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Abstract

We investigate the dynamics of a closed-loop make-to-stock supply chain consisting of a remanu-
facturer and a manufacturer with a first-order vector auto-regressive demand and return process.
Remanufactured products, considered as-good-as-new, partially satisfy market demand; newly
manufactured products fill the remainder. The manufacturer and the remanufacturer cooperate
to minimize the sum of the 1) capacity costs at the remanufacturing and manufacturing processes,
2) finished goods inventory holding and backlog cost, 3) cost to dispose of returned items not re-
manufactured and 4) collection cost. The remanufacturer inspects returned products in a triage
process. Only a predetermined fraction (the triage yield rate) of the returns is re-manufactured. We
investigate the impact of the triage yield on the system-wide cost. In a cost-sensitive setting, when
the unit cost of remanufacturing is lower than the unit cost of manufacturing, it seems reasonable
to conjecture that higher triage yields lead to lower system-wide costs. We show the system-wide
cost is always convex in the triage yield rate, suggesting system-wide costs could actually increase
in the triage yield rate, even when the unit remanufacturing cost is lower than the manufacturing
cost. This yield rate paradox originates from the increased yields creating additional variability in
the manufacturing activities. By investigating boundary conditions we find the minimal disposal
penalty required to entice the remanufacturer to process all returns.
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1. Introduction

The return and remanufacturing of used products is feasible and socially desirable, but not al-
ways economic. While “the first rule in being sustainable is being profitable”1, Porter and van der
Linde (1995) argue cost-sensitive companies are concerned with the conflict between environmen-
tal stewardship and economic performance. We aim to identify when a profit maximising company
would voluntarily re-manufacture returned products in a closed-loop supply chain (CLSC).

Ferguson and Toktay (2006) argue that often cost-sensitive companies may choose not to re-
manufacture due to 1) internal cannibalization and 2) the cost associated with remanufacturing.
We focus on the second concern and assume perfect substitution between newly manufactured
and re-manufactured products. Assuming perfect-substitution is common when investigating the
dynamics of CLSC (e.g. Tang and Naim, 2004; Zhou and Disney, 2006; Hosoda et al., 2015; Zhou
et al., 2017; Hosoda and Disney, 2018; Ponte et al., 2019, 2020b). Perfect-substitution is also
assumed in economic studies using game theory approaches (e.g. Savaskan et al., 2004; Atasu et al.,
2013). While perfect-substitution is not applicable in all settings, Goltsos et al. (2019) argue it is in
some. For example, Suntory, one of the largest beverage companies in Japan, has developed bottle-
to-bottle remanufacturing technology for good-as-new PET bottles (Suntory, 2019). In contrast,
Kainuma et al. (2017) study the impact of demand for re-manufactured products cannibalising the
demand for new products in a Bass Diffusion model. This is one of the few CLSC studies that does
not exploit the good-as-new assumption.

To investigate the economic concern, we assume, as did Savaskan et al. (2004) and Kumar Jena
and Sarmah (2014), that unit remanufacturing costs are lower than the unit manufacturing costs.
One may think all returned products would be re-manufactured if the remanufacturing cost was
less than the manufacturing costs under the perfect substitution assumption. However, sometimes
reasonable conjectures underpinned by linear, forward, supply chain knowledge are misleading in
complex CLSC settings. For example, consider the so-called lead-time paradox in CLSC research
(van der Laan et al., 1999; Inderfurth and van der Laan, 2001; Zanoni et al., 2006; Hosoda et al.,
2015; Hosoda and Disney, 2018), which describes the case when a longer remanufacturing lead-
time reduces system-wide costs. This is a paradox because, in forward supply chains, shorter

lead-times typically reduce costs.
We prove the system-wide cost is convex in the yield rate, revealing another paradox exists

in CLSCs; under some economic conditions, an incentive to re-manufacture all, or even some,
of the returns does not always exist, even if the unit remanufacturing cost is lower than the cost
to manufacture new items. Identifying this yield rate paradox is the major contribution of our

1Ellen MacArthur Foundation, “Case Study: Aquafil Group” (PDF file), downloaded from Econyl website, [https:
//www.econyl.com/assets/uploads/EllenMacArthur case-study-aquafil-group.pdf], accessed May 27, 2020.
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research. This finding indicates that cost-sensitive organisations face a conflict between economic
performance and sustainability, even if remanufacturing is technically feasible. We show that the
1) penalty cost for disposal (perhaps charged by municipal authorities), 2) expected returns, and 3)
unit remanufacturing cost have a significant impact on the nature of the system-wide cost function.
The minimum threshold unit disposal cost, large enough to entice complete remanufacturing of
returns without creating an unnecessary economic burden, is investigated. Finally, we propose a
set of actions that leads the system to a sustainable and economically feasible status.

Our paper is structured as follows: In §2 we review related literature. In §3 we develop our
demand and return model and define our system-wide cost function and present some fundamental
properties of the demand and return process. §4 introduces our closed-loop replenishment pol-
icy and analytically investigates our system-wide objective cost function. §5 presents numerical
examples. §6 considers the case of not sharing remanufacturing information within a CLSC. We
conclude and consider potential future research directions in §7.

2. Background and related literature

In dynamic CLSC research, some authors argue larger returns reduce costs associated with
production, remanufacturing and/or inventory (Zhou and Disney, 2006; Turrisi and Bruccoleri,
2013; Cannella et al., 2016; Zhou et al., 2017), suggesting little regulation or legislation of CLSCs
is necessary. Others argue government regulation and legislation is required to induce companies to
collect and re-manufacture used products (Tang and Zhou, 2012; Murakami et al., 2015). Hassini
et al. (2012) assert many companies remain reluctant to adopt sustainability practices as they see it
as an extra operational cost. The major concern seems to be the potential for higher remanufacturing
and inventory costs in their CLSC. This concurs with research that concludes the economic impact
of returns on CLSCs performance could be negative (Hosoda and Disney, 2018; Ponte et al., 2020b,
2019; Gavidel and Rickli, 2019). For example, Gavidel and Rickli (2019) argue that extremely
high return volumes reduce the stability of the remanufacturing system and can increase cost if not
efficiently managed.

Under independently and identically distributed (iid) demand and uncorrelated returns, Ponte
et al. (2020a) investigate the impact of two different information sharing schemes within a CLSC
on the system-wide cost: information about the market pipeline and the remanufacturing pipeline.
They show sharing information on the quantity of product being of re-manufactured lowers the
system-wide cost, especially with high return rates, even in the absence of information about the
quantity of product in the market. Herein, we assume that full information about the remanufactur-
ing pipeline is shared. We will show sharing remanufacturing information allows for the tightest
possible control of the serviceable inventory.

Assuming auto- and cross-correlated demand and returns exist with a random yield rate at the
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remanufacturer, Hosoda and Disney (2018) show that larger expected returns can increase CLSC
inventory costs. Ponte et al. (2020b) investigate the relationship between inventory performance
and return yield when demand and returns are partially cross-correlated iid random processes. They
show that the relationship is a U-shaped; higher return yields lead to higher inventory costs.

Ponte et al. (2019) assert these conflicting conclusions originate in the modelling assumptions
made about the market demand and the return processes. Most research assumes simple iid pro-
cesses for demand and returns, with perfect positive correlation between them. This setting tends
to result in over-simplistic conclusions. Consider the following logic; under perfect positive cor-
relation between demand and returns, when demand is high (low), then the returns are also high
(low) and such high (low) returns are matched with demand. These two assumptions, the perfect
positive correlation and the perfect substitution, generates the situation where in order to satisfy
high demand, the manufacturer prefers a higher return rate to a lower return rate. This is especially
true if the cost of remanufacturing is lower than the cost of manufacturing. The returns can be
used to absorb market demand fluctuations, Zhou and Disney (2006). To quantify the impact of the
perfect correlation assumption, Ponte et al. (2019) use partially cross-correlated iid processes for
demand and returns. They conclude the dynamic behaviour of a CLSC is strongly influenced by
the degree of the cross-correlation between demand and returns. A similar argument can be seen in
Hosoda et al. (2015), Braz et al. (2018), and Hosoda and Disney (2018).

The CLSC field is dominated by research that assumes iid demand and returns, (see Tang and
Naim, 2004; Zhou and Disney, 2006; Kumar Jena and Sarmah, 2014; Zhou et al., 2017; Hosoda
et al., 2015; Ponte et al., 2020b, 2019, for example). In contrast, traditional supply chain research
often assumes auto-correlated demands are present (see Kahn, 1987; Lee et al., 2000; Chen et al.,
2000; Hosoda and Disney, 2006; Gaalman and Disney, 2009; Ali et al., 2017, for example). To
the best of our knowledge, the first CLSC research relaxing the iid demand and returns assumption
is Hosoda and Disney (2018) who used a first order vector auto-regressive process, VAR(1), to
represent auto- and cross-correlated demand and returns in a CLSC setting. The VAR(1) model
is first proposed by Box and Tiao (1977) and has become an accepted model in forward supply
chain research since Kurata et al. (2007) first applied the VAR(1) model to a forward supply chain.
They consider the dynamics of a two echelon supply chain consisting of two manufacturers and a
supplier. Ratanachote (2011) studied a distribution network design problem with the demands at
different distribution centres being represented by a VAR(1) process. Boute et al. (2013) consider
the capacity and inventory costs in a multiple product situation that share the same production
facility. Raghunathan et al. (2017) identify how a super bullwhip effect was produced in a setting
with VAR(1) demands. The super bullwhip effect originated from the correlation between the two
noise processes, an effect that was also studied by Chaharsooghi and Sadeghi (2008). Sirikasemsuk
and Luong (2017) investigated the dynamics of a two-echelon forward supply chain with VAR(1)
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demand concluding that the performance of the supply chain largely depends on the values of auto-
and cross-coefficients. Hosoda and Disney (2018) consider a VAR(1) demand and return process
in a CLSC highlighting that not only the cross-correlation parameter, but also the auto-correlation
parameters have a significant impact on the production and inventory costs. We continue this
VAR(1) modelling approach.

Another issue under-represented in the CLSC literature is worth consideration. To quantify
the impact of returns, many authors adopt performance indicators such as the bullwhip ratio (the
variance of production divided by the variance of market demand) and/or the net stock amplification
ratio, NSAmp (the variance of net stock levels divided by the variance of market demand). See,
Braz et al. (2018) for a recent literature review on the bullwhip effect in CLSC, Adenso-Dı̀az et al.
(2012) for a thoughtful summary of the early bullwhip research in CLSCs, and Tang and Naim
(2004), Zanoni et al. (2006), Hosoda et al. (2015), Adenso-Dı̀az et al. (2012), Cannella et al. (2016),
and Zhou et al. (2017) for specific studies. In linear forward supply chain research, these indicators
(bullwhip and NSAmp) are commonly used as a surrogate for actual supply chain costs. However,
to the best of our knowledge, these measures have not been verified as good indicators of costs
in CLSC settings. Indeed, applying bullwhip and NSAmp indicators in CLSC settings is rather
questionable under the perfect substitution assumption. Consider the bullwhip ratio as an example.
With perfect-substitution the demand from the market is met jointly by newly produced and re-
manufactured products. Thus, the expected demand for the new products is less than the expected
market demand. We use the term net demand for new product demand. The new production orders
are driven only by the net demand, not the market demand. Furthermore, as we show later, the
variance of the net demand could be greater than the market demand, even when the mean of the
net demand is less than the mean of the market demand. Given these observations, should we
continue to use the variance of market demand in the denominators of the bullwhip and NSAmp
ratios? We leave this question for future debate; we focus herein on minimising an objective cost
function.

Assuming VAR(1) demand and return processes, we investigate whether a cost-sensitive system
will voluntarily re-manufacture all of the product returned from the market place. To evaluate the
performance of the system, we use the system-wide cost, the sum of the capacity costs at the
remanufacturing and manufacturing processes, a finished goods inventory holding and backlog
cost, the cost to dispose returned items that are not re-manufactured, and a collection cost. We
further assume that the triage yield rate is a decision variable and reveal the system-wide cost is
convex in the triage yield rate. This suggests that increased remanufacturing does not always result
in a lower system cost, even when the remanufacturing unit cost is lower than the manufacturing
unit cost. We call this phenomena the yield rate paradox. We investigate boundary conditions for
eliminating the yield rate paradox; our analysis culminates in a recommendation for the minimal

5

Hosoda, T., Disney, S.M. and Zhou, L., (2021), "The yield rate paradox in closed-loop supply chains", 
Accepted for publication in the International Journal of Production Economics.



Return

Disposal

Remanufacturing

Manufacturing

Serviceables

Demand
Inventory

Customer

L
Remanufacturing 
lead time

LManufacturing lead time

Triage

Shipping

Production
order

Newly produced
products

Remanufacturer

Manufacturer

x

Figure 1: Schematic of the model

disposal penalty required to entice the remanufacturer to process all returns.

3. Preliminary matters

To investigate the yield rate paradox, we develop a stylized model of a closed loop supply chain
system consisting of a manufacturer and a remanufacturer, see Fig. 1. Remanufactured products are
considered as-good-as-new and stocked to partially satisfy market demand; newly manufactured
products make up the remainder. In a recent structured literature review of bullwhip in CLSC,
Braz et al. (2018) found the good-as-new assumption to be common. The manufacturer and the
remanufacturer cooperate in order to minimize a system-wide cost. The system wide cost consists
of capacity costs at the remanufacturing and manufacturing processes, a finished goods inventory
holding and backlog cost, a disposal cost, and a collection cost. The returned products are pushed
to the remanufacturer and first inspected via a triage process. Tang and Naim (2004), Hosoda et al.
(2015), and Ponte et al. (2020b) also exploit the same assumption. A predetermined proportion of
the returns is then transferred to the remanufacturing process. This proportion, 0 ≤ (ξ ∈ R) ≤ 1,
is the triage yield and is considered to be a decision variable in our system. Figure 2 illustrates
the sequence of events at the manufacturer. At the beginning of time period t, the manufacturer
receives new items from its production line as well as serviced items from a remanufacturer. The
manufacturer then observes and satisfies the market demand. Unmet demand is backlogged. At the
end of each time period t, inventory is observed, re-manufactured returns and demand is tallied, and
the manufacturer places a production order to its own production line. This leads to the following
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Figure 2: Sequence of events at the manufacturer

balance equation for the serviceable inventory:

NSt = NSt−1 +ξ Rt−(L+1)+Pt−(L+1)−Dt . (1)

Here, NSt is the net stock level of finished goods at time t, L ∈ N0 is the remanufacturing lead
time, Rt−(L+1) is the returns received by the remanufacturer at time t− (L+ 1), ξ Rt−(L+1) is the
re-manufactured products received by the manufacturer at t that have survived the triage process
with a time-invariant predetermined yield rate2 of ξ and will be re-manufactured, Pt−(L+1) is the
production of new items completed after a production lead time of L and received by the manufac-
turer at t, and Dt is the demand in time period t. Notice, we assume the lead time to produce new
product is the same as the lead time to triage and re-manufacture the returns, greatly simplifying our
analysis. Furthermore, Hosoda and Disney (2018), show that equal lead times are both sustainable
and economically desirable; we leave the case of differing lead times for future research.

We adopt the VAR(1) process to represent the demand and returns. We assume the returns
are cross-correlated with the demand but not vice versa; this is a natural assumption as new items
entering the market will eventually be returned; but products cannot be returned before the demand
has occurred. The VAR(1) market demand and the return processes are defined as

Dt = µd +φd(Dt−1−µd)+ εd,t ,

Rt = µr +φr(Rt−1−µr)+θr(Dt−1−µd)+ εr,t .

Here, {µd, µr} are the mean demand and mean returns and {εd,t , εr,t} are iid random variables3

2One could consider ξ = min[x,Ξ], where x ∈ [0,1] is the proportion of the returns that are remanufacturable due
to quality and/or technical issues and Ξ ∈ [0,1] is the proportion of products that the system wishes to re-manufacture
for economic reasons. To avoid unnecessarily complex notation, we use ξ to represent the yield.

3We assume {εd,t , εr,t} are independent of each other as this greatly simplifies the exposition of our results, but we
do recognise that the full VAR model allows for these two noise processes to be cross-correlated.
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with zero means and constant standard deviations of {σd, σr}. We assume that εd,t and εr,t are
independent of each other. {φd, φr} are the auto-correlation coefficients for the demand and returns,
and θr is the cross-correlation coefficient between demand in the previous period and the mean
demand. We assume the manufacturer is aware of both Dt and Rt via an information sharing
mechanism. Stability conditions require that |φd|< 1 and |φr|< 1, Boute et al. (2013). Interestingly,
stability is independent of θr in our setting. While our analytical results hold for all stable systems,
we assume that 0 < {φd,φr} < 1 in our numerical analysis. This reflects the fact that most real
demand processes have positive auto-regressive parameters (Lee et al., 2000; Hosoda et al., 2008;
Ali et al., 2017).

Since we assume perfect substitution between new and re-manufactured products, the net de-

mand at time t (NDt) to be satisfied with newly produced products could be less than Dt . This net
demand and its expectation is given by

NDt = Dt−ξ Rt−(L+1),

and

E[ND] = µd−ξ µr ≤ µd,

where ξ Rt−(L+1) represents the quantity of the re-manufactured serviceable products received by
the manufacturer at the beginning of time t. The net demand concept helps us to understand the
dynamics of the system. Using the net demand, the inventory balance equation (1) simplifies to

NSt = NSt−1 +Pt−(L+1)−NDt . (2)

The demand process, Dt , has a variance of,

V[D] = σ
2
d/(1−φ

2
d ),

Box et al. (2008). Hosoda and Disney (2018) show the variance of the return process, Rt , is,

V[R] =
σ2

r
1−φ 2

r
+

θ 2
r (1+φdφr)

(1−φdφr)(1−φ 2
r )

V[D], (3)

the co-variance between the Dt and Rt , cov0, is

cov0 = E[(Dt−µd)(Rt−µr)] = φdθrV[D]/(1−φdφr),
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σr
covL+1
V[R] 2 covL+1

V[R]

1.92 0.25 0.5

1.20 0.5 1.0

0.56 1.0 2.0

Table 1: Feature values in Fig. 3

and the co-variance between Dt and Rt−(L+1), covL+1, is

covL+1 = E[(Dt−µd)(Rt−(L+1)−µr)] = φ
L+1
d cov0. (4)

Lemma 1 (Variance and nature of the net demand). The variance of the net demand, V[ND], is

V[ND] = V[D]−2ξ covL+1 +ξ
2V[R] = V[D]

(
1−

2ξ φ
L+2
d θr

1−φdφr

)
+ξ

2V[R].

When 0 ≤ ξ ≤ (2covL+1/V[R]), V[ND] ≤ V[D]. Furthermore, if 0 ≤ ξ < (covL+1/V[R]), V[ND]

is a convex and decreasing function in ξ . V[ND] is minimized when ξ = [min[covL+1/V[R],1]]+,

where [x]+ = max[0,x] is the maximum operator.

Proof. The proof is shown in Appendix A.

Remark. The yield rate ξ is a decision variable in our CLSC model that can be used to alter
the variance of the net demand, the demand faced by the manufacturer. Both the variance of the
demand and returns contribute towards the variance of the net demand. Increasing ξ enhances the
contribution of V[R], and dilutes the contribution of V[D], to V[ND].

Some numerical examples of Lemma 1 are shown in Fig. 3 and Table 1. Commonly used
parameter values across the all three cases are: φd = 0.6, φr = 0.3, θr = 0.2, σd = 3, and L = 0.
V[ND] > V[D] when (2covL+1/V[R])< ξ ≤ 1 holds, even though E[ND]< µd .
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3.1. Objective cost function

We assume the following cost function exists in our CLSC,

C[ξ ] =E[h[NSt ]
++b[−NSt ]

+]︸ ︷︷ ︸
Inventory cost

+E[uk+w[Pt− k]+]︸ ︷︷ ︸
Production capacity cost

+E[urkr +wr[ξ Rt− kr]
+]︸ ︷︷ ︸

Remanufacturing capacity cost

+ E[A×Rt ]︸ ︷︷ ︸
Collection cost

+E[G(1−ξ )Rt ]︸ ︷︷ ︸
Disposal cost

. (5)

Here h is a unit inventory holding cost and b is a unit inventory backlog cost. The manufacturer
(remanufacturer), has an installed capacity of k (kr). A unit labour cost of u (ur) is paid for each
unit of k, (kr); if the production (remanufacturing) volume is less than the capacity k (kr), the
labor stands idle and they still receive their nominal weekly wage of uk, (urkr). If the production
(remanufacturing) volume is greater than the installed capacity k, (kr), a unit cost of w> u (wr > ur)

is additionally paid for the excess. Furthermore, we assume remanufacturing related costs are less
than the new product production costs, i.e. u > ur and w > wr, to encourage the system to re-
manufacture as many returns as possible. The unit disposal and collection costs are represented by
G and A, respectively. The values of G and A do not increase/decrease with the scale of the returns,
as in Savaskan et al. (2004) and He et al. (2019). Normally distributed error terms in the VAR(1)
process, εd and εr, mean all the state variables are also normally distributed in our linear system.
This leads to the following four Lemmas where ϕ[·] and Φ[·] are the probability density function
and cumulative density function of the standard normal distribution respectively:

Lemma 2 (Inventory costs). With a safety stock of TNS? = zns
√
V[NS]: zns = Φ−1[b/(h+b)], the

minimised inventory related costs, C?
ns, are,

C?
ns = min

TNS
{E
[
h[NSt ]

++b[−NSt ]
+
]
}= (h+b) ϕ[zns]

√
V[NS]. (6)

Proof. The proof of Lemma 2 can be obtained using standard newsvendor techniques (Churchman
et al., 1957). A sketch of the proof is also provided in Appendix B.

Remark. The inventory related costs are independent of ξ .

Lemma 3 (Production costs). With a capacity of k? = µd−ξ µr + zp
√
V[P] where

zp = Φ−1 [(w−u)/w], the minimised production costs, C?
p, are,

C?
p = min

k
{E[uk+w[Pt− k]+]}= w ϕ[zp]

√
V[P]+u(µd−ξ µr). (7)

Proof. The proof is presented in Appendix B.
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Lemma 4 (Remanufacturing cost). With a capacity of k?r = ξ µr + zr
√

ξ 2V[R] where

zr = Φ−1 [(wr−ur)/wr], the minimised remanufacturing costs, C?
r , are,

C?
r = min

kr
{E[urkr +wr[ξ Rt− kr]

+]}= wrϕ [zr]
√

ξ
2V[R]+urξ µr. (8)

Proof. The proof is presented in Appendix B.

Lemma 5 (Collection and disposal costs). The expected per period cost to collect used products

from the market and to dispose of returned items that are not re-manufactured are given by

E[A×Rt ] = Aµr, and (9)

E[G(1−ξ )Rt ] = G(1−ξ )µr. (10)

Proof. These relations are easily obtained by noting E[R] = µr.

Eqs (6)-(10) lead to the following expression for the total cost in our CLSC,

C[ξ ] =(h+b) ϕ[zns]
√
V[NS]+w ϕ[zp]

√
V[P]+u(µd−ξ µr)+

wr ϕ[zr]
√

ξ
2V[R]+urξ µr +G(1−ξ )µr +Aµr. (11)

To study C[ξ ] we need expressions for V[NS] and V[P] (V[R] was given in (3)), which in turn are
dependent upon the forecasting and ordering (replenishment) policies present. In the next section
we first define the forecasting and ordering policies; we then derive analytical expressions of those
variances.

4. Closed-loop order-up-to (CL-OUT) policy

In this section, we will specify the replenishment policy, a closed-loop order-up-to (CL-OUT)
policy, used by the manufacturer to determine the quantity of new products to be manufactured.
Similar, but different, policies can be seen in Hosoda et al. (2015) and Hosoda and Disney (2018).
The production of new products are generated with an adapted order-up-to policy that accounts for
the re-manufactured returns and the pipeline of triaged returns currently being re-manufactured:

Pt = E[NDt+L+1|t]︸ ︷︷ ︸
Expected net demand

+ TNS?−NSt︸ ︷︷ ︸
Inventory deviation

+

Target WIP︷ ︸︸ ︷
E
[
∑

L
i=1 NDt+i|t

]
−∑

L
i=1 Pt−i︸ ︷︷ ︸

Pipeline deviation

. (12)
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The expected net demand in the period after the lead-time and review period, conditional upon the
information available at time t, is

E[NDt+L+1|t] = E [Dt+L+1|t]−E [ξ Rt ] = µd +φ
L+1
d (Dt−µd)−ξ Rt ,

where E [Dt+L+1|t] is given by the conditional expectation of AR(1) demand L+1 periods ahead,
Box et al. (2008). The value of E[ξ Rt ] is known at time t by the manufacturer, as its value was
already realized and observed by the remanufacturer and, we assume, shared with the manufacturer.
That is, we have full information sharing (Ponte et al., 2020a). The optimal target net stock, TNS?

was given in Lemma 2. The expected net demand over the lead-time, which serves as a target WIP
level, is

E
[
∑

L
i=1 NDt+i|t

]
= E

[
∑

L
i=1 Dt+i|t

]
−∑

L
i=1 ξ Rt−i = Lµd +φd

1−φ L
d

1−φd
(Dt−µd)−∑

L
i=1 ξ Rt−i.

The final sum, ∑
L
i=1 Pt−i in (12), is the pipeline of new products currently being produced, aka the

work-in-progress.

Lemma 6 (Alternative formulation). Our CL-OUT policy, (12), is equivalent to

Pt = Dt−ξ Rt +(St−St−1), (13)

where St is the OUT level determined at time t described as

St = (L+1)µd +φd
1−φ

L+1
d

1−φd
(Dt−µd)+TNS?. (14)

Here St is exactly the same OUT level used in the traditional OUT policy without returns (e.g. Lee

et al., 2000; Hosoda and Disney, 2006).

Proof. Eqs. (13) and (14) are derived in Appendix C.

Remark. Both (12) and (13) generate identical dynamics.
The cost expression (11) requires us to identify the standard deviation of: the inventory levels,

the production quantities, and the re-manufactured quantities. The standard deviation of the re-
manufactured quantities,

√
ξ 2V[R], is readily obtained from the variance of the returns, (3); the

variance of the inventory levels and production quantities are obtained in the following Lemmas:

Lemma 7 (Inventory variance). The variance of the net stock levels given by CL-OUT policy for

12

Hosoda, T., Disney, S.M. and Zhou, L., (2021), "The yield rate paradox in closed-loop supply chains", 
Accepted for publication in the International Journal of Production Economics.



the case of equal the manufacturing and remanufacturing lead times, V[NS], is

V[NS] =
(L+1)(1−φ 2

d )+φd(1−φ
L+1
d )(φ L+2

d −φd−2)
(1−φd)2(1−φ 2

d )
σ

2
d . (15)

Proof. The proof is shown in Appendix D.

Remarks. The variance of the net stock levels (15) is independent of {ξ , φr, θr, σr}, the return
and the triage parameters. Thus, inventory related costs (6) are not influenced by the triage yield ξ

and the uncertainty in the returns, εr,t . As the value of Pt−(L+1) is known, the only uncertainty that
affects NSt comes from the market demand, Dt . This means, the variance of the inventory levels
in our CLSC model is the same as the variance of the inventory levels in a traditional supply chain
with AR(1) demand (see Lee et al., 2000; Hosoda and Disney, 2006, for example). In contrast, the
variance of the production of new items is different from the traditional supply chain variance as
the production quantity must also account for the quantity of the re-manufactured returns.

Lemma 8 (Production variance). The variance of the production of new items, V[P], is

V[P] =V[ND]+V[D]
2φd(1−φ

L+1
d )(1−φ

L+2
d )

1−φd
(16)

=ξ
2V[R]+V[D]

(
1−

2ξ φ
L+2
d θr

1−φdφr
+

2φd(1−φ
L+1
d )(1−φ

L+2
d )

1−φd

)
.

The first- and the second-order derivatives of V[P] w.r.t. ξ are identical to those of V[ND]:

dV[P]
dξ

=
dV[ND]

dξ
= 2(ξV[R]− covL+1), (17)

and

d2V[P]
dξ 2 =

d2V[ND]

dξ 2 = 2V[R]> 0. (18)

Proof. The required variance expression and its derivatives are derived in Appendix E.

Remark. V[P] ≥ V[ND], if φd ≥ 0. The difference between V[P] and V[ND], V[P]−V[ND], is
independent of the return and the triage parameters, {ξ , φr, θr, σr}, and constant when {φd, L, σd}
remain unchanged. We also note from (16) that if the first addend, V[ND], was replaced by V[D],
then we would recover the production variance of a traditional supply chain, Disney and Lambrecht
(2008). The derivatives of V[P] in Lemma 8 are identical to the derivatives of V[ND] in Lemma 1,
suggesting that V[P] and V[ND] are governed by the same mechanism. Interestingly, increasing the
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x0 1

Type I
Total
Cost

x0 1

Type II

x0 1

Type III

x = 1* 0 < x < 1* x = 0*

Figure 4: Types of cost curve: Type I: ξ ∗ = 1, Type II: 0 < ξ ∗ < 1, and Type III: ξ ∗ = 0

triage yield ξ does not always reduce the variability of the production, in contrast to the results of
Zhou and Disney (2006) and Ponte et al. (2020b).

Bringing together (6)-(10), the objective cost function, (5), can be rewritten as

C[ξ ] =E
[
h[NSt ]

++b[−NSt ]
+
]
+E[A×Rt ]+min

ξ

{ f [ξ ]}, (19)

where f [ξ ] = E[uk+w[Pt − k]+]+E[urkr +wr[ξ Rt − kr]
+]+E[G(1− ξ )Rt ]. Eq. (19) reveals the

impact of ξ on the system-wide cost is limited to the manufacturing, remanufacturing, and dis-
posal costs only; the inventory cost and the collection cost are independent of ξ . Substituting the
variances, V[NS], V[P], and V[R], into (11) yields the following Proposition:

Proposition 1 (Convexity of the cost function). Under the CL-OUT policy, the system-wide cost,

(11) or (19), is convex in the triage yield rate ξ .

Proof. Appendix B shows the second-order derivative of (11) and (19) w.r.t. ξ is always positive,
indicating convexity.

Proposition 1 indicates the shape of the system-wide cost curve can be categorised into three
different types, see Fig. 4. Type I is the ideal case as the value of ξ ∗ which minimises the system-
wide cost is unity; this not only minimises the system-wide cost, but is also good for sustainability.
In contrast, Type III is the worst case; no remanufacturing (i.e. ξ ∗ = 0) is most economic. In a type
II setting, only a portion of the returns 0 < ξ ∗ < 1 are re-manufactured.

Lemma 9 (Types of cost functions). If the first-order derivative of the cost function satisfies

dC[ξ ]

dξ

∣∣∣∣
ξ→1
≤ 0, (20)

then the cost function curve is Type I and ξ ∗ = 1. If the first-order derivative of the cost function
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satisfies

dC[ξ ]

dξ

∣∣∣∣
ξ→0
≥ 0, (21)

then the cost function curve is Type III and ξ ∗ = 0. If neither (20) or (21) hold, the cost function is

Type II and 0 < ξ ∗ < 1.

Proof. It is obvious from Lemma 9 when Type I and Type III cost curves exist. As the set of total
costs curves in Fig. 4 is exhaustive, if (dC[ξ ]/dξ )|ξ→1 > 0 and (dC[ξ ]/dξ )|ξ→0 < 0 then Type II
cost curves must be present.

Lemma 10 (Inducing a change in cost function type). The value of the first derivative of C[ξ ],

dC[ξ ]/dξ , is decreasing in µr and (u−ur) when u > ur.

Proof. It is obvious from (B.3) in Appendix B.

Lemma 10 suggests that larger average returns, µr, and/or a larger (u− ur), will shift the cost
function curve from Type III (II) to Type II (I).

Corollary 1 (Minimum disposal cost). A Type III supply chain exists if the unit disposal cost G≤G:

G =
wr

µr
ϕ[zr]

√
V[R]− (u−ur)−

w
µr

ϕ[zp]
covL+1√
V[P]|ξ→0

.

A Type I supply chain exists if the disposal cost G≥ G where

G =
wr

µr
ϕ[zr]

√
V[R]− (u−ur)+

w
µr

ϕ[zp]
V[R]− covL+1√

V[P]|ξ→1
.

A Type II supply chain exists if the disposal cost, G, satisfies G < G < G.

Proof. Corollary 1 is easily obtained from Lemma 9 with the knowledge of (B.3).

In the next section, we highlight some useful characteristics of the system based on Proposition
1, Lemma 10, and Corollary 1.

5. Numerical investigations

All of the values of parameters used in this section are shown in Table 2. Figure 5 illustrates
the impact of G on Case 1, highlighting that as G increases, the cost curve migrates from a Type
III curve to a Type II curve through to a Type I curve. Table 3 contains the threshold values G and
G presented in Corollary 1. As shown in Fig. 5, the disposal penalty cost G influences the type
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Table 2: Parameter values used in each case

Collection
Cost

Demand Return

A µd φd σd µr φr θr σr
Case 1

1 20 0.4 3

10

0.7 0.5 1
Case 2 15
Case 3 10
Case 4 15

Inventory Cost Manu. Cost Re-manu. Cost Lead Time
h b w u wr ur L

Case 1

1 9 11 4 9
3

1
Case 2
Case 3

2.5
Case 4

0.2 0.4 0.6 0.8

120

122

124

126
Type II
Type I

Type III

x

G = 0.25

G = 0.5

G = 0.75

G = 1

G = 0

Cost

Figure 5: Total cost w.r.t. ξ in Case 1

Table 3: Types of supply chain for each G

Case 1 G = 0.058 G = 0.886 Type

G = 0 G < G III

G = 0.25 G < G < G II

G = 0.5 G < G < G II

G = 0.75 G < G < G II

G = 1 G < G I

of the supply chain. If the value of G is set properly, all supply chains can become Type I. While
larger G might be good for the sustainability, it may reduce economic competitiveness. Key factors
involved in this trade-off are µr, σr, and (u−ur).

Figure 6 illustrates the relationship between µr to G, and G for Case 1 shown in Table 2. Both
G and G are decreasing functions in µr. When G is above G, everything returned should be re-
manufactured (Type I). When G is below G, nothing returned should be re-manufactured (Type
III). When G is between the two lines, we have a Type II CLSC and only a proportion of returns
should be re-manufactured. Fig. 6 suggests systems with large µr may naturally be Type I supply
chain without the need for imposing a disposal penalty.

Figure 7 shows the relationship between σr, µr, G, and G. Smaller σr result in smaller values
of G and G, even though µr remains constant. Further reductions of G and G can be achieved by
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Figure 6: The relationship between the mean returns and the disposal cost required to ensure sustainable operation
(Numerical setting for Case 1, see Table 2)

increasing µr. Thus, increasing expected returns and minimizing the variability of those returns
is key to inducing a Type I supply chain where sustainability and economic competitiveness are
achieved simultaneously.

Let us consider the impacts of µr and (u− ur) on shape of the cost curve when G = 0. Fig. 8
highlights some numerical results; feature values, such as {G,G}, are highlighted in Table 4. All
cost curves in Fig. 8 are convex in ξ , but the nature of their slopes depends upon the parameters.
Consider Case 1 (which is Type III) as the base case, the cost-conscious system has no incentive to
re-manufacture the returns (i.e. ξ ∗ = 0). If the system faces larger expected returns, µr (Case 2),
the supply chain becomes Type II; however, the system-wide cost is almost always greater than that
in Case 1, due to the higher collection cost. Any additional increases in the disposal penalty only
increases cost. If a cost-conscious system in Case 1 reduces its remanufacturing cost ur without
changing the value of µr, the system shifts to Case 3. In Case 3, the supply chain becomes Type II
where a portion of the returns is voluntarily re-manufactured and the minimum system-wide cost
is lower than Case 1. Further cost reduction and higher sustainability can be achieved by having
larger expected returns (µr). Case 4, a Type I supply chain, has an economic incentive to naturally
re-manufacture all the returns (i.e. ξ ∗ = 1) and imposing a disposal cost is not necessary.

Based on the insights obtained from Figs. 5 and 8, Fig. 9 illustrates some potential improvement
actions that would be agreeable for both the cost-conscious system and policy-makers. The upper-
left Panel A in Fig. 9 is considered to be the base case (with the values of parameters used herein
are the same as Case 1 shown in Table 2). There is no disposal cost, G = 0, and a Type III system
exists. Costs are minimised with no remanufacturing. In order to improve environmental and
economic performance, the system needs to both increase the expected returns, µr, and reduce the
unit manufacturing cost, ur, in order to become a Type I system, see Panel D. Doing either of these
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Figure 7: Increasing the variance of the returns (via the standard deviation of the errors in returns = σr) inflates both
G and G (Numerical setting for Case 1, see Table 2)
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116
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x

Cost
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Type III
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Figure 8: Total cost w.r.t. ξ for each case when G = 0

Table 4: Feature values used in Fig. 8

G = 0 G G Type µr u−ur

Case 1 0.058 0.886 III 10 1

Case 2 -0.295 0.258 II 15 1

Case 3 -0.528 0.301 II 10 1.5

Case 4 -0.852 -0.299 I 15 1.5
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actions alone induces the base case to become a Type II system; increasing the expected returns
alone is shown in Panel B, where minimised costs have increased. Decreasing the remanufacturing
cost ur alone is shown in Panel C, where the minimum costs are lower than the base case.

Alternatively, if the policymaker was to impose a small disposal cost, G = 0.5, the base case
Type III system in Panel A is transformed into a Type II system, increasing costs, but enticing the
re-manufacture of all returned items, see Panel E. Increasing expected returns alone increases costs,
but will induce Type I behaviour, see Panel F; reducing remanufacturing costs induces Type I be-
haviour and reduces costs, see Panel G. Increasing expected returns and reducing remanufacturing
costs together in the presence of a small disposal penalty reduces costs even further in the Type I
system shown in Panel H.

Increasing the disposal penalty, G = 1, increases the total costs, but enhances the attractiveness
of Type I operation, Panels I-L. However, close inspection of the Type I systems, with the same
µr and ur (looking along the rows) have identical minimal costs at ξ ? = 1. Compare, for example
Panels D, H, and L. This indicates higher disposal penalties induce companies to increase returns
and reduce remanufacturing costs. If this is done successfully, all the returns are re-manufactured
and there is no undesirable economic burden from the disposal penalty.

6. Extension: The impact of not sharing re-manufacturing information

Ponte et al. (2020a) consider the impact of not sharing information of the quantity being re-
manufactured with the manufacturer of new product under iid demand and returns. We now extend
our analysis to consider the impact of no information sharing (NIS) in our CLSC with VAR(1)
demand and returns. From (12), the OUT policy without information sharing becomes,

Pt = E[Dt+L+1|t]−ξ µr︸ ︷︷ ︸
Expected net demand

+ TNS?−NSt︸ ︷︷ ︸
Inventory deviation

+

Target WIP︷ ︸︸ ︷
E
[
∑

L
i=1 Dt+i|t

]
−Lξ µr−∑

L
i=1 Pt−i︸ ︷︷ ︸

Pipeline deviation

. (22)

Alternatively, the OUT policy without information sharing based on (13) is,

Pt = Dt−ξ Rt−(L+1)+(St−St−1), (23)

where St is already described in (14), the OUT level determined at time t. Details to obtain (23) are
shown in Appendix C. Note that both (22) and (23) generate the same dynamics. The variance of
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Figure 9: System-wide cost w.r.t. ξ and the impact of parameters µr, ur and G
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the production without information sharing is given by

V[PNIS] =
σ2

d

(
1−2φ

L+2
d

)
(φd−1)2 − ξ 2σ2

r
(φr−1)(φr +1)

−
θ 2

r ξ 2σ2
d (φdφr +1)(

φ 2
d −1

)
(φ 2

r −1)(φdφr−1)
+

2σ2
d φ

2L+3
d (θrξ (1−φd)+φd(φdφr−1))
(φd−1)2(φd +1)(φdφr−1)

=ξ
2V[R]+V[D]

(
1+φd

1−φd
−

2ξ φ
2L+3
d θr

1−φdφr
+

2φd
(
(1−φ

L+1
d )(1−φ

L+2
d )−1

)
1−φd

)
=V[P]+2ξ covL+1(1−φ

L+1
d ).

Notice, V[PNIS] > V[P] iff ξ covL+1 > 0. covL+1 = φ
L+2
d θrV[D]/(1−φdφr) was given in (4), and

is positive if {φd,φr,θr} > 0, but may be negative otherwise. There is also an odd-even lead
time effect when φd < 0. Furthermore, in the case of iid demand and returns (i.e., φd = φr = 0),
V[PNIS] =V[P], leading to the conclusion that availability of the remanufacturing information does
not have an impact on C?

p and the bullwhip ratio in the uncorrelated case.
The variance of the net stock without information sharing is given by

V[NSNIS] =V[NS]+σ
2
d ξ

2
θ

2
r

∞

∑
n=1

(
1

(φd−1)(φr−1)
− h[n−L−2]

φd−1

(
φ

n−L
d

φd−φr
+

1
φr−1

)
−

φ n−L
r

(
φ L+1

r −h[n−L−2]
)

(φr−1)(φd−φr)
+

φ
n+1
d

(φd−1)(φd−φr)

)2

+ (24)

σ
2
r ξ

2
∞

∑
n=L+1

(
φ−2L−1

r
(
φ L+1

r
(
φ L

r −φ n
r
)
+h[n−2L−2]

(
φ n

r −φ 2L+1
r

))
1−φr

)2

,

where h[x] is the Unit Step function; h[x] = 1 if x ∈ Z0, otherwise h[x] = 0. In (24), the first
addend is the variance of the inventory levels in our CLSC with information sharing. The second
addend is the influence of εd on the inventory variance. The third addend is the influence of εr on
the inventory variance. Both sums are positive (as they are sums of squared functions), revealing
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V[NSNIS]> V[NS] must always hold. Closing the sums results in

V[NSNIS] =V[NS]+σ
2
d ξ

2
θ

2
r

(
φ 2

d −6φd +1
4(1−φd)4(1−φr)

+
4φ 3

d
(1−φd)4(1+φd)2(1−φdφr)

−

1
(1−φd)2(1−φr)3 +

1
4(1+φd)2(1+φr)

+
3+2L

2(1−φd)2(1−φr)2+

2
(
(1−φr)

3(1+φr)φ
L+3
d − (1−φd)

3(1+φd)φ
L+3
r
)

(1−φd)3(1+φd)(1−φr)3(1+φr)(φd−φr)(1−φdφr)

)
+

σ
2
r ξ

2
((

L(1−φ 2
r )+φr(2φ L+1

r −φr−2)+1
)

(1−φr)3(1+φr)

)
.

When the demand and the returns are iid process, V[NSNIS] becomes

V[NSNIS] =V[NS]+ξ
2
σ

2
r (L+1) ,

which is greater than V[NS] when ξ > 0. This shows sharing remanufacturing information always
reduces C?

ns, even in the iid demand and return case. However, its impact on C?
p is not so simple:

it could be positive or negative, depending on the demand and the return parameters. Furthermore,
assuming iid demand and returns limits the insights that can be obtained regarding information
sharing in CLSCs.

7. Concluding remarks

We investigated the dynamics of a closed-loop make-to-stock system consisting of a remanufac-
turer and a manufacturer with a VAR(1) demand and return process. We showed that cost-sensitive
organisations face a conflict between economic performance and sustainability and may not always
wish to re-manufacture all of the returns, even when the unit cost of remanufacturing is less than
that of new products. This is because the system-wide cost is convex in the triage yield rate in our
CLSC model. This finding suggests the system-wide cost could increase in the triage yield. This
yield rate paradox calls for more research effort to be devoted to understanding when sustainable
operations become economically viable. We have also identified the threshold disposal cost that
induces the system-wide cost to become decreasing in the triage yield, an outcome that leads to
a more sustainable outcome. Furthermore, we introduced a concept of the net demand and high-
lighted its importance when perfect substitution is present. We argued the need for new production
is strongly affected by net demand, rather then the market demand.

In our CLSC with full information sharing, the inventory levels were not affected by the yield
rate. However, convexity of system-wide cost in the triage yield means there exists an optimal
yield rate that minimises total cost. This arises as remanufacturing alters the demand for new
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product and thus their cost to manufacture. Managers should therefore carefully identify the likely
impact of remanufacturing on their existing production. We suspect the benefit from introducing
remanufacturing activities will be highly influenced by the demand and return process, the lead-
times, and the level of information sharing.

Future potential research could investigate: 1) the case where a full VAR(1) demand and return
model is assumed, 2) the role of the net demand in the dynamics of the closed-loop supply chain, 3)
the impact of different lead times at the remanufacturing and manufacturing sites, 4) the role of the
bullwhip ratio and NSAmp as cost indicators in CLSC settings, 5) the impact of the moments of de-
mand and production on the purchasing price of raw materials, and 6) the impact of the information
sharing on the economic performance with non-iid demand and return processes assumption.
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Appendix A. Derivation of the variance and characteristics of the net demand

Since the mean of the net demand is E[ND] = µd−ξ µr, the variance of the net demand is

V[ND] =E
[
(NDt− (µd−ξ µr))

2
]
= V[D]−2ξE[(Dt−µd)(Rt−(L+1)−µr)]+ξ

2V[R]

=V[D]−2ξ covL+1 +ξ
2V[R]. (A.1)

The variance expression obtained in (A.1) reveals when ξ = 0, V[ND] = V[D]. When ξ > 0 and
ξ 2V[R]−2ξ covL+1 ≤ 0 (or, equivalently, when 0 < ξ ≤ 2covL+1/V[R] holds), V[ND]≤ V[D].

The first- and second-order derivatives of V[ND] w.r.t. ξ are

dV[ND]

dξ
=2(ξV[R]− covL+1), and

d2V[ND]

dξ 2 = 2V[R]> 0.

From the first-order derivative, it is obvious that if 0 ≤ ξ < (covL+1/V[R]), V[ND] is decreasing
in ξ . As 0≤ ξ ≤ 1 and the second-order derivative of V[ND] is always positive, we can minimize
V[ND] by setting ξ = [min[covL+1/V[R],1]]+.
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Appendix B. Cost functions for the CL-OUT policy

Inventory costs: The inventory holding and backlog costs can be written as

Cns = E
[
h[NSt ]

++b[−NSt ]
+
]
= h

∫ +∞

0
y f [y]dy+b

∫ 0

−∞

(−y) f [y]dy,

where f [·] is the normal PDF with the mean, TNS, and variance V[NS]. Evaluating the integrals and
using the pdf and cdf of the standard normal distribution, {ϕ[·],Φ[·]}, leads to,

Cns = (b+h)
(

TNS Φ

[
TNS√
V[NS]

]
+
√
V[NS] ϕ

[
TNS√
V[NS]

])
−b TNS. (B.1)

We wish to control the target net stock (TNS) to minimise the expected inventory costs. The deriva-
tive of Cns w.r.t. TNS is

dCns

dTNS
= (b+h) Φ

[
TNS√
V[NS]

]
−b.

Setting the derivative to zero and solving for TNS reveals the optimal target net stock, TNS?,

TNS? =
√
V[NS] Φ

−1
[

b
b+h

]
. (B.2)

Using (B.2) in (B.1) and simplifying leads to the following expression for the minimised costs,

C?
ns = (h+b) ϕ

[
Φ
−1
[

b
b+h

]]√
V[NS].

Production costs: The manufacturing cost for the new products, Cp, with the manufacturing
capacity, k, can be written as

Cp = w E[[Pt− k]+]+uk = w
∫ +∞

k
(y− k) f [y]dy+uk.

Here f [·] is the normal PDF with the mean and the variances of Pt . The first- and second-order
derivatives of Cp w.r.t. k are

dCp

dk
=−w(1−F [k]))+u, and

d2Cp

dk2 = w f [k]> 0,

where F [·] is the normal CDF with the mean and the variance of Pt . The minimizer of Cp, k?,
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satisfies F [k?] = (w−u)/w. Since E[P] = µd−ξ µr as shown in (C.6), k? is

k? = µd−ξ µr + zp
√
V[P] : zp = Φ

−1 [(w−u)/w] ,

when {εd,εr} are normally distributed. The minimum manufacturing cost, C?
p, is achieved with the

optimum capacity k?,

C?
p = w

∫ +∞

k?
(y− k?) f [y]dy+uk?.

The integral can be simplified as

w
∫ +∞

k?
(y− k?) f [y]dy = w

√
V[P] L[zp] ,

where L[·] is the standard normal loss function. Simplification yields the stated expression for C?
p:

C?
p = w

√
V[P] L[zp]+uk? = w

√
V[P]

(
L[zp]+ (1−Φ[zp])zp︸ ︷︷ ︸

=ϕ[zp]

+(1−Φ [zp])︸ ︷︷ ︸
=u/w

µd−ξ µr√
V[P]

)

= w ϕ[zp]
√
V[P]+u(µd−ξ µr).

Remanufacturing costs: Following the same steps shown above, we obtain the optimal capac-
ity for the remanufacturing, k?r , and the minimum remanufacturing cost, C?

r :

k?r = ξ µr + zr

√
ξ

2V[R],

C?
r = wr ϕ[zr]

√
ξ

2V[R]+urξ µr,

where zr = Φ−1 [(wr−ur)/wr].
Total costs: With the knowledge of V[NS], V[P] and V[R], the cost function for the CL-OUT

policy (11) becomes

C[ξ ] =E[h(NSt)
++b(−NSt)

+]+E[A×Rt ]

+min
ξ

{
E[uk+w(Pt− k)+]+E[urkr +wr(ξ Rt− kr)

+]+E[G(1−ξ )Rt ]
}

= (h+b) ϕ[zns]
√
V[NS]+Aµr +w ϕ[zp]

√
V[P]+u(µd−ξ µr)

+wr ϕ[zr]
√

ξ
2V[R]+urξ µr +G(1−ξ )µr. (B.3)
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The first-order derivative of C[ξ ] w.r.t. ξ is given by

∂C[ξ ]

∂ξ
=w ϕ[zp]

ξV[R]− covL+1√
V[P]

+wr ϕ[zr]
√
V[R]+µr(ur−u−G).

The second-order derivative of C[ξ ] w.r.t. ξ is

∂ 2C[ξ ]

∂ξ 2 = w ϕ[zp]
V[R]V[P|ξ = 0]− (φ L+1

d cov0)
2

V[P]
√
V[P]

≥ w ϕ[zp]
V[R]V[P|ξ = 0]−φ

2(L+1)
d V[R]V[D]

V[P]
√
V[P]

= w ϕ [zp]
V[R](1−φ

L+1
d )σ2

d

V[P]
√
V[P]

(
(1−φ

L+2
d )2 +φ

L+1
d (1−φ

L+3
d )

)
(1−φd)2 > 0, if 1 > φd ≥ 0.

Appendix C. Deriving the CL-OUT policy

Hosoda et al. (2015) show the following relationship always holds in our CLSC setting, regard-
less of the ordering policy present:

NSt+L+1 = NSt +Pt +WIPt−
(

Dt+L+1 +∑
L
i=1 Dt+i

)
+PIRt , (C.1)

where WIPt = ∑
L
i=1 Pt−i, and PIRt represents the pipeline inventory of the returns at time t and is

PIRt = ξ ∑
L
i=0 Rt−i. The inventory position, IPt , in period t immediately after Pt is issued is

IPt = NSt +WIPt +Pt +PIRt .

By using the inventory balance equation (1), IPt can be rewritten as

=IPt︷ ︸︸ ︷
NSt +WIPt +Pt +PIRt =

=NSt︷ ︸︸ ︷
NSt−1 +ξ Rt−(L+1)−Dt +Pt−(L+1)+

=∑
L
i=1 Pt−i︷︸︸︷

WIPt +Pt +PIRt

= NSt−1 +ξ Rt−(L+1)−Dt +WIPt−1 +Pt−1 +Pt +PIRt . (C.2)

Rearranging (C.2) yields

Pt = Dt−ξ Rt−(L+1)+(NSt +Pt +WIPt)− (NSt−1 +Pt−1 +WIPt−1) ,
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which can be rewritten further with knowledge of (C.1):

Pt = Dt−ξ Rt−(L+1)+
(

NSt+L+1 +∑
L+1
i=1 Dt+i−PIRt

)
−
(

NSt+L +∑
L+1
i=1 Dt−1+i−PIRt−1

)
,

= Dt−ξ Rt−(L+1)−PIRt +PIRt−1︸ ︷︷ ︸
=−ξ Rt+ξ Rt−(L+1)

+
(

NSt+L+1 +∑
L+1
i=1 Dt+i

)
−
(

NSt+L +∑
L+1
i=1 Dt−1+i

)
,

= Dt−ξ Rt +
(

NSt+L+1 +∑
L+1
i=1 Dt+i

)
−
(

NSt+L +∑
L+1
i=1 Dt−1+i

)
. (C.3)

Replacing the future values with their expected values yields the CL-OUT policy:

Pt = Dt−ξ Rt +(St−St−1), (C.4)

where St is the target inventory position (or, the order-up-to level) at t determined as

St = E
[
∑

L+1
i=1 Dt+i|t

]
+E [NS] = (L+1)µd +φd

1−φ
L+1
d

1−φd
(Dt−µd)+TNS?. (C.5)

Using expectation on (C.4) and (C.5) yields the expected value of Pt and NDt :

E[P] = µp = µd−ξ µr = E[ND]. (C.6)

For the case of no information sharing, we assume the manufacturer does not know the values of
PIRt and PIRt−1 in (C.3) and replaces them with expected values, E[PIRt |t] = E[PIRt−1|t− 1] =
ξ (L+1)µr, which yields

Pt = Dt−ξ Rt−(L+1)+(St−St−1) .

Appendix D. Net stock level variances

In this section, we reveal the steps for obtaining the variance of the net stock levels. Using the
inventory balance equation (2), we have

Pt = NSt+L+1−NSt+L +NDt+L+1. (D.1)

∑
L
i=1 Pt−i can be written as

∑
L
i=1 Pt−i = Pt−1 +Pt−2 + · · ·+Pt−L = NSt+L−NSt +∑

L
i=1 NDt+i. (D.2)
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By substituting (D.2) into (12), Pt can be written as

Pt = E[NDt+L+1|t]+ (TNS?−NSt+L)+
(
E
[
∑

L
i=1 NDt+i|t

]
−∑

L
i=1 NDt+i

)
. (D.3)

Note, TNS? = E[NS]. Since (D.1) and (D.3) equal each other, we can eliminate Pt :

NSt+L+1−E[NS] = E [NDt+L+1|t]−NDt+L+1 +
(
E
[
∑

L
i=1 NDt+i|t

]
−∑

L
i=1 NDt+i

)
=E
[
∑

L+1
i=1 NDt+i|t

]
−∑

L+1
i=1 NDt+i =−∑

L
i=0 λi εd,t+L+1−i, (D.4)

where

λi = (1−φ
i+1
d )/(1−φd). (D.5)

Eq. (D.4) is an MA(L) process with moving average coefficients λi (i ∈ Z|0 ≤ i ≤ L). A detailed
explanation of MA processes can be found in Box et al. (2008). As the error term, εd,t , is an iid
process, the variance of (D.4) is given by

σ
2
d ∑

L
i=0 λ

2
i . (D.6)

Substituting λi (D.5) into (D.6) yields the stated expression, (15), for V[NS].

Appendix E. Variance and derivatives of production of new items

To obtain the variance of Pt , first we modify (13):

Pt =Dt−ξ Rt +(St−St−1) = Dt−ξ Rt +φdλL(Dt−Dt−1)

=µd−ξ µr +((1+φdλL)φd−φdλL−ξ θr)(Dt−1−µd)−ξ φr(Rt−1−µr)

+(1+φdλL)εd,t−ξ εr,t ,

where λL = (1−φ
L+1
d )/(1−φd). Since E[P] = µd−ξ µr = E[ND], see (C.6), the variance of Pt is

then given by

V[P] =E
[
(Pt− (µd−ξ µr))

2
]
= V[D]−2ξ

θrφ
L+2
d

1−φdφr
V[D]︸ ︷︷ ︸

=covL+1

+ξ
2V[R]+2

φd(1−φ
L+1
d )(1−φ

L+2
d )

(1−φ 2
d )(1−φd)

σ
2
d

=V[ND]+2
φd(1−φ

L+1
d )(1−φ

L+2
d )

(1−φ 2
d )(1−φd)

σ
2
d . (E.1)
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Interestingly, (E.1) reveals the derivatives of V[P] w.r.t. ξ are identical to those of V[ND]. The first
and second order derivatives were provided in (17) and (18).
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