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Blaming automated vehicles in difficult situations

Matija Franklin,1,3,* Edmond Awad,2 and David Lagnado1

SUMMARY

Automated vehicles (AVs) have made huge strides toward large-scale deploy-
ment. Despite this progress, AVs continue to make mistakes, some resulting in
death. Although some mistakes are avoidable, others are hard to avoid even by
highly skilled drivers. As these mistakes continue to shape attitudes toward
AVs, we need to understand whether people differentiate between them. We
ask the following two questions. When an AV makes a mistake, does the
perceived difficulty or novelty of the situation predict blame attributed to it?
How does that blame attribution compare to a human driving a car? Through
two studies, we find that the amount of blame people attribute to AVs and human
drivers is sensitive to situation difficulty. However, while some situations could
be more difficult for AVs and others for human drivers, people blamed AVs
more, regardless. Our results provide novel insights in understanding psycholog-
ical barriers influencing the public’s view of AVs.

INTRODUCTION

Once properly prepared and finalized to deploy on the roads, automated vehicles (AVs) are expected to

bring many benefits, such as decreasing the rate of car crashes (Gao et al., 2014), reducing pollution

(Spieser et al., 2014), and increasing traffic efficiency (van Arem et al., 2006). Assuming that AVs will over-

come all remaining technical challenges before they are ready to deliver these benefits, while exhibiting no

serious drawbacks, their deployment on a larger scale would be beneficial. However, these benefits will not

be realized if people are not ready to buy them, and various considerations contribute to the public’s aver-

sion to adopting this technology.

Understanding people’s attitudes is key to identifying these considerations, and working to address any

potential concerns (Shariff et al., 2017; Schlögl et al., 2019; Sun and Medaglia, 2019; Bonnefon et al.,

2020; Dellaert et al., 2020). The public’s views and trust toward AVs is a major factor that predicts adoption

of autonomous vehicles (Lee and Moray, 1992, 1994; Gefen et al., 2003; Carter and Bélanger, 2005). Evi-

dence suggests that people require AVs to be multiple orders of magnitude safer than human drivers

(Liu et al., 2019). As argued in (Awad et al., 2020), negative public reaction may result in inflated prices

of this technology (Geistfeld, 2017) and may shape how a tort-based regulatory scheme would turn out,

both of which can influence the rate of adoption.

In such cases of high stakes (safety of life), human attitude is mainly shaped by situations of failure. An

autonomous vehicle may navigate its way successfully on the roads for long periods of time but will still

be slammed for failing to avoid a crash in one situation. This asymmetric effect of performance on the pub-

lic’s attitude is amplified by the wide coverage of the few crashes by AVs, compared to the coverage of suc-

cessful performance or achieved milestones by these AVs, and also compared to crashes by human drivers

(Lambert, 2018). The strong reactions these few crashes have elicited point to the importance of focusing

on mistakes and the failure situations to understand the publics’ attitude.

Understanding how we react tomistakes bymachines (as compared to those by humans) is not an easy task.

There is strong evidence that people react differently tomistakesmade bymachines and humans (Dietvorst

et al., 2014, 2015; Malle et al., 2015; Awad et al., 2020). There are also reasons to believe that people assign

blame differently based on the difficulty of encountered situations. Complicating matters, perceived diffi-

culty of the situation may vary depending on the agent behind the steering wheels. For example, a drunk

person jumping in front of a car may be considered a difficult situation for a human driver but not for a ma-

chine driver (Goodall, 2016). Likewise, a novel situation in which the only way to overtake a stationary
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vehicle is to illegally cross the central line may be deemed more difficult for a machine driver than for a hu-

man driver.

In this study, we focus on two questions: (1) when an automated car makes a mistake, does the perceived

difficulty or novelty of the situation predict blame attributed to it? (2) How does that blame attribution

compare to a human driving a regular car?

To answer these questions, we devise two studies that look at mistakes made by human drivers and ma-

chine drivers in driving situations that span different levels of difficulty (see Figure 1). Specifically, we

consider three types of situations: (a) simple driving situations: those that most humans would consider

easy to navigate without making mistakes (most of the time). (b) complex situations: those that add extra

layers of difficulty or complication to the simple driving situation, requiring a higher level of competence to

navigate while avoiding making mistakes, and (c) novel situations: those that are less likely to be encoun-

tered while driving (than simple or complex situations) and require novel inferences and actions that would

not have been part of pre-training. The consideration of complex and novel situations here is crucial, given

that what is deemed as difficult for a human driver (e.g., split-second decisions) can be an easy task for an

AV. On the other hand, a novel situation (e.g., having to make an illegal move to overtake a stationary

vehicle) could prove more challenging for an AV than for a human driver (Marcus and Davis, 2019).

RESULTS

In study 1, 198 participants were allocated randomly to one of four conditions: (driver: human vs. machines):

x (situation: simple vs. complex). Each participant read six different stories of a mistake by a driver resulting

in a crash, and then assigned scores of blame and causality to the driver. These scores were summed up into

two separate blame and causality scores. The descriptive statistics and the individuals’ blame scores are

available in Figure 2 (causality scores are very similar).

Our results show that machines receive more blame and causality attribution than humans for either type of

mistakes and that humans and machines are blamed more for mistakes in simple situations (see Figure 2).

For blame attributions, results from a 2 3 2 ANOVA (driver x situation) show that machine drivers are

blamed significantly more than human drivers for doing the same mistakes [F(196, 2) = 5.82, p = .011]

and that all drivers get more blame for mistakes in simple, rather than complex, situations [F(196, 2) =

6.73, p = .004]. These results were replicated for causality attributions with machines receiving higher cau-

sality attributions [F(196, 2) = 6.18, p = .008] and drivers committing mistakes in simple situations being

perceived as more causally responsible [F(196, 2) = 4.66, p = .045].

In study 2, 317 participants were allocated randomly to one of six conditions: (driver: human vs. machines): x

(situation: simple vs. novel vs. complex). Each participant read five different stories of a mistake by a driver

resulting in a crash, and then assigned scores of blame and causality to the driver. Participants also rated

Study 2

HumanMachine Machine

SimpleComplex ComplexNovelSimple

Human

Study 1

Driver

Situation

Figure 1. Experimental design of the two studies

The edges connecting Driver and Mistake represent the experimental groups participants were allocated to, with a total

of four experimental groups for study 1: human driver in a simple situation, human driver in a complex situation, machine

driver in a simple situation and machine driver in a complex situation; and six experimental groups for study 2 – same as in

study 1 with the addition of two new experimental groups: human driver in a novel situation and machine driver in a novel

situation.
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the driving situation in terms of novelty and difficulty. Blame judgments and causality attributions were

summed up into two separate blame and causality scores. The descriptive statistics for blame scores are

available in Figure 3 (causality scores are very similar).

Our results show that machines receive more blame and causality attribution than humans for mistakes in novel

and complex mistakes (see Figure 3). Furthermore, humans and machines are blamed the most for mistakes in

simple situations, followed by novel and then complex situations. For blame attributions, results from a 2 3 3

ANOVA (driver x situation) show that overall machine drivers are blamed significantly more than human drivers

for doing the same mistake [F(314,3) = 7.81, p = .006] and that all drivers receive significantly different levels of

blame formistakes in different driving situations [F(314,3) = 60.75, p < .001]. Post hoc comparisons using the Tu-

key honestly significant difference (HSD) test indicated that themean blame score in simple situations (M= 367,

SD= 75.98) was significantly higher than in novel (M= 305.74, SD= 101.98) and complex (M= 234.24, SD= 86.5)

situations. Further, the mean blame score in novel situations was significantly higher than in complex situations.

The patterns in this ANOVA were replicated in ANOVAs performed for individual items (See S2).

These results were replicated for causality attributions with machines receiving higher causality attributions

[F(314,3) = 11.66, p < .001] and drivers rated as differentially causal for different scenarios [F(314,3) = 67.48,

p < .001]. Post hoc comparisons using the Tukey HSD test indicated that the mean causality score in simple

situations (M = 383.3, SD = 71.2) was significantly higher than in novel (M = 313.1, SD = 99.65) and complex

(M = 251.38, SD = 79.87) situations. Further, the mean causality score in novel situations was significantly

higher than in complex situations. The patterns in this ANOVA were replicated in ANOVAs performed

for individual items (See S2).

To test for participants’ perception of how difficult human and machine drivers would find particular sit-

uations, and to examine the success of the experimental manipulation of the study’s items, we observed

people’s ratings of situations’ difficulty and novelty. Specifically, the five separate ratings that were given

by participants for each item was summed into a novelty and difficulty score. The descriptive statistics

(see Figure 4) imply that the items elicited the desired response, with items describing novel situations

Figure 2. Attribution of blame for mistakes in simple and complex situations in study 1

Data from study 1 (n = 198). Participants were randomly allocated to one of four groups. The x axis represents the situation

difficulty (simple vs. complex). The y axis represents blame attribution. Blue and red bars represent the mean blame

attribution to the machine driver (AV) and the human driver, respectively. Error bars represent 95% confidence intervals of

the mean. Each circle represents an individual’s blame score (averaged over six stories). Machine drivers are blamedmore

than human drivers in total and across the two types of scenarios [F(196, 2) = 6.17, p = .014]. Machine and human drivers

are blamed for making mistakes more in simple situations than in complex situations [F(196, 2) = 8.36, p = .004]. Data are

represented as mean G SEM.
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having the highest novelty scores, and items describing complex situations having the highest difficulty

scores.

For novelty scores, results from a 2 3 3 ANOVA (driver x situation) show that identical driving situations are

scored as more novel if they have a machine driver in them rather than a human driver [F(314,3) = 9.65, p =

.002] and that different driving situations produce a significant difference in novelty scores [F(314,3) = 4.15,

p = .017]. Post hoc comparisons using the Tukey HSD test indicated that the mean novelty score in novel situ-

ations (M = 248.68, SD = 105.35) was significantly higher than in simple situations (M = 213.62, SD = 108.63).

For difficulty scores, results from a 23 3 ANOVA (driver x situation) show that identical driving situations are

scored as more difficult if they have a machine driver in them rather than a human driver [F(314,3) = 14.98,

p < .001] and that different driving situations produce a significant difference in difficulty scores [F(314,3) =

20.99, p < .001]. Post hoc comparisons using the Tukey HSD test indicated that the mean difficulty score in

complex situations (M = 275.3, SD = 83.05) was significantly higher than in simple (M = 188.93, SD = 110.95)

and novel situations (M = 236.17, SD = 100.17). Further, the mean difficulty score in novel situations was

significantly higher than in simple situations.

Further, we examined whether trust in other drivers or AVs were predictive of blame judgments and causal

attributions. For this, four separate linear regressions were conducted – two for participants in machine

driving scenarios and another two for participants in human driving scenarios. For groups with human

drivers, trust in other drivers did not significantly predict blame judgments and causal attributions. For

groups with machine drivers, the results of two linear regressions showed that trust in AVs significantly pre-

dicted blame judgment [F(153, 2) = 4.06, p = .046, R2 = .026] and causal attribution [F(153, 2) = 5.19, p = .024,

R2 = .033]. The results show that people’s trust in AVs predicts their judgments and attributions of AVs.

Figure 3. Attribution of blame for mistakes in simple, novel, and complex situations in study 2

Data from study 2 (n = 317). Participants were randomly allocated to one of six groups. The x axis represents the situation

difficulty (simple vs. novel vs. complex). The y axis represents blame attribution. Blue and red bars represent the mean

blame attribution to the machine driver (AV) and the human driver, respectively. Error bars represent 95% confidence

intervals of the mean. Each circle represents an individual’s blame score (averaged over five stories). Machine drivers are

blamed more than human drivers in total and across two types of scenarios (inconclusive for simple situations) [F(315, 2) =

4.99, p = .026]. There were significant differences in blame across driving situations [F(314, 3) = 59.05, p < .001], with mean

score for blame in simple situations being significantly higher than mean scores for blame in novel [differences in means =

61.26, 95% CI: [32.69, 89.84], p < .001] and complex situations [differences in means = 132.76, 95% CI: [103.98, 161.54], p <

.001]. Mean scores for blame in novel situations were higher than those in complex situations [differences in means =

71.49, 95% CI: [42.58, 100.41], p < .001]. Data are represented as mean G SEM.
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Finally, we examined participants’ expectations of whether they thought a mistake was going to happen or

not after completing the items (human: M = 5.02, SD = 1.45; machine: M = 5.35, SD = 1.25). The results of an

independent sample T test show that people’s expectations for a mistake were significantly larger for

machines than humans [d(315,2) = -.24, p = .017]. Expectations were then used to predict participants’

judgments and attributions, using two separate linear regressions. When using blame attribution as the

dependent variable, the linear regression produced a significant effect [F(315,2) = 4.63, p = .032, R2 =

.014]. This finding was replicated when causality attribution was the dependent variable [F(315,2) = 9.09,

p = .003, R2 = .028]. The results show that people’s expectations predict their judgments and attributions.

We reviewed participants’ qualitative responses to how they made their choices. The three main themes

were that participants’ own experience with driving, the situation they were analyzing, and that the driver

they were judging informed their decisions.

DISCUSSION

Before being deployed on the road, AVs need to reach a satisfactory level of competence. What is satis-

factory, however, may be measured against satisfactory levels of human driving. But comparisons between

humans andmachines are hard tomake, since each is challenged differently, even when facing the same set

Figure 4. Assessment of difficulty and novelty of simple, novel, and complex situations in study 2

Data from study 2 (n = 317). Participants were randomly allocated to one of six groups. The x axis represents the situation

difficulty (simple vs. novel vs. complex).The y axis represents difficulty or novelty assessment. Blue and red bars represent

the mean assessment to the described scenarios featuring a machine driver (AV) and a human driver, respectively. Error

bars represent 95% confidence intervals of the mean. Each circle represents an individual’s difficulty or novelty scores

(averaged over five stories). For situations featuring a human driver, the mean difficulty score in complex situations is

significantly higher than in novel [differences in means =�51.46, 95% CI: [-89.89,�13.03], p = .005] and simple [differences

in means = �116.65, 95% CI: [-155.24, �78.05], p < .001] situations. For situations featuring a machine driver, the mean

difficulty score in complex situations is significantly higher than in simple situations [differences in means = �54.61, 95%

CI: [-104.34, �4.88], p = .028], and the mean novelty score in novel situations is significantly higher than in complex

situations [differences in means = 49.75, 95% CI: [.92, 98.58], p = .045]. Data are represented as mean G SEM.
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of situations. While AVs operating based on state-of-the-art technology can navigate fast-calculation,

quick-reaction types of situations better than humans, they still struggle with novel (yet seemingly simple

from a human perspective) situations. Because of this, one would expect that people will blame machine

drivers less than human drivers for making mistakes in novel situations but blame them more in complex

situations that rely on handling more information or calculation.

Surprisingly, we find that this is not the case. In two studies, we find that participants blamed machine

drivers more than human drivers for mistakes in both complex and novel situations. The differences in

blame toward machines and humans may seem small on a scale 1-100 (meaning only few more people

would find machines more blameworthy than humans, than vice versa). However, such differences are likely

to map to practical turning points in real life. Our studies are done with a group of independent individuals

faced with neutral description of scenarios. This ignores two factors: (1) media influence and (2) social in-

fluence, both of which are expected to magnify the difference. As for (1), If our sample is any representation

of journalists, this will be reflected in more blame-the-machine biased articles, that are read by many more

individuals. As for (2), it is plausible to assume that social influence of judgment happens according to a

majority-voting model (majority of your neighbors determine your ‘‘state’’ with high probability pagree)

(Campos et al., 2003; Liggett, 2012), and that influence propagates over our social networks, represented

as ‘‘small-world’’ networks (Watts and Strogatz, 1998; Amaral et al., 2000). In such settings, ‘‘who is blamed

more?’’ matters more than ‘‘how much blamed more?’’ in shaping the final collective judgment (Ray et al.,

2021).

There are multiple possible explanations that may help understand these findings. The first possibility is

that people were not sensitive to the difficulty or novelty of these situations in a way that follows the desired

experimental manipulations. However, this is unlikely, given that (as illustrated in Figure 4) participants as-

signed higher novelty scores for novel situations than for simple or complex situations when faced by ma-

chines. They also assigned higher difficulty scores for complex situations than the other two when faced by

human drivers. Finally, novel and complex situations were considered more difficult than simple situations

when faced by machine drivers.

One factor that can influence blame attribution is whether responsibility is shared. Previous work showed that

people factor in the role of other agents in the broader system when making judgments (Lagnado et al., 2013).

Given this, if amachine and a humanperforman identical actionwith the same consequence, peoplemight view

them differently in terms of their causality and blameworthiness due to the other agents that are somewhat

responsible for their behavior. However, this also seems like an unlikely explanation for our findings. Compared

to humans, one would expect that machines should be ‘‘sharing’’ the blame with more agents, such as devel-

opers, designers, data scientists, data sets and manufacturers, a problem that has been identified before as

‘‘AI Responsibility Gap’’ (Matthias, 2004), and ‘‘moral crumple zone’’ (Elish, 2019).

One possible explanation is that participants perceive machines to be more competent at driving than hu-

mans. Expectations of someone’s skills influence people’s blame judgment for an outcome (Gerstenberg

et al., n.d.). Specifically, when one has a high prior expectation of how someone will behave, they will see

them as more blameworthy if they underperform and cause a negative outcome. However, this explanation

is refuted by our post-assessment questions which found participants expressing higher likelihood of mak-

ing a mistake (in the considered situations) for machine drivers than for human drivers. This runs counter to

the literature on the public’s risk acceptance of AVs, which shows that the public expects AVs to be signif-

icantly safer than human drivers, feel reasonably safe riding in an AV, and would allow AVs on public roads

(Nees, 2019). Our participants’ expectation of failure can be seen as an expectation of a driver’s ability to

avoid a mistake i.e., higher perceived competence at driving for humans.

Another possible explanation is that participants hold machines to higher standards than humans for the

task of driving. In this case, even when people perceive machines as less competent drivers than humans,

they still want them to follow higher standards before they are allowed to drive us. Our finding that for AVs,

higher trust predicts higher blame may somewhat support this conclusion. Given that we do not have data

that refutes or confirms this possibility, this remains as a possible explanation for why machines receive

more blame than humans.
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Finally, the answer may lie in the attribution of causal responsibility. People judge agents as more blame-

worthy for an outcome if they see them as more causally responsible for that outcome (Gerstenberg and

Lagnado, 2010). In this case, if machines are seen as more causally responsible for the described mistakes,

we would expect them to blame themmore for thesemistakes. Our data show that causal attribution results

mirror the blame attributions for all conditions. However, this does not provide a satisfactory explanation. It

only shifts the focus to causal responsibility: Why do people find machines more causally responsible than

humans irrespective of the difficulty of the situation?

The immediate future is likely to see machines assuming new instrumental roles in industry and gover-

nance. This has, and will, lead to new situations where the developers of such intelligent machines are

not able to fully predict their machines behavior and thus mistakes. The current study contributes to

the existing literature (Malle et al., 2015; Awad et al., 2020; Bennett et al., 2020; Hidalgo et al., 2021)

seeking to understand how situations of failure shape the public’s attitude toward machines. Exploring

how this is likely to unfold is a crucial step forward toward realizing the potential benefit of this

technology.

Limitations of the study

The study has three limitations pertaining to its participants, measures and explanations it draws from its

results. First, although our sample size met the requirements of a power analysis (see Participants section in

Methods), a larger sample size across the two studies would have made for more conclusive results.

Further, as our sample was recruited from MTurk and included participants from the UK, it was not fully

representative. Second, the measure used for people’s expectations of whether a mistake was about to

happen was ad hoc, thus participants’ expectations could have been influenced by the experimental items

which described the driving situations. Finally, the current study cannot fully provide a definitive explana-

tion for why machines are blamed more across all driving situations.

Resource availability

Lead contact

Further information and requests for experimental materials and data should be directed to and will be ful-

filled by the lead contact, Matija Franklin (matija.franklin@ucl.ac.uk).

Materials availability

All items used in the online experiment are available from the lead contact without restriction.

Data and code availability

All data generated or analyzed during this study are currently available in the Figshare repository. The data from

study 1 are available here https://figshare.com/articles/dataset/Blaming_Automated_Vehicles_Study_1_/

12982085. The data from study 2 are available here https://figshare.com/articles/dataset/Blaming_

Automated_Vehicles_Study_2_/12982103.
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All methods can be found in the accompanying Transparent methods supplemental file.
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Supplemental Data Items 
 

Table S1​. ​Results from individual item ANOVAS between human and machine groups in Study              
2, related to Figure 3​. Ten separate ANOVAs which explored the differences in mean causality or                
blame between groups judging machine or human drivers, for the five different items. For all               
significant scores, machine drivers received significantly more blame judgments or causal attributions            
than human drivers p< .05 = *, p< .01 = **, p< .001 = ***]. For non-significant scores in the remaining                     
three items, the same direction either held (i.e., machines were attributed more blame or causality) or                
the differences were negligible. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Item Number F Causality F Blame 

1 .634 .005 

2 11.603*** 18.881*** 

3 2.154 .791 

4 7.375** 4.335* 

5 .034 .017 



Transparent Methods 

 
Study 1  
 
Design 
The study used a between-subject design with four experimental groups, which differed in terms of               
the drivers and mistakes people were judging - human drivers making mistakes in simple situations,               
AI drivers making mistakes in simple situations, human drivers making mistakes in complex situations,              
AI drivers making mistakes in complex situations. All groups only differed in the traffic accident items it                 
showed to participants, while all groups showed the same instructions and asked the same additional               
questions about self-driving car knowledge, and sociodemographic questions. Participants were          
randomly assigned to the four experimental groups. In response to each item, participants made              
causal attributions, blamed judgments and were asked whether or not they would make the same               
mistake, and would someone they know have made the same mistake. The summary of the               
participants' attributions and judgments - 'Total Blame' and 'Total Cause' - were the study's main               
dependent variables. The sum of people's response to whether they would make the mistake, or know                
someone who made a mistake, were used as one of the study's predictor variables.  
 
For each item, participants were additionally asked to write why they made the judgment they made,                
and also what the driver could have done differently. These qualitative questions served as a way of                 
collecting information that could inform or inspire the design of future studies.  
 
Experimental Procedure 
Participants were told that they were going to be presented with six different traffic accident scenarios,                
for which they were going to make judgments of causality and blame, as well as some additional                 
questions. Participants had the right to leave the study at any point, but responding to all items was                  
mandatory. Informed consent was obtained from all participants before the beginning of the study. 
 
Participants were first shown instructions for what they were going to do in the study. They were then                  
split into one of the four groups. They then responded to the six traffic accident scenarios. Finally,                 
participants were asked what they knew about self-driving cars, and answered six sociodemographic             
questions. This item order was used because the sociodemographic questions could prime            
participants’ judgments and attributions, an effect known as social priming. Study data will be publicly               
available on GitHub. 
 
Participants 
A power analysis was conducted in order to determine the smallest sample size suitable to detect the                 
effects of an ANOVA. The alpha level set to 0.05 and a power set to 0.8. The estimation indicated that                    
the minimum number of participants had to be 180, with a final sample of 198 achieved.  
 
For the initial study, participants had to be from the UK and above the age of 18. The 198 participants                    
(53% females; median age of 27) were recruited via Prolific. 
 
Measures 
Traffic Accident Scenarios 
The six scenarios were constructed so that mistakes in complex situations were harder to avoid than                
mistakes in simple situations. The mistakes always resulted in a crash. Across the four experimental               
groups the traffic accident scenarios were mostly similar, but differed in two crucial ways. First, for AI                 
groups, the driver was referred to as the “self-driving car”, while for human groups, the driver was                 
referred to as the “person” or “driver”. Second, there was always one sentence per scenario that                
differed between simple and complex mistake scenarios. See the Supplementary Information for all             
items.  
 
Judgments and Attributions 
To measure the causal attributions and blame judgments, participants were asked "To what extent did               
the X cause the crash?" and "To what extent is the X to blame for the crash?", respectively, with X                    
referring to either the human driver or self-driving car. These were made on a scale of 0-100.                 
Participants were also asked “​Would have you made the same mistake?” and “Would someone you               
know have made the same mistake?” to which they could respond yes or nor. For all of the described                   



questions, participants were asked once per accident item, with six items in total per experimental               
group.  
 
Qualitative 
For every traffic accident scenario, participants were asked the two following qualitative questions -              
“Why did you make this judgment?” and “What could the X have done differently?” with X referring to                  
either the human driver or self-driving car. 
 
Sociodemographic 
Participants were asked to provide information about six sociodemographic factors - age, education             
level, gender, household income, political views and religious views. 
 
Other 
Participants were asked - “What do you know about self-driving cars?”. 

Experimental Items 
*Human driver experimental groups referred to the driver as “person” and machine driver             
experimental groups referred to the driver as “self-driving car”. Below are the items for the human                
driver experimental groups. 
 
I Simple Driving Situations 
a. Items 

1. A person is driving on a highway. There is another car driving in front. The car in front brakes                   
unexpectedly and the person crashes into it. 

2. A car driver is about to enter a multi-lane roundabout. The roundabout is empty. The driver                
enters and crashes into the centre of it. 

3. An ambulance has its sirens on and is trying to get through traffic. The traffic is very light, and                   
a driver in traffic only needs to move to the side to make space. The driver tries to do that but                     
hits a signpost and causes a traffic jam. As a result, the ambulance was too late to save the                   
patient. 

4. A person is driving down a quiet road, abiding by the speed limit. Twenty meters ahead of him                  
a pedestrian jumps on the road. The person makes a very sudden turn and crashes into a                 
wall on the side of the road. 

5. A person is driving on a highway. There is another car driving in front. The car in front brakes                   
unexpectedly and the person crashes into it. 

6. A person is driving down a quiet road, abiding by the speed limit. Twenty meters ahead of                 
him, on the side of the road he sees a person who is about to cross the road. The driver                    
keeps driving and crashes into the person on the road. 

 
b. Questions (repeated for all items) 

1. To what extent did the driver cause the crash? 0-100 (slider) 
2. To what extent is the driver to blame for the crash? 0-100 (slider) 
3. Would have you made the same mistake? i. Yes ii. No 
4. Would someone you know have made the same mistake? i. Yes ii. No 
5. Why did you make this judgment? 
6. What could the driver have done differently? 

 
 
II Complex Driving Situations 
a. Items 

1. A person is driving on a highway, it’s raining and the visibility is bad. There is another car                  
driving in front. The car in front brakes unexpectedly and the person crashes into it. 

2. A car driver is about to enter a multi-lane roundabout. The roundabout is very busy. The                
driver enters and crashes into the centre of it. 

3. An ambulance has its sirens on and is trying to get through traffic. The traffic is very busy, and                   
a driver in traffic needs to do some manoeuvring in order to make space. The driver tries to                  
do that but he hits a signpost and causes a traffic jam. As a result, the ambulance was too                   
late to save the patient. 



4. A person is driving down a quiet road, abiding by the speed limit. Two meters ahead of him a                   
pedestrian jumps on the road. The person makes a very sudden turn and crashes into a wall                 
on the side of the road. 

5. A person is driving down the road and the car in front suddenly stops. The person crashes                 
into the car. 

6. A person is driving down a quiet road, abiding by the speed limit. Twenty meters ahead of                 
him, on the side of the road he sees an ostrich that is about to cross the road. The driver                    
keeps driving and crashes into the ostrich on the road. 

 
b. Questions (repeated for all items) 
*Same as for other experimental groups (See I Simple Driving Situations, b. Questions) 
 
III Additional and Demographic Questions 

1. What do you know about self-driving cars? 
2. What is your year of birth? 
3. What is the highest level of school you have completed or the highest degree you have                

received?  
4. What is your sex? 
5. Information about income is very important to understand. Would you please give your best              

guess? Please indicate the answer that includes your entire household income in (previous             
year) before taxes. 

6. Please indicate your political views from extremely progressive (left) to extremely           
conservative (right). Where would you place yourself on this scale? 

7. Please indicate your religious views from extremely non-religious (left) to extremely religious            
(right). Where would you place yourself on this scale? 

 
 
Study 2  
Design 
The study used a between-subject design with six experimental groups, which differed in terms of the                
drivers and mistakes people were judging - human drivers making mistakes in simple situations, AI               
drivers making mistakes in simple situations, human drivers making mistakes in complex situations, AI              
drivers making mistakes in complex situations, human drivers making mistakes in novel situations, AI              
drivers making mistakes in novel situations. As with Study 1, all groups only differed in the traffic                 
accident items it showed to participants, while all groups showed the same instructions and asked the                
same additional (described in Experimental Procedure and Materials) and sociodemographic          
questions. Participants were randomly assigned to the six experimental groups. In response to each              
item, participants made causal attributions, blamed judgments and were asked to judge to what extent               
the described driving situation was difficult and novel. The summary of the participants' attributions              
and judgments - 'Total Blame' and 'Total Cause' - were the study's main dependent variables.               
Participants summed judgments on item difficulty and novelty were used to validate the items.  
 
Experimental Procedure 
Participants were told that they were going to be presented with five different traffic accident               
scenarios, for which they were going to make judgments of causality and blame, as well as some                 
additional questions. Participants had the right to leave the study at any point, but responding to all                 
items was mandatory. Informed consent was obtained from all participants before the beginning of the               
study. 
 
Participants were first shown instructions for what they were going to do in the study. They were then                  
split into one of the six groups. They then responded to the five traffic accident scenarios. The order in                   
which the five items were presented was randomised. The order of these questions for each individual                
item was also randomised. Participants were then asked whether they wanted to buy a car or                
self-driving car, and whether they trust other drivers or self-driving cars, depending whether they were               
in a group that judged human or AI drivers, respectively. They were also asked whether or not they                  
knew a mistake was about to happen in the previous items that described traffic accident scenarios.                
Finally, to validate one of the experimental items, the participants were asked whether they (or               
anyone they know) have ever encountered a deer or an ostrich on the road, depending on the                 
experimental group they were in (people judging novel mistakes were asked about the ostrich, while               
others were asked about the deer).  



 
Participants were then asked some additional questions. First, they were asked to write why they               
made the previous choices while evaluating the traffic accident items. They were then asked whether               
they have a driving licence. If they replied yes, they were then asked whether or not they own a car                    
and how many times do they drive per week, on average. Finally, they were asked the same six                  
socio-demographic questions from Study 1. As with Study 1, the item order was used because the                
sociodemographic questions could prime participants’ judgments and attributions. Study data will be            
publicly available on GitHub. 
 
 
Participants 
A power analysis was conducted in order to determine the smallest sample size suitable to detect the                 
effects of an ANOVA. The alpha level set to 0.05 and a power set to 0.8. The estimation indicated that                    
the minimum number of participants had to be 216, with a final sample of 317 achieved.  
 
For the initial study, participants had to be from the UK and above the age of 18. The 317 participants                    
(36% females; median age of 33) were recruited via MTurk. 
 
Measures 
Traffic Accident Scenarios 
The five scenarios were constructed so that mistakes in novel and complex situations were harder to                
avoid than mistakes in simple situations. Two mistakes resulted in a crash, another two in the                
passengers being late and one resulted in a car crash. Across the six experimental groups the traffic                 
accident scenarios were mostly similar, but differed in two crucial ways. First, for AI groups, the driver                 
was referred to as the “self-driving car”, while for human groups, the driver was referred to as the                  
“person” or “driver”. Second, there was always one or two sentences per scenario that differed               
between simple, complex and novel mistake scenarios. See the Supplementary Information for all             
items.  
 
Judgments and Attributions 
To measure the causal attributions and blame judgments, participants were asked "To what extent did               
the X cause the Y?" and "To what extent is the X to blame for the Y?", respectively, with X referring to                      
either the human driver or self-driving car, and Y referring to the outcome of the mistake. These were                  
made on a scale of 0-100. Participants were also asked “​To what extent is the described driving                 
situation novel?” and “To what extent is the described driving situation difficult?” to which they could                
respond on a 0-100 scale. For all of the described questions, participants were asked once per                
accident item, with five items in total per experimental group.  
 
Qualitative 
After responding to the traffic accident scenarios, participants were asked “Please describe how you              
made your choices in this HIT”.  
 
Sociodemographic 
As with Study 1, participants were asked to provide information about six sociodemographic factors -               
age, education level, gender, household income, political views and religious views. 
 
Other 
Participants in human driver experimental groups were asked to reply to "I want to buy a car" and "I                   
trust other drivers" on a 1-7 scale (Strongly disagree - Strongly agree). Participants in AI driver                
experimental groups were asked to reply to “I want to buy a self-driving car one day” and “I trust                   
self-driving cars” on a 1-7 scale (Strongly disagree - Strongly agree).  
 
Participants in all groups were asked to reply to “In most of the previous stories, as I was reading the                    
story, I knew that a mistake was about to happen” on a 1-7 scale (Strongly disagree - Strongly agree).  
 
Participants in simple and complex mistake experimental groups were asked “Have you, or anyone              
you know, ever encountered a deer on the road?” to which they could reply “Yes” or “No”. Participants                  
in the novel mistake experimental groups were asked “Have you, or anyone you know, ever               
encountered an ostrich on the road?” to which they could reply “Yes” or “No”.  
 



Finally, Participants were asked "Do you have a driving licence?" to which they could reply "Yes" or                 
"No". If they replied with "Yes", they were additionally asked "Do you own a car" to which they could                   
reply "Yes" or "No", as well as "On average, how many times a week do you drive?" to which they                    
needed to respond with a number. 

Experimental Items 

 
I Simple Driving Situations 
a. Items 

1. A person is driving down a road. There is a STOP sign that is clearly visible. The driver                  
doesn’t stop and crashes into another car that had priority at that crossing.  

2. A person is driving down a quiet road, abiding by the speed limit. Twenty meters ahead of                 
him/her, on the side of the road, he/she sees a deer that is about to cross the road. The driver                    
turns suddenly and crashes into a lamppost. 

3. A person driving a car is stopped at a red traffic light. The traffic light turns green. The driver                   
does not move and he/she causes a traffic jam. 

4. A person is driving down a two way road. There is a passenger in the back seat. The driver                   
approaches another car that is broken down. There is room for the driver to overtake the                
broken down car and it is clearly legal to overtake on that part of the road. The driver stops                   
driving and shuts down at a safe distance from the broken down car. The passenger in the                 
car is late for a meeting. 

5. A person is driving towards the airport. There is a passenger in the back seat. There is little                  
traffic along the route. This makes it easy for the driver to change to a faster route. However,                  
the driver does not change routes and as a result the passenger is late for his/her flight. 

 
 
b. Questions (repeated for all items) 
*The questions below refer to the questions participants got in response to items that described a                
crash. The text would change accordingly if the item was referring to a traffic jam or a passenger                  
being late  
 

1. To what extent did the driver cause the crash? 
2. To what extent is the driver to blame for the crash? 
3. To what extent is the described driving situation novel? 
4. To what extent is the described driving situation difficult? 

 
c. Questions (standalone and asked after the five items) 
 

1. I want to buy a car. 1-7 (Strongly Disagree-Strongly Agree)  
2. I trust other drivers. 1-7 (Strongly Disagree-Strongly Agree) 
3. In most of the previous stories, as I was reading the story, I knew that a mistake was about to                    

happen. 1-7 (Strongly Disagree-Strongly Agree) 
4. Have you, or anyone you know, ever encountered a deer on the road? i. Yes ii. No 

 
II Novel Driving Situations 
a. Items 

1. A person is driving down a road. There is a STOP sign but the S has been scratched off and                    
now the sign reads TOP. The driver doesn’t stop and crashes into another car that had                
priority at that crossing.  

2. A person is driving down a quiet road, abiding by the speed limit. Twenty meters ahead of                 
him/her, on the side of the road, he/she sees an ostrich that is about to cross the road. The                   
driver turns suddenly and crashes into a lamppost. 

3. A person driving a car is stopped at a red traffic light. The traffic light turns green, but the                   
green glass is broken so the light appears white. The driver does not move and he/she                
causes a traffic jam. 

4. A person is driving down a two way road. There is a passenger in the back seat. The driver                   
approaches another car that is broken down. There is room for the driver to overtake the                
broken down car but the double white line indicates that it is illegal to overtake on that part of                   



the road. The driver stops driving and shuts down at a safe distance from the broken down                 
car. The passenger is late for a meeting. 

5. A person is driving towards the airport. There is a passenger in the back seat. The radio                 
announces that the concert in a nearby stadium has finished earlier than planned and there               
will be a lot of traffic along the route. This will soon make it tricky for the driver to change to a                      
faster route. However, the driver does not change routes and as a result the passenger is late                 
for his/her flight. 

 
b. Questions (repeated for all items)  
*Same as for other experimental groups (See I Simple Driving Situations, b. Questions) 
 
c. Questions (standalone and asked after the five items) 
*Same as for other experimental groups (See I Simple Driving Situations, c. Questions) with one               
exception - question 4: 
 

1. Have you, or anyone you know, ever encountered a ostrich on the road? i. Yes ii. No 
 
III Complex Driving Situations 
a. Items 

1. A person is driving down a road. There is a STOP sign but it is foggy and the visibility is very                     
bad. The driver doesn’t stop and crashes into another car that had priority at that crossing. 

2. A person is driving down a quiet road, abiding by the speed limit. Two meters ahead of                 
him/her, on the side of the road, he/she sees a deer that is about to cross the road. The driver                    
turns suddenly and crashes into a lamppost. 

3. A person driving a car is stopped at a red traffic light. The traffic light turns green, but only for                    
one second due to a fault with the traffic light. The driver does not move and he/she causes a                   
traffic jam. 

4. A person is driving down a two way road. There is a passenger in the back seat. The driver                   
approaches another car that is broken down. There is little room for the driver to overtake the                 
broken down car with incoming traffic but it is clearly legal to overtake on that part of the road.                   
The driver stops driving and shuts down at a safe distance from the broken down car. The                 
passenger is late for a meeting. 

5. A person is driving towards the airport. There is a passenger in the back seat. It is rush hour                   
and there is a lot of traffic along the route. This makes it tricky for the driver to change to a                     
faster route. However, the driver does not change routes and as a result the passenger is late                 
for his/her flight. 

 
b. Questions (repeated for all items)  
*Same as for other experimental groups (See I Simple Driving Situations, b. Questions) 
 
c. Questions (standalone and asked after the five items) 
*Same as for other experimental groups (See I Simple Driving Situations, c. Questions)  
 
IV Additional and Demographic Questions 

1. Please describe how you made your choices in this HIT. 
2. Do you have a driving licence? i. Yes ii. No [If "Yes" is Selected - 1. Do you own a Car? i. Yes                       

ii. No; On average, how many times a week do you drive?] 
3. What is your year of birth? 
4. What is the highest level of school you have completed or the highest degree you have                

received?  
5. What is your sex? 
6. Information about income is very important to understand. Would you please give your best              

guess? Please indicate the answer that includes your entire household income in (previous             
year) before taxes. 

7. Please indicate your political views from extremely progressive (left) to extremely           
conservative (right). Where would you place yourself on this scale? 

8. Please indicate your religious views from extremely non-religious (left) to extremely religious            
(right). Where would you place yourself on this scale? 
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