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Globalization and the rise and fall of cognitive
control
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The scale of human interaction is larger than ever before—people regularly interact with and

learn from others around the world, and everyone impacts the global environment. We

develop an evolutionary game theory model to ask how the scale of interaction affects the

evolution of cognition. Our agents make decisions using automatic (e.g., reflexive) versus

controlled (e.g., deliberative) cognition, interact with each other, and influence the environ-

ment (i.e., game payoffs). We find that globalized direct contact between agents can either

favor or disfavor control, depending on whether controlled agents are harmed or helped by

contact with automatic agents; globalized environment disfavors cognitive control, while also

promoting strategic diversity and fostering mesoscale communities of more versus less

controlled agents; and globalized learning destroys mesoscale communities and homogenizes

the population. These results emphasize the importance of the scale of interaction for the

evolution of cognition, and help shed light on modern challenges.
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Humanity is experiencing a period of unprecedented
innovation and technological sophistication, as well as
unprecedented interconnectedness and globalization.

However, many of these innovations and technological
advancements are often misused in a short-sighted fashion (e.g.,
the over-prescription of antibiotics, abuse of opiates, and over-
reliance on fossil fuels1). In parallel, a substantial backlash is
occurring against the kind of expertise and logical, deliberative
thinking that produced such innovations (e.g., an increasing
rejection of scientific expertise2 and disregard for the factualness
of news3). In this paper, we examine how the uniquely inter-
connected state of the modern world might influence these
societal dynamics.

We do so by combining two traditionally distinct theoretical
perspectives4–6: cognitive psychology and evolutionary dynamics.
With respect to cognition, we focus on a critical dimension of
cognitive function that spans from automatic to controlled proces-
sing7–10. Along this dimension, automatic cognitive processes are
more hardwired or over-learned habits, which leads to greater effi-
ciency (e.g., greater speed and less effort) when they are appropriate,
but at the cost of reduced flexibility (e.g., the ability to quickly adjust
to the details of the current situation). More controlled processes,
conversely, involve more deliberation and thought—requiring greater
investment of time and effort, but more quickly responding to
changes of circumstance and/or the specifics of a particular decision.
Despite the immense body of work on automatic versus controlled
processing, this distinction has been almost entirely absent from
evolutionary game theory until recently11. Because humans do not
exist in isolation, it is essential to consider population-level dynamics
(e.g., the interaction between different agents) and the impact that
cognition has on the environment. Evolutionary game theory pro-
vides the ideal tool for formally modeling such effects. For example,
in the context of cooperation12–15, models have demonstrated the
evolution of intuitive cooperation and deliberative self-interest. And
in the context of cognition-environment feedback effects4–6, models
have demonstrated the emergence of persistent cycles of automatic
versus controlled processing.

Here, we integrate this combination of cognitive psychologi-
cal16–19 and evolutionary game theoretic approaches with social
network models20–32 to explore how the evolution of cognitive
control is influenced by local versus global interaction structures.
We simulate the evolutionary dynamics of a population of agents
embedded in a network who vary along the dimension of auto-
matic versus controlled processing (as defined below). Specifi-
cally, we add population structure to a multi-process agent
model4 in which agent i engages in automatic processing with
probability 1-xi and controlled processing with probability xi. As
described in detail below, agents earn fitnesses based on their
strategy, the strategy of other agents in the population, and the
state of the environment; and then an evolutionary process occurs
in which agents with lower fitness tend to adopt the strategies of
agents with higher fitness (or die and be replaced with offspring
of higher fitness agents).

Specifically, the fitness of agent i in timestep t is given by:

fi;t ¼ xiπ
C
t þ ð1� xiÞπAt ð1Þ

where πCt is the payoff of engaging in controlled processing and
πA
t is the payoff of engaging in automatic processing. These terms

are then defined as:

πC
t ¼ 1� cþ wð1� <x>tÞ ð2Þ

πAt ¼ 1� pt ð3Þ

pt ¼ 1� <x>t�1 ð4Þ

where:
c is the fixed cost of controlled processing.
w is the impact of automatic processing on the cost of con-

trolled processing.
<x>t is the average probability of controlled processing in the

population at time t.
pt is the state of the environment at time t.
We now explain the logic behind these definitions. Our mod-

eling of the payoff consequences of automatic versus controlled
processing (πCt and πAt ) are based on the trade-off between effi-
ciency versus flexibility of cognitive processing. One of the central
tenets of cognitive psychology and neuroscience is that the
defining feature of control-dependent processing (relative to
automatic) is slower but more flexible responding; that is, the
ability to respond to a stimulus more slowly but in a non-habi-
tual, contextually-relevant way. Automatic processing is therefore
conceptualized as supporting efficient and typically effective
behavior, achieved by encoding pre-compiled responses that
are optimally adapted to a particular set of circumstances, but are
slow to develop or adapt in response to environmental change or
experience. In contrast, controlled processing is conceptualized as
supporting a more flexible form of processing that can adjust
more quickly to changes in contingencies and thereby generate
advantageous responses under a wider range of conditions. Cri-
tically, however, this flexibility comes at a cost33–38.

The distinction between automatic and controlled processing
that we are capturing in our model can be seen in a wide range of
everyday behaviors. While automatic processing is critical to the
efficient and often skillful functioning of an agent (e.g., most of
our physiological regulatory processes are automatic, and the
development of automaticity is fundamental to the acquisition of
complex skills, such as typing, playing the piano, driving a car,
etc.), nevertheless, automatic behavior can be disadvantageous in
many circumstances, especially when its immediate benefits are
outweighed by longer term negative consequences. For example,
research shows that automatic processing favors immediate
gratification whereas the exercise of control promotes delayed
gratification; and that controlled processing facilitates planning
for the future. Accordingly, reliance on automatic processing can
be associated with making poor investment decisions39, being
overweight40, using addictive substances like alcohol, tobacco,
and illegal drugs41, and preferring simple over nuanced infor-
mation sources42, among many other things. Controlled proces-
sing is also central to the reasoning and analytic thinking that
enable humans to solve complex problems, to be creative, and to
achieve scientific and technological advances43.

Across all of these examples of day-to-day decision-making,
the common thread is that controlled processing can often lead to
better decision-making outcomes, but is more costly (e.g.,
requires more time and mental effort). To capture the effect of
this relationship on average in our model, the basic decision-
making payoff of automatic processing (1−pt with 0 < pt < 1) is
less than the basic decision-making payoff of control (1). Thus pt
describes the relative advantage of controlled decision-making in
time period t. In addition to these payoffs from decision-making,
πC
t expression also includes the fixed cost c paid to engage in

controlling processing.
Our basic payoff specification also includes a social element,

captured by the w(1− <x>t) term of πC
t . This describes the payoff

that controlled agents receive from engaging with automatic
agents. The parameter w can either be negative (such that
interacting with agents acting automatically reduces the payoff of
controlled processing) or positive (such that interacting with
agents acting automatically increases the payoff of controlled
processing). Negative w reflects situations in which interacting
with automatic agents reduces the payoff of controlled agents.
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For example, because automatic processing is faster than con-
trolled processing, in circumstances for which timing is a factor,
an agent relying on automaticity may outcompete one relying on
controlled-processing to acquire resources by acting immediately
to acquire the resource while the controlled agent is more care-
fully considering its best course of action5. Alternatively,
agents acting automatically can derail the plans of controlled
decision-makers due to automaticity’s own lack of planning (e.g.,
irresponsible use of the externalities generated by controlled
processing, such as abuse of antibiotics or reckless use of weap-
onry). Conversely, positive w reflects situations in which con-
trolled agents benefit from interaction with automatic agents. For
example, controlled decision-makers may profit by producing
products that agents acting automatically preferentially desire
(e.g., alcohol, drugs, and low quality news), or by exploiting the
short-sightedness of agents acting automatically (e.g., manip-
ulating automatic agents into false beliefs that benefit the con-
trolled agent).

Finally, our modeling of the dynamics of p are designed to
capture how the relative proportion of the two cognitive pro-
cessing employed by agents in the population interacts—typically
at much longer timescales than the day-to-day decision-making
described above—with the environment. Specifically, we assume
that the reasoning and analytic thinking enabled by controlled
processing produce innovations and corresponding externalities
that lead to a more hospitable environment, such as technologies
that make the environment less variable and/or higher yield. This
in turns makes the future more stable, reduces the importance of
careful planning, and thus reduces the payoff advantage of con-
trolled processing p. That is, the externalities generated by con-
trolled processing help automatics as much as controls (without
the automatics having to be the cost of control) because the
externalities make it less necessary to exercise control in order to
achieve good outcomes (i.e., controls and automatics both arrive
at the same, better, outcome, but automatics do it without having
to pay cost). For example, the invention of sophisticated irrigation
and farming techniques makes food production much less sus-
ceptible to environmental variation, and in turn reduces the need
to plan for the future by stockpiling against periods of drought.
Or, in terms of the social environment, social science discoveries
regarding the power of defaults have enabled policy makers
to design institutions in which the optimal choice is the default
(e.g., making saving for retirement opt-out rather than opt-in)—
such that automatic agents are more likely to make optimal
choices without having to exert control. Importantly, controlled
processing is often necessary for maintaining these advances
as well as developing them—without sufficient foresight and
planning, and the willingness to invest in upkeep today in order
to reap the benefit of functional systems tomorrow, the benefits of
the technologies developed using controlled processing can be
undermined.

We implement this cognition-environment feedback by having
the relative advantage of controlled decision-making p decrease as
the average level of controlled processing in the population <x>
increases. Specifically, p in time period t is set equal to 1−<x> in
period t−1, yielding the pt expression given above. In a more
complex version of the model, we also consider the impact of
time lags on the interaction between the population and the
environment—see “Methods” section for details.

We then study the population dynamics of automatic versus
controlled processing using evolutionary game theory. Specifi-
cally, agents update their strategies using the death-birth Moran
process with exponential fitness. In each generation, an agent (the
learner) is randomly selected to update, and her probability of
controlled processing is replaced with another agent (the teacher)
selected proportional to an exponential function of the neighbors’

fitness; or, with probability u, a mutation occurs and the learner is
assigned a new random strategy, sampled from a uniform dis-
tribution over the interval [0, 1].

Mathematically, this population dynamic could represent
either genetic evolution or cultural evolution (i.e., social learning).
In our interpretation of the results, we mostly focus on cultural
evolution, which can occur over fairly rapid timescales. Indivi-
duals regularly update their strategies via social learning—that is,
they compare their payoff to the payoffs of others, and (prob-
abilistically) adopt the strategies of higher payoff others. To be
consistent with standard convention in evolutionary game theory,
we will refer to each strategy updating round as a “generation”,
but remind the reader to not take this term too literally. That is,
depending upon the processes and phenomena of interest, and
how the model is applied, a “generation” could refer to updating
at the cultural level as a consequence of social learning, or at the
evolutionary time scale of reproduction.

Importantly, there are three different timescales within the
model. The fastest timescale is the timescale of decision-making,
which occurs on the timescale of minutes to hours. Each agent i
makes many decisions every day—for example, decisions about
whether to consume a resource or save it for the future, to eat an
unhealthy meal or resist the temptation, to take a piece of
information at face value or more carefully consider its credibility.
The fraction of automatic versus controlled decisions is deter-
mined by the strategy parameter xi. Agents also interact with each
other every day, with controlled agents incurring costs or gaining
benefits from interacting with automatic agents, depending on the
sign of w. Together, the payoffs from decisions and interactions
on this decision making timescale determine the agent i’s fitness
fi,t. Next is the timescale of strategy updating (i.e., learning),
which is somewhat slower—e.g., on the order of months or years.
Occasionally, agents compare their own success (i.e., payoff) with
the success of other agents. If they find another agent that is
regularly doing better than them, they (probabilistically) adopt
that agent’s strategy. Finally, there is the timescale of cognition-
environment feedback, whereby the level of control versus auto-
maticity in the population affects the stability of the environment.
With a sufficient investment of control-based analytic thinking,
agents can invent and deploy new technologies that make life
easier; and with sufficient lack of investment, these technologies
can break down. These types of events tend to happen on a
timescale that is longer than that of strategy updating. (Although
this is less our focus, the model could also describe genetic evo-
lution, in which the timescale of strategy updating—i.e., repro-
duction—would be longer, and more similar to the timescale of
cognition-environment feedback.)

The main theoretical innovation of the present work is to add
population structure to this model, in order to examine the
impact of local versus global interactions on the evolutionary
outcomes. For simplicity, our main analyses capture population
structure by embedding agents in a ring-structured population in
which they are connected to one neighbor on each side (results
are not unique to the ring structure—for analysis of Small-world
networks44 with varying strength of community structure, see
Supplementary Information). We then examine the impact of
local connectedness (restricted to neighbors) versus global con-
nectedness (with all agents) on three different dimensions in our
model: learning, contact between agents, and the environment.

With respect to learning (or reproduction), we vary how tea-
chers are selected. In local learning the teacher is randomly
selected from the immediate neighbors of the learner in the
network. In global learning, the teacher is randomly selected from
the whole population.

With respect to contact between agents, we vary how the
fraction of controlled agents is calculated when determining the
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payoff consequences of contact between of agents with varying
levels of automatic versus controlled processing (i.e., <x>t in the w
(1−<x>t) term in the payoff of controlled processing). In global
contact, the fraction of controlled agents in the whole population
is used to determine <x>t, as in the basic model formulation
presented above. In local contact, conversely, the fraction of
controlled neighbors is used —such that the fitness of controlled
processing is impacted only by neighboring agents in the net-
work. As a result, each agent i has its own fraction of controlled
neighbors, such that <x>i,t replaces <x>t in the fitness function.

With respect to environment, we vary how the fraction of
controlled agents is calculated when updating the environmental
variable pt that stipulates the decision-making advantage of
controlled processing. In global environment, all agents experi-
ence the same value of pt, as in the main model formulation
presented above. The value of pt is then updated based on the
average level of controlled processing across the entire popula-
tion. In local environment, conversely, each agent i experiences its
own local environment pi,t which replaces pt in the fitness func-
tion; and pi,t is updated based on the average level of controlled
processing of agent i and agent i’s immediate neighbors.

Together, these three different implementations of local versus
global lead to eight (23) possible combinations of local versus
global connectedness, seven of which involve some element of
globalization and one of which is entirely local. By examining
model outcomes across these eight scenarios, we can explore the
impact of differing forms of globalization on the temporal
dynamics of how cognitive control evolves in the population.

Results
Globalization and average levels of control. We begin by
examining the impact of different forms of globalization (i.e., of
learning, contact, and/or environment) on the equilibrium aver-
age level of cognitive control within the population by comparing
each of the seven globalization scenarios to the entirely local
scenario.

Before directly examining the results of agent-based simula-
tions, it is helpful to gain an intuition for the kinds of effects
globalization has in the model, and why. To do so, we conduct an
analysis using approximations of the fitness of automatic and
controlled processing for a simplified case in which an agent is
either fully controlled or fully automatic (see Supplementary
Note 1). The results provide intuitions regarding the impact of
each form of globalization. Globalization of the environment
causes controlled agents to improve the environment experienced
(and the payoff earned) by automatic agents throughout the
population, and thus always results in lower levels of cognitive
control in equilibrium. Globalization of contact increases the
exposure of controlled agents to automatic agents, the con-
sequences of which depend dramatically on w: this exposure
decreases the payoff of control when automatic agents hurt
controlled agents, w < 0, but increases the payoff of control when
automatic agents benefit controlled agents, w > 0. Globalization of
learning homogenizes the population and undercuts the cluster-
ing of strategies within the network, thereby weakening the effects
of local contact and/or environment. Finally, all three forms of
globalization interact, such that control is substantially higher in
the fully local scenario compared to any of the globalization
scenarios (provided that w < 0).

We now present simulations of the full agent-based model.
Agents were placed on a ring structure, and c and w were
systematically varied across simulations. For each set of
parameter values, we then simulated the model for 8 × 104

generations and plotted the time-averaged frequency of control
<x> averaged over 10 replicates for each set of simulation

parameters (as shown in Supplementary Figs. 1 and 2, there is no
significant variation across simulation replicates in the steady
state value of <x>). In each simulation, we initialized the
population from xi= 0.01 (almost entirely automatic processing).
Figure 1 shows that the simulation results generally accord with
the predictions arising from the analytical approximation of the
simplified system which are described above (and shown in
Supplementary Table 1). When w is negative—such that the
presence of automatic processing reduces the payoff of engaging
in controlled processing—globalization of virtually any kind
substantially reduces the average level of controlled processing in
the population.

Conversely, when w is positive—such that the presence of
automatic processing benefits those engaging in controlled
processing—certain forms of globalization (specifically, global
contact) can somewhat increase the average level of controlled
processing in the population (although still maintaining a
substantial level of automatic processing). Our results are robust
to other network structures (see Supplementary Fig. 3) and larger
networks (see Supplementary Fig. 4).

Globalization and the dynamics of control. The foregoing sec-
tion addressed long-run average levels of control in the popula-
tion. Here, we examine the impact of the scale of interaction on
the dynamics of automaticity versus control, both across space
and time (Fig. 2). We observe two striking effects.

The first concerns the emergence of mesoscale communities.
Qualitatively, when learning is global (second row of Fig. 2), the
entire population is well-mixed, and neither spatial nor temporal
patterns are apparent. Conversely, as expected based on prior
work on population structure22, when learning is local (top row
of Fig. 2), communities of low versus high cognitive control
emerge within the network (and the boundaries of these
communities migrate over time). Interestingly, although global
interactions tend to homogenize, we find a different pattern when
it comes to the scale of environment: the emergence of mesoscale
communities is markedly stronger when the environment is
global rather than local. To quantify these differences in the
extent of mesoscale communities, we calculate the average level of
assortment a within the population (defined as the difference in
(i) the fraction of an agent’s neighbors that have the same strategy
as the agent versus (ii) the fraction of agents in the whole
population—excluding the agent itself—that have the same
strategy as the agent). Doing so shows that there is no assortment,
a= 0, in any of the global learning scenarios – no mesoscale
communities emerge. Conversely, there is substantial assortment
when learning is local and environment is local (a= 0.65 for local
contact, a= 0.65 for global contact); but even higher levels of
assortment when learning is local but environment is global (a=
0.70 for local contact, a= 0.74 for global contact).

Why does local environment homogenize whereas global
environment facilitates clusters? The answer arises from the
particular anti-coordination payoff structure of automatic versus
controlled agents in our model. When environment is local, the
advantage of controlled processing pi,t that each agent experiences
is heavily influenced by that agent’s neighbors. If agent i’s
neighbors are controlled, then pi,t will be low and it will be
advantageous for agent i to use automatic processing; if agent i’s
neighbors are automatic, then the opposite will be true. Thus, it is
more difficult to maintain clusters of agents with the same
strategy—the local environment creates incentives to diverge
from the strategies of one’s neighbors. Conversely, when the
environment is global, all agents face the same pt, and thus the
environment does not create an incentive to diverge from one’s
neighbors.
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The second striking feature in Fig. 2 involves the variance in x
values across the population at any given time. Qualitatively,
when the environment is local, there is relatively little variation in
the level of control within the population at any given time—most
agents show an intermediate level of control (pink coloration in
Fig. 2). Conversely, when the environment is global, there is wide
variation in the level of control within the population at any given
time – some agents are almost entirely automatic (white) whereas
others are almost entirely controlled (red). This is particularly
true when contact is local. Quantitatively, the average value across
time of the variance in x values in the population is very low
when environment is local (0.000–0.008 depending on scale of
contact and learning), higher when environment is global and
contact is global (0.052 for local learning, 0.080 for global
learning), and highest when environment is global and contact is
local (0.171 for local learning, 0.181 for global learning).

The intuition for this variance-increasing effect of global
environment is as follows. The basic structure of our model is
such that the equilibrium involves either (i) a homogenous
population in which all agents play a mixed strategy that
randomizes over automatic and controlled processing, x= x*
(leading to low variance across strategies) or (ii) a heterogeneous
population in which fraction (1− x*) of agents are totally
automatic, x= 0, and fraction x* are totally controlled, x= 1
(leading to high variance across strategies). When environment is
local, agents in different parts of the network face different values
of p (and thus different selective forces on x) making it difficult to
achieve the population-level coordination necessary for the
heterogeneous solution. Conversely, when environment is global,
all agents face the same value of p, and thus are better able to
arrive at the heterogeneous solution. (For mesoscale measures on
other network structures see Supplementary Fig. 5).
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Fig. 1 Aggregate-level controlled processing x. Each line represents a combination of local versus global contact, environment, and learning, across
different levels of the impact of automatic processing on the cost of controlled processing (w) and fixed cost of controlled (c). Contact is indicated by color
(red= local, blue= global). Environment is indicated by line type (solid= local, dashed= global). Learning is indicated by symbol (circle= local, triangle=
global). All values are averaged over 10 simulation replicates. The shaded area represents the 95% confidence interval of <x> across simulation replicates
for each set of parameters and combination of local versus global interaction.
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Finally, we used the agent-based model to examine the more
complex situation in which there is lag in the impact of cognition
on the environment, parameterized by τp (see Methods for details
of implementation). First, we examined the spatiotemporal
distribution of strategies in the presence of lag for the situation
in which all contact, environment, and learning are local versus
global (Fig. 3a). Unlike the no-lag case considered in Fig. 2, strong
temporal fluctuations are observed even in the fully globalized
scenario. These fluctuations, although present, are less stark in the
local scenario. When global, the population fluctuates between
almost entirely automatic and entirely controlled (as has been
shown previously in well-mixed populations4). When local, there
is more coexistence of low and high control agents (due to the
existence of local communities which are, to some extent,

fluctuating out of phase with each other). Nonetheless, dramatic
oscillations in which the population is almost entirely controlled
or automatic, can still occur in the local scenario, as shown by
Fig. 3b which shows the average level of control over time in the
entire local scenario. When the lag is sufficiently large, the
population fluctuates between almost entirely controlled (<x>
near 1) and almost entirely automatic (<x> near 0), as in the
global case considered previously.

To quantify how globalization effects the relationship between
lag and fluctuations, we examined the magnitude of the
oscillations in controlled processing that emerged for local vs.
global interactions at different levels of the lag parameter τp.
Specifically, we used the average value of the peak of x to quantify
the size of the fluctuations. Figure 3c (see Supplementary Fig. 6
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for results on other network structures) shows that, across
different globalization conditions, increasing the lag τp leads to
higher amplitude cycles (as in the well-mixed population4).
However, when learning is local, a larger lag is required to
produce cycles of equivalent magnitude. Thus, although local

learning promotes spatial oscillations (as shown in Fig. 2), it
suppresses aggregate-level temporal oscillations.

Why is this so? There are two contributing factors. First, the
mesoscale communities created by local learning lead to
decoupling, such that even if each section of the network is
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cycling with the same magnitude of the cycles observed under
global learning, they are out of phase with each other. Thus, in
aggregate, the cycles in the average level of control across the
whole population are of smaller amplitude (see Supplementary
Fig. 7). Second, when learning is local, each agent can only imitate
a small fraction of the population; thus, it takes longer for the
whole population to shift to the currently-optimal strategy.
Hence, in order for a full population swing to occur (which causes
the environment to move back in the other direction), the
environment needs to stay put longer; that is, with local learning,
it takes longer for strategic innovation to spread through the
population, which mitigates the amplitude of the oscillations.

Discussion
The simulation results reported above suggest that globalization
can have a dramatic—and complex—impact on the evolutionary
dynamics of cognitive control. They also reveal important dis-
tinctions between different forms of globalization. Although each
form involves greater interaction with dissimilar others, the
details of that interaction matter.

Consistent with most prior work on networks, we find that
globalization of learning (i.e., being able to imitate successful
others outside your local neighborhood) fundamentally alters the
spatiotemporal dynamics of control, breaking up the mesoscale
neighborhoods of individuals with similar cognitive strategies that
exist when learning is local. Interestingly, a consequence of this
homogenization is that global learning induces population-wide
fluctuations in the level of control (because all agents are phase-
locked).

The impact of the other forms of globalization, however, are
specific to the particular system of automatic versus controlled
processing we study here, and not obvious based on prior work.
For example, the consequences of globalization of contact
between agents depend on the nature of the contact. If auto-
matic processing imposes costs on controlled processing (e.g.,
faster automatic agents outcompeting more thoughtful con-
trolled agents when directly competing over resources, or
automatic agents’ lack of planning undermining the plans of
controlled agents), then globalization of contact harms control
due to increased exposure to agents engaged in automatic
processing. But if control benefits from interaction with auto-
maticity (e.g., controlled agents selling products that are par-
ticularly helpful—and thus attractive—to automatic agents, or
controlled agents exploiting the short-sightedness of automatic
agents), then the opposite is true and globalization of contact
promotes the evolution of control.

Finally, globalization of environment—that is, an increase in
the extent to which one’s actions influence the environment
experienced by everyone (such as the ozone layer)—uniformly
reduces the level of control, by allowing automatic processing to
enjoy the environmental benefits created by controlled proces-
sing. And surprisingly, it is global environment that facilitates the
emergence of mesoscale communities and maintenance of var-
iance in strategies within the population, whereas local environ-
ment leads to homogenization. This is the opposite of what one
might expect from prior work on, for example, the evolution of

cooperation28, in which (local) spatial structure maintains het-
erogeneity whereas (global) well-mixed populations are homo-
geneous. Together, these observations highlight the importance of
the details when considering the impact of globalization—which
form(s) of interaction are affected by globalization (learning,
contact, and/or environment), and what underlying game struc-
ture is driving the dynamics (automatic/controlled processing,
versus, for example, cooperation45).

In addition to these insights into the impact of globalization,
our results also have implications for previous work on cognition-
environment feedback4–6. Specifically, they lend support to the
generality of prior conclusions about the emergence of cycles in
automaticity versus control, which had previously been shown to
occur when cognition-environment feedback is sufficiently lagged.
First, they provide additional evidence for the robustness of such
cycles, extending this observation to a broader and more complex
set of conditions. More specifically, they show that under condi-
tions of lagged feedback, cycles can occur in both local and global
settings. Moreover, we find that when learning is local, spatio-
temporal fluctuations can occur even in the absence of such lags.
Thus, the current work strengthens formal theoretical support for
the idea that societies characterized by high levels of cognitive
control (and associated social and technological complexity) may
be at risk of collapse due to cognition-environment feedback.

It is of course important to recognize that our model is, in the
game theoretic tradition, an abstract and highly simplified con-
ceptual model. Rather than quantitative predictions, our model
makes high-level predictions about the kinds of outcomes that
may arise, and the circumstances under which different outcomes
might be expected to occur. These conceptual predictions can be
explored in future work, using both laboratory experimental
systems and examination of the observational data.

Finally, the insights generated by our model have the potential
to help inform policy. Our results make several relevant points.
First, they suggest that it may be of particular importance to
promote interactions whereby control benefits from contact with
automaticity, rather than suffers; such beneficial interactions
make globalization of contact work for cognitive control instead
of against it. For example, in a market context, facilitating the
purchase by automatic agents of innovations created by con-
trolled processing, the sale of which benefits the controlled agents
(e.g., through marketing that appeals to automatic processing).
Second, our results reaffirm the challenges posed by global-level
environmental issues such as climate change, which create a free-
rider problem that undermines cognitive control. And third, our
results demonstrate the potential for a truly global collapse (and
risk of extinction) of control when learning is global: as the whole
world becomes bound together, there are fewer reservoirs of
control to buffer against local fluctuations, and more cata-
clysmically, to repopulate after a large crash.

Globalization is an extremely complex issue, and it is essential
to explore its causes and consequences using a wide range of
perspectives and disciplines. We hope that the work presented
here will add a new lens with which to consider the issue, provide
new insights, and highlight important new directions for
future work.

Fig. 3 Effects of time lag τp on magnitude of oscillations. a Represents agent-level controlled processing x for global vs local learning (here time lag τp=
103 and contact and environment are global, however, the spatial pattern does not qualitatively change for local contact and/or local environment).
b Shows time series of oscillations of aggregate-level controlled processing x when contact, environment, and learning are local across different values of
time lag. c Shows the average peak of oscillations for different condition of localness across different time lag. To cover all values of time delay, we run
simulations over 1.2 × 106 generations. Results are averaged over 10 simulation replicates. The shaded area represents the 95% confidence interval across
simulation replicates for each set of parameter values and combination of local versus global interaction. Across all panels, the impact of automatic
processing on the cost of controlled processing w=−0.15 and fixed cost of controlled c= 0.5.
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Methods
Agent-based model. Our simulation results are produced using agent-based
simulations on a network with population size N= 100 (results are robust to larger
population size; see Supplementary Fig. 4). Each agent i is defined by a single
parameter xi that represents its probability of controlled processing. The fitness of
each agent is calculated according to the following function:

fi;t ¼ xið1� cþ wð1� <x>i;tÞÞ þ ð1� xiÞð1� pi;tÞ ð5Þ
where c is the fixed cost of control, w is the impact of automatic processing on the
cost of controlled processing, <x>i,t is the average probability of control among the
agent’s direct neighbors (including the agent itself) in generation t, and pi,t is the
relative advantage of controlled processing in generation t.

Agents update their strategies using the Moran death-birth process (our model is
robust to the update rule, as additional simulations show that the pairwise
comparison process46,47 leads to qualitatively similar outcomes). In each generation,
an agent L (the learner) is randomly selected to potentially update its strategy. Then
the learner is replaced by a copy of agent T (the teacher) who is selected with
probability W T ! Lð Þ ¼ exp sfTð Þ where s is the intensity of selection and fT is the
fitness of the teacher (reproducer). Alternatively, with probability u a mutation
occurs; in that case, instead of adopting the other agent’s strategy, the learner adopts
a new strategy sampled from a uniform distribution on the interval [0, 1].

Following ref. 4, we also implement cognition-environment feedback by
updating the advantage of controlled processing in each generation with a time lag.
When environment is local, we specify N agent-specific values pi,t and stipulate that
only the strategy of immediate neighbors of agent i (including agent i itself)
influences the change in pi,t over time:

pi;t ¼ pi;t�1 þ
ð1� <x>i;t�1Þ � pi;t�1

τp
ð6Þ

Conversely, when environment is global, there is a single value of p for the
whole population, which updates according to:

pt ¼ pt�1 þ
1� <x>t�1ð Þ � pt�1

τp
ð7Þ

τp represents the time lag of cognition-environment feedback. When τp= 1, the
basic model described in the main text with no time lag recovers.

Numerical simulations. Our simulations use intensity of selection s= 10 (strong
selection) and mutation rate u= 0.01 (as expected, increasing the mutation rate
pushes average values of x towards 0.5; see Supplementary Figs. 8 and 9). We
structure the population within a ring in which each agent is connected to k/2
neighbors on each side (for a total of k neighbors). Simulations were initialized with
x= 0.01 for all agents. We investigate the effect of globalization across 8 different
scenarios described by the 2 by 3 combination of [local, global] × [learning,
environment, and contact]. That is, for each dimension of globalization we either
consider only neighboring agents (ring structure with k= 2; local) or the whole
population (full graph; global). In a complimentary analysis (Supplementary
Figs. 3, 5, and 6) we explored Small-world networks varying strength of community
structure (rewiring rate).

We ran the simulations for 8 × 104 generations except for the effect of τp on
average peak of oscillations (Fig. 3) where we ran the simulation for 1.2 × 106

generations. For τp= 1 where population reaches an equilibrium and stays there,
we averaged over last 4 × 104 generations for the stable strategy. Results reported in
Fig. 1 and Fig. 3c are averaged over 10 simulation replicates. All simulations were
done in parallel on MIT Sloan Engaging cluster.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data required to run the simulations are available at: https://osf.io/fy94w/ or can be
requested from the authors. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
All scripts necessary to reproduce the results are available at: https://osf.io/fy94w/ or can
be requested from the authors.
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Supplementary Note 1: Analytical approximation for 𝝉𝒑 = 1 
 

To give an intuition regarding the impact of globalization on the evolution of cognitive 
control in the absence of lag, we approximate the fitness of automatic and controlled processing 
for the simplified case in which an agent is either fully controlled or fully automatic (see 
Supplementary Table 1).  

 
Supplementary Table 1. Approximation of fitness of automatic and controlled processing under different conditions of 
local versus global interaction and learning. 

Environment Contact Learning Fitness of controlled processing fc Fitness of automatic processing fa 

Local Local Local 1 − 𝒄 +
2
3𝜷𝒘(1−< 𝒙 >)(1 − 𝒂) 

2
3𝜷 < 𝒙 > (1 − 𝒂) 

Local Local Global 1 − 𝑐 +
2
3𝑤𝛽(1−< 𝑥 >) 

2
3𝛽 < 𝑥 > 

Local Global Local 1 − 𝑐 +𝑤(1−< 𝑥 >) 2
3𝛽 < 𝑥 > (1 − 𝑎) 

Local Global Global 1 − 𝑐 +𝑤(1−< 𝑥 >) 
2
3𝛽 < 𝑥 > 

Global Local Local 1 − 𝑐 +
2
3𝑤(1−< 𝑥 >)(1 − 𝑎) < 𝑥 > 

Global Local Global 1 − 𝑐 +
2
3𝑤(1−< 𝑥 >) < 𝑥 > 

Global Global Local 1 − 𝑐 +𝑤(1−< 𝑥 >) < 𝑥 > 

Global Global Global 1 − 𝑐 +𝑤(1−< 𝑥 >) < 𝑥 > 

 
First, we consider the impact of contact among agents, wherein the frequency of automatic 

processing impacts the payoff of controlled processing (via the 𝑤(1−< 𝑥 >) term in fc). When 
contact is global, the impact of contact is determined by the average level of automaticity in the 
population as a whole. When contact is local, the impact of contact is instead determined by the 
average level of control across the focal agent and her neighbors (of which there are two in the 
ring-structured population we study). Thus, the strategy of the focal agent has much greater impact 
on her contact payoff in the local case. In particular, if the focal agent is entirely controlled, then 
the average level of automaticity in her local neighborhood can be at most 2/3 (if both other agents 
were maximally automatic). As a result, the contact term in the payoff of controlled processing 
becomes <

=
𝑤(1−< 𝑥 >) (as seen in rows 1, 2, 5 and 6 of Supplementary Table 1). This means that 

when automatic agents impose costs on controlled agents, 𝑤 < 0, global contact will reduce the 
payoff of control relative to local contact (and thus reduce the equilibrium level of control). 
Conversely, when controlled agents benefit from contact with automatic agents, 𝑤 > 0 , 
globalizing contact will increase the payoff (and thus equilibrium level) of control.  

Next, we consider environment, wherein the frequency of controlled processing determines 
the state of the environment and thereby the payoff of automatic processing (𝑓@ =< 𝑥 >). When 
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environment is global, all agents share the same environment described by the variable p, the value 
of which is determined by the average level of automaticity across the whole population. When 
environment is local, each agent experiences her own local environment that is determined by the 
average level of automaticity over her two neighbors and herself. Thus, as with contact, the focal 
agent’s strategy has a much bigger impact on her local environment when environment is local 
compared to global. In particular, if the focal agent is fully automatic, then the average level of 
control in her local neighborhood can be at most 2/3 (if both other agents were maximally 
controlled). Furthermore, when environment is local, the focal agent also has a much larger impact 
on the environments experienced by – and therefore the optimal strategies of – her neighbors. If 
the focal agent is fully automatic, she decreases the p experienced by her neighbors, thereby 
creating selection pressure for them to become more automatic. Although the exact functional form 
of this impact is complex, we capture it conceptually by introducing a factor 𝛽 ≤ 1 that diminishes 
the level of control of an automatic agent’s neighbors. Combining these two consequences of local 
interaction, the payoff of automatic processing becomes <

=
𝛽 < 𝑥 > when contact is local (as seen 

in rows 1-4 of Supplementary Table 1). This means that regardless of model parameters, the payoff 
of automatic processing is lower (and therefore the frequency of control is higher) when contact is 
local relative to global.  

These observations also imply a synergy between the locality of contact and environment, 
driven by local environment’s impact on the optimal strategy of the focal agent’s neighbors. As 
described in the preceding paragraph, local environment causes clustering of strategies (i.e., more 
automatic agents’ neighbors to be more automatic and, symmetrically, more controlled agents’ 
neighbors to become more controlled). When contact is also local, the neighbors which a 
controlled agent interacts with directly are more likely to be controlled by a factor β, leading to a 
further scaling of the w term in fc (as seen in rows 1 and 2 of Supplementary Table 1). Thus, local 
environment amplifies the impact of contact on the average frequency of control (which, as 
described above, can be positive or negative depending on the sign of w). 

Finally, we consider learning. When learning is global, no clustering or assortment in 
strategies arises due to the learning process. Thus (except for the assortment that arises from local 
environment captured by β), the average level of control among a focal agent’s neighbors is equal 
to the population level of control < 𝑥 >. When learning is local, however, this leads to assortment, 
such that a focal agent’s neighbors are more likely than chance to have the same strategy as the 
focal agent. We follow common convention and define the level of assortment 𝛼 ≤ 1, such that a 
controlled agent’s neighbors will be controlled with probability (1 − 𝛼) < 𝑥 > +𝛼 , whereas an 
automatic agent’s neighbors will be automatic with probability (1 − 𝛼) < 𝑥 >. (As above, we forgo 
an exact calculation of the level of α, as the specific value of α does not qualitatively change its 
impact on the evolutionary outcomes). When both contact and environment are global, assortment 
(and thus local versus global learning) has no effect on the evolutionary outcomes: agents are no 
more likely to interact with their neighbors than any other agent, and thus the strategies of 
neighbors versus the population as a whole is irrelevant. When either or both contact/environment 
are local, however, local learning amplifies the other local effects: controlled agents’ neighbors 
are more likely to be controlled by a factor α (appearing in the w term of fc, lines 1 and 5 of 
Supplementary Table 1), and automatic agents’ neighbors are more likely to be automatic by a 
factor α (appearing in fa, lines 1 and 3).  
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Supplementary Figures  
In this section, we provide numerical details of our simulation model and also show additional 
results for robustness of our result to Small-world networks varying probability of link rewiring. 

 
Supplementary Figure 1. Variations of simulation outcomes for different replicates (local learning). The boxplots in each 
panel shows variations of simulation outcome of aggregate-level controlled processing x for 10 replicates and for each given set of 
w, c, and localness. 
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Supplementary Figure 2. Variations of simulation outcomes for different replicates (global learning). The boxplots in each 
panel shows variations of simulation outcome of aggregate-level controlled processing x for 10 replicates and for each given set of 
w, c, and localness. 
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Supplementary Figure 3. Aggregate-level controlled processing x for no lag 𝝉𝒑 = 1 on Small-world network where the 
average number of neighbors is 4 and probability of rewiring is 0.2. Each line represents a combination of local versus global 
contact, environment, and learning, across different levels of the impact of automatic processing on the cost of controlled processing 
(w) and fixed cost of controlled (c). Contact is indicated by color (red = local, blue = global). Environment is indicated by line type 
(solid = local, dashed = global). Learning is indicated by symbol (circle = local, triangle = global). 
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Supplementary Figure 4. Aggregate-level controlled processing x for no lag 𝝉𝒑 = 1 on a ring structure with N=105 nodes 
where the average number of neighbors is 2. Each line represents a combination of local versus global contact, environment, 
and learning, across different levels of the impact of automatic processing on the cost of controlled processing (w) and fixed cost 
of controlled (c). Contact is indicated by color (red = local, blue = global). Environment is indicated by line type (solid = local, 
dashed = global). Learning is indicated by symbol (circle = local, triangle = global). Given the size of the network, the simulation 
was run for 3.6 ☓ 107 generations to reach stable outcome for x.  
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Supplementary Figure 5. Meso-scale communities measures as a function of probability of link rewiring in Small-world 
network. Each panel shows one measure averaged over last 4´104 generations for 10 simulation replicates. Results are generated 
on Watts-Strogatz Small-world networks, where each agent was connected to two other neighbors on each side (k=4), impact of 
automatic processing on the cost of controlled processing w=-0.15 and fixed cost of controlled c=0.5. All results of the ring structure 
qualitatively generalize to the Small-world networks. Aggregated controlled processing x and variation of strategies do not change 
with probability rewiring, yet assortment decreases as the probability of rewiring increases due to weaker community structure of 
the network.  
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Supplementary Figure 6. Effect of time-lag on amplitude of oscillation for Small-world networks varying probability of 
rewiring prw.. Increasing probability of rewiring weakens the effect of local learning on amplitude of oscillation as it decreases the 
strength of community structure in the network.   
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Supplementary Figure 7. Local oscillation of neighboring agents with local learning. Each panel shows oscillation of 
controlling processing x for a different number of agents located next to each other on a ring structure. Results are created for time 
lag 𝝉𝒑 =103, the cost of controlled processing w=-0.15, fixed cost of controlled c=0.5, and local learning (the figure is generated 
with local environment and local contact; however, global environment and/or global contact do not qualitatively change these 
results). 
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Supplementary Figure 8. Aggregate-level controlled processing x for no lag 𝝉𝒑 = 1 and mutation u=0.2.  Each line represents 
a combination of local versus global contact, environment, and learning, across different levels of the impact of automatic 
processing on the cost of controlled processing (w) and fixed cost of controlled (c). Contact is indicated by color (red = local, blue 
= global). Environment is indicated by line type (solid = local, dashed = global). Learning is indicated by symbol (circle = local, 
triangle = global). 
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Supplementary Figure 9. Aggregate-level controlled processing x for no lag 𝝉𝒑 = 1	and mutation u=0.5.  Each line represents 
a combination of local versus global contact, environment, and learning, across different levels of the impact of automatic 
processing on the cost of controlled processing (w) and fixed cost of controlled (c). Contact is indicated by color (red = local, blue 
= global). Environment is indicated by line type (solid = local, dashed = global). Learning is indicated by symbol (circle = local, 
triangle = global). 
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