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Use of SNP chips to detect rare pathogenic variants:  
retrospective, population based diagnostic evaluation
Weedon MN, Jackson L, Harrison JW, Ruth KS, Tyrrell J, Hattersley AT, Wright CF

AbstrAct
Objective
To determine whether the sensitivity and specificity of 
SNP chips are adequate for detecting rare pathogenic 
variants in a clinically unselected population.
Design
Retrospective, population based diagnostic 
evaluation.
ParticiPants
49 908 people recruited to the UK Biobank with SNP 
chip and next generation sequencing data, and an 
additional 21 people who purchased consumer 
genetic tests and shared their data online via the 
Personal Genome Project.
Main OutcOMe Measures
Genotyping (that is, identification of the correct 
DNA base at a specific genomic location) using 
SNP chips versus sequencing, with results split by 
frequency of that genotype in the population. Rare 
pathogenic variants in the BRCA1 and BRCA2 genes 
were selected as an exemplar for detailed analysis of 
clinically actionable variants in the UK Biobank, and 
BRCA related cancers (breast, ovarian, prostate, and 
pancreatic) were assessed in participants through use 
of cancer registry data.
results
Overall, genotyping using SNP chips performed well 
compared with sequencing; sensitivity, specificity, 
positive predictive value, and negative predictive 
value were all above 99% for 108 574 common 
variants directly genotyped on the SNP chips and 
sequenced in the UK Biobank. However, the likelihood 
of a true positive result decreased dramatically with 
decreasing variant frequency; for variants that are 

very rare in the population, with a frequency below 
0.001% in UK Biobank, the positive predictive value 
was very low and only 16% of 4757 heterozygous 
genotypes from the SNP chips were confirmed with 
sequencing data. Results were similar for SNP chip 
data from the Personal Genome Project, and 20/21 
individuals analysed had at least one false positive 
rare pathogenic variant that had been incorrectly 
genotyped. For pathogenic variants in the BRCA1 
and BRCA2 genes, which are individually very rare, 
the overall performance metrics for the SNP chips 
versus sequencing in the UK Biobank were: sensitivity 
34.6%, specificity 98.3%, positive predictive value 
4.2%, and negative predictive value 99.9%. Rates of 
BRCA related cancers in UK Biobank participants with 
a positive SNP chip result were similar to those for age 
matched controls (odds ratio 1.31, 95% confidence 
interval 0.99 to 1.71) because the vast majority of 
variants were false positives, whereas sequence 
positive participants had a significantly increased risk 
(odds ratio 4.05, 2.72 to 6.03).
cOnclusiOns
SNP chips are extremely unreliable for genotyping very 
rare pathogenic variants and should not be used to 
guide health decisions without validation.

Introduction
Single gene disorders are usually caused by genetic 
variants that are very rare in the population (<1 in 
10 000 people).1 Finding one of these rare pathogenic 
variants confers a high probability of disease in an 
individual and their family that requires referral 
for clinical follow-up. For example, a confirmed 
pathogenic variant in one of the breast cancer genes 
BRCA1 or BRCA2 would need urgent follow-up with 
additional screening and potentially prophylactic 
surgical mastectomy and oophorectomy.2 Molecular 
diagnostic laboratories typically use highly accurate 
DNA sequencing technologies to test for these types of 
rare pathogenic variants.3 4

SNP chips are DNA microarrays that test genetic 
variation at many hundreds of thousands of specific 
locations across the genome.5 They were initially 
designed for testing single nucleotide polymorphisms 
(SNPs) that are common in the population (>1 in 100 
people). SNP chips have proven to be excellent for 
studying common genetic variation, which can be 
used to assess ancestry,6 as well as predisposition to 
many complex multifactorial diseases such as type 
2 diabetes.7 8 The genetics community generally 
recognises that SNP chips perform poorly for genotyping 
rare genetic variants owing to their reliance on data 
clustering (fig 1).9-11 Clustering data from multiple 
individuals with similar genotypes works very well 
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WhAt Is AlreAdy knoWn on thIs topIc
SNP chips are an accurate and affordable method for genotyping common 
genetic variants across the genome
They are often used by direct to consumer genetic testing companies and 
research studies
However, several case reports suggest that they perform poorly for genotyping 
rare genetic variants when compared with sequencing

WhAt thIs study Adds
This study, using large scale SNP chip and sequencing data from the UK Biobank, 
confirms that SNP chips are highly inaccurate for genotyping rare, clinically 
actionable variants
SNP chips had a very low positive predictive value of less than 16% for detecting 
very rare variants; most variants with population frequency below 0.001% were 
false positives
Very rare variants assayed using SNP chips should not be used to guide health 
decisions without validation

 on 16 F
ebruary 2021 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.n214 on 15 F
ebruary 2021. D

ow
nloaded from

 

mailto:caroline.wright@exeter.ac.uk
http://orcid.org/0000-0003-2958-5076
https://crossmark.crossref.org/dialog/?doi=10.1136/bmj.n214&domain=pdf&date_stamp=2021-02-09
http://www.bmj.com/


RESEARCH

2 doi: 10.1136/bmj.n214 | BMJ 2021;372:n214 | the bmj

when variants are common, as large numbers of data 
points are available (fig 1, top). However, clustering 
becomes more difficult as the number of people with 
a particular genotype decreases; most people will 
have the reference genotype (normal allele), and 
distinguishing an alternative genotype (variant allele) 
from experimental noise is extremely difficult when 
only a single carrier is present (fig 1, bottom).

Despite this problem, in recent years many SNP 
chip designs, including those used by many direct 
to consumer companies, have been augmented to 
include rare pathogenic variants that cause single gene 
disorders. As a consequence, consumers of such tests 
are increasingly being screened for many rare single 
gene disorders and are potentially receiving medically 
actionable results, for which they often seek advice 
from healthcare professionals (fig 2).12 False positive 
results for rare clinically actionable variants detected 
by direct to consumer SNP chips have been described 
in practice guidance,13 several case reports,14 15 and 
two small case series.16 17 However, no systematic 
evaluation of the performance of SNP chips for 
assaying rare genetic variants has been published. It 
has been estimated that more than 26 million people 
had accessed direct to consumer genetic testing at the 
start of 2019,18 so knowing how accurate these results 
are is likely to be is crucial in order to interpret rare 
pathogenic variants detected using SNP chips.

In this study, we used sequencing data from 49 908 
UK Biobank participants as a reference standard to 
do a large scale, systematic evaluation of how well 
SNP chips detect rare genetic variants.10 We sought 
to answer two questions. (1) How well do SNP chips 
perform at detecting pathogenic genetic variants in 
individuals compared with the sequencing data in 
the UK Biobank? (2) Are the sensitivity and specificity 
of SNP chips adequate for rare variants? We used 
rare pathogenic variants in the BRCA1 and BRCA2 
genes (collectively termed BRCA henceforth) that 
cause hereditary cancers as an exemplar to evaluate 
the performance of SNP chips in the UK Biobank 
for genotyping clinically actionable variants. We 
replicated our findings using data from 21 people who 
had had direct to consumer genetic testing and shared 
their data online via the Personal Genome Project.19

Methods
study design, participants, and test methods
We did a retrospective comparison of SNP chip 
geno typing (index test) with next generation 
sequencing (here defined as the reference standard) 
from the UK Biobank and Personal Genome Project 
participants for whom both datasets were available. 
We studied 49 960 individuals (55% female) from 
the UK Biobank. The UK Biobank is a population 
based research cohort of approximately 500 000 
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Fig 1 | explanation of genotyping using snP chip technology. example cluster plots for common variant (top) and 
rare variant (bottom). each circle represents one person’s Dna assayed at specific position on snP chip when known 
variant (g to c) exists. automated clustering across multiple individuals is used to determine which Dna base is 
present in each person at that position. Pink circles in main cluster represent most common reference base (g), 
orange circles represent heterozygous variant (c), and pale purple circles represent uncertain or missing results due 
to experimental noise
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participants recruited in the UK between 2006 and 
2010. Approximately 9.2 million people aged 40-69 
years who lived within 40 km of one of 22 assessment 
centres were invited and 5.5% participated.10 The 
Personal Genome Project is a community project in 
which participants are invited to publicly share their 
genetic data.19 We compared variants genotyped by 
using SNP chips (index test) with next generation 
sequencing data (reference standard) in the same 
individual.

uK biobank
Next generation exome sequencing data were available 
on 49 960 participants, of whom 49 908 also had SNP 
chip data that had passed quality control. SNP chip 
data were generated centrally by the UK Biobank, and 
the exome sequencing data were generated externally 
by Regeneron and returned to the UK Biobank resource 
as part of an external access application request.20 A 
subset of 4037 participants were previously genotyped 
using the Applied Biosystems UK BiLEVE Axiom Array 
by Affymetrix (807 411 genetic markers), and the 
other 45 871 participants were previously genotyped 
using the Applied Biosystems UK Biobank Axiom 
Array (825 927 genetic markers) that shares 95% of its 
marker content with the BiLEVE.10 Participants were 
genotyped in 106 batches of around 5000 samples. 
We included samples that passed central UK Biobank 
quality control on either of the UK Biobank SNP 
chips and used standard quality metrics to exclude 
problematic SNPs (missingness rate <5% and Hardy 
Weinberg P<1×10−6).11 We used the UCSC genome 
browser liftover tool to convert SNP chip variant 
positions that were reported in human genome build 
37 to 38 coordinates for direct comparison with 
sequencing data.

Personal genome Project
We analysed publicly available datasets within the 
Personal Genomes Project (https://my.pgp-hms.org/) 
to determine which individuals had both direct to 
consumer SNP chip and sequencing data in genome 
build 37. We subsequently downloaded SNP chip 
data (provided by 23andMe from 2012 to 2019 
using Illumina arrays) and genome sequencing data 
(provided by Veritas Genetics) for 21 people.

analyses
We compared variants directly genotyped on the 
SNP chips with the equivalent positions in the 
sequencing data from the same individual, excluding 
sites that were not well sequenced. For genome-wide 
comparison with SNP chip genotypes, we included 
only directly genotyped single nucleotide variants 
with genomic positions present in the genomic Variant 
Call Format (gVCF) files and covered by more than 15 
reads in the sequencing data. For UK Biobank data, 
we used the minor allele frequency from all 488 377 
SNP chip genotyped UK Biobank participants.10 For 
Personal Genome Project data, we used VCF converter 
to analyse whether variants detected by the SNP chip 
were present in the sequence data, and we used the 
minor allele frequencies from gnomAD and the 1000 
genomes project.21 22 We tested the genotyping quality 
of each individual variant on the SNP chips versus 
sequencing and calculated average performance 
metrics per variant overall and for common and rare 
variant subsets in the UK Biobank.

For detailed gene specific comparison with SNP 
chip genotypes in the UK Biobank, we included 
directly genotyped single nucleotide variants, as well 
as small insertions and deletions in the BRCA1 and 
BRCA2 genes. We defined variants as pathogenic if 
they were predicted to result in a truncated protein or 
had previously been classified as likely or definitely 
pathogenic in the ClinVar database23; we included 
variants with conflicting reports of pathogenicity 
that included pathogenic assertions made within the 
previous five years. We visually examined sequencing 
data with the Integrative Genomics Viewer for all index 
and reference positive results to determine whether the 
variant was present.24 We extracted cancer registry data 
for breast, ovarian, prostate, and pancreatic cancer for 
all participants in April 2019 to coincide with the most 
recent release of Hospital Episode Statistics data. We 
used logistic regressions to assess the relation between 
participants who tested positive and any BRCA related 
cancer. We included age at cancer registry, sex, 
recruitment centre, death, breast screening, and non-
cancer related mastectomy in the regression.

Results are presented in accordance with the 
standard framework for the validation and verification 
of clinical molecular genetic tests and STARD 

Common complex disease associated variants
indicate increased or decreased risk of disease

Rare disease causing variants
indicate high probability of disease

Lifestyle advice Clinical interpretation and management

Clinical action
Refer to clinical genetics

Confirmatory
sequencing test

Person screened using SNP chip

Fig 2 | current medical context of snP chip screening
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guidelines for reporting diagnostic accuracy studies, 
using sensitivity, specificity, positive predictive 
value, and negative predictive value to evaluate assay 
performance.25 26

Patient and public involvement
Patients and the public were not directly involved in 
the design or implementation of this study, as we 
used previously generated data. As part of the consent 
process for the UK Biobank, National Health Service 
patients gave their consent for the collection, storage, 
and use of their genetic data and medical records by all 
approved researchers. All of the participant records are 
linked-anonymised.

results
Performance of snP chips for all variants
In the 49 908 UK Biobank participants, we compared 
genotypes for 108 574 single nucleotide variants 
that were classified as heterozygous by the SNP chip 
to reference standard sequencing data. Of the 49 908 
participants, 45 871 were genotyped using the 
Axiom chip and 4037 using the BiLEVE chip. Overall 
performance across both chips for all variants was very 
good (table 1), with 3.1×108 true positives, 4.6×109 true 
negatives, 3.2×106 false positives, and 2.7×106 false 
negatives. Performance for genotyping common SNPs 

with a frequency of more than 1% was especially good 
(table 1), both for the Axiom chip (average sensitivity 
99.8%, specificity 99.7%, positive predictive value 
99.0%, and negative predictive value 99.9%) and the 
BiLEVE chip (average sensitivity 99.7%, specificity 
99.7%, positive predictive value 98.7%, and negative 
predictive value 99.9%).

Performance of snP chips in relation to allele 
frequency
The genotyping performance of the SNP chips in the 
UK Biobank was strongly related to the frequency of the 
variant in the population (table 1; fig 3; supplementary 
figure A). We found 10 891 (Axiom) and 7408 (BiLEVE) 
variants on the two UK Biobank SNP chips with a 
frequency below 0.001% that were also genotyped by 
exome sequencing in the UK Biobank. For these very 
rare variants, the sensitivity of the SNP chips to detect 
heterozygous genotypes was low (29.5% for Axiom 
and 4.4% for BiLEVE). However, because of the large 
excess of true negatives, the specificity and negative 
predictive value both remained high (>99.7% for both 
chips). The positive predictive value was also strikingly 
reduced for rare variants compared with common 
variants—that is, we found a very high proportion 
of false positives for which the SNP chip (index test) 
detected a variant allele that was not present in the 
sequence data (reference standard). For the very 
rare variants present in UK Biobank, including 4757 
heterozygous genotypes across both SNP chips, only 
16.1% of Axiom SNP chip heterozygous genotypes 
(708 true positives in 4239 participants at 3422 
variants) were confirmed by the sequencing data, as 
were only 9.4% (46 true positives in 518 participants 
at 488 variants) for the BiLEVE chip. We observed 
a similar performance for very rare variants in the 
Personal Genome Project data (supplementary figure 
B), with a positive predictive value of 14% for variants 
with a population frequency below 0.01% in 21 people 
(83 true positives at 594 variants).

Performance of snP chips for rare pathogenic 
variants
We went on to evaluate the performance of the SNP 
chips in the UK Biobank for 1139 pathogenic and 
likely pathogenic variants in BRCA that were included 
on the chips (fig 4; supplementary figure C); 916 

table 1 | Performance of uK biobank snP chips versus sequencing for protein coding variants in uK biobank

snP chip and dataset sensitivity, % (95% ci) specificity, % (95% ci)
Positive predictive value,  
% (95% ci)

negative predictive value,  
% (95% ci)

UK Biobank Axiom (n=45 871):
 All exome variants 96.3 (96.2 to 96.4) 99.9 (99.9 to 99.9) 85.9 (85.7 to 86.1) 99.9 (99.9 to 99.9)
 MAF>1% 99.8 (99.8 to 99.8) 99.7 (99.7 to 99.8) 99.0 (98.9 to 99.1) 99.9 (99.9 to 99.9)
 MAF<0.001% 29.5 (27.4 to 31.5) 99.9 (99.9 to 99.9) 16.1 (14.9 to 17.3) 99.8 (99.8 to 99.8)
UK Biobank BiLEVE (n=4037):
 All exome variants 96.9 (96.8 to 97.0) 99.9 (99.9 to 99.9) 91.1 (91 to 91.2) 99.9 (99.9 to 99.9)
 MAF>1% 99.7 (99.7 to 99.8) 99.7 (99.7 to 99.8) 98.7 (98.6 to 98.8) 99.9 (99.9 to 99.9)
 MAF<0.001% 4.4 (3.1 to 5.8) 99.9 (99.9 to 99.9) 9.4 (6.8 to 12.0) 99.7 (99.7 to 99.8)
Results are split by SNP chip and variant group: all exome variants, common variants (MAF >1%) and very rare variants (MAF <0.001%). Results are based on simple mean and standard error of 
each metric across all relevant single nucleotide variants; insertions and deletions are excluded.
MAF=minor allele frequency.
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Fig 3 | Positive predictive value (PPv) of uK biobank axiom snP chip for detecting 
variants at different population frequencies. similar trend was seen with uK biobank 
bileve chip (supplementary figure a) and Personal genome Project consumer data 
(supplementary figure b)
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(80%) of these are rare with an allele frequency below 
0.01% in the UK Biobank. The performance of both 
chips was very poor for genotyping pathogenic BRCA 
variants: overall sensitivity 34.6%, specificity 98.3%, 
positive predictive value 4.2%, and negative predictive 
value 99.9% (table 2). Across both SNP chips, 425 
pathogenic BRCA variants were detected in 889 UK 
Biobank participants. Of these, just 17 variants in 
37 participants were present in the sequencing data, 
and the others were false positives; the most common 
true positive was present in 10 participants and had 
conflicting and uncertain interpretations in ClinVar. A 
further 43 pathogenic BRCA variants were present in 
the sequencing data of 70 participants but were not 
detected by either SNP chip despite being assayed. The 
performance of both chips for genotyping pathogenic 
BRCA variants was very poor (table 2): sensitivity 
33.0% and specificity 99.7% for the Axiom chip; 
sensitivity 50.0% and specificity 82.7% for the BiLEVE 
chip.

Risk of BRCA related hereditary cancer in UK 
Biobank participants with a pathogenic BRCA variant 
genotyped by SNP chips was similar to the risk of 
those without an SNP chip BRCA variant. As expected, 
given the low positive predictive value, the risk of 
BRCA related cancers in UK Biobank participants with 
a positive SNP chip result for any pathogenic BRCA 
variant was similar to the age matched risk in the UK 
Biobank (odds ratio 1.31, 95% confidence interval 0.99 
to 1.71). In contrast, those with a positive sequencing 
result—including the 107 participants with BRCA 

variants assayed by either chip, plus another 137 with 
pathogenic BRCA variants not assayed by either chip—
had a markedly increased risk (odds ratio 4.05, 2.72 
to 6.03).

We also investigated rare pathogenic and likely 
pathogenic variants in the Personal Genome 
Project, where the SNP chips used were made by 
a different manufacturer and based on a different 
design than those used in the UK Biobank. Across 
21 individuals, 100% (47/47) of rare (minor allele 
frequency <0.01%) pathogenic single nucleotide 
variants and 74% (25/34) of likely protein truncating 
insertions and deletions in known disease causing 
genes were incorrectly genotyped by the SNP chips. 
These included a pathogenic variant in KCNQ2 that 
causes early infantile epileptic encephalopathy and 
protein truncating variants in MSH2 and MSH6 that 
confer a very high risk of colorectal cancer.27 28 A rare 
pathogenic variant in ABCC8 that causes congenital 
hyperinsulinism was incorrectly genotyped as 
homozygous in 43% (9/21) of individuals.29 Overall, 
95% (20/21) of people investigated had a least one 
false positive rare pathogenic variant compared with 
sequencing.

discussion
We have shown that SNP chips are extremely poor for 
correctly genotyping very rare variants compared with 
sequencing data and that, for an individual person, 
a positive result for a very rare pathogenic variant is 
more likely to be wrong than right. This finding can 

Potential eligible participants with sequencing data

SNP chip
BRCA negative

SNP chip BRCA inconclusive
(>5% missing genotypes)

4
SNP chip

BRCA positive

189

Sequencing
BRCA positive

(17%)

32
Sequencing

BRCA negative
(83%)

45 678

49 960

QC passed SNP chip
49 908

Axiom SNP chip data
45 871

Excluded (SNP chip QC fail)
52

Excluded (BiLEVE array)
4037

157
Sequencing

BRCA positive
(0.1%)

65
Sequencing

BRCA negative
(99.9%)

45 613
Sequencing

BRCA positive
(0%)

Sequencing
BRCA negative

(100%)

0 4

Fig 4 | starD diagram to report flow of participants with pathogenic brca variant on uK biobank axiom chip compared 
with sequencing. similar process was followed for bileve chip (supplementary figure c). Qc=quality control
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be explained as follows. An individual rare variant is 
very unlikely to be present in any clinically unselected 
individual, so most results for that variant are true 
negatives. However, because SNP chips typically assay 
many thousands of rare variants simultaneously, and 
have a specificity that is less than 100%, false positive 
results will occur and outnumber true positives across 
all rare variants. Any individual person is therefore 
more likely to have a false positive result across all the 
rare variants than a true positive result at that variant.

strengths and limitations of study
We present the largest evaluation to date of the quality 
of genotyping for rare variants, using retrospective 
data from the UK Biobank. Although our analyses were 
limited by the array designs used in the UK Biobank, 
our results reflect a fundamental property of SNP chip 
technology, so we expect our findings to be broadly 
applicable to most SNP chip datasets. SNP chips are 
widely recognised as not being good at genotyping very 
rare variants.9-11 Some more recent SNP chips have 
been designed to include only low and intermediate 
frequency coding variants (>1 in 5000), for which 
the SNP chips perform relatively well. However, SNP 
chips are increasingly being augmented with very rare 
pathogenic variants, which, as we have shown, are not 
well genotyped. This is an inherent problem of using 
SNP chip technology to genotype very rare variants 
and is caused by both the rarity of the variant and the 
data clustering method on which SNP chips rely (fig 
1). Relying on data clustering means that both variant 
frequency and batch size will affect accuracy, with 
fewer individuals per batch leading to more genotyping 
errors for rare variants. As a result, although the 
performance of chips from different manufacturers 
may differ owing to different underlying chemistries,5 
our findings are likely to be generalisable to most SNP 
chips, and the results are strikingly similar across 
different SNP chips used in both our UK Biobank and 
Personal Genome Project datasets. Sequencing is not 
affected by the same technical problem as SNP chips 
and thus provides a much more accurate method for 
genotyping rare variants.30

Policy implications
The problem of SNP chips incorrectly genotyping 
very rare variants can be partially remedied through 
improved probe design, removal of poorly performing 
probes, using custom variant detection definitions,31 
using multiple probes for individual variants, or 
adding positive laboratory controls to improve 
clustering of variants. Many consumer genetic testing 
companies use these additional quality control 

methods, supplemented by validation of important 
variants through DNA sequencing, to improve the 
accuracy of variants they advertise and report directly 
to consumers. However, most direct to consumer 
companies (including those focused on ancestry or 
other non-medical traits) also allow customers to 
download and analyse their raw data, which will often 
include many thousands of additional rare variants 
assayed on their SNP chip that have not undergone 
stringent quality control and are therefore much more 
likely to be false positives.15 A recent study found that 
89% of consumers of genetic tests downloaded their 
raw data and 94% of those used at least one third 
party interpretation service to analyse the results.32 
We have therefore focused on the direct to consumer 
scenario because errors in raw SNP chip data could 
cause significant harm to consumers without further 
validation. However, erroneous results from SNP 
chips used in research biobanks can also lead to false 
associations and wasted resource in the development 
of new treatments against the wrong targets.33-35

The inherent technical limitation of SNP chips for 
correctly detecting rare genetic variants is further 
exacerbated when the variants themselves are linked 
to very rare diseases. As with any diagnostic test, the 
positive predictive value for low prevalence conditions 
will necessarily be low in most individuals. For 
pathogenic BRCA variants in the UK Biobank, the 
SNP chips had an extremely low positive predictive 
value (1-17%) when compared with sequencing. Were 
these results to be fed back to individuals, the clinical 
implications would be profound. Women with a positive 
BRCA result face a lifetime of additional screening and 
potentially prophylactic surgery that is unwarranted in 
the case of a false positive result. Conversely, although 
the false negative rate of SNP chips is generally low, 
many very rare pathogenic variants are not included 
in the design and will therefore be missed.36 Women 
who receive a false negative BRCA result but have a 
strong family history of breast and/or ovarian cancer 
are at high risk of developing cancer that could be 
greatly reduced through preventive surgeries and other 
interventions.37

conclusions
Using a large population research cohort and a small 
consumer genetic testing cohort, we have shown that 
positive results from SNP chips for very rare variants 
are more likely to be wrong than right. We therefore 
urge clinicians to validate any SNP chip results from 
direct to consumer companies or research biobanks by 
using a standard diagnostic test before recommending 
any clinical action. In addition, people with symptoms 

table 2 | Performance of uK biobank snP chips versus sequencing for all brca pathogenic variants in uK biobank

snP chip
true  
positive

False  
positive

False  
negative

true  
negative

sensitivity,  
% (95% ci)

specificity,  
% (95% ci) PPv, % (95% ci) nPv, % (95% ci)

UK Biobank Axiom (n=45 871) 32 157 65 45 613 33.0 (23.8 to 43.3) 99.7 (99.6 to 99.7) 16.9 (12.9 to 22.0) 99.9 (99.9 to 99.9)
UK Biobank BiLEVE (n=4037) 5 695 5 3321 50.0 (18.7 to 81.3) 82.7 (81.5 to 83.9) 0.7 (0.4 to 1.3) 99.9 (99.7 to 99.9)
Results are split by SNP chip; single nucleotide variants, insertions, and deletions are included, and all sequence positive variants were visually confirmed.
NPV=negative predictive value; PPV=positive predictive value.
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or a family history of breast and/or ovarian cancer who 
have received a negative SNP chip result should not be 
reassured that their risk is low,13 and standard referral 
guidelines should be followed for diagnostic testing 
(see https://cks.nice.org.uk/breast-cancer-managing-
fh). We suggest that, for variants that are very rare in 
the population being tested, genotyping results from 
SNP chips should not be routinely reported back to 
individuals or used in research without validation. 
Clinicians and researchers should be aware of the 
poor performance of SNP chips for genotyping very 
rare genetic variants to avoid counselling patients 
inappropriately or investing limited resources into 
investigating false associations with badly genotyped 
variants.

We thank Charles Warden for pointing us towards the Personal 
Genome Project resource and Tim McDonald for useful advice on 
clinical performance metrics. We also thank participants of both the 
UK Biobank and Personal Genome Project for generously donating 
their data for research.
Contributors: MNW and LJ contributed equally to this work. CFW, 
MNW, and ATH designed the study. CFW wrote the first draft of the 
manuscript. All authors reviewed and edited the manuscript. MNW, 
LJ, JWH, KSR, JT, ATH, and CFW were involved in data processing, 
statistical analysis, and interpretation. The corresponding author 
attests that all listed authors meet authorship criteria and that no 
others meeting the criteria have been omitted. MNW and CFW are the 
guarantors.
Funding: This research has been conducted using the UK Biobank 
Resource under Application Number 49847, using the University of 
Exeter High-Performance Computing (HPC) facility. ATH is a Wellcome 
Trust Senior Investigator (098395) and an NIHR senior investigator. 

The funders had no influence on study design, data collection and 
analysis, decision to publish, or preparation of the manuscript.
Competing interests: All authors have completed the ICMJE uniform 
disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no 
support from any organisation for the submitted work; no financial 
relationships with any organisations that might have an interest in the 
submitted work in the previous three years; no other relationships or 
activities that could appear to have influenced the submitted work.
Ethical approval: The UK Biobank has received ethics approval from 
the National Health Service National Research Ethics Service (ref 11/
NW/0382).
The lead author (the manuscript’s guarantor) affirms that this 
manuscript is an honest, accurate, and transparent account of the 
study being reported; that no important aspects of the study have 
been omitted; and that any discrepancies from the study as planned 
(and, if relevant, registered) have been explained.
Data sharing: The data reported in this paper are available via 
application directly to the UK Biobank. Direct to consumer data are 
available from the Personal Genome Project website.
Dissemination to participants and related patient and public 
communities: We will disseminate this research through the UK 
Biobank network. The Personal Genome Project participants have 
freely shared their data online to be used by the research community.
Provenance and peer review: Not commissioned; externally peer 
reviewed.
This is an Open Access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this work 
non-commercially, and license their derivative works on different 
terms, provided the original work is properly cited and the use is non-
commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

1  Whiffin N, Minikel E, Walsh R, et al. Using high-resolution variant 
frequencies to empower clinical genome interpretation. Genet 
Med 2017;19:1151-8. doi:10.1038/gim.2017.26 

2  AlHilli MM, Al-Hilli Z. Perioperative Management of Women 
Undergoing Risk-reducing Surgery for Hereditary Breast and Ovarian 
Cancer. J Minim Invasive Gynecol 2019;26:253-65. doi:10.1016/j.
jmig.2018.09.767 

3  Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic 
and clinical utility of genome and exome sequencing and 
chromosomal microarray in children with suspected genetic diseases. 
NPJ Genom Med 2018;3:16. doi:10.1038/s41525-018-0053-8 

4  Ellard S, Kivuva E, Turnpenny P, et al. An exome sequencing strategy 
to diagnose lethal autosomal recessive disorders. Eur J Hum 
Genet 2015;23:401-4. doi:10.1038/ejhg.2014.120 

5  LaFramboise T. Single nucleotide polymorphism arrays: a decade of 
biological, computational and technological advances. Nucleic Acids 
Res 2009;37:4181-93. doi:10.1093/nar/gkp552 

6  Smart A, Bolnick DA, Tutton R. Health and genetic ancestry 
testing: time to bridge the gap. BMC Med Genomics 2017;10:3. 
doi:10.1186/s12920-016-0240-3 

7  Price AL, Spencer CCA, Donnelly P. Progress and promise in 
understanding the genetic basis of common diseases. Proc Biol 
Sci 2015;282:20151684. doi:10.1098/rspb.2015.1684 

8  Visscher PM, Goddard ME. From R.A. fisher’s 1918 paper to GWAS 
a century later. Genetics 2019;211:1125-30. doi:10.1534/
genetics.118.301594 

9  Wright CF, West B, Tuke M, et al. Assessing the Pathogenicity, 
Penetrance, and Expressivity of Putative Disease-Causing Variants 
in a Population Setting. Am J Hum Genet 2019;104:275-86. 
doi:10.1016/j.ajhg.2018.12.015 

10  Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with 
deep phenotyping and genomic data. Nature 2018;562:203-9. 
doi:10.1038/s41586-018-0579-z 

11  Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, 
Zondervan KT. Data quality control in genetic case-control association 
studies. Nat Protoc 2010;5:1564-73. doi:10.1038/nprot.2010.116 

12  van der Wouden CH, Carere DA, Maitland-van der Zee AH, Ruffin 
MT4th, Roberts JS, Green RC, Impact of Personal Genomics Study 
Group. Consumer Perceptions of Interactions With Primary Care 
Providers After Direct-to-Consumer Personal Genomic Testing. Ann 
Intern Med 2016;164:513-22. doi:10.7326/M15-0995 

13  Horton R, Crawford G, Freeman L, Fenwick A, Wright CF, Lucassen 
A. Direct-to-consumer genetic testing. BMJ 2019;367:l5688. 
doi:10.1136/bmj.l5688 

14  Schleit J, Naylor LV, Hisama FM. First, do no harm: direct-to-consumer 
genetic testing. Genet Med 2019;21:510-1. doi:10.1038/s41436-
018-0071-z 

15  Moscarello T, Murray B, Reuter CM, Demo E. Direct-to-consumer raw 
genetic data and third-party interpretation services: more burden 

glossary

Allele: each of two or more alternative forms of DNA that are found at the same location 
on a chromosome
Exome: ~1-2% of the human genome that codes for proteins
Genotyping: method for determining the base (A, G, T, or C) present at a specific 
location in a person’s DNA
Heterozygous: two different alleles in an individual
Homozygous: two identical alleles in an individual.
Negative predictive value: proportion of normal alleles found by the index test that are 
confirmed by the reference standard (true negative/(true negative + false negative))
Positive predictive value: proportion of variant alleles found by the index test that are 
confirmed by the reference standard (true positive/(true positive + false positive))
Sensitivity: proportion of variant alleles detected by the reference standard that are 
also found by the index test (true positive/(true positive + false negative))
Sequencing: method for determining the order of bases in a DNA sample
Single gene disorder: disease caused by, or with a high probability of developing due 
to, a rare genetic variant in a specific single gene
Single nucleotide polymorphism (SNP): type of single nucleotide variant that is 
common and present in more than 1% of the population (pronounced “snip”)
SNP chip: DNA microarray that is used to genotype known genetic variants (typically 
SNPs) in the population
Specificity: proportion of normal alleles detected by the reference standard that are 
also found to be normal by the index test (true negative/(true negative + false positive))
Variant (single nucleotide variant): position in the genome where an individual differs 
from the reference human genome by a single base change (ie, a substitution of a 
single letter of DNA). A variant may be rare or common in the population.

 on 16 F
ebruary 2021 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.n214 on 15 F
ebruary 2021. D

ow
nloaded from

 

https://cks.nice.org.uk/breast-cancer-managing-fh
https://cks.nice.org.uk/breast-cancer-managing-fh
http://www.icmje.org/coi_disclosure.pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://www.bmj.com/


RESEARCH

No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe

than bargain?Genet Med 2019;21:539-41. doi:10.1038/s41436-
018-0097-2 

16  Tandy-Connor S, Guiltinan J, Krempely K, et al. False-positive 
results released by direct-to-consumer genetic tests highlight the 
importance of clinical confirmation testing for appropriate patient 
care. Genet Med 2018;20:1515-21. doi:10.1038/gim.2018.38 

17  Esplin E, Haverfield E, Yang S, Herrera B, Anderson M, Nussbaum 
RL. Limitations of HBOC Direct-To-Consumer Genetic Screening: 
False Positives, False Negatives and Everything in Between. Cancer 
Res 2019;79(4Suppl):P4-03-06.

18  MIT Technology Review. More than 26 million people have taken 
an at-home ancestry test. 2019. https://www.technologyreview.
com/s/612880/more-than-26-million-people-have-taken-an-at-
home-ancestry-test/.

19  Ball MP, Bobe JR, Chou MF, et al. Harvard Personal Genome Project: 
lessons from participatory public research. Genome Med 2014;6:10. 
doi:10.1186/gm527 

20  Van Hout CV, Tachmazidou I, Backman JD, et al, Geisinger-Regeneron 
DiscovEHR Collaboration, Regeneron Genetics Center. Exome 
sequencing and characterization of 49,960 individuals in the UK 
Biobank. Nature 2020;586:749-56. doi:10.1038/s41586-020-
2853-0 

21  Lek M, Karczewski KJ, Minikel EV, et al, Exome Aggregation 
Consortium. Analysis of protein-coding genetic variation in 60,706 
humans. Nature 2016;536:285-91. doi:10.1038/nature19057 

22  Abecasis GR, Auton A, Brooks LD, et al, 1000 Genomes Project 
Consortium. An integrated map of genetic variation from 1,092 
human genomes. Nature 2012;491:56-65. doi:10.1038/
nature11632 

23  Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive 
of interpretations of clinically relevant variants. Nucleic Acids 
Res 2016;44(D1):D862-8. doi:10.1093/nar/gkv1222 

24  Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics 
Viewer (IGV): high-performance genomics data visualization and 
exploration. Brief Bioinform 2013;14:178-92. doi:10.1093/bib/
bbs017 

25  Mattocks CJ, Morris MA, Matthijs G, et al, EuroGentest Validation 
Group. A standardized framework for the validation and verification 
of clinical molecular genetic tests. Eur J Hum Genet 2010;18:1276-
88. doi:10.1038/ejhg.2010.101 

26  Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for 
reporting diagnostic accuracy studies: explanation and elaboration. 
BMJ Open 2016;6:e012799. doi:10.1136/bmjopen-2016-012799 

27  Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn 
F, Lerche H. Peripheral nerve hyperexcitability due to dominant-

negative KCNQ2 mutations. Neurology 2007;69:2045-53. 
doi:10.1212/01.wnl.0000275523.95103.36 

28  Vasen HFA, Möslein G, Alonso A, et al. Guidelines for the clinical 
management of Lynch syndrome (hereditary non-polyposis cancer). J 
Med Genet 2007;44:353-62. doi:10.1136/jmg.2007.048991 

29  Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain 
K. Clinical and molecular characterisation of 300 patients with 
congenital hyperinsulinism. Eur J Endocrinol 2013;168:557-64. 
doi:10.1530/EJE-12-0673 

30  Chin ELH, da Silva C, Hegde M. Assessment of clinical analytical 
sensitivity and specificity of next-generation sequencing for 
detection of simple and complex mutations. BMC Genet 2013;14:6. 
doi:10.1186/1471-2156-14-6 

31  Goldstein JI, Crenshaw A, Carey J, et al, Swedish Schizophrenia 
Consortium, ARRA Autism Sequencing Consortium. zCall: a rare 
variant caller for array-based genotyping: genetics and population 
analysis. Bioinformatics 2012;28:2543-5. doi:10.1093/
bioinformatics/bts479 

32  Nelson SC, Bowen DJ, Fullerton SM. Third-Party Genetic Interpretation 
Tools: A Mixed-Methods Study of Consumer Motivation and 
Behavior. Am J Hum Genet 2019;105:122-31. doi:10.1016/j.
ajhg.2019.05.014 

33  van de Putte R, Wijers CHW, Reutter H, et al. Exome chip association 
study excluded the involvement of rare coding variants with large 
effect sizes in the etiology of anorectal malformations. PLoS 
One 2019;14:e0217477. doi:10.1371/journal.pone.0217477 

34  Chen R, Shi L, Hakenberg J, et al. Analysis of 589,306 genomes 
identifies individuals resilient to severe Mendelian childhood 
diseases. Nat Biotechnol 2016;34:531-8. doi:10.1038/nbt.3514 

35  Border R, Johnson EC, Evans LM, et al. No Support for 
Historical Candidate Gene or Candidate Gene-by-Interaction 
Hypotheses for Major Depression Across Multiple Large 
Samples. Am J Psychiatry 2019;176:376-87. doi:10.1176/appi.
ajp.2018.18070881 

36  Kellog G, Bisignano A, Jaremko M, Puig O. Implications of FDA 
Approval for Genetic Tests of Limited Clinical Utility. 2019. https://
acmg.expoplanner.com/index.cfm?do=expomap.sess&event_
id=13&session_id=8826.

37  Ludwig KK, Neuner J, Butler A, Geurts JL, Kong AL. Risk reduction and 
survival benefit of prophylactic surgery in BRCA mutation carriers, 
a systematic review. Am J Surg 2016;212:660-9. doi:10.1016/j.
amjsurg.2016.06.010 

Web appendix: Supplementary figures

 on 16 F
ebruary 2021 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.n214 on 15 F
ebruary 2021. D

ow
nloaded from

 

https://www.technologyreview.com/s/612880/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
https://www.technologyreview.com/s/612880/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
https://www.technologyreview.com/s/612880/more-than-26-million-people-have-taken-an-at-home-ancestry-test/
https://acmg.expoplanner.com/index.cfm?do=expomap.sess&event_id=13&session_id=8826
https://acmg.expoplanner.com/index.cfm?do=expomap.sess&event_id=13&session_id=8826
https://acmg.expoplanner.com/index.cfm?do=expomap.sess&event_id=13&session_id=8826
http://www.bmj.com/

