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Abstract. This paper derives an averaged Lagrangian functional
for dynamic coupling between rigid-body motion and its interior
shallow-water sloshing in three-dimensional rotating and trans-
lating coordinates; with a time-dependent rotation vector. A new
set of variational shallow-water equations (SWEs) and general-
ized Green–Naghdi equations for the interior fluid sloshing with
3–D rotation vector and translations, and also the equations of
motion for the linear momentum and angular momentum of the
rigid-body containing shallow water, are derived from the aver-
aged Lagrangian functional, which describes a columnar motion,
by using Hamilton’s principle and the Euler–Poincaré variational
framework. The generalized Green–Naghdi equations have a
form of potential vorticity (PV) conservation, which can be ob-
tained from the particle-relabeling symmetry, and is a combina-
tion of the PV derived by Miles and Salmon (1985) and the PV
derived by Dellar & Salmon (2005) for geophysical fluid dynam-
ics problems, where the rotation vector varies spatially. By ap-
plying the assumption of zero-potential-vorticity flow to the aver-
aged Lagrangian functional, a new set of Boussinesq-like evo-
lution equations are derived, which are a generalization of the
Whitham equations for fluid sloshing in three-dimensional rotat-
ing and translating coordinates. Moreover, the new variational
principles are appended to Luke’s variational principle to present
a unified variational framework for the hydrodynamic problem
of interactions between gravity-driven potential-flow water waves
and a freely floating rigid-body, dynamically coupled to its inte-
rior weakly dispersive nonlinear shallow-water sloshing in three
dimensions.

1 Introduction

Since the seminal works of Herivel (1955), Eckart (1960a), Luke (1967), Zakharov (1968),
Arnold (1969), Bretherton (1970), Broer (1974), Lukovsky (1976), Miles (1977), Benjamin &
Olver (1982), Olver (1982) and Salmon (1983), variational principles have been extensively
used in mathematical formulation of the equations governing the motion of an inviscid fluid
(e.g. Oliver 2006; Stewart & Dellar 2010; Dellar 2011; Oliver 2014), and in constructing
variational, geometric and structure-preserving numerical schemes (e.g. Marsden & West
2001; Pavlov et al. 2011; Desbrun et al. 2014; Gagarina et al. 2014; Stewart & Dellar 2016).
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The Euler equations in fluid mechanics and their reduced variants such as the traditional and
non-traditional single and multilayer shallow-water equations in geophysical fluid dynamics,
and gravity-driven potential flow water waves, in the Lagrangian particle-path and Eulerian
frameworks, can be expressed in variational, canonical and non-canonical Hamiltonian and
Poisson-bracket formulations (e.g. Lewis et al. 1986; Bridges 1994; Morrison 1998; Dellar
& Salmon 2005; Bokhove & Oliver 2006). The conservation laws are related to symmetries
of the Lagrangian by Noether’s theorem (e.g. Noether 1918; Hill 1951; Shepherd 1990),
e.g., momentum and energy conservation arise from the translation symmetries in space
and time, and potential vorticity conservation arises from the particle-relabeling symmetry.
Variational principles for rigid-body dynamics with fluid-filled cavities are given by Moiseyev
& Rumyantsev (1968), Lukovsky (2015, and references cited therein), and more recently by
Alemi Ardakani (2019, 2020) and Alemi Ardakani et al. (2019). In the study of rigid-body
dynamics, the Lie group SO(3) is the configuration space and the symmetry group of the
Lagrangian functional, which allows to introduce the Euler–Poincaré reduction framework
for obtaining the reduced dynamics on the quotient space TSO(3)/SO(3) (Holm, Schmah &
Stoica 2009). The Euler–Poincaré reduction theorem for the motion of a free rigid-body and
for a heavy top with a broken symmetry is given by Holm, Marsden & Ratiu (1998a). The
Euler–Poincaré equations, the Lagrangian analogue of the Lie–Poisson Hamiltonian equa-
tions, for the motion of an ideal incompressible fluid, for ideal fluids with nonlinear dispersion,
and for geophysical fluid dynamics problems are given by Holm, Marsden & Ratiu (1998a,
1998b, 1999).

Alemi Ardakani (2019) derived an Euler–Poincaré variational framework for the problem
of interactions between potential-flow water waves and a freely floating rigid-body dynami-
cally coupled to its interior inviscid and incompressible fluid sloshing described by the Euler
equations in three-dimensional rotating and translating coordinates. In this paper, we are
interested to derive a new reduced shallow water variant of the variational principle given by
Alemi Ardakani (2019) for the coupled (rigid-body motion + interior fluid sloshing) dynamics
with 3–D rotation vector and translations. The reduced shallow-water variational principle
is used in formulation of the nonlinear partial differential equations governing the motion
of a rigid-body in three dimensions, dynamically coupled to its interior weakly dispersive
nonlinear shallow-water sloshing in two-horizontal space dimensions. A new set of gener-
alized Green–Naghdi equations, a new set of variational shallow-water equations (SWEs),
and a new set of generalized Whitham equations with 3–D rotation vector and translations
are derived. The new generalized Whitham equations for the interior fluid sloshing in three-
dimensional rotating and translating coordinates are derived by applying the assumption
of zero-potential-vorticity flow to the reduced Lagrangian functional in Eulerian coordinates.
Moreover, the new reduced variational principle is added to Luke’s variational principle (Luke
1967) to develop a mathematical theory or a unified variational framework for the hydrody-
namic problem of three-dimensional interactions between potential-flow water waves and a
freely floating rigid-body, dynamically coupled to its interior weakly dispersive nonlinear fluid
sloshing. For this purpose the variational Reynold’s transport theorem is applied to take
into account the time-dependent boundaries of the coupled (wave-body + interior dispersive
shallow-water slosh) interactions.

Alemi Ardakani & Bridges (2011) presented a new derivation of shallow-water equa-
tions in two-horizontal space dimensions with complete Coriolis, centrifugal and translational
force, for a 3–D inviscid but vortical fluid in a vessel undergoing prescribed rigid-body mo-
tion in three dimensions. These SWEs are reported below to compare them with the new
variational SWEs of the current paper in §3, and to introduce the notation used in the fol-
lowing sections in studying the problem of variational dynamic coupling between rigid-body
motion and its interior shallow-water sloshing in 3–D rotating-translating coordinates. The
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Figure 1: Schematic showing a configuration of the fixed coordinate system X = (X, Y, Z)
relative to the body coordinate systems denoted by xb = (xb, yb, zb) and x = (x, y, z), at-
tached to the moving rigid-body. The distance between the origin of the fixed (laboratory)
frame X and the point of rotation is denoted by the vector q (t). The distance from the point
of rotation, i.e. the origin of the body frame xb, to the origin of the body frame x is denoted
by the constant vector d.

fluid occupies the region

0 ≤ x ≤ L1 , 0 ≤ y ≤ L2 , 0 ≤ z ≤ h (x, y, t) , (1.1)

where the lengths L1 and L2 are given positive constants, and z = h (x, y, t) is the position
of the free surface, which is a single-valued function. The configuration of the fluid in a
rectangular rigid-body, which is free to rotate and translate in R3, is schematically shown in
Figure 1. Three frames of reference are used. The laboratory or fixed frame has coordinates
denoted by X = (X, Y, Z). The first body frame, which is placed at the centre of rotation
of the moving body has coordinates denoted by xb = (xb, yb, zb). The second body frame,
which is attached to the moving body and used for the analysis of the fluid motion inside
the tank, has coordinates denoted by x = (x, y, z). The distance between the origin of the
body frame xb (the point of rotation) and the origin of the body frame x, is denoted by the
position vector d = (d1, d2, d3) which is a constant vector. Hence, the position of a fluid
particle relative to the body frame xb is xb = x + d. The fluid-body system has a uniform
translation q (t) = (q1(t), q2(t), q3(t)) relative to the laboratory frame X, which is the vector
from the origin of the laboratory frame X to the origin of the body frame xb. The position of
a fluid particle in the body frame x is related to a point in the laboratory frame X by

X = Q (x + d) + q , (1.2)

where Q (t) ∈ SO (3) is a proper rotation in R3, i.e. QTQ = I and det (Q) = 1. By reduc-
ing the Euler equations relative to the rotating and translating body frame x and using the
vorticity equation, the surface SWEs take the form (Alemi Ardakani & Bridges 2011)

Ut + UUx + V Uy + a11 (x, y, t)hx + a12 (x, y, t)hy = b1 (x, y, t) ,

Vt + UVx + V Vy + a21 (x, y, t)hx + a22 (x, y, t)hy = b2 (x, y, t) ,

ht + (hU)x + (hV )y = 0 ,

 (1.3)

where the free surface horizontal velocity field is

U (x, y, t) = u (x, y, z, t)
∣∣h := u (x, y, h (x, y, t) , t) and V (x, y, t) = v (x, y, z, t)

∣∣h ,
(1.4a, b)
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and the coefficients a11, a12, b1, a21, a22 and b2 are

a11 (x, y, t) = 2Ω1V + Qe3 · q̈ + gQe3 · e3 −
(
Ω2

1 + Ω2
2

)
(h+ d3)

−
(

Ω̇2 − Ω1Ω3

)
(x+ d1) +

(
Ω̇1 + Ω2Ω3

)
(y + d2) ,

a12 (x, y, t) = 2Ω2V ,

b1 (x, y, t) = −2Ω2ht + 2Ω3V −Qe1 · q̈ − gQe1 · e3 +
(
Ω2

2 + Ω2
3

)
(x+ d1)

+
(

Ω̇3 − Ω1Ω2

)
(y + d2)−

(
Ω̇2 + Ω1Ω3

)
(h+ d3) ,

a21 (x, y, t) = −2Ω1U ,

a22 (x, y, t) = −2Ω2U + Qe3 · q̈ + gQe3 · e3 −
(
Ω2

1 + Ω2
2

)
(h+ d3)

−
(

Ω̇2 − Ω1Ω3

)
(x+ d1) +

(
Ω̇1 + Ω2Ω3

)
(y + d2) ,

b2 (x, y, t) = 2Ω1ht − 2Ω3U −Qe2 · q̈ − gQe2 · e3 +
(
Ω2

1 + Ω2
3

)
(y + d2)

−
(

Ω̇3 + Ω1Ω2

)
(x+ d1) +

(
Ω̇1 − Ω2Ω3

)
(h+ d3) .



(1.5)

The body angular velocity is a time-dependent vector Ω (t) = (Ω1 (t) ,Ω2 (t) ,Ω3 (t)) relative
to the body coordinate system xb with entries determined from the rotation tensor Q (t) by

QT Q̇ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 := Ω̂ , (1.6)

where the skew-symmetric matrix Ω̂ ∈ so (3) satisfies the hat map (Marsden & Ratiu 1999;
Holm, Schmah & Stoica 2009)

Ω̂r = Ω× r , for any r ∈ R3 , Ω := (Ω1,Ω2,Ω3) . (1.7)

The body angular velocity is to be contrasted with the spatial angular velocity, the angular
velocity viewed from the laboratory frame X, which is Ω̂spatial := Q̇QT . As vectors the spatial
and body angular velocities are related by Ωspatial = QΩ. The use of the unit vectors e1, e2

and e3 in (1.5) is to compactify notation such that Qe3 · e3 = Q33 where Qij is the (i, j)th
entry of the matrix representation of Q, and Qe3 · q̈ = Q13q̈1 + Q23q̈2 + Q33q̈3 with similar
expressions for the other such terms. The surface SWEs (1.3) conserve a potential vorticity
(PV) of the form

P̂ =
Vx − Uy + 2Ω3 − 2Ω2hy − 2Ω1hx

h
. (1.8)

It can be proved that in two-horizontal space dimensions DP̂ = P̂t +UP̂x + V P̂y = 0 (see
Alemi Ardakani & Bridges 2011).

Dellar & Salmon (2005) derived a set of obliquely rotating SWEs and the Green–Naghdi
equations with a complete Coriolis force, i.e. including the non-traditional components of the
Coriolis force, and topography from a variational principle by using Hamilton’s principle of
least action applied to a two-dimensional vertically averaged Lagrangian functional. By re-
stricting the fluid to move in columns, Dellar & Salmon (2005) reduced the three-dimensional
Lagrangian functional (Eckart 1960a; Salmon 1982a)

L =

∫∫∫ (
1
2
‖ẋ + Ω× x‖2 − 1

2
‖Ω× x‖2 − gz + p (a, t)

(
∂ (x, y, z)

∂ (a, b, c)
− 1

))
da , (1.9)

which is expressed in the Lagrangian particle-path setting for an inviscid and incompressible
fluid of unit density in a frame rotating about an arbitrary axis with angular velocity Ω. The
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horizontal components of the angular velocity vector Ω can be arbitrary functions of x and y,
and its vertical component can be an arbitrary function of x, y and z. This allows a variety of
beta-plane approximations of the the rotation vector in geophysical fluid dynamics problems.
However, the rotation vector Ω must be non-divergent, i.e. ∇·Ω = 0, to ensure conservation
of potential vorticity (Grimshaw 1975; Dellar & salmon 2005; Stewart & Dellar 2010). In
our study in this paper for the problem of fluid sloshing in a container undergoing rigid-body
motion in three dimensions the rotation vector Ω is only a function of time, i.e. Ω = Ω (t). In
the Lagrangian particle-path description, a fluid particle is described by its position

x (a, t) = (x (a, b, c, t) , y (a, b, c, t) , z (a, b, c, t)) , (1.10)

which is marked by Lagrangian labels a = (a, b, c) at time t. The Lagrangian labels (a, b, c)
can be chosen such that the Jacobian of the label-to-particle map satisfies

J =
∂ (x, y, z)

∂ (a, b, c)
= xa (ybzc − yczb) + xb (ycza − yazc) + xc (yazb − ybza) = 1 . (1.11)

This means that at an initial time t0 the Lagrangian labels (a, b, c) are physically possible
coordinates, i.e. (a, b, c) = (x0, y0, z0). The second term −1

2
‖Ω× x‖2 in (1.9) is used to

subtract out the contribution from the kinetic energy which gives rise to the centrifugal force,
taking into account that in geophysical fluid dynamics and physical oceanography the cen-
trifugal force is conventionally incorporated into the gravitational acceleration g in the po-
tential energy (see e.g. Dellar & Salmon 2005 and appendix C of Müller 1995). The last
tem in (1.9) introduces pressure p (a, t) as a Lagrange multiplier to enforce incompressibility
of the fluid. Salmon (1983) and Miles & Salmon (1985) respectively derived the traditional
shallow-water equations and the Green–Naghdi equations (Green & Naghdi 1976) from the
3–D Lagrangian (1.9), albeit with a purely vertical rotation vector, by restricting the fluid to
move in columns and using Hamilton’s principle. See Eckart (1960b) for the traditional ap-
proximation of the Coriolis force. Stewart & Dellar (2010) formulated an extended variant
of the Lagrangian functional (1.9) for the flow of multiple superposed layers of inviscid and
incompressible fluids with different constant densities over variable bottom topography in a
rotating frame, and derived multilayer shallow-water equations with complete Coriolis force,
i.e. on a non-traditional beta-plane.

Alemi Ardakani (2019) derived an extended version of the Lagrangian functional (1.9)
retaining the term which gives rise to the centrifugal force, however, for the motion of a
rigid-body, which is free to undergo three-dimensional rotational and translational motions,
dynamically coupled to its interior fluid sloshing described by the Euler equations with 3–D
rotation vector and translations, which is schematically shown in Figure 1. The Lagrangian
action functional takes the form (Alemi Ardakani 2019)

L (Ω,Q, q, q̇,x, ẋ) =

∫ t2

t1

(∫∫∫ (
1
2
‖ẋ‖2 + ẋ ·

(
Ω× (x + d) + QT q̇

)
+QT q̇ · (Ω× (x + d)) + 1

2
‖q̇‖2 − g (Q (x + d) + q) · ẑ + p (a, t) (J − 1)

)
ρ da

+1
2
Ω · IfΩ + 1

2
mv ‖q̇‖2 + (Ω×mvxv) ·QT q̇ + 1

2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt ,

 (1.12)

where the integral is over the volume of the reference or label space a, ρ is the density of
the interior inviscid and incompressible fluid, ẑ is the unit vector in the Z direction, Iv is the
mass moment of inertia of the dry rigid-body relative to the point of rotation, mv is the mass
of the dry rigid-body, xv = (xv, yv, zv) is the centre of mass of the dry body relative to the
body frame xb, and

If =

∫∫∫ (
‖x + d‖2 I − (x + d)⊗ (x + d)

)
ρ da , (1.13)
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is the mass moment of inertia of the fluid relative to the point of rotation, i.e. the origin of the
body frame xb, ⊗ denotes the tensor product, and I is the 3 × 3 identity matrix. It can be
concluded that the term 1

2
Ω · IfΩ in (1.12), with Ω (t) = (Ω1 (t) ,Ω2 (t) ,Ω3 (t)), reads

1
2
Ω · IfΩ =

∫∫∫
1
2
‖Ω× (x + d)‖2 ρ da . (1.14)

This term gives rise to the centrifugal force in the fluid sloshing problem. The aim in the
current paper is to derive a shallow water approximation of the Lagrangian action (1.12),
which leads to a new set of variational SWEs and a new Green–Naghdi model for fluid
sloshing with complete Coriolis, centrifugal, and translational force, and also gives the equa-
tions of motion for the rigid-body containing shallow water. To clarify the notation used, if
u = u (x, t) = (u (x, t) , v (x, t) , w (x, t)) denotes the Eulerian velocity of a fluid particle rela-
tive to the body frame with x = x (a, t) the corresponding flow map, the fluid particle initially
at position a is at position x = x (a, t) at time t, then the Lagrangian velocity of the fluid
particle is ẋ (a, t) = u (x (a, t) , t), and the Lagrangian acceleration of the fluid particle is
ẍ (a, t) = Du/Dt = ut + u · ∇u with ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z). For an incompressible fluid
the Jacobian J of the label-to-particle mapping (a, b, c) → (x, y, z) is the motion invariant,
i.e. ∂J/∂t = 0, which is the continuity equation ∇ · u = 0 in the Lagrangian particle-path
formulation.

The paper starts with the derivation of a reduced shallow-water Lagrangian by restricting
the fluid to move in columns in the 3–D Lagrangian action (1.12) in §2. In §3 a new set of
generalized Green–Naghdi equations and variational SWEs in two-horizontal space dimen-
sions are derived using Hamilton’s variational principle. The variational SWEs are compared
with the surface SWEs (1.3) derived by Alemi Ardakani & Bridges (2011). The material con-
servation of potential vorticity for the new generalized Green–Naghdi equations and the
variational SWEs with 3–D rotation vector and translations are studied in §4. In §5 by apply-
ing the assumption zero-potential-vorticity flow, first introduced by Miles & Salmon (1985),
a new generalized Whitham model is derived for the problem of fluid sloshing in a vessel
undergoing prescribed rigid-body motion in three dimensions. The Euler–Poincaré equa-
tions for the linear momentum and angular momentum of the rigid-body containing shallow
water are presented in §6. In §7 a unified variational framework is presented for the problem
of three-dimensional interactions between potential-flow water waves and a freely floating
rigid-body dynamically coupled to its interior weakly dispersive nonlinear fluid sloshing. The
paper ends with concluding remarks in §8.

2 Restriction to columnar motion: the shallow-water and
Green–Naghdi Lagrangian functional for coupled fluid
and rigid-body dynamics in three dimensions

The aim in this section is to derive a reduced shallow water variant of the Lagrangian func-
tional (1.12) for dynamic coupling between rigid-body motion and its interior inviscid and
incompressible shallow-water sloshing in three-dimensional rotating and translating coordi-
nates. We follow Salmon (1983, 1988), Miles & Salmon (1985) and Dellar & Salmon (2005)
and restrict the fluid to columnar motion by assuming that

x = x (a, b, t) and y = y (a, b, t) , (2.1a, b)
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with no dependence on the third Lagrangian label c. The Jacobian of the label-to-particle
map (1.11) then simplifies to

∂ (x, y, z)

∂ (a, b, c, )
=
∂ (x, y)

∂ (a, b)

∂z

∂c
= 1 . (2.2)

Choosing c = 0 at the bottom z = 0, and c = h0 (a, b) at the free surface z = h (x, y, t), we
may integrate (2.2) with respect to c to determine z:

z =
∂ (a, b)

∂ (x, y)
c =

h (x, y, t)

h0
c =

1

J
c , (2.3)

and noting that

h (x, y, t) =
h0 (a, b)

J
with J =

∂ (x, y)

∂ (a, b)
, (2.4)

where h0 (a, b) is the initial condition for the wave height inside the container at t = t0, and
J is the horizontal Jacobian. The horizontal and vertical components of the particle velocity
are given by

u2 (x, y, t) ≡ (u (x, y, t) , v (x, y, t)) = (ẋ, ẏ) = ẋ2 and ż =
ḣ

h0
c , (2.5a, b)

where

ḣ =
∂h

∂t
+ u2 · ∇2h ≡ Dh and ∇2h ≡

(
∂h

∂x
,
∂h

∂y

)
, (2.6a, b)

and D ≡ D/Dt = ∂/∂t+u2 ·∇2 is the Lagrangian or material time derivative. Differentiating
(2.4) with respect to t gives

ḣ = −h0
J̇

J2
= −h0 J−2

(
∂ (ẋ, y)

∂ (a, b)
+
∂ (x, ẏ)

∂ (a, b)

)
= −h J−1

(
∂ (ẋ, y)

∂ (a, b)
+
∂ (x, ẏ)

∂ (a, b)

)
= −h

(
∂ (ẋ, y)

∂ (x, y)
+
∂ (x, ẏ)

∂ (x, y)

)
= −h

(
∂ẋ

∂x
+
∂ẏ

∂y

)
= −h

(
∂u

∂x
+
∂v

∂y

)
= −h∇2 · u2 .

(2.7)

From (2.6) and (2.7), we obtain the continuity equation in the Eulerian form

ht +∇2 · (hu2) = ht + (hu)x + (hv)y = 0 . (2.8)

Now substituting (2.3) and (2.5) into the Lagrangian action (1.12) allow the c integration
to be completed, which gives the reduced shallow-water Lagrangian for dynamic coupling
between rigid-body motion and its interior shallow-water sloshing. Note that the incompress-
ibility constraint p (a, t) (J − 1) in (1.12) is automatically satisfied and can be discarded. In-
tegration of the first term in (1.12) gives∫∫∫ h0

0

1
2
‖ẋ‖2 ρ da =

∫∫∫ h0

0

1
2

(
‖ẋ2‖2 +

ḣ2

h20
c2

)
ρ dc da2

=

∫∫
1
2

(
‖ẋ2‖2 +

1

3
ḣ2
)
ρ h0 da2 ,

 (2.9)

where da2 = (da, db). Integration of the second term in the Lagrangian (1.12) gives∫∫∫ h0

0

ẋ ·
(
Ω× (x + d) + QT q̇

)
ρ da =

∫∫ 〈
Ẋ , Ω× (X + d) + Q−1q̇

〉
ρ h0 da2 , (2.10)
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where X and Ẋ are defined by

X =

(
x, y,

1

2
h

)
and Ẋ =

(
ẋ, ẏ,

1

2
ḣ

)
. (2.11a, b)

See (A.1) in appendix A for the proof of (2.10). Restriction of the third and fourth terms in
the Lagrangian (1.12) to columnar motion gives, respectively∫∫∫ h0

0

QT q̇ · (Ω× (x + d)) ρ dc da2 =

∫∫ 〈
Q−1q̇ , Ω× (X + d)

〉
ρ h0 da2 ,∫∫∫ h0

0

1
2
‖q̇‖2 ρ dc da2 =

∫∫
1
2
‖q̇‖2 ρ h0 da2 .

 (2.12)

Restriction of the fifth term in (1.12) to columnar motion gives∫∫∫ h0

0

−g (Q (x + d) + q) · ẑ ρ dc da2 =

∫∫
−g (Q (X + d) + q) · ẑ ρ h0 da2 . (2.13)

Finally, restriction of the term containing If in (1.12) to columnar motion gives

∫∫∫ h0

0

1
2
‖Ω× (x + d)‖2 ρ dc da2 =

∫∫ [
1
2

(
Ω2

1 + Ω2
2

)(1

3
h2 + d23 + d3h

)
+1

2

(
Ω2

1 + Ω2
3

)
(y + d2)

2 + 1
2

(
Ω2

2 + Ω2
3

)
(x+ d1)

2 − Ω1Ω2 (x+ d1) (y + d2)

−
(
1
2
h+ d3

)
(Ω1Ω3 (x+ d1) + Ω2Ω3 (y + d2))

]
ρ h0 da2 = 1

2
Ω · ISWf Ω ,

(2.14)

where ISWf , which is a symmetric matrix, is the reduced shallow water version of the mass
moment of inertia of the interior fluid relative to the point of rotation. The entries of ISWf , in
the Lagrangian particle-path and Eulerian settings, are given in appendix A.

Now, having derived the reduced terms (2.9), (2.10), (2.12), (2.13) and (2.14), the re-
duced shallow-water (SW) or Green–Naghdi (GN) variant of the 3–D Lagrangian action
(1.12) for dynamic coupling between rigid-body motion in three dimensions and its interior
shallow-water sloshing in two-horizontal space dimensions takes the form

LSW/GN

(
Ω,Q, q, q̇,X, Ẋ

)
=

∫ t2

t1

(∫∫ (
1
2
‖ẋ2‖2 +

1

6
ḣ2 + Ẋ ·

(
Ω× (X + d) + QT q̇

)
+QT q̇ · (Ω× (X + d)) + 1

2
‖q̇‖2 − g (Q (X + d) + q) · ẑ

)
ρ h0 da2 + 1

2
Ω · ISWf Ω

+ 1
2
mv ‖q̇‖2 + (Ω×mvxv) ·QT q̇ + 1

2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt .

(2.15)
Taking the first variations of the shallow-water Lagrangian action (2.15) with respect to Ω,
Q, q, and q̇ yields the Euler–Poincaré equations for the angular momentum and linear mo-
mentum of the rigid-body containing shallow water. Moreover, taking the first variation of the
action integral (2.15) with respect to X and Ẋ gives the three-dimensional rotating-translating
SWEs for the motion of the interior shallow water relative to the body frame x.

3 Derivation of the variational shallow-water and general-
ized Green–Naghdi equations for fluid sloshing in three-
dimensional rotating and translating coordinates

The Lagrangian SWEs for the position x2 (t) of fluid particles in the body frame x can be
provided by Hamilton’s variational principle

δLSW/GN

(
Ω,Q, q, q̇,X, Ẋ

)
= 0 , (3.1)
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where the action integral LSW is given in (2.15), by taking the variations δX and δẊ, with
fixed endpoints δX (t1) = δX (t2) = 0, assuming that Ω, Q, q and q̇ are constants. The
Lagrangian action (2.15) depends on x2 = (x, y) not only explicitly, but also implicitly via
h (x, y, t). From (2.4) it can be concluded that δh takes the form (Miles & Salmon 1985)

δh = −h∇2 · δx2 , (3.2)

which leads to the following variational identity (Miles & Salmon 1985)∫∫
F δh ρ h0 da2 =

∫∫
1

h
∇2

(
h2F

)
· δx2 ρ h0 da2 , (3.3)

where F is any differentiable function of x2 and t. See appendix B for the proof of (3.2) and
(3.3). Due to lengthy derivations, here we calculate the first variation of each term in (2.15)
with respect to X and Ẋ separately, and present some derivations in appendix C.

For the variations δẋ2 of the first term in (2.15) we have

δ

∫ t2

t1

∫∫
1
2

〈
ẋ2 , ẋ2

〉
ρ h0 da2 dt =

∫ t2

t1

∫∫ 〈
δx2 , −ẍ2

〉
ρ h0 da2 dt , (3.4)

where, when integrating by parts, we used the condition that the variations vanish at the
endpoints in time. For the variation δḣ of the second term in (2.15), we have

δ

∫ t2

t1

∫∫
1

6
ḣ2 ρ h0 da2 dt =

∫ t2

t1

∫∫
1

3
ḣ δḣ ρ h0 da2 dt =

∫ t2

t1

∫∫
−1

3
ḧ δh ρ h0 da2 dt

=

∫ t2

t1

∫∫
−1

3
D2h δh ρ h0 da2 dt =

∫ t2

t1

∫∫ 〈
δx2 , −

1

3

1

h
∇2

(
h2D2h

)〉
ρ h0 da2 dt ,

(3.5)
where the variational identity (3.3) is used, and

ḧ = D2h = D (ht + u2 · ∇2h) = −D (h∇2 · u2)

= −Dh∇2 · u2 − h∇2 ·Du2 = h
(
(∇2 · u2)

2 −∇2 ·Du2

)
.

}
(3.6)

The term − (1/3) (1/h)∇2 (h2D2h) gives rise to weakly dispersive nonlinear terms, i.e. the
Green–Naghdi model, in the resulting variational SWEs.

For the variations δX and δẊ of the first component of the third term in (2.15), assuming
that Ω is constant, we have

δ

∫∫∫ 〈
Ẋ , Ω× (X + d)

〉
ρ h0 da2 dt =

∫∫∫ 〈
δX , −Ω̇× (X + d)︸ ︷︷ ︸

1

−2Ω× Ẋ︸ ︷︷ ︸
2

〉
ρ h0 da2 dt ,

(3.7)
where, when integrating by parts, we used the condition that the variations vanish at the
endpoints in time. The term denoted by 1 in (3.7) takes the form (see (C.1) in appendix C)

∫ t2

t1

∫∫ 〈
δX , −Ω̇× (X + d)

〉
ρ h0 da2 dt =

=

∫∫∫ 〈
δx2 ,

 Ω̇3 (y + d2) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hx − Ω̇2d3

−Ω̇3 (x+ d1) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hy + Ω̇1d3

〉 ρ h0 da2 dt ,

(3.8)
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and the term denoted by 2 in (3.7) simplifies to
∫ t2

t1

∫∫ 〈
δX , −2Ω× Ẋ

〉
ρ h0 da2 dt =

∫ t2

t1

∫∫ 〈
δx2 ,[

−Ω2ḣ+ 2Ω3ẏ + 2hx (−Ω1ẏ + Ω2ẋ) + h (−Ω1ẏx + Ω2ẋx)

−2Ω3ẋ+ Ω1ḣ+ 2hy (−Ω1ẏ + Ω2ẋ) + h (−Ω1ẏy + Ω2ẋy)

]〉
ρ h0 da2 dt ,

(3.9)

and thus (3.7) becomes

δ

∫ t2

t1

∫∫ 〈
Ẋ , Ω× (X + d)

〉
ρ h0 da2 dt =

=

∫ t2

t1

∫∫ 〈
δx2 ,

 Ω̇3 (y + d2) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hx − Ω̇2d3

−Ω̇3 (x+ d1) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hy + Ω̇1d3


+

[
2Ω3ẏ − Ω2ḣ+ 2 (Ω2ẋ− Ω1ẏ)hx + h (Ω2ẋx − Ω1ẏx)

−2Ω3ẋ+ Ω1ḣ+ 2 (Ω2ẋ− Ω1ẏ)hy + h (Ω2ẋy − Ω1ẏy)

]〉
ρ h0 da2 dt .

(3.10)

For the variations δẊ of the second component of the third term in (2.15), assuming that Q
and q̇ are constants, we have

∫ t2

t1

∫∫ 〈
δẊ , Q−1q̇

〉
ρ h0 da2 dt =

∫ t2

t1

∫∫
−
〈
δX ,

d

dt

(
Q−1q̇

)〉
ρ h0 da2 dt

=

∫ t2

t1

∫∫
−

〈
δX , −

= Ω̂︷ ︸︸ ︷
Q−1Q̇Q−1︸ ︷︷ ︸

= (d/dt)
(
Q−1

) q̇ + Q−1q̈

〉
ρ h0 da2 dt

=

∫ t2

t1

∫∫ 〈
δX ,

2 "︷ ︸︸ ︷
Ω×Q−1q̇︸ ︷︷ ︸
↪→ 1

−Q−1q̈

〉
ρ h0 da2 dt 1 : using the hat map

=

∫ t2

t1

∫∫ 〈
δx2 ,

[
Ω2 q̇ ·Qe3 − Ω3 q̇ ·Qe2 − q̈ ·Qe1

Ω3 q̇ ·Qe1 − Ω1 q̇ ·Qe3 − q̈ ·Qe2

]〉
ρ h0 da2 dt

+

∫ t2

t1

∫∫ 〈
δx2 ,

1
2

1

h
∇2

(
h2 (Ω1 q̇ ·Qe2 − Ω2 q̇ ·Qe1 − q̈ ·Qe3)

)
︸ ︷︷ ︸

↪→ using the variational identity (3.3)

〉
ρ h0 da2 dt

=

∫ t2

t1

∫∫ 〈
δx2 ,

[
Ω2 q̇ ·Qe3 − Ω3 q̇ ·Qe2 − q̈ ·Qe1

Ω3 q̇ ·Qe1 − Ω1 q̇ ·Qe3 − q̈ ·Qe2

]

+

[
(Ω1 q̇ ·Qe2 − Ω2 q̇ ·Qe1 − q̈ ·Qe3)hx

(Ω1 q̇ ·Qe2 − Ω2 q̇ ·Qe1 − q̈ ·Qe3)hy

]〉
ρ h0 da2 dt ,

(3.11)

where
d

dt

(
Q−1

)
= −Q−1Q̇Q−1 , (3.12)

and, when integrating by parts, we used the condition that δX vanishes at the endpoints in
time. See Marsden & Ratiu (1999) and Holm et al. (2009) for the proof of (3.12). Note that
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the terms denoted by 2 in (3.11) take the form

Ω×Q−1q̇ −Q−1q̈ =

Ω2 q̇ ·Qe3 − Ω3 q̇ ·Qe2 − q̈ ·Qe1

Ω3 q̇ ·Qe1 − Ω1 q̇ ·Qe3 − q̈ ·Qe2

Ω1 q̇ ·Qe2 − Ω2 q̇ ·Qe1 − q̈ ·Qe3

 . (3.13)

Similarly, for the variations δX of the fourth in the Lagrangian action (2.15), assuming that
Ω, Q and q̇ are constants, we have

δ

∫ t2

t1

∫∫ 〈
QT q̇ , Ω× (X + d)

〉
ρ h0 da2 dt =

∫ t2

t1

∫∫ 〈
δx2 ,[

Ω3 q̇ ·Qe2 − Ω2 q̇ ·Qe3 + (Ω2 q̇ ·Qe1 − Ω1 q̇ ·Qe2)hx

Ω1 q̇ ·Qe3 − Ω3 q̇ ·Qe1 + (Ω2 q̇ ·Qe1 − Ω1 q̇ ·Qe2)hy

]〉
ρ h0 da2 dt .

 (3.14)

For the variations δX of the potential energy of the interior fluid in (2.15), assuming that Q
and q are constants, we have (see (C.2) in appendix C)

δ

∫ t2

t1

∫∫
−g
〈
ẑ , Q (X + d) + q

〉
ρ h0 da2 dt

=

∫ t2

t1

∫∫ 〈
δx2 , −g

[
e3 ·Qe1

e3 ·Qe2

]
− g

[
e3 ·Qe3 hx

e3 ·Qe3 hy

]〉
ρ h0 da2 dt .

 (3.15)

Taking the variations δx2 and δh of the mass moment of inertia of the interior shallow water
in the action integral (2.15), assuming that Ω is constant, gives

δ

∫ t2

t1

1
2

〈
Ω , ISWf Ω

〉
dt =

∫ t2

t1

∫∫ 〈
δx2 ,

((h+ d3) (Ω2
1 + Ω2

2)− (x+ d1) Ω1Ω3 − (y + d2) Ω2Ω3)hx

+ (x+ d1) (Ω2
2 + Ω2

3)− (y + d2) Ω1Ω2 − (h+ d3) Ω1Ω3

((h+ d3) (Ω2
1 + Ω2

2)− (x+ d1) Ω1Ω3 − (y + d2) Ω2Ω3)hy

+ (y + d2) (Ω2
1 + Ω2

3)− (x+ d1) Ω1Ω2 − (h+ d3) Ω2Ω3


〉
ρ h0 da2 dt ,


(3.16)

where the proof of (3.16) is given in appendix C.
Now, since δx2 is arbitrary, from (3.4), (3.5), (3.10), (3.11), (3.14), (3.15), (3.16) and

Hamilton’s variational principle (3.1) it can be concluded that the new variational SWEs in
two-horizontal space dimensions, i.e. the horizontal x– and y–momentum equations, in the
Lagrangian particle-path formulation, take the form

ẍ+
1

3

1

h

∂

∂x

(
h2ḧ
)

+ Ω2ḣ+

[
2Ω1ẏ − 2Ω2ẋ+

(
Ω̇1 + Ω2Ω3

)
(y + d2)

+q̈ ·Qe3 + g e3 ·Qe3 − (h+ d3)
(
Ω2

1 + Ω2
2

)
+
(

Ω1Ω3 − Ω̇2

)
(x+ d1)

]
∂h

∂x

= 2Ω3ẏ + (Ω2ẋx − Ω1ẏx)h+
(

Ω̇3 − Ω1Ω2

)
(y + d2)− Ω̇2d3 − q̈ ·Qe1

+ (x+ d1)
(
Ω2

2 + Ω2
3

)
− (h+ d3) Ω1Ω3 − g e3 ·Qe1 ,

(3.17)
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and 

ÿ +
1

3

1

h

∂

∂y

(
h2ḧ
)
− Ω1ḣ+

[
− 2Ω2ẋ+ 2Ω1ẏ +

(
Ω̇1 + Ω2Ω3

)
(y + d2)

+q̈ ·Qe3 + g e3 ·Qe3 − (h+ d3)
(
Ω2

1 + Ω2
2

)
+
(

Ω1Ω3 − Ω̇2

)
(x+ d1)

]
∂h

∂y

= −2Ω3ẋ+ (Ω2ẋy − Ω1ẏy)h−
(

Ω̇3 + Ω1Ω2

)
(x+ d1) + Ω̇1d3 − q̈ ·Qe2

+ (y + d2)
(
Ω2

1 + Ω2
3

)
− (h+ d3) Ω2Ω3 − g e3 ·Qe2 .

(3.18)

Transforming, the momentum equations (3.17) and (3.18) from the Lagrangian particle-path
setting to Eulerian coordinates, replacing the Lagrangian variables ẍ, ÿ, ẋ, ẏ, ḣ and ḧ by their
respective Eulerian quantities Du/Dt, Dv/Dt, u, v, Dh and D2h respectively, the SWEs
(3.17) and (3.18) respectively take the form

Du

Dt
+

GN︷ ︸︸ ︷
1

3

1

h

∂

∂x

(
h2D2h

)
+Ω2Dh+

[
2Ω1v − 2Ω2u+

(
Ω̇1 + Ω2Ω3

)
(y + d2)

+q̈ ·Qe3 + g e3 ·Qe3 − (h+ d3)
(
Ω2

1 + Ω2
2

)
+
(

Ω1Ω3 − Ω̇2

)
(x+ d1)

]
∂h

∂x

= 2Ω3v + (Ω2ux − Ω1vx)h+
(

Ω̇3 − Ω1Ω2

)
(y + d2)− Ω̇2d3 − q̈ ·Qe1

+ (x+ d1)
(
Ω2

2 + Ω2
3

)
− (h+ d3) Ω1Ω3 − g e3 ·Qe1 ,

(3.19)

and 

Dv

Dt
+

GN︷ ︸︸ ︷
1

3

1

h

∂

∂y

(
h2D2h

)
−Ω1Dh+

[
− 2Ω2u+ 2Ω1v +

(
Ω̇1 + Ω2Ω3

)
(y + d2)

+q̈ ·Qe3 + g e3 ·Qe3 − (h+ d3)
(
Ω2

1 + Ω2
2

)
+
(

Ω1Ω3 − Ω̇2

)
(x+ d1)

]
∂h

∂y

= −2Ω3u+ (Ω2uy − Ω1vy)h−
(

Ω̇3 + Ω1Ω2

)
(x+ d1) + Ω̇1d3 − q̈ ·Qe2

+ (y + d2)
(
Ω2

1 + Ω2
3

)
− (h+ d3) Ω2Ω3 − g e3 ·Qe2 ,

(3.20)

where the terms denoted by GN (an auxiliary acceleration) in the horizontal momentum
equations (3.19) and (3.20) lead to higher-order dispersive terms (see e.g. Miles & Salmon
1985). In summary, the candidate SWEs for (h, u, v) for fluid sloshing in a vessel undergoing
rigid-body motion in three dimensions are the continuity equation (2.8) and the momen-
tum equations (3.19) and (3.20) in Eulerian coordinates. The new variational SWEs (2.8),
(3.19) and (3.20) with the dispersive terms denoted by GN in (3.19) and (3.20) are the gen-
eralized Green–Naghdi equations for shallow-water sloshing in three-dimensional rotating
and translating coordinates. See Miles & Salmon (1985) for derivation of the Green–Naghdi
equations (Green & Naghdi 1976) from Hamilton’s principle, and see Dellar & Salmon (2005)
for derivation of the Green–Naghdi equations for the non-traditional rotating SWEs from the
shallow-water variant of the Lagrangian functional (1.9).
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Next, discarding the Green–Naghdi terms, i.e. the GN terms, and substituting for Dh
from (2.6) in the momentum equations (3.19) and (3.20), the 3–D rotating–translating varia-
tional SWEs may be written as

ut + uux + vuy + α11 (x, y, t)hx + α12 (x, y, t)hy = β1 (x, y, t) ,

vt + uvx + vvy + α21 (x, y, t)hx + α22 (x, y, t)hy = β2 (x, y, t) ,

ht + (hu)x + (hv)y = 0 ,

 (3.21)

where the coefficients α11, α12, β1, α21, α22 and β2 are

α11 (x, y, t) = 2Ω1v − Ω2u+
(

Ω̇1 + Ω2Ω3

)
(y + d2) + g e3 ·Qe3

−
(
Ω2

1 + Ω2
2

)
(h+ d3) +

(
Ω1Ω3 − Ω̇2

)
(x+ d1) + q̈ ·Qe3 ,

α12 (x, y, t) = Ω2v ,

β1 (x, y, t) = −Ω2ht + 2Ω3v + (Ω2ux − Ω1vx)h+
(

Ω̇3 − Ω1Ω2

)
(y + d2)

−Ω̇2d3 − q̈ ·Qe1 − g e3 ·Qe1 +
(
Ω2

2 + Ω2
3

)
(x+ d1)

−Ω1Ω3 (h+ d3) ,

α21 (x, y, t) = −Ω1u ,

α22 (x, y, t) = −2Ω2u+ Ω1v +
(

Ω̇1 + Ω2Ω3

)
(y + d2) + g e3 ·Qe3

−
(
Ω2

1 + Ω2
2

)
(h+ d3) +

(
Ω1Ω3 − Ω̇2

)
(x+ d1) + q̈ ·Qe3 ,

β2 (x, y, t) = Ω1ht − 2Ω3u+ (Ω2uy − Ω1vy)h−
(

Ω̇3 + Ω1Ω2

)
(x+ d1)

+Ω̇1d3 − q̈ ·Qe2 − g e3 ·Qe2 +
(
Ω2

1 + Ω2
3

)
(y + d2)

−Ω2Ω3 (h+ d3) .



(3.22)

Now, if we set U (x, y, t) = u (x, y, t) and V (x, y, t) = v (x, y, t) in the surface SWEs (1.3),
which is consistent with the theory of shallow-water equations, it can be concluded that the
coefficients of the new SWEs (3.22) are related to the coefficients of the surface SWEs (1.5)
by

α11 (x, y, t) = a11 (x, y, t)− Ω2u , α12 (x, y, t) = 1
2
a12 (x, y, t) ,

β1 (x, y, t) = b1 (x, y, t) + Ω2ht +
(

Ω2ux − Ω1vx + Ω̇2

)
h ,

 (3.23)

and
α22 (x, y, t) = a22 (x, y, t) + Ω1v , α21 (x, y, t) = 1

2
a21 (x, y, t) ,

β2 (x, y, t) = b2 (x, y, t)− Ω1ht +
(

Ω2uy − Ω1vy − Ω̇1

)
h .

 (3.24)

The surface SWEs (1.3) are derived using a reduction method applied to the three-dimensional
rotating Euler equations relative to the body frame x (Alemi Ardakani & Bridges 2011). In
non-variational approaches, the conservation laws associated with the Eulerian equations
may remain hidden and their derivations are often tedious and unrevealing. In the varia-
tional or Hamiltonian approach, the conservation laws are known to exist if the Lagrangian
functional reveals the corresponding symmetry property. Preserving conservation laws is a
primary advantage of approximation methods based on Hamilton’s variational principle com-
pared with some approximation methods applied directly to the equations of motion. The
new variational SWEs (3.21) and the Green-Naghdi equations (3.19), (3.20) and (2.8) retain
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conservation laws because the approximate shallow-water Lagrangian (2.15) do not violate
the symmetry properties of the exact Lagrangian functional (1.12) for the three-dimensional
problem. See section §4 for the particle relabeling symmetry property of the Lagrangian
(2.15), and the material conservation of potential-vorticity for the proposed variational SWEs
and the Green–Naghdi equations.

The shallow-water/Green–Naghdi Lagrangian action (2.15) is described in the Lagrangian
particle-path setting. Transformation of the action integral (2.15) to the Eulerian setting gives

LSW/GN (Ω,Q, q, q̇,u2, h) =

∫ t2

t1

(∫∫ (
1
2
‖u2‖2 +

1

6
h2 (∇2 · u2)

2

+U ·
(
Ω× (X + d) + QT q̇

)
+ QT q̇ · (Ω× (X + d)) + 1

2
‖q̇‖2

−g (Q (X + d) + q) · ẑ
)
ρ h dx2 + 1

2
Ω · ISWf Ω + 1

2
mv ‖q̇‖2

+ (Ω×mvxv) ·QT q̇ + 1
2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt ,

(3.25)

where
U =

(
u2,−1

2
h∇2 · u2

)
=
(
u, v,−1

2
h (ux + vy)

)
, (3.26)

and entries of the symmetric matrix ISWf in the Eulerian setting are defined in appendix A.
The Lagrangian variations δx2 induce variations of the Eulerian quantities u2 and h via the
continuity equation (Oliver 2006)

δh+∇2 · (w2h) = 0 , (3.27)

and the so-called Lin constraint (Lin 1963; Bretherton 1970; Oliver 2006)

δu2 = ẇ2 +∇2w2 u2 −∇2u2w2 , (3.28)

where w2 is a vector-valued free variation which is defined by δx2 = w2◦x2. In this section we
derived the Eulerian form of the generalized Green–Naghdi momentum equations (3.19) and
(3.20) by taking the variations δX and δẊ of the Lagrangian action (2.15) in the Lagrangian
particle-path description, and transforming the equations of motion to Eulerian coordinates.
To derive the momentum equations we could alternatively take the variations δu2 and δh of
the Lagrangian action (3.25) in the Eulerian setting by using the Eulerian variations (3.27)
and (3.28).

4 Potential vorticity for the generalized Green–Naghdi
equations and variational SWEs with 3–D rotation vector

The aim in this section is to derive a conservation law for the material conservation of po-
tential vorticity for the variational SWEs (3.21) and the generalized Green–Naghdi equations
(3.19), (3.20) and (2.8) for fluid sloshing in a container undergoing prescribed rigid-body
motion in three dimensions. The existence of this conservation law is guaranteed by the
variational formulation of §3, and Noether’s theorem that relates symmetries in a variational
principle to conservation laws (e.g. Noether 1918; Hill 1951; Goldstein 1980; Stewart &
Dellar 2010).

Potential vorticity conservation arises from the particle-relabeling symmetry property of
the shallow-water Lagrangian (2.15). The usual particle-relabeling symmetry arguments
are given by Ripa (1981), Salmon (1982a, 1982b, 1983, 1988, 1998), Shepherd (1990),
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Müller (1995), and Padhye & Morrison (1996). Dellar & Salmon (2005) extended these
arguments to derive a general expression for the conservation of potential vorticity in terms of
the canonical momenta obtained from a Lagrangian functional. The variational SWEs (3.21)
and the generalized Green–Naghdi equations (3.19), (3.20) and (2.8) possess a potential
vorticity P that obeys the conservation law DP = Pt + u2 · ∇2P = 0. The conserved
potential vorticity in terms of the Eulerian spatial derivatives of the canonical momenta P =
(P1,P2) takes the form (Dellar & Salmon 2005)

P =
∂ (x, y)

∂ (a, b)

(
∂ (P2, y)

∂ (x, y)
+
∂ (P1, x)

∂ (x, y)

)
=

1

h

(
∂P2

∂x
− ∂P1

∂y

)
, (4.1)

which is applicable to all Lagrangian functionals in which the particle labels a2 = (a, b) only
appear through the wave height defined in (2.4). The proof of (4.1) is given in appendix A of
Dellar & Salmon (2005).

The canonical momenta P = (P1,P2) in (4.1) for the shallow-water Lagrangian (2.15) can
be obtained from

P =
δL̂

δẊ
, (4.2)

where L̂ is the kinetic energy minus the potential energy of the fluid in the shallow-water
Lagrangian (2.15), that is

L̂ = 1
2
‖ẋ2‖2 +

1

6
ḣ2 + Ẋ ·

(
Ω× (X + d) + QT q̇

)
+ QT q̇ · (Ω× (X + d))

−g (Q (X + d) + q) · ẑ + 1
2
Ω · ISWf Ω .

 (4.3)

The variational derivatives defining P are taken using a mass-weighted inner product for
integrals with respect to da2 = da db, that is

δLSW/GN =

∫∫ (〈
δL̂

δX
, δX

〉
+

〈
δL̂

δẊ
, δẊ

〉)
ρ h0 da2

=

∫∫ (〈
δL̂

δx2

+
1

h
∇2

(
h2
δL̂

δh
+ hḣ

δL̂

δḣ

)
, δx2

〉
+

〈
δL̂

δẋ2

+
1

h
∇2

(
h2
δL̂

δḣ

)
, δẋ2

〉)
ρ h0 da2 .

(4.4)

See appendix D for the proof of (4.4). Hence, the canonical momenta P for the shallow-water
sloshing Lagrangian (2.15) takes the form

P =
δL̂

δẋ2

+
1

h
∇2

(
h2
δL̂

δḣ

)
. (4.5)

Now, from (4.1) and (4.5) we infer that the conserved potential vorticity for the generalized
Green–Naghdi equations in rotating coordinates (3.19), (3.20) and (2.8) reads

PGN =
1

h

(
∂P2

∂x
− ∂P1

∂y

)
= PSW −

1

3h
∇2h · ∇⊥2∇2 · u2︸ ︷︷ ︸

=
1

3h
k̂ · ∇× (Dh∇2h)

= PSW +
1

3h

∂ (Dh, h)

∂ (x, y)
,


(4.6)
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where PSW is the conserved potential vorticity for the rotating variational SWEs (3.21), that
is

PSW =
vx − uy + 2Ω3 −Ω2 · ∇2h

h
, (4.7)

and ∇⊥2 = (−∂/∂y, ∂/∂x), Ω2 = (Ω1,Ω2), and k̂ is the unit vector in the z direction. The
potential vorticity PSW in (4.7) is a simplified form of the potential vorticity derived by Del-
lar & Salmon (2005) for the shallow-water equations with a complete Coriolis force and
topography (see equation (1) in Dellar & Salmon 2005). The second term in the general-
ized Green–Naghdi potential vorticity (4.6) is a pseudovorticity that is derived from the term
(1/6) ḣ2 in the shallow-water Lagrangian (2.15). The pseudovorticity term in (4.6) was first
derived by Miles & Salmon (1985) for the Green–Naghdi equations (Green & Naghdi 1976).
See equation (5.5) in Miles & Salmon (1985). To summarise, the potential vorticity (4.6)
for the new generalized Green–Naghdi equations with 3–D rotation vector is a combination
of the potential vorticity expressions given by Miles & Salmon (1985) and Dellar & Salmon
(2005).

Finally, if we write the potential vorticity (1.8) for the surface SWEs (1.3) (Alemi Ardakani
& Bridges 2011) in the form

P̂ =
Vx − Uy + 2Ω3 − 2Ω2 · ∇2h

h
, (4.8)

and set U = u and V = v, we conclude that the potential vorticity expressions for the
variational SWEs (3.21) and the surface SWEs (1.3) are related by

PSW = P̂ +
Ω2 · ∇2h

h
. (4.9)

5 Zero-potential-vorticity flow and a generalization of the
Whitham equations for fluid sloshing in
three-dimensional rotating and translating coordinates

The Green–Naghdi system is a long-wave model for gravity-driven surface water waves,
which are long but may not have small amplitude. The assumption that the idealised fluid
moves in columns is equivalent to that made by Green & Naghdi (1976) which implies the
restriction (Miles & Salmon 1985)

β = (h0/L)2 � 1 , (5.1)

where h0 is the mean water depth and L is a horizontal lengthscale. The assumption (5.1)
implies that dispersion in the Green–Naghdi model is weak (Miles & Salmon 1985). The
Green–Naghdi equations can also be derived by depth-averaging the Euler equations us-
ing a scaling argument and asymptotics, and retaining only first-order terms in β in the
resulting set of equations (e.g. Gavrilyuk et al. 2015). Miles & Salmon (1985) used the
assumption of zero-potential-vorticity flow in the Eulerian form of Hamilton’s variational prin-
ciple for the Green–Naghdi system to derive a canonical generalization of Boussinesq’s
equations derived by Whitham (1967), which fully accommodates nonlinearity. In Whitham’s
equations (see equation (12) in Whitham (1967) or equations (1.8a) and (1.8b) in Miles &
Salmon (1985)) nonlinearity is of the same order of dispersion, i.e. the amplitude parameter
a/h0 = O (β).

The aim in this section is to apply the assumption of zero-potential-vorticity flow to the
fluid component of the Green–Naghdi Lagrangian action (3.25) in Eulerian coordinates to
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derive new Boussinesq-like evolution equations, which are a generalization of the Whitham
equations for fluid sloshing in three-dimensional rotating and translating coordinates. By
appending the constraint of continuity to the fluid component of the Lagrangian (3.25), the
variational principle

δLGN (u2, h, λ) = 0 , (5.2)

with the Lagrangian action

LGN (u2, h, λ) =

∫ t2

t1

∫∫ (
1
2
‖u2‖2 +

1

6
h2 (∇2 · u2)

2

+U ·
(
Ω× (X + d) + QT q̇

)
+ QT q̇ · (Ω× (X + d)) + 1

2
‖q̇‖2

−g (Q (X + d) + q) · ẑ
)
ρ h dx2 dt+

∫ t2

t1

1
2
Ω · ISWf Ω dt

+

∫ t2

t1

∫∫
λ (Dh+ h∇2 · u2) ρ dx2 dt ,︸ ︷︷ ︸

↓ (integrating the constraint term by parts)

= −
∫ t2

t1

∫∫
h (λt + u2 · ∇2λ) ρ dx2 dt ,


→


Taking into account that
u = 0 at x = 0, L1

and v = 0 at y = 0, L2.

(5.3)
for the variations δu2, δh and δλ yields differential equations whose solutions also satisfy
the rotating Green–Naghdi equations (3.19), (3.20) and (2.8), but with zero potential vorticity
PGN = 0. In (5.3) λ is the Lagrange multiplier of the continuity equation (2.8).

Following Miles & Salmon (1985) we may write the Green–Naghdi potential vorticity (4.6)
in the form

PGN =
1

h

(
P + PF

)
, (5.4)

where
P = k̂ · ∇× (u2 + R2) =

∂v

∂x
− ∂u

∂y
+ 2Ω3 −Ω2 · ∇2h ,

PF =
1

3
k̂ · ∇× (Dh∇2h) ,

 (5.5)

and R2 is a vector potential, yet to be determined, such that

k̂ · ∇×R2 = 2Ω3 −Ω2 · ∇2h . (5.6)

The pseudovorticity PF may be recast in the alternative form (Miles & Salmon 1985)

PF =
1

3
n−1k̂ · ∇×

(
h−n∇2

(
hn+1Dh

))
, (5.7)

where n is an arbitrary parameter. The material conservation of the potential vorticity
DPGN = 0 implies that if P + PF = 0 at t = 0 it remains so, and hence there exists po-
tentials Φn such that u2 + R2 has the one-parameter family of representations (see Miles &
Salmon 1985)

u2 + R2 =∇2Φn −
1

3
n−1h−n∇2

(
hn+1Dh

)
=∇2Φ̂−

1

3
Dh∇2h , (5.8)

where Φ̂ is related to Φn via

Φn = Φ̂ +
1

3
n−1hDh . (5.9)
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The variation of the Lagrangian action (5.3) with respect to λ yields the conservation of
mass equation (2.8). Taking the variations δu2 of the Lagrangian action (5.3) yields∫∫∫ 〈

δu2 , h

(
u2 −∇2λ−

1

3
h−1∇2

(
h3∇2 · u2

)
+ R2

)〉
ρ dx2 dt = 0 , (5.10)

where R2 takes the form

R2 =


(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)∂h
∂x

+ Ω2d3 − Ω3 (y + d2) + q̇ ·Qe1(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)∂h
∂y
− Ω1d3 + Ω3 (x+ d1) + q̇ ·Qe2

 , (5.11)

which satisfies (5.6). Now, if we set

V = u2 −∇2λ−
1

3
h−1∇2

(
h3∇2 · u2

)
+ R2 , (5.12)

and substitute the Lin constraint (3.28) into the variational principle (5.10), we obtain∫∫∫ 〈
ẇ2 +∇2w2 u2 −∇2u2w2 , hV

〉
ρ dx2 dt = 0 . (5.13)

Integrating (5.13) by parts (in space and time) and imposing the endpoint conditions w2 (t1) =
w2 (t2) = 0, and the boundary conditions u (0, y, t) = u (L1, y, t) = 0, v (x, 0, t) = v (x, L2, t) =
0, w1 (0, y, t) = w1 (L1, y, t) = 0 and w2 (x, 0, t) = w2 (x, L2, t) = 0, and applying the continuity
equation (2.8), we obtain∫∫∫ 〈

− hw2 , Vt + u2 · ∇2V + (∇2u2)
T V

〉
ρ dx2 dt = 0 . (5.14)

Now, since w2 is arbitrary, from the variational principle (5.14) it can be concluded that(
D

Dt
+ (∇2u2)

T

)
V = 0 , (5.15)

from which it can be inferred that

u2 =∇2λ+
1

3
h−1∇2

(
h3∇2 · u2

)
−R2 , (5.16)

for which PGN = 0 for any choice of λ. The columnar approximation (2.1a,b) implies an O (β2)
error on the right-hand side of (5.16). Comparing (5.8) and (5.16) after invoking (2.6a) and
(2.7), we conclude that

λ = Φ1 + f (t) , (5.17)

where f is an arbitrary function of t, and hence

u2 =∇2Φ1 +
1

3
h−1∇2

(
h3∇2 · u2

)
−R2 . (5.18)

It is consistent with the columnar motion to approximate u2 by ∇2Φ1 in the second term on
the right-hand side of (5.18) (Miles & Salmon 1985), which is of O (β), to obtain the following
expression after dropping the subscript 1 from Φ

u2 =∇2Φ +
1

3
h−1∇2

(
h3∇2

2Φ
)
−R2 , (5.19)
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where ∇2
2 ≡ ∂2/∂x2 + ∂2/∂y2.

Taking the variation δh in Hamilton’s principle (5.2), substituting for δh from (3.27) in
the resulting variational principle, integrating by parts, imposing the boundary conditions
w1 (0, y, t) = w1 (L1, y, t) = 0 and w2 (x, 0, t) = w2 (x, L2, t) = 0, and taking into account that
w2 is a vector-valued free variation yields

λt + u2 · ∇2λ− 1
2
u2 · u2 − 1

2
(h∇2 · u2)

2 − Û ·
(
Ω×

(
X̂ + d

)
+ QT q̇

)
−QT q̇ ·Ω×

(
X̂ + d

)
− 1

2
q̇ · q̇ + gΣ ·

(
X̂ + d + QTq

)
− 1

2

wwwΩ×
(
X̂ + d

)www2

= 0 ,

(5.20)
where Σ is defined in (6.6) and

X̂ = (x, y, h) and Û = (u, v,−h∇2 · u2) . (5.21a, b)

Introduce the standard shallow water scaling (e.g. Dingemans 1997; Alemi Ardakani &
Bridges 2011; Gavrilyuk et al. 2015)

x̃ =
x

L
, ỹ =

y

L
, ũ =

u

c0
, ṽ =

v

c0
, t̃ =

c0
L
t , h̃ =

h

h0
, q̃ =

q

L
,

d̃1 =
d1
L
, d̃2 =

d2
L
, d̃3 =

d3
h0
, Φ̃ =

Φ

c0L
, Ω̃ =

L

c0
Ω ,

(5.22)

where c0 =
√
gh0 represents the horizontal velocity scale. Now, if we substitute the veloc-

ity field (5.19) in the Lagrangian functional (5.3), and use the scaling (5.22) to obtain the
non-dimensional form the resulting Lagrangian action, and retain only terms of O (β), then
Hamilton’s variational principle (5.2) for the generalized Whitham (GW) equations for fluid
sloshing in three-dimensional rotating and translating coordinates takes the form

δLGW (h,Φ) = 0 , (5.23)

with the Lagrangian action

LGW (h,Φ) =

∫ t2

t1

∫∫ (
Φt + 1

2
∇2Φ · ∇2Φ−

1

6

(
h∇2

2Φ
)2 − 1

2
R2 ·R2

+ (R2 −∇2Φ) ·
[

Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]
+1

2
h
(
∇2

2Φ−∇2 ·R2

)
(Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3)− 1

2
q̇ · q̇

−QT q̇ ·Ω× (X + d) + g (Q (X + d) + q) · ẑ
)
ρ h dx2 dt−

∫ t2

t1

1
2
Ω · ISWf Ω dt .

(5.24)

Now, taking the variations δh and δΦ in the variational principle (5.23) yields a new set of
Boussinesq-like evolution equations, for h (x, y, t) and Φ (x, y, t), for fluid sloshing inside a
container undergoing prescribed rigi-body motion in three dimensions. Taking the variation
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δh in Hamilton’s principle (5.23) yields

Φt + 1
2
∇2Φ · ∇2Φ− 1

2
(h∇2

2Φ)
2

+ h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2

2Φ

−
(
Ω2 (h+ d3)− Ω3 (y + d2) + q̇ ·Qe1

)
Φx −

(
Ω3 (x+ d1)− Ω1 (h+ d3) + q̇ ·Qe2

)
Φy

−2h (Ω1hy − Ω2hx)
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (1
2
∇2h · ∇2h+ h∇2

2h
)

−1
2
Ω2

1

(
(y + d2)

2 + h2
)
− 1

2
Ω2

2

(
(x+ d1)

2 + h2
)

+Ω1Ω2 (x+ d1) (y + d2)− q̇ ·Qe3

(
Ω1 (y + d2)− Ω2 (x+ d1)

)
−1

2
(q̇ ·Qe3)

2 + g
(
Q
(
X̂ + d

)
+ q
)
· ẑ = 0 ,

(5.25)
and taking the variation δΦ yields

ht +∇2 · (h∇2Φ) +∇2
2

(
1

3
h3∇2

2Φ

)
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)(
∇2h · ∇2h+ h∇2

2h
)

+ (Ω2 (h− d3) + Ω3 (y + d2)− q̇ ·Qe1)hx

− (Ω3 (x+ d1) + Ω1 (h− d3) + q̇ ·Qe2)hy = 0 .

(5.26)

Derivation of the evolution equations (5.25) and (5.26) is given in appendix E. The variational
principle (5.23) also recovers the rigid-wall boundary conditions u (x, y, t) = 0 at x = 0, L1

and v (x, y, t) = 0 at y = 0, L2 for the interior fluid, which are
∇2Φ +

1

3
h−1∇2

(
h3∇2

2Φ
)

=Ω2d3 − Ω3 (y + d2) + q̇ ·Qe1 +
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hx

Ω3 (x+ d1)− Ω1d3 + q̇ ·Qe2 +
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hy

 on S (t) ,

(5.27)
where S (t) is the wetted tank surface. See appendix E for the proof of (5.27). The evolution
equations (5.25) and (5.26) with the boundary conditions (5.27) are a generalization of the
Whitham equations for inviscid and incompressible fluid sloshing in a container undergoing
prescribed rigid-body motion in three dimensions.

Equations (5.25) and (5.26) may be obtained by substituting (5.17) and (5.19) into (2.8)
and (5.20) and retaining only terms of O (β).

To derive the equations of motion for the angular momentum and linear momentum of
the coupled (generalized Whitham equations for the interior fluid + 3–D rigid-body motion)
dynamical system, we can take the variations δΩ, δQ, δq and δq̇ of the coupled system

δL (Φ, h,Ω,Q, q, q̇) = δLGW + δLb = 0 , (5.28)

where Lb is the Lagrangian action of the dry rigid-body given by

Lb =

∫ (
1
2
mv ‖q̇‖2 + (Ω×mvxv) ·QT q̇ + 1

2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt . (5.29)
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6 The Euler–Poincaré equations for the motion of the
rigid-body containing weakly dispersive shallow water

The Euler–Poincaré reduction theorem for rigid-body dynamics is given by Holm et al. (1998a).
Alemi Ardakani (2019) applied this framework to the Lagrangian action (1.12) to derive the
coupled Euler–Poincaré equations for the three-dimensional (rigid-body motion + interior
inviscid and incompressible fluid sloshing) dynamical system. Here, we apply the Euler–
Poincaré framework to the coupled shallow-water Lagrangian action (2.15) to derive the
equations of motion for the angular momentum and linear momentum of the coupled (rigid-
body motion + interior shallow-water sloshing) dynamical system.

The equation of motion for the body angular velocity Ω (t) is provided by Hamilton’s varia-
tional principle (3.1) by taking the variations δQ of the shallow-water Lagrangian action (2.15)
among paths Q (t) ∈ SO (3), t ∈ [t1, t2], with fixed endpoints, so that δQ (t1) = δQ (t2) = 0.
The variations δΩ are induced by the variations δQ via (Holm et al. 2009)

δΩ̂ =
dΓ̂

dt
+ [ Ω̂ , Γ̂ ] =

dΓ̂

dt
+ Ω̂Γ̂− Γ̂Ω̂ , (6.1)

where [ · , · ] is the matrix commutator, and Γ̂ ∈ so (3) is defined by

Γ̂ = Q−1δQ . (6.2)

Since [ Ω̂ , Γ̂ ] = Ω̂× Γ, the equivalent vector representation of (6.1) is

δΩ = Γ̇ + Ω× Γ . (6.3)

Also it can be proved that (Marsden & Ratiu 1999; Holm et al. 2009)

δQ−1 = −Q−1δQQ−1 . (6.4)

Now the Euler–Poincaré equation for Ω (t) can be obtained by taking the first variation of
the action integral LSW/GN

(
Ω,Q, q, q̇,X, Ẋ

)
in (2.15) with respect to Ω and Q using the

variations (6.3), (6.4) and the hat map (1.7), and assuming that that q, q̇, X and Ẋ are
constants. Applying similar calculus of variations presented in §3.1 of Alemi Ardakani (2019),
it can be proved that Hamilton’s variational principle (3.1) for the variations δΩ and δQ reads

∫ t2

t1

∫∫ 〈
Γ ,

d

dt

(
Ẋ× (X + d)

)
+ Ω×

(
Ẋ× (X + d)

)
+ Ẋ×Q−1q̇

+
d

dt

(
Q−1q̇ × (X + d)

)
+ (X + d)×

(
Q−1q̇ ×Ω

)
− g (X + d)×Σ

〉
ρ h0 da2 dt

+

∫ t2

t1

〈
Γ , − d

dt

(
ISWf Ω

)
+ ISWf Ω×Ω− d

dt

(
mvxv ×Q−1q̇

)
+mvxv ×

(
Q−1q̇ ×Ω

)
− IvΩ̇ + IvΩ×Ω−mvgxv ×Σ

〉
dt = 0 ,

(6.5)

where
Σ = Q−1ẑ . (6.6)

Therefore, since the variational principle (6.5) holds for any curve Γ (t) in so (3) such that
Γ (t1) = Γ (t2) = 0, we find that the body angular velocity of the rigid-body containing shallow
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water is governed by the equation:

∫∫ (
d

dt

(
Ẋ× (X + d)

)
+ Ω×

(
Ẋ× (X + d)

)
+ Ẋ×Q−1q̇

+
d

dt

(
Q−1q̇ × (X + d)

)
+ (X + d)×

(
Q−1q̇ ×Ω

)
− g (X + d)×Σ

)
ρ h0 da2

− d

dt

(
ISWf Ω

)
+ ISWf Ω×Ω− d

dt

(
mvxv ×Q−1q̇

)
+mvxv ×

(
Q−1q̇ ×Ω

)
−IvΩ̇ + IvΩ×Ω−mvgxv ×Σ = 0 ,

(6.7)

which is the Euler-Poincaré equation for Ω (t) in the Lagrangian particle-path setting. Equa-
tion (6.7) after differentiating with respect to time and simplifying using (3.12) and the hat
map (1.7) reduces to

∫∫ (
Ẍ× (X + d) + Ω×

(
Ẋ× (X + d)

)
+ Q−1q̈ × (X + d)

−g (X + d)×Σ

)
ρ h0 da2 − İSWf Ω−

(
ISWf + Iv

)
Ω̇

+
(
ISWf + Iv

)
Ω×Ω−mvxv ×Q−1q̈ −mvgxv ×Σ = 0 .

(6.8)

Now set the mass moment of inertia of the coupled (rigid-body motion + interior shallow-
water sloshing) system as

It = ISWf + Iv , (6.9)

and take into account the columnar motion of the interior fluid to obtain

mfxf =

∫∫
(X + d) ρ h0 da2 =

∫∫
(X + d) ρ h dx2 , (6.10)

where xf (t) is the centre of mass of the interior shallow water relative to the body frame xb,
and

mf =

∫∫
ρ h0 da2 =

∫∫
ρ h dx2 , (6.11)

is the mass of the interior shallow water which is time independent. Also by setting

m = mf +mv , (6.12)

which is the total mass of the coupled (rigid-body + interior shallow-water) system, we have

mx (t) = mfxf +mvxv , (6.13)

where x is the centre of mass of the coupled system which is time dependent. Now the
Ω-equation (6.8) simplifies to∫∫ (

Ẍ× (X + d) + Ω×
(
Ẋ× (X + d)

))
ρ h0 da2

−mx×Q−1q̈ − İSWf Ω− ItΩ̇ + ItΩ×Ω−mgx×Σ = 0 .

 (6.14)

Transforming this equation from the Lagrangian particle-path setting to Eulerian coordinates,
replacing the Lagrangian variables Ẋ and Ẍ by their respective Eulerian quantities U and
DU/Dt respectively, the Euler-Poincaré equation (6.14) takes the form∫∫ (

DU

Dt
× (X + d) + Ω× (U× (X + d))

)
ρ h dx2

−mx×Q−1q̈ − İSWf Ω− ItΩ̇ + ItΩ×Ω−mgx×Σ = 0 ,

 (6.15)
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where U is defined in (3.26) and

DU

Dt
=

(
Du2

Dt
, 1
2
h
(
(∇2 · u2)

2 −∇2 ·Du2

))
where D/Dt ≡ D , (6.16)

and İSWf , which is in Eulerian coordinates, is defined in appendix A. Hence, the equation of
motion for the angular momentum of the rigid-body containing shallow water takes the form
(6.15) in Eulerian coordinates. Alternatively, we could directly take the variations δΩ and δQ
of the Lagrangian action (3.25) in the Eulerian setting to derive (6.15).

The Euler–Poincaré equation for q (t) is provided by Hamilton’s variational principle (3.1)
by taking the variations δq and δq̇ of the shallow-water Lagrangian action (2.15) with fixed
endpoints δq (t1) = δq (t2) = 0, and assuming that Ω, Q, X and Ẋ are constants. Applying
similar calculus of variations presented in §3.1 of Alemi Ardakani (2019), it can be proved
that Hamilton’s principle leads to

∫∫ (
−Ẍ−Ω× Ẋ− d

dt
(Ω× (X + d))−Ω× (Ω× (X + d))−Q−1q̈ − gΣ

)
ρ h0 da2

−mvQ
−1q̈ − d

dt
(Ω×mvxv)−Ω× (Ω×mvxv)−mvgΣ = 0 ,

(6.17)
which is the Euler-Poincaré equation, in the Lagrangian particle-path setting, for the trans-
lational motion q (t) of the rigid-body relative to the spatial frame X. This equation, after
differentiating with respect to time and applying (6.10), (6.11) and (6.13), simplifies to∫∫ (

−Ẍ− 2Ω× Ẋ
)
ρ h0 da2 −mQ−1q̈ − Ω̇×mx−Ω× (Ω×mx)−mgΣ = 0 . (6.18)

Transforming this equation from the Lagrangian particle-path setting to Eulerian coordinates,
replacing the Lagrangian variables Ẋ and Ẍ by their respective Eulerian quantities U and
DU/Dt respectively, the q-equation (6.18) reduces to∫∫ (

DU

Dt
+ 2Ω×U

)
ρ h dx2 +mQ−1q̈ + Ω̇×mx + Ω× (Ω×mx) +mgΣ = 0 . (6.19)

Hence, the equation of motion for the linear momentum of the rigid-body containing shallow
water takes the form (6.19) in Eulerian coordinates.

The evolutionary system for the rigid-body motion (6.15) and (6.19) is completed by the
reconstruction formula

Q̇ = Q Ω̂ , (6.20)

and the constraint equation

Σ̇ (t) = Σ (t)×Ω (t) with Σ (0) = Q−1 (0) ẑ . (6.21)

The solution of (6.20) yields the integral curve Q (t) ∈ SO (3) for the orientation of the rigid-
body containing shallow water.

The Euler–Poincaré equations (6.15) and (6.19) can be derived in terms of (h,Φ) for
the interior fluid variables by substituting for U and DU/Dt using the velocity field (5.19),
and retaining only terms of O (β). The resulting equations are coupled to the generalized
Whitham equations (5.25) and (5.26) with the boundary conditions (5.27) for the interior
weakly dispersive nonlinear fluid sloshing. Alternatively, we can directly take the variations
δΩ, δQ, δq and δq̇ in the coupled variational principle (5.28) to find the equations of motion
for the rigid-body motion.
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7 A variational framework for three-dimensional interac-
tions between potential-flow water waves and a freely
floating rigid-body dynamically coupled to its interior
weakly dispersive nonlinear shallow-water sloshing

The classical water-wave problem in three dimensions is described by the partial differential
equations

∆φ := φXX + φY Y + φZZ = 0 for −H (X, Y ) < Z < η (X, Y, t) ,

φt + 1
2
∇φ · ∇φ+ gZ = 0 on Z = η (X, Y, t) ,

φZ = ηt + φXηX + φY ηY on Z = η (X, Y, t) ,

φZ + φXHX + φYHY = 0 on Z = −H (X, Y ) ,

 (7.1)

where (X, Y, Z) is the spatial (laboratory) coordinate system, φ (X, Y, Z, t) is the velocity
potential of an irrotational fluid lying between Z = −H (X, Y ) and Z = η (X, Y, t) with the
gravity acceleration g acting in the negative Z direction. In the horizontal directions X and
Y , the fluid domain is cut off by a cylindrical vertical surface S of infinite radius which extends
from the bottom to the free surface. Luke’s variational principle for three-dimensional gravity
driven water waves reads (Luke 1967; Van Daalen et al. 1993)

δLw (φ, η) = δ

∫ t2

t1

∫∫∫
V (t)

−ρ
(
φt + 1

2
∇φ · ∇φ+ gZ

)
dV dt = 0 , (7.2)

where the Bernoulli pressure, playing the role of the Lagrangian density, is integrated over
the transient fluid domain V (t), with variations in φ (X, Y, Z, t) and η (X, Y, t) subject to the
restrictions δφ = 0 at the end points of the time interval, t1 and t2. In (7.2) ρ is the water
density. The variational principle (7.2) recovers the complete set of equations of motion for
the water wave problem described by (7.1).

In §§§3, 5 and 6, a variational framework is developed for the problem of dynamic cou-
pling between rigid-body motion and its interior inviscid and incompressible fluid sloshing
in three dimensions. The motion of the interior fluid of the rigid-body is governed by the
shallow-water equations or the generalized Green–Naghdi equations in three-dimensional
rotating and translating coordinates given in §3, or by the generalized Whitham equations
presented in §5. The variational framework can be extended to the problem of hydrody-
namic interactions between 3–D potential-flow water waves governed by (7.1) and a freely
floating rigid-body dynamically coupled to its interior weakly dispersive nonlinear fluid slosh-
ing. The extended variational principle can be obtained by the addition of Luke’s variational
principle (7.2) to Hamilton’s variational principle (3.1) in the Lagrangian particle-path formu-
lation or in the Eulerian setting for (the intetior SWEs/generalized Green–Naghdi equations
+ rigid-body motion) dynamical system, or to Hamilton’s principle (5.28) for (the interior gen-
eralized Whitham equations + rigid-body motion) system. The unified variational principle
for the coupled (exterior potential-flow water waves + floating rigid-body motion + interior
SWEs/generalized Green–Naghdi equations) system takes the form

24



Figure 2: Schematic showing a freely floating rigid-body containing fluid in hydrodynamic
interaction with exterior ocean surface waves.



δL
(
φ, η,Ω,Q, q, q̇,X, Ẋ

)
= δ

∫ t2

t1

∫∫∫
V (t)

−ρ
(
φt + 1

2
∇φ · ∇φ+ gZ

)
dV dt

+δ

∫ t2

t1

(∫∫ (
1
2
‖ẋ2‖2 +

1

6
ḣ2 + Ẋ ·

(
Ω× (X + d) + QT q̇

)
+QT q̇ · (Ω× (X + d)) + 1

2
‖q̇‖2 − g (Q (X + d) + q) · ẑ

)
ρ h0 da2 + 1

2
Ω · ISWf Ω

+1
2
mv ‖q̇‖2 + (Ω×mvxv) ·QT q̇ + 1

2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt = 0 ,

(7.3)

where the Lagrangian of the interior fluid sloshing is represented in the Lagrangian particle-
path setting. Alternatively, the unified variational principle can be formulated in Eulerian
coordinates given by

δL (φ, η,Ω,Q, q, q̇,u2, h, λ) = δ

∫ t2

t1

∫∫∫
V (t)

−ρ
(
φt + 1

2
∇φ · ∇φ+ gZ

)
dV dt

+δ

∫ t2

t1

(∫∫ (
1
2
‖u2‖2 +

1

6
h2 (∇2 · u2)

2 + U ·
(
Ω× (X + d) + QT q̇

)
+QT q̇ · (Ω× (X + d)) + 1

2
‖q̇‖2 − g (Q (X + d) + q) · ẑ

)
ρ h dx2 + 1

2
Ω · ISWf Ω

+1
2
mv ‖q̇‖2 + (Ω×mvxv) ·QT q̇ + 1

2
Ω · IvΩ−mvg (Qxv + q) · ẑ

)
dt

+

∫ t2

t1

∫∫
λ
(
Dh+ h∇2 · u2

)
ρ dx2 dt = 0 .

(7.4)

The unified variational principle for the coupled (exterior potential-flow water waves + floating
rigid-body motion + interior generalized Whitham equations) system can be formulated by

δLw (φ, η) + δLGW (Φ, h,Ω,Q, q, q̇) + δLb (Ω,Q, q, q̇) = 0 , (7.5)

where Lw, LGW and Lb are defined in (7.2), (5.24) and (5.29), respectively. V (t) in (7.3),
(7.4) or (7.5) cosists of a fluid bounded by the impermeable bottom Sb defined by the equa-
tion Z = −H (X, Y ), the free surface Sη defined by the equation Z = η (X, Y, t), the vertical
surface S and the wetted surface Sw of the rigid body interacting with exterior water waves.
The configuration of the fluid in a freely floating rigid-body interacting with exterior water
waves is schematically shown in Figure 2.

In order to take the variations in (7.3), (7.4) or (7.5), the variational Reynold’s transport
theorem should be used, since the domain of integration V (t) is time-dependent. The back-
ground mathematics on the variational analogue of Reynold’s transport theorem is presented
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by Flanders (1973), Daniliuk (1976) and Gagarina, van der Vegt & Bokhove (2013). Taking
the variations δφ, δη, δΩ, δQ, δq, δq̇, δX and δẊ in Hamilton’s principle (7.3) gives

δL
(
φ, η,Ω,Q, q, q̇,X, Ẋ

)
=

∫ t2

t1

∫∫
Sη

−
(
φt + 1

2
∇φ · ∇φ+ gZ

) ∣∣∣∣Z=ηρ δη `−1 dS dt

+

∫ t2

t1

∫∫
Sw

P (X, Y, Z, t)
(
δXw · n

)
dS dt−

∫ t2

t1

∫∫∫
V (t)

(
δφt +∇φ · ∇δφ

)
ρ dV dt

+

∫ t2

t1

∫∫ 〈
Γ ,

DU

Dt
× (X + d) + Ω× (U× (X + d))

〉
ρ h dx2 dt

+

∫ t2

t1

〈
Γ , −mx×Q−1q̈ − İSWf Ω− ItΩ̇ + ItΩ×Ω−mgx×Σ

〉
dt

+

∫ t2

t1

∫∫ 〈
Q−1δq , −DU

Dt
− 2Ω×U

〉
ρ h dx2 dt

+

∫ t2

t1

〈
Q−1δq , −mQ−1q̈ − Ω̇×mx−Ω× (Ω×mx)−mgΣ

〉
dt

+

∫ t2

t1

∫∫ 〈
δx2 ,

Du2

Dt
+

1

3

1

h
∇2

(
h2D2h

)
−

[
Ω̇3 (y + d2)− Ω̇2

(
1
2
h+ d3

)
Ω̇1

(
1
2
h+ d3

)
− Ω̇3 (x+ d1)

]

−1
2

1

h
∇2

(
h2
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
))
−

[
−Ω2Dh+ 2Ω3v

−2Ω3u+ Ω1Dh

]

−1

h
∇2

(
h2 (−Ω1v + Ω2u)

)
−

[
Ω2 q̇ ·Qe3 − Ω3 q̇ ·Qe2 − q̈ ·Qe1

Ω3 q̇ ·Qe1 − Ω1 q̇ ·Qe3 − q̈ ·Qe2

]

−1
2

1

h
∇2

(
h2 (Ω1 q̇ ·Qe2 − Ω2 q̇ ·Qe1 − q̈ ·Qe3)

)
−

[
Ω3 q̇ ·Qe2 − Ω2 q̇ ·Qe3

Ω1 q̇ ·Qe3 − Ω3 q̇ ·Qe1

]

−
(
Ω2 q̇ ·Qe1 − Ω1 q̇ ·Qe2

)
∇2h+ g

[
e3 ·Qe1

e3 ·Qe2

]
+ ge3 ·Qe3∇2h

−


((h+ d3) (Ω2

1 + Ω2
2)− (x+ d1) Ω1Ω3 − (y + d2) Ω2Ω3)hx

+ (x+ d1) (Ω2
2 + Ω2

3)− (y + d2) Ω1Ω2 − (h+ d3) Ω1Ω3

((h+ d3) (Ω2
1 + Ω2

2)− (x+ d1) Ω1Ω3 − (y + d2) Ω2Ω3)hy

+ (y + d2) (Ω2
1 + Ω2

3)− (x+ d1) Ω1Ω2 − (h+ d3) Ω2Ω3


〉
ρ h dx2 dt = 0 ,

(7.6)
where the results of §3 and §6 are applied in taking the variations of the second component
of the variational principle (7.3). Here after taking the variations δΩ, δQ, δq, δq̇, δX and δẊ
of the second component of (7.3), which is for the coupled (interior fluid sloshing + rigid-
body motion) system, in the Lagrangian particle-path setting, the results are transformed to
Eulerian coordinates. Alternatively, we could take the variations in the variational principle
(7.4) in Eulerian coordinates. In (7.6), Xw denotes the position of a point on the wetted body
surface Sw relative to the spatial (laboratory) frame X, n is the unit normal vector along
∂V ⊃ Sw in the laboratory frame, ` = (1 + η2X + η2Y )

1/2 giving dS = ` dXdY , and P is the
pressure field of the exterior water waves defined by

P (X, Y, Z, t) = −ρ
(
φt + 1

2
∇φ · ∇φ+ gZ

)
on Sw . (7.7)

These variations are subject to the restrictions that they vanish at the end points of the time
interval. Moreover, the variations in η and φ vanish on the vertical boundary at infinity, i.e.
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on S. The change in Xw due to the variations in Q and q is given by (Alemi Ardakani 2019)

δXw = δQxw + δq , (7.8)

where xw is the position of a point on the wetted rigid body surface Sw relative to the body
frame xb. Using the variations (7.8), the second integral on the right-hand side of (7.6)
simplifies to (see equation (5.7) in Alemi Ardakani 2019)∫ t2

t1

∫∫
Sw

P
〈
δXw , n

〉
dS dt =

∫ t2

t1

∫∫
Sw

(
P 〈Γ , xw × nb〉+ P

〈
Q−1δq , nb

〉)
dS dt , (7.9)

where
nb = Q−1n , (7.10)

is the unit normal vector along Sw in the body frame xb. Using the variational Reynold’s
transport theorem, it can be proved that (Alemi Ardakani 2019)

−
∫ t2

t1

∫∫∫
V (t)

δφt ρ dV dt =

∫ t2

t1

∫∫
Sη

ηt δφ

∣∣∣∣Z=ηρ `−1 dS dt

+

∫ t2

t1

∫∫
Sw

(
Ẋw · n

)
δφ ρ dS dt .

 (7.11)

Moreover, applying Green’s first identity, we have

∫ t2

t1

∫∫∫
V (t)

∇φ · ∇ δφ ρ dV dt = −
∫ t2

t1

∫∫∫
V (t)

∆φ δφ ρ dV dt

+

∫ t2

t1

∫∫
∂V

(∇φ · n) δφ ρ dS dt = −
∫ t2

t1

∫∫∫
V (t)

∆φ δφ ρ dV dt

+

∫ t2

t1

∫∫
Sη

(
− ηXφX − ηY φY + φZ

)
δφ

∣∣∣∣Z=η ρ `−1 dS dt

+

∫ t2

t1

∫∫
Sb

(
φXHX + φYHY + φZ

)
δφ

∣∣∣∣
Z=−H

ρ dS dt+

∫ t2

t1

∫∫
Sw

∂φ

∂n
δφ ρ dS dt .

(7.12)

Now, substituting the expressions (7.9), (7.11) and (7.12) into the variational principle (7.6),
we conclude that invariance of L with respect to a variation in the free-surface elevation η
yields the dynamic free-surface boundary condition in (7.1), invariance of L with respect to
a variation in the velocity potential φ yields the field equation in (7.1) in the domain V (t),
invariance of L with respect to a variation in the velocity potential φ at Z = −H (X, Y ) gives
the bottom boundary condition in (7.1), invariance of L with respect to a variation in the
velocity potential φ at Z = η (X, Y, t) gives the kinematic free-surface boundary condition in
(7.1) and invariance of L with respect to a variation in the velocity potential φ on Sw gives
the contact condition on the wetted surface of the rigid-body,

∂Φ

∂n
= Ẋw · n on Sw . (7.13)

Invariance of L with respect to δx2 gives the generalized Green–Naghdi equations (3.19)
and (3.20) for the interior weakly dispersive nonlinear fluid sloshing. Invariance of L with
respect to Γ gives the hydrodynamic equation of motion for the rotational motion Ω (t) of
the coupled (floating rigid-body motion + interior weakly dispersive fluid sloshing) system
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interacting with exterior potential-flow water waves∫∫ (
DU

Dt
× (X + d) + Ω× (U× (X + d))

)
ρ h dx2

−mx×Q−1q̈ − İSWf Ω− ItΩ̇ + ItΩ×Ω−mgx×Σ

+

∫∫
Sw

P (X, Y, Z, t) (xw × nb) dS = 0 ,


(7.14)

where P (X, Y, Z, t) is defined in (7.7). Finally, the invariance of L with respect to Q−1δq
gives the hydrodynamic equation of motion for the translational motion q (t) of the coupled
(floating rigid-body motion + interior weakly dispersive fluid sloshing) system interacting with
exterior potential-flow water waves

∫∫ (
DU

Dt
+ 2Ω×U

)
ρ h dx2 +mQ−1q̈ + Ω̇×mx + Ω× (Ω×mx)

+mgΣ−
∫∫

Sw

P (X, Y, Z, t)nb dS = 0 .
(7.15)

The terms including the pressure field P (X, Y, Z, t) in the hydrodynamic equations of motion
(7.14) and (7.15) are the moments and forces respectively acting on the rigid-body due to
interactions with exterior potential-flow water waves. In summary, the equations of motion for
the exterior potential-flow water waves in V (t) are (7.1) with the contact boundary condition
(7.13). The equations of motion for the interior fluid of the rigid-body are the generalized
Green–Naghdi equations (3.19) and (3.20) and the conservation of mass equation (2.8)
which are dynamically coupled to the hydrodynamic equations of motion for the floating
rigid-body (7.14) and (7.15). The evolutionary system for the rigid-body motion is completed
by (6.20) and (6.21).

If we take the variations in the variational principle (7.5), the interior fluid of the floating
rigid-body in the coupled (exterior potential-flow water waves + floating rigid-body motion
+ interior weakly dispersive fluid sloshing) system would be described by the generalized
Whitham equations (5.25), (5.26) and (5.27). Moreover, the first integral on the left-hand side
in the equations of motion for the rigid-body motion (7.14) and (7.15) would be described in
terms of the interior shallow water velocity potential Φ (x, y, t).

8 Concluding remarks

The paper is devoted to the derivation of a reduced shallow-water variational principle for dy-
namic coupling between a rigid-body, which is free to undergo three-dimensional rotational
and traditional motions, and its interior weakly dispersive nonlinear shallow-water sloshing.
The reduced variational principle gives rise to a new Green-Naghdi model for shallow-water
sloshing in two-horizontal space dimensions with 3–D rotation vector and translations. Ne-
glecting the higher-order dispersive terms in the generalized Green–Naghdi model gives rise
to a new set of shallow-water equations in three-dimensional rotating and translating coor-
dinates, which is the variational analogue of the surface shallow-water equations derived by
Alemi Ardakani & Bridges 2011.

The material conservation of potential-vorticity for the generalized Green–Naghdi equa-
tions and the variational shallow-water equations is studied. A new generalization of the
Whitham equations (Boussinesq-like evolution equations) for fluid sloshing in a vessel un-
dergoing prescribed rigid-body motion in three dimensions is derived by applying the as-
sumption of zero-potential-vorticity flow to the fluid component of the reduced variational
principle in Eulerian coordinates.
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The variational principles are extended to develop a mathematical theory for the problem
of three-dimensional interactions between potential-flow water waves and a freely floating
rigid-body dynamically coupled to its interior shallow-water sloshing, which can be described
by the generalized Green–Naghdi equations, or by the variational shallow-water equations,
or by the generalized Whitham equations. The exact nonlinear hydrodynamic equations
of motion for the angular momentum and linear momentum of the floating rigid-body are
derived.

The presented variational frameworks for the coupled (rigid-body motion + interior weakly
dispersive shallow-water sloshing) system and for the coupled (exterior water waves + rigid-
body motion + interior weakly dispersive shallow-water sloshing) interactions can be a start-
ing point in constructing symplectic and structure-preserving numerical schemes for long-
time computational modelling of these highly-coupled nonlinear systems. Gidel et al. (2017)
developed a variational Galerkin finite-element method with a second-order Störmer–Verlet
temporal scheme for the Benney–Luke equations (Benney & Luke 1964). These numerical
methods can be extended for computational modelling of the variational frameworks pre-
sented in this paper.

— Appendix —

A Proof of (2.10) and the entries of ISWf
Restriction of the second term in (1.12) to columnar motion gives

∫∫∫ h0

0

ẋ ·
(
Ω× (x + d) + QT q̇

)
ρ da =

∫∫∫ h0

0

[
ẋ

(
Ω2

(
h

h0
c+ d3

)
− Ω3 (y + d2)

)
+ẏ

(
Ω3 (x+ d1)− Ω1

(
h

h0
c+ d3

))
+

ḣ

h0
c (Ω1 (y + d2)− Ω2 (x+ d1))

]
ρ dc da2

+

∫∫∫ h0

0

(
ẋ q̇ ·Qe1 + ẏ q̇ ·Qe2 +

ḣ

h0
c q̇ ·Qe3

)
ρ dc da2

=

∫∫ (
ẋ
(
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2)

)
+ ẏ

(
Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

))
+1

2
ḣ (Ω1 (y + d2)− Ω2 (x+ d1)) + ẋ q̇ ·Qe1 + ẏ q̇ ·Qe2 + 1

2
ḣ q̇ ·Qe3

)
ρ h0 da2

=

∫∫ 〈
Ẋ , Ω× (X + d) + Q−1q̇

〉
ρ h0 da2 ,

(A.1)
which recovers (2.10). The symmetric matrix ISWf is the reduced shallow water mass mo-
ment of inertia of the interior fluid relative to the point of rotation, i.e the origin of the body
frame xb, with entries given by

ISWf 11 =

∫∫ (
(y + d2)

2 +
1

3
h2 + d23 + d3h

)
ρ h0 da2

=

∫∫ (
(y + d2)

2 +
1

3
h2 + d23 + d3h

)
ρ h dx2 ,

ISWf 12 =

∫∫
− (x+ d1) (y + d2) ρ h0 da2 =

∫∫
− (x+ d1) (y + d2) ρ h dx2 ,

ISWf 13 =

∫∫
− (x+ d1)

(
1
2
h+ d3

)
ρ h0 da2 =

∫∫
− (x+ d1)

(
1
2
h+ d3

)
ρ h dx2 ,
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ISWf 22 =

∫∫ (
(x+ d1)

2 +
1

3
h2 + d23 + d3h

)
ρ h0 da2

=

∫∫ (
(x+ d1)

2 +
1

3
h2 + d23 + d3h

)
ρ h dx2 ,

ISWf 23 =

∫∫
− (y + d2)

(
1
2
h+ d3

)
ρ h0 da2 =

∫∫
− (y + d2)

(
1
2
h+ d3

)
ρ h dx2 ,

ISWf 33 =

∫∫ (
(x+ d1)

2 + (y + d2)
2) ρ h0 da2 =

∫∫ (
(x+ d1)

2 + (y + d2)
2) ρ h dx2 .

(A.2)

Differentiating ISWf , in the Lagrangian particle-path setting, with respect to time and trans-
forming the result to Eulerian coordinates gives

İSWf 11 =

∫∫ (
2v (y + d2)− h (ux + vy)

(
2

3
h+ d3

))
ρ h dx2 ,

İSWf 12 =

∫∫
− (v (x+ d1) + u (y + d2)) ρ h dx2 ,

İSWf 13 =

∫∫
−
(
u
(
1
2
h+ d3

)
− 1

2
h (ux + vy) (x+ d1)

)
ρ h dx2 ,

İSWf 22 =

∫∫ (
2u (x+ d1)− h (ux + vy)

(
2

3
h+ d3

))
ρ h dx2 ,

İSWf 23 =

∫∫
−
(
v
(
1
2
h+ d3

)
− 1

2
h (ux + vy) (y + d2)

)
ρ h dx2 ,

İSWf 33 =

∫∫
2 (u (x+ d1) + v (y + d2)) ρ h dx2 .

(A.3)

B Proof of δh in (3.2) and the variational identity (3.3)

The following expressions are given by Miles & Salmon (1985), which are reviewed here:
δh = −h0

J
J−1δJ = −h ∂ (a, b)

∂ (x, y)

(
∂ (δx, y)

∂ (a, b)
+
∂ (x, δy)

∂ (a, b)

)
= −h

(
∂ (δx, y)

∂ (x, y)
+
∂ (x, δy)

∂ (x, y)

)
= −h

(
∂δx

∂x
+
∂δy

∂y

)
= −h∇2 · δx2 .

(B.1)

Hence, the following variational identity can be concluded
∫∫

F δh ρ h0 da db =

∫∫
F δh ρ h dx dy =

∫∫
−F h2∇2 · δx2 ρ dx dy

=

∫∫
∇2

(
F h2

)
· δx2 ρ dx dy =

∫∫
1

h
∇2

(
F h2

)
· δx2 ρ h0 da db .

(B.2)

Note that from the first to the second line in (B.2), we integrate by parts and impose the
boundary conditions δx2 = 0 at the endpoints in space.

C Proof of (3.8), (3.15), and (3.16)

Derivation of the variations in (3.8) is given below:∫ t2

t1

∫∫ 〈
δX , −Ω̇× (X + d)

〉
ρ h0 da2 dt =
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=

∫ t2

t1

∫∫ (〈
δx2 ,

[
Ω̇3 (y + d2)− Ω̇2

(
1
2
h+ d3

)
Ω̇1

(
1
2
h+ d3

)
− Ω̇3 (x+ d1)

]〉
+1

2

(
Ω̇2 (x+ d1)− Ω̇1 (y + d2)

)
δh
)
ρ h0 da2 dt

=

∫ t2

t1

∫∫ 〈
δx2 ,

[
Ω̇3 (y + d2)− Ω̇2

(
1
2
h+ d3

)
Ω̇1

(
1
2
h+ d3

)
− Ω̇3 (x+ d1)

]〉
ρ h0 da2 dt

+

∫ t2

t1

∫∫ 〈
δx2 ,

1
2

1

h
∇2

(
h2
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
))

︸ ︷︷ ︸
↪→ using the variational identity (3.3)

〉
ρ h0 da2 dt

=

∫∫∫ 〈
δx2 ,

 Ω̇3 (y + d2) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hx − Ω̇2d3

−Ω̇3 (x+ d1) +
(

Ω̇2 (x+ d1)− Ω̇1 (y + d2)
)
hy + Ω̇1d3

〉 ρ h0 da2 dt .

(C.1)
Derivation of the variations in (3.15) is given below:

δ

∫ t2

t1

∫∫
−g
〈
ẑ , Q (X + d) + q

〉
ρ h0 da2 dt

= δ

∫ t2

t1

∫∫
−g
〈

Σ , X + d + Q−1q

〉
ρ h0 da2 dt with Σ = Q−1ẑ

=

∫ t2

t1

∫∫ 〈
δX , −gΣ

〉
ρ h0 da2 dt

=

∫ t2

t1

∫∫ (〈
δx2 , −g

[
e3 ·Qe1

e3 ·Qe2

]〉
− 1

2
g e3 ·Qe3 δh

)
ρ h0 da2 dt

=

∫ t2

t1

∫∫ 〈
δx2 , −g

[
e3 ·Qe1

e3 ·Qe2

]
− g

[
e3 ·Qe3 hx

e3 ·Qe3 hy

]
︸ ︷︷ ︸
using (3.3)

〉
ρ h0 da2 dt .



(C.2)

Taking the variations δx2 and δh of the mass moment of inertia of the interior shallow water
in the action integral (2.15), assuming that Ω is constant, gives

δ

∫ t2

t1

1
2

〈
Ω , ISWf Ω

〉
dt =

∫ t2

t1

〈
Ω , δISWf Ω

〉
dt =

∫ t2

t1

∫∫ 〈
δx2 ,[

(x+ d1) (Ω2
2 + Ω2

3)− (y + d2) Ω1Ω2 −
(
1
2
h+ d3

)
Ω1Ω3

(y + d2) (Ω2
1 + Ω2

3)− (x+ d1) Ω1Ω2 −
(
1
2
h+ d3

)
Ω2Ω3

]〉
ρ h0 da2 dt

+

∫ t2

t1

∫∫ (
1
2

(
2

3
h+ d3

)(
Ω2

1 + Ω2
2

)
− 1

2
(x+ d1) Ω1Ω3

−1
2

(y + d2) Ω2Ω3

)
δh ρ h0 da2 dt =

∫ t2

t1

∫∫ 〈
δx2 ,[

(x+ d1) (Ω2
2 + Ω2

3)− (y + d2) Ω1Ω2 −
(
1
2
h+ d3

)
Ω1Ω3

(y + d2) (Ω2
1 + Ω2

3)− (x+ d1) Ω1Ω2 −
(
1
2
h+ d3

)
Ω2Ω3

]〉
ρ h0 da2 dt

+

∫ t2

t1

∫∫ 〈
dx2 ,

1

h
∇2

(
h2
[
1
2

(
2

3
h+ d3

)(
Ω2

1 + Ω2
2

)
− 1

2
(x+ d1) Ω1Ω3

−1
2

(y + d2) Ω2Ω3

])〉
ρ h0 da2 dt ,



(C.3)

which leads to (3.16).
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D Proof of (4.4)

The variational derivatives in (4.2) defining the canonical momenta P for the shallow-water
Lagrangian (2.15) are taken using a mass-weighted inner product in the Lagrangian particle-
path setting as follows:

δLSW/GN =

∫∫ (〈
δL̂

δX
, δX

〉
+

〈
δL̂

δẊ
, δẊ

〉)
ρ h0 da2 . (D.1)

The first component in (D.1) reads
∫∫ 〈

δL̂

δX
, δX

〉
ρ h0 da2 =

∫∫ (〈
δL̂

δx2

, δx2

〉
+
δL̂

δh
δh

)
ρ h0 da2

=

∫∫ 〈
δL̂

δx2

+
1

h
∇2

(
h2
δL̂

δh

)
, δx2

〉
ρ h0 da2 (using (3.3)) ,

(D.2)

and the second component in (D.1) takes the form∫∫ 〈
δL̂

δẊ
, δẊ

〉
ρ h0 da2 =

∫∫ (〈
δL̂

δẋ2

, δẋ2

〉
+
δL̂

δḣ
δḣ

)
ρ h0 da2 . (D.3)

But the second component in (D.3) reads

∫∫
δL̂

δḣ
δḣ ρ h0 da2 =

∫∫
h
δL̂

δḣ
δḣ ρ dx2

=

∫∫
h
δL̂

δḣ

= δḣ︷ ︸︸ ︷(
−ḣ∇2 · δx2 − h∇2 · δẋ2

)
ρ dx2

=

∫∫ (〈
∇2

(
hḣ

δL̂

δḣ

)
, δx2

〉
+

〈
∇2

(
h2
δL̂

δḣ

)
, δẋ2

〉)
ρ dx2︸ ︷︷ ︸

↪→

{
integrating by parts and imposing the boundary conditions
δx = δẋ = 0 at x = 0, L1 and δy = δẏ = 0 at y = 0, L2

=

∫∫ (〈
1

h
∇2

(
hḣ

δL̂

δḣ

)
, δx2

〉
+

〈
1

h
∇2

(
h2
δL̂

δḣ

)
, δẋ2

〉)
ρ h0 da2 ,

(D.4)

and hence (D.3) modifies to
∫∫ 〈

δL̂

δẊ
, δẊ

〉
ρ h0 da2 =

∫∫ (〈
1

h
∇2

(
hḣ

δL̂

δḣ

)
, δx2

〉
+

〈
δL̂

δẋ2

+
1

h
∇2

(
h2
δL̂

δḣ

)
, δẋ2

〉)
ρ h0 da2 .

(D.5)

Now substituting (D.2) and (D.5) into (D.1) recovers (4.4).
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E Derivation of the generalized Whitham equations (5.25),
(5.26) and (5.27) for fluid sloshing in three-dimensional
rotating and translating coordinates

Hamilton’s variational principle (5.23), for the generalized Whitham equations, for the varia-
tions δh and δΦ takes the form

δLGW (h,Φ) =

∫∫∫ (
1

2

(
h∇2

2Φ
)2
δh+ 1

2
h
(
Ω2Φx − Ω1Φy

)
δh− 1

2
h

[
Ω2

−Ω1

]
·R2 δh

+h

(
R2 −

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

])
· δR2

+

(
1
2
h2∇2 · δR2 + h∇2 ·R2 δh− h∇2

2Φ δh

)(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
+

[
1
2
h
(
Ω2q̇ ·Qe1 − Ω1q̇ ·Qe2 − ge3 ·Qe3

)
− Φt − 1

2
∇2Φ · ∇2Φ + 1

2
R2 ·R2

− (R2 −∇2Φ) ·
[

Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]
+ 1

2
q̇ · q̇

+QT q̇ ·Ω× (X + d)− g (Q (X + d) + q) · ẑ + 1
2

(x+ d1)
2 (Ω2

2 + Ω2
3

)
+1

2
(y + d2)

2 (Ω2
1 + Ω2

3

)
+ 1

2
(h+ d3)

2 (Ω2
1 + Ω2

2

)
− (x+ d1) (y + d2) Ω1Ω2

− (x+ d1) (h+ d3) Ω1Ω3 − (y + d2) (h+ d3) Ω2Ω3

]
δh− h∇2Φ · ∇2δΦ− h δΦt

+
1

3
h3∇2

2Φ∇2
2δΦ + h∇2δΦ ·

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]
−1

2
h2∇2 · ∇2δΦ

(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

))
ρ dx2 dt = 0 ,

(E.1)
where

δR2 =
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2δh . (E.2)

Substituting for R2 and δR2 in the second line and the first term in the third line of (E.1) gives

∫∫∫
h

(
R2 −

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

])
· δR2 ρ dx2 dt

+

∫∫∫
1
2
h2∇2 · δR2

(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
ρ dx2 dt

=

∫∫∫ ((
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2
h∇2h · ∇2δh

−h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

) [ Ω2

−Ω1

]
· ∇2δh

+1
2
h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2∇2 · ∇2δh

)
ρ dx2 dt .

(E.3)
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With Green’s first identity, we may write

∫∫∫ ((
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2
h∇2h

−h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

) [ Ω2

−Ω1

])
· ∇2δh ρ dx2 dt

=

∫∫∫ (
4h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
(Ω2hx − Ω1hy)

−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (∇2h · ∇2h+ h∇2
2h
)

−
(
Ω2

1 + Ω2
2

)
h2
)
δh ρ dx2 dt

+

∫∫
h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2∇2h · nb δh ρ ds dt

−
∫∫

h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

) [ Ω2

−Ω1

]
· nb δh ρ ds dt ,

(E.4)

and 

∫∫∫
1
2
h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2∇2 · ∇2δh ρ dx2 dt

=

∫∫∫ (
− 4h

(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
(Ω2hx − Ω1hy)

+
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (∇2h · ∇2h+ h∇2
2h
)

+
(
Ω2

1 + Ω2
2

)
h2
)
δh ρ dx2 dt

−
∫∫

h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2∇2h · nb δh ρ ds dt

+

∫∫
h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

) [ Ω2

−Ω1

]
· nb δh ρ ds dt

+

∫∫
1
2
h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2∇2δh · nb ρ ds dt ,

(E.5)

where nb is the outward-pointing normal to the boundary of the rigid-body relative to the body
frame xb. Now, substituting (E.4) and (E.5) in (E.3), and taking into account that∇2δh·nb = 0
along the boundaries of the rigid-body, i.e. applying symmetric boundary conditions for the
wave height h (x, y, t) for the interior fluid sloshing, the right-hand side in (E.3) vanishes.
Hence, after substituting for R2, the variational principle (E.1) for the variation δh takes the
form 

∫∫∫ 〈
hw2 , ∇2

(
1
2

(
h∇2

2Φ
)2 − 1

2
∇2Φ · ∇2Φ− Φt

+2h (−Ω2hx + Ω1hy)
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
+
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (1
2
∇2h · ∇2h+ h∇2

2h
)

−h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2

2Φ

+
(
Ω2 (h+ d3)− Ω3 (y + d2) + q̇ ·Qe1

)
Φx

+
(
Ω3 (x+ d1)− Ω1 (h+ d3) + q̇ ·Qe2

)
Φy+
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+1
2

(
Ω2

1 + Ω2
2

)
h2 + 1

2
(q̇ ·Qe3)

2 + q̇ ·Qe3

(
Ω1 (y + d2)− Ω2 (x+ d1)

)
+1

2
Ω2

2 (x+ d1)
2 + 1

2
Ω2

1 (y + d2)
2 − (x+ d1) (y + d2) Ω1Ω2

−g
(
Q
(
X̂ + d

)
+ q
)
· ẑ
)〉

ρ dx2 dt = 0 ,

(E.6)

in which δh is replaced with −∇2 · (hw2) from (3.27), the resulting expression is inte-
grated by parts, and the boundary conditions w1 (0, y, t) = w1 (L1, y, t) = 0 and w2 (x, 0, t) =
w2 (x, L2, t) = 0 are imposed. Now, since w2 is arbitrary, it can be inferred that

∇2

(
Φt + 1

2
∇2Φ · ∇2Φ− 1

2
(h∇2

2Φ)
2 −

(
Ω2 (h+ d3)− Ω3 (y + d2) + q̇ ·Qe1

)
Φx

−
(
Ω3 (x+ d1)− Ω1 (h+ d3) + q̇ ·Qe2

)
Φy

+h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2

2Φ

−2h (Ω1hy − Ω2hx)
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (1
2
∇2h · ∇2h+ h∇2

2h
)

−1
2
Ω2

1

(
(y + d2)

2 + h2
)
− 1

2
Ω2

2

(
(x+ d1)

2 + h2
)

+Ω1Ω2 (x+ d1) (y + d2)− q̇ ·Qe3

(
Ω1 (y + d2)− Ω2 (x+ d1)

)
−1

2
(q̇ ·Qe3)

2 + g
(
Q
(
X̂ + d

)
+ q
)
· ẑ
)

= 0 .

(E.7)

Integrating this equation in space gives

Φt + 1
2
∇2Φ · ∇2Φ− 1

2

(
h∇2

2Φ
)2 − (Ω2 (h+ d3)− Ω3 (y + d2) + q̇ ·Qe1

)
Φx

−
(
Ω3 (x+ d1)− Ω1 (h+ d3) + q̇ ·Qe2

)
Φy

+h
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2

2Φ

−2h (Ω1hy − Ω2hx)
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)2 (1
2
∇2h · ∇2h+ h∇2

2h
)

−1
2
Ω2

1

(
(y + d2)

2 + h2
)
− 1

2
Ω2

2

(
(x+ d1)

2 + h2
)

+Ω1Ω2 (x+ d1) (y + d2)− q̇ ·Qe3

(
Ω1 (y + d2)− Ω2 (x+ d1)

)
−1

2
(q̇ ·Qe3)

2 + g
(
Q
(
X̂ + d

)
+ q
)
· ẑ = B (t) ,

(E.8)

where B (t) can be absorbed into Φ (x, y, t), which recovers the evolution equation (5.25).
To derive a second evolutionary equation which results from δΦ variation terms in the

variational principle (E.1), we first note that∫∫∫
−h δΦt ρ dx2 dt =

∫∫∫
ht δΦ ρ dx2 dt , (E.9)

with fixed endpoints δΦ (t1) = δΦ (t2) = 0. With Green’s first identity, we may write∫∫∫
−h∇2Φ · ∇2δΦ ρ dx2 dt =

∫∫∫ (
∇2h · ∇2Φ + h∇2

2Φ
)
δΦ ρ dx2 dt

−
∫∫

h∇2Φ · nb δΦ ρ ds dt ,

 (E.10)
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and 

∫∫∫
h

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]
· ∇2δΦ ρ dx2 dt

=

∫∫∫ (
−
(
Ω2 (h+ d3)− Ω3 (y + d2) + q̇ ·Qe1

)
hx

−
(
Ω3 (x+ d1)− Ω1 (h+ d3) + q̇ ·Qe2

)
hy

)
δΦ ρ dx2 dt

+

∫∫
h

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]
· nb δΦ ρ ds dt .

(E.11)

With Green’s second identity, we may write
∫∫∫

1

3
h3∇2

2Φ∇2
2δΦ ρ dx2 dt =

∫∫∫
∇2

2

(
1

3
h3∇2

2Φ

)
δΦ ρ dx2 dt

+

∫∫
1

3
h3∇2

2Φ∇2δΦ · nb ρ ds dt−
∫∫

1

3
∇2

(
h3∇2

2Φ
)
· nb δΦ ρ ds dt ,

(E.12)

and 

∫∫∫
−1

2
h2∇2 · ∇2δΦ

(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
ρ dx2 dt

=

∫∫∫ (
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

) (
∇2h · ∇2h+ h∇2

2h
)

+2Ω2hhx − 2Ω1hhy

)
δΦ ρ dx2 dt

+

∫∫
h

[(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hx − 1

2
Ω2h(

Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hy + 1

2
Ω1h

]
· nb δΦ ρ ds dt

−
∫∫

1
2
h2
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
∇2δΦ · nb ρ ds dt .

(E.13)

Taking into account the shallow water scaling (5.22), if we only retain terms of order one in
(5.19), we obtain

u2 =∇2Φ +

[
Ω3 (y + d2)− q̇ ·Qe1

−Ω3 (x+ d1)− q̇ ·Qe2

]
. (E.14)

Hence, from the boundary conditions u (0, y, t) = u (L1, y, t) = 0 and v (x, 0, t) = v (x, L2, t) =
0 and the approximation (E.14), it can be inferred that ∇2δΦ · nb = 0 along the boundaries,
i.e. on the wetted surface S (t), and so the second term on the right-hand side of (E.12), and
the last line in (E.13) vanishes. Now, substituting (E.9), (E.10), (E.11), (E.12) and (E.13) in
(E.1), the variational principle (E.1) for the variation δΦ takes the form

δLGW =

∫∫∫ (
ht +∇2 · (h∇2Φ) +∇2

2

(
1

3
h3∇2

2Φ

)
−
(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)(
∇2h · ∇2h+ h∇2

2h
)

+ (Ω2 (h− d3) + Ω3 (y + d2)− q̇ ·Qe1)hx

− (Ω3 (x+ d1) + Ω1 (h− d3) + q̇ ·Qe2)hy

)
δΦ ρ dx2 dt+
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+

∫∫ (
− h∇2Φ−∇2

(
1

3
h3∇2

2Φ

)
+h

[
Ω2

(
1
2
h+ d3

)
− Ω3 (y + d2) + q̇ ·Qe1

Ω3 (x+ d1)− Ω1

(
1
2
h+ d3

)
+ q̇ ·Qe2

]

+h

[(
Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hx − 1

2
Ω2h(

Ω1 (y + d2)− Ω2 (x+ d1) + q̇ ·Qe3

)
hy + 1

2
Ω1h

])
· nb δΦ ρ ds dt = 0 .

(E.15)
From (E.15), it can be concluded that invariance of LGW with respect to a variation in the
velocity potential Φ yields the evolution equation (5.26). Moreover, the invariance of LGW

with respect to a variation in the velocity potential Φ along the wetted surface S (t) recovers
the rigid-wall boundary conditions (5.27).
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