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Abstract 

Many animals exhibit contrasting shapes across their surface which are thought 

to help conceal them from potential predators. It has been suggested that these 

patterns, known as disruptive markings, function by creating false edges that 

break up the characteristic form of the animal. Some disruptive patterns are 

graded in tone so that light patches become lighter and dark patches become 

darker at the points where they converge. Whilst this type of edge enhancement 

has been shown to improve camouflage efficacy, it still remains unclear how 

these patterns are typically expressed within real animals and how they may 

function within a natural setting. In chapter 1, the strength of edge enhancement 

was quantified for a variety of British moth species through the use of calibrated 

digital photography.  Across the different species, the level of edge enhancement 

was shown to be more pronounced near the outline of the moth compared to the 

centre of the wing, caused by a greater offset in the dark edge.  
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Introduction 

Camouflage is a protective strategy used by many animals to conceal their 

presence from the sight of a potential predator (Stevens & Merilaita 2008). Across 

the animal kingdom, camouflage can be achieved through a variety of 

behavioural and morphological adaptations, which are typically categorised 

according to how they prevent either detection or recognition (Stevens & Merilaita 

2008). For any animal, the most effective strategy will depend not only on the 

visual characteristics of their environment (Merilaita 2003), but also on the 

sensory and cognitive abilities of their respective predator (Skelhorn & Rowe 

2016). Camouflage form can therefore be seen as a product of the niche in which 

an animal exists.  

One of the major forms of visual camouflage within the natural world is that 

of disruptive colouration.  Unlike background matching patterns, which enhance 

concealment by closely resembling the colours and contours of their 

environment, disruptive camouflage comprises of contrasting patches which help 

to break up the characteristic form of the animal (Stevens & Merilaita 2009). The 

distinction between these two types of cryptic colouration was first made by Abbot 

Thayer in his book titled “Concealing-coloration in the animal kingdom” (Thayer 

1909). When describing the disruptive form, Thayer noted that such patterns may 

be favoured in more visually heterogeneous environments where a replication of 

just one background type would increase conspicuousness amongst 

neighbouring habitats. However, it would not be until the turn of a new century 

that the adaptive benefit of disruptive patterns over background matching would 

be empirically demonstrated (Cuthill et al. 2005).  

Following on from Thayer, the zoologist Hugh Cott described a variety of 

ways in which patterns could be structured to enhance their disruptive effect (Cott 
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1940). These ideas laid the framework for a variety of sub-principles which are 

still used today (Stevens & Merilaita 2009). Like Thayer before him, Cott 

combined his knowledge of artistic principles with his own field observations to 

understand how colour and tone may help disguise the characteristic form of an 

animal. One such principle was that of constructive shading, which has since 

become known as edge enhancement (Egan et al. 2016; Osorio & Srinivasan 

1991). Cott used this term to describe a particular type of disruptive patterning 

where the contrasting patches were “graded in tone” so that light patches became 

progressively lighter and dark patches became progressively darker (figure 1).  

 

Figure 1 

An example of the difference between a stepwise edge and an enhanced 
edge, based on the patterning of the Australian grass frog (Limnodynastes 
tasmaniensis). The intensity values were gathered from transects across the 
patches, with the blue line representing the stepwise edge (top right) and the 
red line representing the enhanced edge (bottom right). The pattern graphics 
were created in Inkscape (2019) and were not intended to reflect any particular 
chromatic/achromatic values.  
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By displaying colour as a gradient as opposed to stepwise changes, the 

pattern mimics the appearance of light on naturally curved surfaces, which is 

thought to create a false sense of relief that disguises the true dimensions of the 

animal. Cott believed that this visual effect would be particularly beneficial for flat 

animals such as butterflies and moths whose form would appear conspicuous 

upon three-dimensionally complex backgrounds, such as bark and leaf matter. In 

addition to shape, edge enhancement may also create false depth information 

through the impression of cast shadows between pattern features (Cott 1940).  

Whilst edge enhancement may improve camouflage through a false 

perception of relief, there are other perceptual processes which may be altered 

by the presence of high contrast borders between pattern features. Egan et al. 

(2016) proposed a second mechanism by which edge enhancement may improve 

disruptive camouflage, through the enhancement of false edges within a pattern. 

These false edges are thought to exploit edge detection processes within the 

visual system which register changes in tonal contrast as the boundary of an 

object against its background (Stevens & Cuthill 2006). Edge enhancement may 

therefore create a heightened response in edge detection algorithms which 

means the false edges within a disruptive pattern are processed more frequently 

as real edges. Whilst these two theories operate through different perceptual 

processes, and will be considered separately within this review, it does not 

necessarily mean that these two functions are mutually exclusive. In fact, Cott 

(1940) noted that the disruptive effect of edge enhancement would be most 

effective when pattern features were separated both in space, through the 

exploitation of edge detection, as well as in depth, through pictorial relief.   

Visual processing of edges 
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In order to understand how edge enhancement may disrupt the detection of true 

edges, it is important to consider how this information is typically processed by 

the visual system. Through a series of experiments on the visual workings of 

domestic cats (Felis catus), the scientists Hubel and Wiesel (1959, 1961, 1962) 

were able to demonstrate how edge information is reconstructed at various 

interconnected points along the visual pathway. At its most basic level, the 

presence of edges was detected by specialised cells found within the lateral 

geniculate nucleus (LGN). Each of these cells had its own receptive field which 

corresponded to a specific part of the total visual scene. In line with previous 

findings by Kuffler (1953), they found that when light hit this area, photoreceptors 

within the receptive field would either enhance of diminish the neuronal response 

to the signal. These photoreceptors were grouped together in a centre-surround 

arrangement to form concentric regions of excitation and inhibition. These cells 

were most responsive to areas of high tonal contrast where variation in luminance 

caused one region to be activated more than the other. This resulted in either an 

increase or reduction in the neuronal firing rate depending on which region 

experienced the greatest stimulation. When light hit both the regions equally, the 

two actions cancelled each other out, leading to a nominal response from the 

neuron.  

Further up the visual pathway, Hubel and Wiesel identified two distinct 

types of cells within the visual cortex which they referred to as simple and 

complex cells. The simple cells, in contrast to those found in the LGN, displayed 

receptive fields with regions of excitation and inhibition adjacent to one another. 

These cells responded best when edges of high tonal contrast aligned with the 

partition between these two regions. For each part of the visual scene, there were 

several corresponding simple cells each attuned to a slightly different direction, 
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allowing the cell to distinguish the orientation of the edges. In contrast, the 

receptive fields of the complex cells could not be mapped to specific regions but 

instead responded to edge information at various locations across the visual 

scene. Hubel and Wiesel proposed that all of these stages were connected 

through a hierarchical structure; complex cells were generated from the input of 

multiple simple cells which were in turn formed by the alignment of LGN cells. 

Whilst the findings of Hubel and Wiesel were restricted to the cat visual system, 

recent experimental work suggests that similar receptive field patterns are 

present in a variety of other mammalian groups (Scholl et al. 2013) as well as in 

homologous structures within the avian visual system (Li et al. 2006).  

The effect of edge enhancement on edge detection processes may be felt 

at several stages within the visual pathway. Initially, edge enhancement will 

increase the tonal contrast across the receptive fields found in the LGN and 

simple cells, leading to an increased response in neuronal firing rate. At higher 

stages, due to the summation of edge information from neighbouring cells, strong 

edge enhancement in one area of the visual scene may be able to inhibit weaker 

signals nearby. In particular, strong edge enhanced internal edges may inhibit 

weaker boundary edges which provide the receiver with important visual cues 

with which to identify potential prey items (Troscianko 2009). 

Creating false edges 

One way to test whether enhanced edges are perceived as real edges by 

potential predators is through the use of computer modelling, which can 

reconstruct the visual processes that underpin edge detection in real animals. 

Osorio and Srinivasan (1991) used this technique to compare the efficacy of edge 

enhancement in the Australian grass frog (Limnodynastes tasmaniensis) against 

three different edge-detecting algorithms. These models were based on the 



10 
 

different receptive fields found within the visual system, with one model 

replicating the centre-surround arrangement seen in the retinal ganglion cells and 

a second model using the antisymmetric arrangement seen in the simple cells. A 

third model incorporated the outputs from both types of receptive field. All of these 

models were shown to correctly detect the presence of the enhanced edge, with 

the first two models exhibiting a greater response when compared to a stepwise 

control. Osorio and Srinivasan noted that such an effect would enable predators 

to distinguish between enhanced edges and real edges within a visual scene. 

However, variation in illumination and the formation of cast shadows can lead to 

graded edges within nature (Gilchrist 2015), meaning predators may be unable 

to evolve ways to distinguish between the two types of edge information.  

Later, Stevens and Cuthill (2006) were able to demonstrate how the 

appearance of false edges may enhance crypsis. Again, through the use of 

computer modelling, they were able to demonstrate how disruptive markings 

contained false edges which were registered as real edges by the algorithm. They 

were then able to demonstrate how this affected higher stages of edge 

reconstruction, resulting in the correct outline of disruptive targets being detected 

less frequently than targets with only internal-based markings. Higher contrasts 

between pattern elements was also shown to reduce the effectiveness of edge 

detection even further. These results matched the authors’ previous experimental 

work demonstrating that disruptive patterns could confer increased survival 

against avian predators (Cuthill et al. 2005). These findings demonstrate that both 

the arrangement of pattern features as well as the levels of contrast can affect 

the edge disrupting abilities of a pattern.  

Creating pictorial relief  
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As previously mentioned, another mechanism by which edge enhancement may 

improve camouflage function is through the appearance of false relief across an 

animal’s surface. For this to be possible, the viewer must be sufficiently deceived 

that the graded tones found within edge enhancement are true representations 

of shape and depth information. As such, edge enhancement can be seen as a 

form of visual illusion (Kelley & Kelley 2014). In order to test the viability of this 

theory, it is important to establish whether animals are able to reconstruct 3D 

information from 2D visual scenes.  

Disguising three-dimensional cues 

When describing edge enhancement, Cott (1940) recognised the parallels 

between his own ideas and previous work by Abbott Thayer (1896) regarding 

countershading, which in many ways can be thought of as analogous to edge 

enhancement. Whilst both forms of colouration are about disguising the surface 

features of an animal, edge enhancement operates through the creation of false 

relief whilst countershading acts to obliterate such depth cues. Thayer believed 

that by expressing dark pigments on areas of the body where light is strongest 

and light pigment in the areas of greatest shadow, animals are able to cancel out 

the natural fall of light which can reveal the shape and dimensions of their surface. 

This may affect concealment through two mechanisms, by the removal of lighting 

effects which may reduce the effectiveness of background matching, or by the 

removal of depth cues which render a three-dimensional animal as optically flat 

(Rowland 2009). Whilst the precise function of countershading is still debated, 

these patterns are able to positively affect survival (Rowland et al 2008). 

Inferring shape from shading 
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For edge enhancement to produce an effect of false relief, animals must use 

shading to recognise 3D information within their environment. In humans, depth 

can be interpreted through both binocular and monocular cues. Binocular cues 

help visualise depth by creating two images of the scene from slightly different 

perspectives, with the disparity between these two images providing depth 

information (Goldstein 2010). In contrast, monocular cues provide 3D information 

from only one image, meaning humans are able to perceive 3D depth upon a 2D 

surface (Goldstein 2010). A wide variety of monocular cues exist, including 

occlusion, texture patterns and shading (Norman et al. 2004).   

Evidence for shape from shading was shown experimentally in humans 

presented with a range of computer-generated circles (Kleffner & Ramachandran 

1992). These circles were shaded in a vertical gradient, with some fading from 

light to dark whilst others faded from dark to light. As the human visual system 

infers that both circles are being illuminated by the same light source, the circles 

will appear as either convex or concave in shape. During a set of trials, 

participants were asked to locate the odd one out, which could be either convex 

or concave in appearance. The trials were repeated with circles that were 

horizontally shaded. Whilst people were able to locate the vertically shaded 

circles independent of the number of distractors that were present, this was not 

the case for horizontally shaded circles. The fact that the same response was not 

found between the two targets suggests that the participants were not simply 

responding to colour gradient, but that the vertically shaded circles were in fact 

being perceived as 3D, allowing them to be identified quicker among a noisy 

environment. The authors suggested the preference for the vertically shaded 

circles may represent a fixed response within human visual processing that 

assumes that light always comes from overhead.  
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The same experiment was carried out with chimpanzees (Pan troglodytes) 

to identify how shape from shading would differ in non-human test subjects 

(Tomonaga 1998). Like humans, chimpanzees were able to distinguish between 

the two circle designs that only varied in shading orientation. Their quick response 

times also suggest that they were perceiving 3D form, making the targets “pop 

out” from their background. However, throughout the trials the chimpanzees 

exhibited the opposite response to humans, reacting quickest to horizontally 

shaded objects over vertically shaded ones. It was suggested this may be due to 

a greater sensitivity in chimpanzees to their orientation and the direction of light, 

as an adaptation to an arboreal lifestyle. Whilst this work provided some of the 

first experimental evidence of shape from shading, it also highlighted the variation 

that may exist in perceiving 3D form among even closely related organisms in 

response to different ecological pressures. 

Following this, Reid and Spetch (1998) tested 3D perception in 

domesticated pigeons (Columba livia). To separate shading cues from other 

potential cues of 3D form, photographs of different shaped objects were edited 

with computer software to remove shading cues by filling the object with a uniform 

colour. Pigeons that had previously been trained to peck at the photographs of 

the 3D images were then provided with a choice between the photograph and the 

computer-generated image. Despite the only noticeable difference between the 

two images being the presence of shading cues, the pigeons showed a significant 

preference for the original photographs, suggesting that they were able to 

perceive shape from shading. The experiment was repeated with novel objects 

that the pigeons hadn’t seen before to ensure that they were not exhibiting a 

learned response to the images. The same behavioural response was shown 

when the pigeons were presented with novel objects, showing that the pigeons 
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were responding to the cues available rather than displaying a learned response 

to the original images.  

Following on from this work, more experiments were carried out to further 

understand how pigeons were using shading as a cue for 3D form (Cook et al. 

2012). Through computer imaging, the authors created a dome and a trough 

shape. The birds quickly learned to distinguish the two stimuli and could be 

trained to respond to either of the shapes by pecking to receive a reward. They 

continued to exhibit this same response even when the perspective was skewed 

so that the dome or trough was being observed from a different perspective. This 

demonstrated that the pigeons were not simply learning the exact shape of the 

original stimuli, but that they were able to perceive the 3D form of the image and 

make the correct choice. They continued to select the correct image when the 

shape of the dome or trough was altered into different peaks. Recently, this work 

was replicated with starlings (Sturnus vulgaris), a species which originates from 

a different evolutionary lineage to pigeons (Qadri et al. 2014). The results strongly 

replicated those previously found with pigeons, suggesting that shape from 

shading could be a common feature within avian visual processing.    

Whilst there is evidence to suggest that animals use shading to reconstruct 

3D information, it is less clear how this visual process is exploited by animal 

camouflage. One animal that appears to exploit sensory processes involving 3D 

form for concealment purposes is the European cuttlefish (Sepia officinalis). 

Cuttlefish, as well as other cephalopods, are a popular study subject for animal 

colouration due to their ability to rapidly change colour and pattern according to 

their environmental substrate. Cephalopod colouration is typically classified into 

three distinct categories: uniform, mottle and disruptive (Hanlon 2007). Disruptive 

patterns are typically comprised of block shapes and triggered when the animal 
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is resting on pebbles. In European cuttlefish, the disruptive pattern often exhibits 

a large white square on its dorsal side, which may help to break up the outline 

whilst resembling the pebble background (Hanlon 2007). Cuttlefish can recognise 

real pebbles from photographs of pebbles (Kelman et al. 2008), which results in 

a stronger response in their disruptive colouration, demonstrating that the 

cuttlefish’s perception of their 3D environment impacts their camouflage 

patterning. They also presented the cuttlefish with a checkerboard that was 

separated so that the white squares were on a higher plane (i.e. closer to the 

cuttlefish) than the black squares. Not only did the cuttlefish recognise the depth 

within the checkerboard, but they only showed a response in their colouration 

when the white squares were above the black. The authors suggest that 

highlights and shadows may play a role in cuttlefish 3D perception. Later work by 

Zylinski (2016) appears to corroborate these earlier findings. In their experiment, 

they presented cuttlefish with computer-generated circles which were either 

uniform in colour or shaded. They also presented some of the cuttlefish with 3D 

hemispheres as a control as well as circles with stepwise changes in tone to 

account for shading differences. Not only did they find that shading influenced 

the display of disruptive colouration, but that it also influenced the physical 

appearance of the disruptive markings. In particular, the white square on the 

dorsal surface varied in tone across the different trials, leading to asymmetry in 

colour. This is a form of pictorial relief, with the dark tones mimicking natural 

shadows and creating a sense of depth on the flat surface of the cuttlefish. The 

white square showed greatest pictorial relief when presented with shaded circles 

as opposed to uniform white circles. Stepwise circles also failed to induce pictorial 

relief patterning, suggesting that shading as opposed to two tone colours is 

important in recognising 3D information within the environment. Whilst it does 
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appear that cuttlefish are able to recognise the 3D information from their 

environment, and even incorporate that information in the form of pictorial relief 

on their surface, it is unknown if this actually provides adaptive benefits through 

increased survival from predation. Whilst the white square appears 3D to our 

vision, this is not necessarily the case for cuttlefish predators and the white 

square may perform another function we are not aware of. 

Experimental tests of edge enhancement 

To date, there have only been four experimental tests on the effect of edge 

enhancement on camouflage function. The first of these was carried out by Egan 

et al. (2016), who used computer generated search tasks to compare the 

detectability of various disruptively patterned targets. Their results showed that 

human participants took longer to locate edge enhanced targets than disruptive 

controls. When questioned, participants also reported perceiving edge enhanced 

targets as having a greater sense of depth in relation to their background. The 

combination of these results provided the first support for the idea that edge 

enhancement not only improves crypsis but that it may do so through a disruption 

of real depth cues. 

Following on from this, Sharman et al. (2018) used a similar experimental 

procedure to test whether edge enhancement may also alter the identification of 

targets beyond initial detection. For this, participants were asked to locate a 

series of camouflaged targets that resembled animal shapes before identifying 

them as either predator or prey. In keeping with Egan et al., they found that edge 

enhanced targets took longer both to locate as well as to identify. When placed 

on a highly contrasting background which offered no opportunity for concealment, 

edge enhanced targets still took longer to identify suggesting that these features 

can still provide camouflage benefits regardless of detection probability. Further 
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work carried out by Sharman and Lovell (2019) suggested that identification may 

be reduced in edge enhanced targets through a disruption of the outline which 

prevents discrimination of the true shape.  

  The most recent work on edge enhancement was carried out by Adams 

(2019), who discovered that the camouflage benefits of edge enhancement are 

diminished in the presence of binocular depth cues. This suggests that edge 

enhancement may disguise the true shape of an animal through pictorial relief, 

but that when combined with more accurate measures of depth, edge 

enhancement no longer provides camouflage benefits above and beyond other 

disruptive patterns.  

All of these experimental tests support the previously held idea that edge 

enhancement improves camouflage function through a false perception of relief 

which is able to disguise the true shape and outline of the animal. The next stage 

in investigating these types of patterns is to determine how they operate within a 

more ecologically relevant setting. To do this, I first quantified the strength of edge 

enhancement across a variety of species of British moth through the use of 

calibrated digital photography. The purpose of this was to identify whether there 

were any general patterns in how edge enhancement was typically expressed, 

both between species and within individual patterns.  
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Chapter 1: What does edge enhancement look like? 

Introduction 

Despite a growing body of evidence suggesting that edge enhancement can 

improve camouflage efficacy (Adams et al. 2019; Sharman & Lovell 2019; 

Sharman et al. 2018; Egan et al. 2016), it still remains unclear how these features 

are typically expressed within real animal patterns. To date, our understanding of 

edge enhancement has largely been shaped by anecdotal observations in lieu of 

more objective forms of quantitative analysis. This has led to a lack of clarity 

regarding the precise spectral properties that constitute an enhanced edge.  

In order to make direct comparisons between different patterns, it is crucial 

to collect objective values of reflectance data. One way to gather such information 

is through the use of digital photography, which can be calibrated to produce 

normalised and linear outputs from a visual scene (Stevens et al. 2007). Whilst 

this process was traditionally carried out through a number of discrete stages, the 

development of integrated software has made digital photography an even more 

accessible tool in the analysis of animal patterning (van den Berg et al. 2019; 

Troscianko & Stevens 2015).   

To date, edge enhancement has been reported in a range of different taxa, 

including, snakes, frogs and felids (Egan et al. 2016) but has yet to be compared 

across closely related species. Thus, it is unclear how much variation there is in 

the form of enhanced edges. I used digital photography of museum specimens 

of moths to quantify enhanced edges both within individuals and across species.  

Moths make an ideal study subject for evaluating cryptic colouration. As 

most moths communicate through pheromones (Löfstedt 1997), their patterning 

is unlikely to have evolved for conspecific communication and is instead more 
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likely to be an anti-predator adaptation. This is particularly relevant for the 

majority of moths which have no form of chemical defence and are particularly 

vulnerable to predation from visually hunting predators during the day when they 

are at rest on trees or leaf matter (Endler 1984). In addition, both the quantity and 

accessibility of public collections of Lepidoptera means that accessing specimens 

for pattern analysis is comparatively easier than for other taxonomic groups.  

After gathering calibrated images of the various moth species, the strength 

of edge enhancement was quantified by two separate metrics: intensity and 

offset. Intensity represented the maximum reflectance difference across the 

enhanced edge whilst offset measured the change in reflectance leading up to 

both the light and dark edge respectively. For each species, edge enhancement 

was compared at two points between the centre of the wing and near the outline. 

The purpose of this was to establish whether edge enhancement is limited to 

particular areas of an animal’s surface, which may provide clues as to the 

adaptive significance of these features. For example, if edge enhancement is 

greater near the outline of the moth, this may suggest that edge enhancement 

provides camouflage benefits by disrupting the detection of true edges.  

Methods 

Image Acquisition 

Moth species with edge enhancement were visually selected from a photographic 

guide of British Lepidoptera (Manley 2008). Edge enhancement was identified by 

the presence of discrete patches which became progressively lighter and darker 

at the points where they converged. A total of 50 species of moth from 9 different 

families were selected from a total of 2147 examples of both macro and micro 

moths.  This excluded any species containing combinations of red, yellow or black 
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which are typically associated with aposematic colouration in insects (Joron 

2009). When a species exhibited sexual dimorphism in its patterning, the sex with 

the most obvious edge enhancement was selected.  

Specimens of each species were then located within the collections held 

at the Royal Albert Memorial Museum in Exeter, UK. 16 species were not part of 

the collection and were therefore excluded from analysis. Following an ad hoc 

inspection of the museum cabinets, nine more species were included which had 

not previously been identified from the photographic guide. This resulted in a total 

of 43 species being photographed from the collection.   

One specimen of each species was then photographed using a Sony a7 

camera converted to full spectrum sensitivity (Advanced Camera Services 

Limited, Norfolk, UK) with a Nikkor EL 80mm lens. Two photographs were taken 

per specimen, one in the human visible spectrum (400-680nm) using a Baader 

UV-IR filter (Baader Planetarium, Mammendorf, Germany) and one in the UV 

spectrum (320-280nm) using a Baader UV pass filter. Specimens were 

photographed indoors under a UV/white broad emission spectrum lightbulb 

simulating D65 illumination (Iwasaki Eye Colour arc lamp). The camera was held 

in position with a tripod and a custom-made lens slider was used to allow the 

changing of filters without altering the position of the camera. Photographs were 

taken in RAW mode using a fixed aperture (F8) and contained two grey standards 

of 7% and 93% reflectance (SphereOptics Zenith Polymer) and a scale bar.  

Image Analysis 

Following image acquisition, analysis was restricted to those species which 

exhibited enhanced edges that intersected their whole surface, as opposed to 

those containing enhanced edges only on internal pattern features. This was 
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done as edge disruption and surface disruption are generally considered as 

separate camouflage principles (Stevens & Merilaita 2009) and may therefore 

interact differently with edge enhancement. For an experimental test on the effect 

of edge enhancement between edge-intersecting and internal-based patterns, 

see chapter 2. This resulted in a total 23 species being included for image 

analysis purposes. 

The visible and UV photographs for each specimen were checked for 

suitable exposure levels and then combined using the MICA toolbox in Image J 

(van den Berg et al. 2019; Troscianko & Stevens 2015) to produce a multispectral 

image with linear values of reflectance relative to the grey standards. A Gaussian 

blur was applied to reduce noise with a radius of 5 and a standard deviation of 

0.61. 

Objective reflectance values were then measured from transects running 

perpendicular to the enhanced edge using the line tool and plot profile function. 

Transects were fractionally longer than the enhanced edge to record the baseline 

values within the pattern. Each transect was 7 pixels wide, providing an average 

value of reflectance for each point. Within the multispectral image, measurements 

were taken from the visible green channel as studies have shown that the 

photoreceptors responsible for detecting luminance information are most 

sensitive to wavelengths within this range (Osorio & Vorobyev 2005). To compare 

the profile of the enhanced edge within the same pattern, two transects were 

established per moth along the same enhanced edge, with one near the outline 

and one near the centre of the wing (figure 1.1). Both transects were of the same 

length. 
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Statistical Analysis 

The reflectance values from the image transects were then plotted and analysed 

using R 3.6.2 (R core Team 2019). Edge enhancement was quantified by two 

separate metrics; the intensity and the offset. The intensity of the enhanced edge 

was calculated by measuring the reflectance difference between the brightest 

pixel in the light edge and the darkest pixel in the dark edge. The high offset was 

calculated by taking the average pixel value before the brightest pixel and 

recording the difference. The low offset was similarly calculated as the difference 

between the darkest pixel and the average value after this point (see figure 1.2).  

 The intensity of the enhanced edge was then compared between the 

centre of the moth and near the outline. As the data were not normally distributed, 

a Wilcoxon matched-pairs signed rank test was used to compare the intensity 

difference of the enhanced edge between the outline and the centre of the moth 

wing. 

Figure 1.1 

An example of the enhanced edge transects collected during image analysis. 
On the left, the transect has been taken from the centre of the moth wing, on the 
right, the transect has been taken from near the outline of the moth. Images of 
Cidaria fulvata. A scale is included.  

10mm 
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Results    

Across the 23 species of moth, the intensity of edge enhancement was shown to 

vary between 6.04% and 111.91% relative to the grey standards with a median 

of 23.79% (IQR = 16.65%). Figure 1.3 shows the intensity of edge enhancement 

for each species according to its location on the wing. There was found to be no 

statistically significant difference in the intensity of edge enhancement near the 

centre and near the outline of the wing (Wilcoxon matched-pairs signed rank test: 

N = 23, V = 85, p-value = 0.111). 

Across the 23 species of moth, the offset was shown to vary across the 

wing (figure 1.4). Within the centre, the difference between the high and low offset 

was shown to be statistically significant (N = 23, V = 248, p-value = <0.001), with 

a median high offset of 7.4% (IQR = 7.34) against a median low offset of 2.4% 

relative to the grey standard (IQR = 2.88%). In contrast, near the outline of the 

moth, the offsets were found to not differ significantly from one another (N = 23, 

Figure 1.2 

A diagram illustrating the various ways in which edge enhancement was 

quantified across the moth species. The red line represents a typical 

reflectance output across an enhanced edge, with the arrows marking the 

measurements of intensity and offset which were used for image analysis.   
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V = 131, p-value = 0.846), with a median high offset of 6.28% (IQR = 5.24%) 

against a median low offset of 5.20% (IQR = 7.27%).  

 

 

 

 

 

Figure 1.3 

The distribution in the intensity of edge enhancement across 23 species of 
moth given in percentage reflectance relative to the grey standard. The 
intensity of enhanced edges from the centre of the wing are shown in blue, 
whilst the intensity of enhanced edges from near the outline of the wing are 
shown in red. The boxes represent the interquartile range of the data, with the 
whiskers extended to the maximum/minimum data points.  

30

60

90

Centre Edge
Position of Transect

In
te

n
s
it
y
 o

f 
E

d
g

e
 E

n
h

a
n

c
e

m
e

n
t

e.c

c

e

30

60

90

Centre Edge
Position of Transect

In
te

n
s
it
y
 o

f 
E

d
g

e
 E

n
h

a
n

c
e

m
e

n
t

e.c

c

e

In
te

n
s
it
y
 o

f 
E

d
g
e

 E
n

h
a

n
c
e
m

e
n

t 
(%

) 



25 
 

 

Discussion 

Our results represent the first attempt to quantify the variation in edge enhanced 

patterns across closely related species. Across the 23 species of moth, the 

intensity of the enhanced edge was fairly consistent and was skewed towards the 

lower values. This was true for both sets of transects, showing that the intensity 

of the enhanced edge was similar between the centre and near the outline of the 

wing. This consistency within the intensity of edge enhancement suggests these 

features may be optimised at a particular achromatic contrast in order to achieve 

maximum crypsis. Within the literature, there has been much debate as to the 

Figure 1.4 

The distribution in the offset of edge enhancement across 23 species of moth 
given in percentage reflectance relative to the grey standard.  The offset of 
enhanced edges  from the centre of the moth are shown on the left, with the 
offset of enhanced edges from near the outline of the moth are shown on the 
right. The high offsets are shown in blue, with the low offsets shown in red. 
The boxes represent the interquartile range of the data, with the whiskers 
extended to the maximum/minimum data points. 
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level of contrast that disruptive camouflage works best at (Stevens & Merilaita 

2009). Stevens et al. (2006) found that high contrast disruptive markings were 

able to reduce detection, but that they were most effective when they used 

luminance values that were found in the background. Troscianko et al. (2013) 

observed a similar effect, with high contrast markings reducing detectability apart 

from when the disruptive contrast represented the extreme achromatic values 

found in the background. However, in addition to this, they also found that high 

contrast patterns were learnt quicker than low contrast markings by participants 

who were viewing the targets over successive attempts. Whilst these results 

suggest some cost to high levels of contrast, they were carried out with patterns 

comprised of two-tone shapes with stepwise transitions as opposed to edge 

enhancement. It is possible that edge enhancement is an adaptation that allows 

the presence of high contrast markings but only in locations where they provide 

maximum disruptive effect (i.e. at false edges). By keeping high contrast 

markings to a smaller space, edge enhancement may reduce the ability for 

predators to form search images which they can use to locate such patterns when 

they are encountered a second time.  

Whilst the intensity of the enhanced edge was consistent across the wing, 

the offset values showed variation. At the edge of the moth, the high and low 

offsets were statistically similar, whereas the high offsets were significantly 

greater than the low offsets in the centre of the wing. The adaptive function of this 

feature will depend upon the precise mechanisms by which edge enhancement 

achieves camouflage.  

The fact that the offsets were greater at the edges suggests that edge 

enhancement plays some role in edge disruption. However, the precise 

mechanisms it does this may be altered in different ways. By displaying an 



27 
 

enhanced edge perpendicular from the real outline, the enhanced edge may act 

to inhibit the detection of the true edge through a visual process known as 

summation (Troscianko et al. 2009). This process may also be why the low offset 

is reduced in the centre of the wing, in order to maximise the edge disruption 

value. Previous experiments on edge enhancement have found that edge 

enhancement can reduce identification, possibly through disguising the shape of 

the outline (Sharman & Lovell 2019; Sharman et al. 2018). 

It is also possible that the profile of edge enhancement is greater at the 

edges where it creates a greater sense of pictorial relief. In terms of pictorial relief, 

the light and dark edges can be thought of as both the highlights and the shadows 

of depth perception. Shadows are particularly important in establishing depth 

between two objects, so that one appears to be visually raised in front of another 

(Mamassian et al. 1998). Whilst it seems as though pictorial relief should remain 

consistent across a pattern to ensure the whole of the surface is effectively 

broken up into visual planes, this makes the assumption that the animal’s surface 

is level. However in many moths, the centre of the moth is raised slightly by the 

body, with the wings sloping down at either side. In order to truly disguise the 

characteristic 3D shape of the moth, the depth relief should be greater at the 

edges to account for this difference in height. The shadows are therefore stronger 

at the edges to create this effect.  

The findings from this chapter demonstrate how edge enhancement is not 

a fixed trait but shows variation both between species and even within individual 

patterning. In particular, the strength of edge enhancement was found to be 

greater near the outline of the moth compared to the centre of the wing. 

Previously, models of edge enhancement have been based on the assumption 

that these features are expressed equally across a pattern, however edge 
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enhancement may be optimised at locations where it creates the greatest 

camouflage effect.   
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Supplementary materials 

A) The plot profiles from all 23 species of moth included within image analysis 

in chapter 1.  
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The pixel intensity of an enhanced edge in 23 moth species. The two lines 

represent separate transects along the same enhanced edge, one near the 

outline of the wing (red), and one at the centre of the wing (blue).  The moth 

species shown are: A) Cidaria fulvata, B) Cosmia diffinis, C) Cosmia trapezina, 

D) Endromis versicolora, E) Eublemma parva, F) Euclidia glyphica, G) Euclidia 

mi, H) Eulithis mellinata, I) Eulithis populata, J) Eulithis prunata, K) Eulithis 

testata,  L) Habrosyne pyritoides, M) Hylaea fasciaria, N) Hypena crassalis, O) 

Lasiocampa quercus , P) Malacosoma neustria, Q) Pelurga comitata, R) 

Petrophora chlorosata, S) Phlogophora meticulosa, T) Proserpinus proserpina, 

U) Pyralis farinalis, V) Scotopteryx mucronata, W) Smerinthus ocellata. 


