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ABSTRACT Weissella paramesenteroides has potential as an industrial biocatalyst due
to its ability to produce lactic acid. A novel strain of W. paramesenteroides was isolated
from ensiled sorghum. The genome was sequenced using a hybrid assembly of
Oxford Nanopore and Illumina data to produce a 2-Mbp genome and 22-kbp
plasmid sequence.

W eissella spp. are Gram-positive coccobacillus-shaped bacteria (1, 2) which were
reclassified from the genus Leuconostoc (2). Weissella spp. have received indus-

trial interest due to their probiotic nature and ability to ferment a range of carbohy-
drates to lactic and acetic acids (3). Specifically, Weissella paramesenteroides is able to
produce D-lactic acid (2, 4) and is commonly identified in silage material (5).

Weissella paramesenteroides STCH-BD1 was isolated from ensiled Sorghum bicolor.
Fresh sorghum, cultivated in Florida, was ensiled for 180 days at approximately 21°C in
5-gallon buckets fitted with a 3-piece airlock to maintain anaerobic conditions. Ensiled
sorghum was squeezed using a garlic press, and the pressate was spread onto an MRS
agar plate (6), which was incubated aerobically at 30°C. A single colony of the isolated
bacteria was cultured in MRS broth and incubated aerobically at 30°C and 180 rpm for
16 h. Cells were lysed in lysis tubes containing lysing matrix E (MP Bio, USA) and were
placed in the MP Bio FastPrep instrument and operated at 6.0 ms21 for 40 s. Lysates
were centrifuged, and DNA was purified using the GeneJET genomic DNA purification
kit (Thermo Scientific, USA). Oxford Nanopore Technologies (UK) libraries were pre-
pared using the SQK-RBK004 rapid sequencing kit and sequenced on a MinION instru-
ment attached to a MinIT device (Oxford Nanopore Technologies) using an R9.4a flow
cell (Oxford Nanopore Technologies). Oxford Nanopore sequence reads were base
called using Guppy v4.2.2 operating in high-accuracy mode and yielded 398,617 DNA
sequence reads with an N50 value of 3,091 bp. Illumina DNA sequencing libraries were
prepared using the Nextera XT library preparation kit (Illumina, USA) and sequenced
on the Illumina MiSeq platform, using a 250-bp paired-end sequencing flowcell which
yielded 273,888 DNA sequence reads. Default parameters were used for subsequent
analysis except where otherwise noted. A de novo hybrid assembly using the raw
Illumina and Oxford Nanopore reads was performed using MaSuRCA v3.4.2 (7) which
was configured as part of the pipeline to use Flye (8) as the final assembler of the cor-
rected reads.

The genome sequence was assembled to a single, linear 2,052,436-bp contig with a
GC content of 38% and 210-fold coverage. A circular 22,825-bp contig with a GC con-
tent of 33% and 870-fold coverage was identified by Flye and designated a plasmid.
The assembled genome was verified using BWA-MEM v0.7.17 (9) and validated in
Tablet v1.19.09.03 (10) to ensure complete coverage. Taxonomic classification of the iso-
late was performed using Kraken 2 v2.0.7 (11) against the standard bacterial database,
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and fragments of the completed genome were taxonomically verified using NCBI blastn
(12). The assembled W. paramesenteroides STCH-BD 1 genome was annotated using the
NCBI Prokaryotic Genome Annotation Pipeline (13), which identified 1,934 coding
sequences. The completed genome of W. paramesenteroides FDAARGOS_414 which was
available from NCBI, under accession number CP023501, was compared with the ge-
nome of W. paramesenteroides STCH-BD 1 using the dnadiff package v1.3 within the
MUMmer package v4.0.0rc1 (14) and visualized using mummerplot with the --color
option (Fig. 1). The two genomes of W. paramesenteroides shared 98.7% homology
between the two chromosomes.

Data availability. The draft genome sequence of W. paramesenteroides STCH-BD1 is
deposited in GenBank under the accession numbers CP065045 and CP065046. Oxford
Nanopore and Illumina DNA sequence reads have been deposited in the NCBI Sequence
Read Archive under accession numbers SRR13083241 and SRR13083242, respectively.
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