA mapped on to geochemical indicators for magmatic differentiation in the NAIP  506 

Further to establishing a new approach for the analysis of regional geochemical data sets, a major 507 

feature of this study concerns the behaviour of groups of elements in relation to the data structure. 508 

In PCA, t-SNE and k-means clustering methods, distinct variability trends are exhibited by most of 509 

the elements included in MLA-based analyses. Magnesium (as MgO), Cr, Ni, Ir and Ru are strongly 510 

controlled by PC1 (Fig. 4b) and Fe2O3, TiO2 and Cu are strongly controlled by PC2 (Fig. 4c); the two 511 

sets of elements also replicate similar trends in t-SNE embeddings in Figure 5 through a different 512 

mathematical process. Platinum, Pd and Rh exhibit a mixed influence of PC1-2, and PC3 (and to an 513 

extent PC4) further isolates them from every other element. The lower-influence PC5 and PC6 514 

separate the previous elemental groups (Fig. 4d), although their cumulative importance to data 515 

variability is much lower (Fig. 4a). These multi-element patterns are broadly reflected in clustering in 516 

Figures 7 to 9. 517 

The concentration of an element in a magma reflects the combined effect of several differentiation 518 

processes and the geochemical behaviour of that element. For example, Ni and Cr are compatible in 519 

olivine, and clinopyroxene and spinel-group minerals, respectively, and therefore these elements 520 

correlate well with MgO, TiO2 and Fe (in this data set expressed as Fe2O3) in mafic lavas (Fig. 8). In 521 

comparison, chalcophile elements, such as Cu and especially the Pd-group PGE (PPGE; Rh, Pt, Pd), 522 

are controlled almost exclusively by sulphides, whether as sulphide liquid or base metal sulphides 523 

(BMS) and PGM (e.g., Naldrett, 2004; Keays and Lightfoot, 2007; Lorand and Luguet, 2016 and 524 
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references therein). Iridium-group PGE (IPGE; Os, Ir and Ru) although chalcophile, are also 525 

compatible in spinel (especially chromite) and olivine (Barnes and Picard, 1993; Pitcher et al., 2009). 526 

With higher degrees of partial melting, BMS will eventually be exhausted in the mantle source, and 527 

spinel and olivine will begin to melt, therefore increasing the abundance of IPGE broadly in 528 

correlation with increasing MgO, Ni, and Cr in the silicate magma produced. During ascent through 529 

the lithosphere, this magma will undergo magmatic differentiation via fractional crystallisation of 530 

olivine, pyroxene, spinel-group minerals and other silicate and oxide mineral phases, thereby further 531 

modifying the concentration of MgO, Ni, Cr and the IPGE in combination with other major and trace 532 

element proxies for fractionation and contamination.  533 

 If PCs can loosely be viewed as proxies for processes controlling element variability (e.g., Steiner et 534 

al., 2019), in this case as a result of magmatic differentiation, we can begin to interpret the 535 

elemental correlations consistently displayed through dimensionality reduction as constituents to 536 

overall magma geochemical variability. PC1 (43.99% of data set variability) is likely to represent the 537 

fractionation of olivine from the parental magma, given the close correlation with olivine-compatible 538 

MgO, Ni, Cr and the IPGE in Figure 4b. PC2 (20.06% of data set variability), which primarily influences 539 

TiO2, Fe2O3, Cu and Pd concentrations (Fig. 4b), could represent a more complicated combination of 540 

silicate, oxide and sulphide fractionation controls within parental magmas. For example, as mafic 541 

magmas crystallise silicate minerals, the chalcophile elements (e.g., Cu and Pd) will become 542 

increasingly concentrated in the residual melt until an immiscible sulphide liquid is exsolved 543 

(following sulphide-saturation). At this point, chalcophiles will partition into the sulphide liquid, 544 

depleting the remaining silicate melt for these elements (Naldrett, 2011 and references therein; 545 

Ripley and Li, 2013). Meanwhile, the concentration of Ti in the magma will be affected by the 546 

fractional crystallisation of silicate minerals (incorporating minor amounts of Ti; e.g., in 547 

clinopyroxene) and oxide minerals (such as the spinel-group) depleting the residual liquid 548 

composition vs potential addition of Ti to the magma via crustal contamination.  549 
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 In the context of the NAIP, the three MLA-based geochemical end-members established from 550 

Figures 7 to 9 may be framed in terms of the evolving plume environment across this region. 551 

Geographic categories from Hughes et al. (2015) can be seen to ascribe to different dominant MLA-552 

based end-members in Figures 10 to 12 (elemental concentrations are summarised in Table 2). In 553 

Figure 10, West Greenland has the highest proportion of Group 3 lavas of all localities (48%); East 554 

Greenland (onshore and offshore) has dominant Group 1 affiliations (> 70%); BPIP also has a 555 

prominent Group 1 affiliation (51%); and Iceland has a more equal split of each cluster.  556 

Group 3 is the end-member most easily characterised within the NAIP setting given its distinctive 557 

strong association with the dominant PC1 and corresponding enrichment in olivine-compatible 558 

elements MgO, Ni, Cr and the IPGE (Fig. 4b, Fig. 5 and Fig. 12a). With MgO concentrations mainly 559 

between 15 and 25% (Fig. 8a), we suggest that Group 3 could represent higher degree partial melts 560 

of a mantle source, sequestering compatible elements like Ni and IPGE into the magma, followed by 561 

subsequent fractionation and accumulation of olivine (Fig. 11c). A sensible petrological NAIP 562 

association with this end-member would be the picrites temporally related to early NAIP lavas in 563 

West Greenlandic plateaus (e.g., the uncontaminated members of the Vaîgat Formation; Lightfoot et 564 

al., 1997), that are interpreted to have formed from magmas produced by up to 25% partial melting 565 

(Larsen and Pedersen, 2000; Andersen et al., 2002) – Figures 10 and 12. Vaîgat tholeiites record low 566 

87Sr/86Sr, high εNd and high γOs values consistent with asthenospheric plume melts with minimal 567 

SCLM interaction (Larsen et al., 2003).  568 

Group 1 is primarily characterised by concentrations of MgO < 8.5% and TiO2 ~2.0-2.5%, in addition 569 

to up to five times enrichment in Cu compared to other groups (Fig. 8c, Fig. 13 and Table 2), as 570 

expressed by PC2 (Fig. 4b). Figure 11c appears to suggest that the fractionation of elements 571 

incompatible in certain silicate minerals controls this group. The concentration of Cu will increase in 572 

fractionated magmas in the absence of a sulphide phase (Holwell et al., 2012 and references 573 

therein), and combined with earlier fractional crystallisation of olivine (or a similar mineral in which 574 
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Ti was incompatible), TiO2 would be elevated in the Group 1 component. In plume environments, 575 

higher TiO2 concentrations are also thought to indicate magma erupting through thicker crust and 576 

SCLM, which correlates with longer residence time, more differentiated/evolved compositions and 577 

increased incorporation of high field strength and lithophile elements from crustal sources (e.g., 578 

Arndt et al., 1993; Gibson et al., 1995). We envisage the high-Ti basalts of East Greenland (such as 579 

those in Kangertittivaq) could represent the product of this end-member as a more contaminated or 580 

differentiated melt (Tegner et al., 1998), tying with Group 1 prominence in both East Greenland 581 

categories from Hughes et al. (2015). Lavas from East Greenland have been noted to have high 582 

87Sr/86Sr and low εNd, often cited as an indication of lithospheric contamination (Kent and Fitton, 583 

2000). However, it must be considered that due to consistency of data with PGE geochemistry 584 

available to this study, we deal with eleven elements commonly used to document Ni-Cu-PGE 585 

mineralisation and mafic-ultramafic magmatic systems; the data set does not include alkali, 586 

lithophile or rare earth element concentrations. While TiO2 is often a good initial indicator of mafic 587 

magma contamination, interrogating a wider palette of lithophile elements could enhance clustering 588 

and interpretations. Further testing on a larger element suite is necessary to confirm the link 589 

between Group 1, TiO2 and crustal contamination in combination with silicate-incompatible element 590 

fractionation. 591 

Group 2, the smallest group by sample number, does not exhibit the enrichments captured by 592 

Groups 1 and 3, and almost always has the lowest range of concentrations for all variables (Fig. 13 593 

and Table 2). As the intermediate end-member, it can be viewed in one of two ways – that it 594 

represents a geochemically depleted source (although this is difficult to test without a wider 595 

elemental suite) or, more likely, that it is a mixed source with no single dominant geochemical 596 

control. If Groups 1 and 3 represent the end-members for higher amounts of incompatible 597 

fractionation and higher degrees of olivine accumulation and/or partial melting in the NAIP 598 

asthenosphere, respectively, Group 2 could simply represent the absence of strong multi-element 599 

geochemical contributions from these factors. It could also represent a different higher-Fe2O3 (i.e. 600 



25 
 

previously melted) mantle source component (as per Korenaga & Kelemen, 2000). This end-member 601 

may relate to the North Atlantic End-Member (NAEM) proposed by Ellam & Stuart (2000), a 602 

ubiquitous ‘background’ component in NAIP melts defined by its distinctive Pb-isotopic signature 603 

through all NAIP lavas. It is possible that this end-member is derived mainly from depleted upper 604 

mantle material, which couples well with our multi-element assessment of the group. 605 

An interesting feature presented by the MLA workflow is that categories of a similar age in the NAIP 606 

(and by extension belonging to a similar geodynamic setting) do not necessarily share the same high-607 

dimensional data interpretation. The BPIP category shares more in common in terms of multi-608 

element variability with later lavas in East Greenland or Iceland than it does with West Greenland 609 

despite being the same age (Fig. 1b). We would expect that BPIP lavas would share (i) a similar 610 

degree of partial melting and (ii) similar potential for crustal contamination to Greenlandic lavas, 611 

given the comparable geodynamics at this point in NAIP development (pre-rift continental flood 612 

basalts; Fig. 1b). Isotope data for both localities confirm their inherent link to the plume source 613 

(Saunders et al., 1997), so the discrepancy in cluster distribution must be associated with differences 614 

in the high-dimensional data structure as per their distinct positioning within t-SNE plots in Figure 615 

12a-b. We suggest that, given BPIP is not defined by the absence of Groups 1 or 3 but simply 616 

reduced proportions of them, there are asymmetrical localised variations in magma sources on 617 

either side of the sampled hotspot, similar to other localities like the Tristan plume in the southern 618 

Atlantic (e.g., Peate, 1997; Hoernle et al., 2015; Rämö et al., 2016). In summary, the MLA end-619 

members demonstrate that there are a combination of magmatic differentiation processes taking 620 

place in the NAIP system, and that the net effect of those processes has been to produce an array of 621 

lava compositions that fall largely into three categories in multi-dimensional (multi-element) space. 622 

 623 

4.3 Platinum and palladium: Impacts on metal basket 624 
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The most prominent and significant finding from our study, the unique behaviour of specific PGE 625 

within the NAIP high-dimensional data structure, demonstrates the utility of the MLA workflow for 626 

exploring magmatic provinces from a ‘mineral systems’ perspective (e.g., McCuaig et al., 2010). 627 

Using a holistic approach to metallogenic systems, we can examine regional fertility on different 628 

scales and begin to understand the metal basket available to intraplate magmas. 629 

It should be noted that Rh appears to fulfil a chemically intermediate role between IPGE and PPGE, 630 

appearing between the two populations in Figure 4b and 4c; Rh also shows more distinct clustering 631 

in Figure 8f. The mineralogical and chemical division of the IPGE and Rh from Pt and Pd is potentially 632 

reflected in their separate contribution to NAIP data set variability - Figure 4b-d consistently 633 

separates the two groups in terms of dominant PC influence. Controls on Pt and Pd concentrations 634 

(particularly Pt) in NAIP lavas cannot be described as succinctly as the other nine elements, i.e. via 635 

Groups 1 to 3 and their collective geochemical significance, and it is likely that instead of a major 636 

dominant control linked to magmatic differentiation (e.g., PC1 or PC2) Pt and Pd are controlled by 637 

smaller-scale processes that affect them exclusively. The workflow is able to effectively work with 638 

major data trends while simultaneously identifying more subtle features extrinsic to these dominant 639 

multi-element interpretations, which we can interrogate further in the framework of low-level or 640 

localised geochemical controls within our system.  641 

While PC1-2 have a combined contribution to Pt and Pd variability between the Group 1 and 3 end-642 

members, PC3-4 (which account for ~20% of data set variability; Fig. 4a) have a unique influence on 643 

these two elements, far from the neat vector trends in the featured bivariate plots. Hence the 644 

controls on Pt and Pd concentrations appear to be more complex and cryptic than other modelled 645 

elements in PCA (Fig. 4b-d). This is further evidenced by the digression from significant patterns in 646 

the subsequent stages of the workflow - firstly  in the embedding created via t-SNE, which shows Pt 647 

and Pd variability contradicting the major bimodal trends established by the other elements (Fig. 5); 648 

and secondly in k-means clustering in all attempted model set-ups, which fails to capture distinct 649 
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populations in these two variables (Fig. 9a). Consistently high Pt/Pd signatures are found in BPIP and 650 

West Greenland lavas (Hughes et al., 2015) yet these two localities exhibit different multi-element 651 

variability trends in the rest of the MLA results, clearly indicating that the geographic Pt/Pd trend is 652 

more nuanced than other grouped elements captured within the data structure (as in Fig. 5). 653 

Platinum is visibly separated in Figure 4c from all other elements (even Pd and Rh) implying that 654 

whatever control PC3-4 represents, Pt is the element chiefly affected. In comparison, Pd, while 655 

lacking affinity for multi-element classification models, does correlate moderately with Cu (Fig. 3) 656 

likely on account of similarities in the mineralogical controls on their fractionation. Together with t-657 

SNE embedding (Fig. 5) and clusters outside the dominant multi-element categories (Fig. 8 and 9), 658 

the independent variation of Pt appears to be a small but significant control. 659 

As illustrated, multi-element geochemistry can vary locally as a function of the components available 660 

to the melting environment (Fig. 10). For example, the Hebridean Basin in western Scotland could 661 

provide large amounts of sedimentary material via contamination during magma ascent, different 662 

from those available to magmas ascending through the Greenlandic lithosphere. These mid- to 663 

shallow-crustal contaminants provide effective localised signatures, changing the resulting 664 

geochemistry of melts and potentially their metal basket (Andersen et al., 2002), which is of 665 

particular importance to our work in the form of PGE prospectivity. In the absence of a full set of 666 

major, trace and precious element data for all localities, we can use metallogenic studies of the 667 

region to inform our assessment of Pt and Pd behaviour, specifically addressing the independent 668 

roles of the elements in high-dimensional space as resolved by MLA and the apparent localised 669 

controls on their enrichment. The ‘nugget effect’ of discontinuous geological occurrence (e.g., 670 

Dominy et al., 2003) is common for metals with complex geochemical and physical partitioning 671 

behaviour, such as Au, base metals and the PGE, emphasising the importance of recognising spatial 672 

and temporal variations in magma enrichment detached from major element oxides like MgO, Fe2O3 673 

and TiO2. Gold has been seen to vary locally in lavas from Iceland and its adjoining Reykjanes Ridge, 674 
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in relation to sulphide saturation conditions and differing mantle sources of the plume-derived 675 

melts, rather than as a direct function of the degree of partial melting (Webber et al., 2013). Webber 676 

et al. (2013) therefore illustrate the impact of source heterogeneity in regional metal basket 677 

variation and metallogenesis in a manner analogous to magma isotopic signatures transgressing 678 

petrological classifications. Additionally, Au, Co, Cu and the PGE amongst other elements have been 679 

speculated to be locally enriched via metasomatism into the lithospheric mantle (e.g., Mitchell and 680 

Keays, 1981; Tassara et al., 2017). Metal enrichment of the SCLM through subduction-related 681 

volatile and fluid transportation is widely documented, and Pt, Pd and Au are particularly thought to 682 

be mobilised in these metasomatic environments (e.g., Hughes et al., 2017; Tassara et al., 2017; 683 

Holwell et al., 2019; Choi et al., in press). We envisage that metasomatism (or similar hydro-684 

magmatic processes) could have resulted in the ‘pre-conditioning’ of the SCLM above the proto-685 

Icelandic plume, leading to its heterogeneous enrichment in Pt and a shift in local metal basket. Such 686 

controls evidently do not map onto our 3 MLA-based multi-element end-members, reinforcing the 687 

potential localised nature of high concentrations within the broader system. 688 

The complexities of localised PGE behaviour and partitioning during partial melting of the mantle has 689 

been studied experimentally and empirically (e.g., Keays, 1982; Hamlyn and Keays, 1986; Peach et 690 

al., 1990; Rehkämper et al., 1997; Lorand et al., 1999; Ballhaus et al., 2001; Lorand and Alard, 2001; 691 

Luguet et al., 2003; Bockrath et al., 2004; Righter et al., 2004; Pitcher et al., 2009; Locmelis et al., 692 

2013; Lorand et al., 2013; Mungall and Brenan, 2014; Lorand and Luguet, 2016; Luguet and Reisberg, 693 

2016). IPGE are considered compatible during partial melting, with an affiliation for some silicate 694 

and oxide minerals, and thus behave in a similar fashion to Ni and Cr (e.g., Brenan and Andrews, 695 

2001; Maier et al., 2003; Pitcher et al., 2009; Pagé et al., 2012). On the other hand, PPGE (especially 696 

Pd) are largely hosted by BMS (e.g., Mitchell and Keays, 1981; Alard et al., 2000; Lorand and Luguet, 697 

2016; Luguet and Reisberg, 2016 and references therein) and are incompatible in silicates and oxides 698 

(e.g., Hill et al., 2000; Righter et al., 2004). Melting-induced fractionation of PGE may also stem from 699 

the coexistence of two mantle sulphide phases in the mantle source: a crystalline monosulphide 700 
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enriched in Fe, Ni and IPGE vs an immiscible sulphide enriched in Cu, Ni and PPGE (e.g., Ballhaus et 701 

al., 2001; Lorand et al., 2013; Lorand and Luguet, 2016; Luguet and Reisberg, 2016). Significant 702 

fractionation between PPGE and IPGE can be caused by low degree partial melting as the immiscible 703 

sulphide becomes mobilised into silicate magma, leaving a monosulphide residue. With increasing 704 

partial melting, sulphide phases, including the monosulphide, may be exhausted and silicates and 705 

oxides (such as olivine and chromite) will also begin to release their IPGE budget (e.g., Keays, 1982; 706 

Rehkämper et al., 1997; Maier et al., 2003; Mungall and Brenan, 2014). Accordingly, komatiites have 707 

much lower Pd/Ir ratios than basalts (e.g., Rehkämper et al., 1999).  708 

Fractionation between individual elements of the PPGE may theoretically be possible during partial 709 

melting on account of their extremely high sulphide-silicate partitioning coefficients (DPt = 317,000 710 

vs DPd = 190,000 e.g., Mungall & Brenan, 2014). However, such strong chalcophile behaviour of both 711 

elements (extremely high partition coefficients, D) mean that this fractionation effect is likely to be 712 

marginal at best, and dwarfed in comparison to the efficiency of sulphide melting and extraction 713 

from the mantle – even a small residue of sulphide in the source can significantly inhibit the 714 

concentration of PGE in the silicate melt generated.  It has been suggested that repeated partial 715 

melting events of the same source region record increasing Pt/Pd ratios via early depletion in Pd 716 

(e.g., Keays, 1982; Keays et al., 1982; Hamlyn et al., 1985). Further, of the PPGE, Pt in particular can 717 

also occur in PGM and these may behave differently from BMS during partial melting (depending on 718 

whether these are as PGM-sulphides or alloys). Regardless of the precise mechanisms for Pt and Pd 719 

decoupling, crucial empirical evidence from mantle peridotite xenoliths indicates that there may be 720 

regional and local variations in the composition of mantle BMS and PGM and thus domains 721 

particularly enriched in Pt (Wittig et al., 2010; Hughes et al., 2017). For example, Hughes et al. (2017) 722 

found that mantle xenoliths from the keel of the Scottish portion of the North Atlantic Craton (which 723 

underlies portions of the BPIP) contain BMS enriched in PGE and characteristically bear micron-scale 724 

Pt-sulphides (cooperite). In context with the shift in NAIP lava Pt/Pd ratios through time, Hughes et 725 

al. (2015) suggested that the high Pt/Pd of earlier NAIP lavas resulted from entrainment of these Pt-726 
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sulphides, thereby ‘spiking’ the composition of the asthenosphere-derived mantle plume magmas 727 

during their ascent to the crust.  728 

Ultimately, the MLA approach to geochemical data analysis adopted in this study provides robust 729 

evidence that Pt (and to some extent Pd) is truly decoupled from the rest of the major and trace 730 

element geochemistry of the NAIP LIP. The multi-elemental assessment of the data set is essentially 731 

an integrated account of multiple geochemical processes (via magmatic differentiation; e.g., Fig. 2a) 732 

affecting the final concentrations of elements in NAIP lavas, the cumulative result of which produces 733 

Groups 1 to 3. The Pt/Pd shift in the NAIP lavas with time is more complex than a systematic 734 

geographic variation; Pt is evidently being added to partial melts from a reservoir outwith the main 735 

process of magma generation via asthenospheric partial melting, and we suggest the potential role 736 

of a locally metasomatised SCLM in this process. The use of MLA demonstrates a mineral systems 737 

approach to mantle source fertility and the manner in which the methodology can isolate specific 738 

nonconforming trends in high-dimensional space. 739 

 740 

5 Conclusions 741 

 The benefits of using machine learning to explore high dimensional data sets have been clearly 742 

outlined by our study of NAIP lava geochemistry. By using a novel combined data science and 743 

classical approach to bulk geochemical data sets, we have identified some key contributions to the 744 

investigation into PGE metallogenic controls in plume environments: 745 

1. PCA, t-SNE and k-means clustering identified major multi-element trends in NAIP lava 746 

geochemistry and established three distinct geochemical end-members in the data set, 747 

which represent the net result of magmatic differentiation processes in the geodynamic 748 

system.   749 
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2. The workflow captured consistent variability information in nine of the eleven included 750 

variables, importantly isolating Pt and Pd as exceptional to end-member trends in all 751 

methods and input formations, implying a localised geochemical control for these two 752 

metals in the NAIP. 753 

3. We suggest a locally metasomatised and Pt-sulphide-rich SCLM reservoir being incorporated 754 

into plume melts as a reasonable explanation for the unique Pt/Pd variability, based on 755 

previous findings regarding asthenospheric heterogeneity in the NAIP. 756 

4. The role of feature extraction via dimensionality reduction is important for manageable 757 

high-dimensional geochemical investigations as illustrated by consistently improved 758 

clustering performance using Principal Components as input variables for MLAs. 759 

5. Further advances in understanding this wide topic may be possible by integrating more 760 

elements in larger data sets from other plume regions (where PGE are of significant 761 

interest), particularly lithophile elements. 762 

 763 

764 
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Figure Captions -  1105 

Figure 1 – a) Schematic map of the North Atlantic Igneous Province. Onshore and offshore lavas are 1106 

shown in orange, with sample localities highlighted. Pt/Pd for each locality are shown in the purple 1107 

to light blue bubbles, lightening towards lower values. The orange dotted line describes the trail of 1108 

the proto-Icelandic plume from c. 65 Ma onwards (based on Lawver & Muller, 1994). Study localities 1109 

from which data are drawn are shown in white boxes. b) Timeline of eruption in localities in the NAIP 1110 

throughout the last c. 62 Ma, divided into pre-, syn-, and post-rift periods. Adapted from Hughes et 1111 

al. (2015).  1112 

Figure 2 – Geochemical workflow introduced in this study featuring concurrent a) traditional and b) 1113 

data science based methods towards a geochemical-geodynamic model. Dimensionality reduction is 1114 

used to create more concise, descriptive multi-element clusters using MLA. 1115 

Figure 3 – Correlation Matrix for all eleven elements included in the bulk geochemical data set for 1116 

the North Atlantic Igneous Province. Both individual and group correlations are indicated on a scale 1117 

from -1 to 1, highlighting multi-element trends in a simple manner prior to data science analyses. 1118 

Figure 4 – PCA for the NAIP data set. a) Scree plot of eigenvalues for the eleven created PCs and 1119 

corresponding cumulative percentages; b) Biplot for PC1 v PC2; c) Biplot for PC3 v PC4; and d) Biplot 1120 

for PC5 v PC6, with variables (elements) plotted as vectors and samples plotted as dots coloured by 1121 

their respective geographic grouping in all biplots. 1122 

Figure 5 – t-SNE plots based on eleven variables, with data points coloured by the relative values of a 1123 

given constituent element for all eleven analysed variables and Pt/Pd. Dark blue represents the 1124 

lowest values for a given variable and yellow represents the highest values. Note that Rh and Pt have 1125 

significant outliers and otherwise less distinctive trends. 1126 
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Figure 6 – Davies-Bouldin Indices (DBI) for all parameter setups run for k-means clustering models, 1127 

with the chosen model (k=3, using PC1-6 as input variables) highlighted by the black square. By using 1128 

PC1-6 as variables, the clusters formed are more efficient than using raw data in almost all cases. 1129 

Figure 7 – Selection of bivariate PC1 v PC2 plots displaying selected input parameter configurations 1130 

for k-means clustering models. a) k=2, PC1-6 as variables; b) k=3, PC1-6 as variables; c) k=4, PC1-6 as 1131 

variables; d) k=5, PC1-6 as variables. Cluster numbering is randomised by the algorithm and the 1132 

group order is not relevant to interpretation. 1133 

Figure 8 - Bivariate geochemical plots of all NAIP data points, clustered by k-means clustering (k=3, 1134 

PC1-6 as variables in the clustering process): a) MgO v TiO2 b) Fe2O3 v Cr c) Ni v Cu d) MgO v Ir e) 1135 

MgO v Ru f) MgO v Rh 1136 

Figure 9 – Bivariate geochemical plots of all NAIP data points, clustered by k-means Clustering (k=3, 1137 

PC1-6 as variables in the clustering process): a) Pd v Pt b) Pd v Pt/Pd. 1138 

Figure 10 – Histogram of MLA-based cluster distribution within each geographic category 1139 

Figure 11 – Comparison of MLA-based (clustering) groupings and geographic location categories 1140 

from Hughes et al (2015): a) MLA-based Pd v Pt with average Pt/Pd for each group; b) geographic-1141 

based Pd v Pt with average Pt/Pd lines for major trends (with values for W Greenland/BPIP in blue, E 1142 

Greenland (onshore and offshore) in orange and Iceland in purple); c) MLA-based Ir v Pd/Ir; d) 1143 

geographic-based Ir v Pd/Ir. Sub-plots (c) and (d) show trends for olivine accumulation and 1144 

incompatible fractionation in the system, based on (Hughes et al., 2015). Skaergaard (Vincent and 1145 

Smales, 1956) and Primitive Upper Mantle (PUM) (McDonough and Sun, 1995) estimates are given 1146 

for reference. 1147 

Figure 12 – t-SNE plots with data points assigned to a) k-means clustering groups using k=3 and PC1-1148 

6 as input variables; b) geographic localities. 1 – Tight sub-cluster dominated by Group 1 and East 1149 

Greenland (off.) (n = 10). 2 – Sub-cluster of Group 3 and East Greenland (off.) (n = 8). 3 – Sub-cluster 1150 
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of Group 1 and West Greenland (n = 6). 4 – Sub-cluster of Group 3 and West Greenland (n = 13). 5 – 1151 

Single point defined by Group 1, East Greenland (off.) and high Rh concentration in Figure 5 (n = 1). 1152 

Figure 13 – Box-and-whisker plots for all elemental concentrations in each MLA-based cluster (k=3, 1153 

PC1-6 as variables). Displays interquartile ranges (within box), minimum and maximum values 1154 

excluding outliers (whiskers) and outliers (circles for lower outliers, triangles for extreme outliers) 1155 

for:  a) major oxides; b) trace elements; and c) PGE. 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 

 1171 



44 
 

Table Captions -  1172 

Table 1 - Summary of data used in this study listed according to geographic regions, localities, 1173 

reference and number of basaltic lava samples (n). 1174 

Table 2 - Summary of elemental concentrations (presented as a range from lower to upper quartile 1175 

as per Fig. 13, excluding outliers). 1176 
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Supplementary Items –  1193 

Supplementary Data A – Excel sheets for the data set used in this study. The first sheet is the 1194 

formatted amalgamated data with rounded-zero imputation applied (e.g., no zeroes and non-1195 

numeric cells) and calculated z-scores. The second sheet is the original data amalgamated with no 1196 

processing. 1197 

Supplementary Data B – Principal Component Analysis information including eigenvalues, 1198 

eigenvectors, correlation matrix, and scaled co-ordinates. Generated using ioGas software in 1199 

conjunction with Python code (Supp. E). 1200 

Supplementary Data C – Extra k-means clustering models, displayed in bivariate plots and re-1201 

creations of in-manuscript figures. These are models ultimately not selected in the manuscript due 1202 

to high Davies-Bouldin Indices or inefficient clustering.  1203 

Supplementary Data D – Master clustering sheet, showing the classification for a variety of different 1204 

k-means clustering input set-ups. The first sheet shows clusters generated for different k-values 1205 

using z-scored raw elemental concentrations as variables. The second sheet shows clusters 1206 

generated for different k-values using Principal Components as variables. The third sheet shows 1207 

clusters generated for different k-values using t-SNE features as variables (this is ultimately not used 1208 

in the manuscript as t-SNE cannot be soundly clustered using Euclidean distances and is incorrect 1209 

but provided as a point of interest). 1210 

Supplementary Data E – Jupyter notebooks for Python code for PCA, t-SNE and k-means clustering 1211 

using z-scored raw data and PCs as input variables. Easy-to-follow instructions are written on each 1212 

for subsequent usage. 1213 

 1214 
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NAIP Region Locality Study n
Scotland Mull, Rum & Skye (Hughes et al., 2015) 51
West Greenland Disko Island & 

Nuussuaq
(Lightfoot et al., 1997) 48

East Greenland 
(onshore)

Sortebre flood basalts (Momme et al., 2002) 33

East Greenland 
(offshore)

ODP 917-918; ODP 
988-990

(Philipp et al., 2001) 97

Iceland West, East and South 
Rift Zones

(Momme et al., 2003) 30

Total 259

TaEOH 1



Interquartile 
Ranges

Group 1 Group 2 Group 3

MgO (wt. %) 6.9-8.5 5.9-7.4 11.9-18.5
TiO2 (wt. %) 1.0-2.1 1.3-2.5 0.9-1.4
Fe2O3 (wt. %) 11.4-13.9 10.7-14.3 11.2-12.7
Cr (ppm) 128-337 38-495 646-1,340
Ni (ppm) 78-138 39-120 296-763
Cu (ppm) 87-185 42-100 86-126
Ir (ppb) 0.11-0.25 0.02-0.11 0.40-0.97
Ru (ppb) 0.16-0.42 0.07-0.15 0.75-1.79
Rh (ppb) 0.14-0.35 0.04-0.07 0.35-0.56
Pt (ppb) 3.49-8.40 0.27-0.78 5.51-9.39
Pd (ppb) 3.20-12.19 0.35-1.20 4.22-17.0

TaEOH 2


