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Abstract

Empirical econometric �ndings are often vindicated by supplementing them
with the p-values of Sargan-Hansen tests for overidentifying restrictions, provided
these exceed a chosen small nominal signi�cance level. It is illustrated here that
the probability that such tests reject instrument validity may often barely exceed
small levels, even when instruments are seriously invalid, whereas even minor in-
validity of instruments can severely undermine inference on regression coe¢ cients
by instrumental variable estimators. These uncomfortable patterns may be aggra-
vated when particular valid or invalid instruments are relatively weak or strong.

1. Introduction

Many economic relationships are possibly characterized by instantaneous feedbacks. In

that case not only the dependent variable is endogenous, but some explanatory variables

as well. The standard methods to �nd out whether explanatory variables are endogenous,

and � if they are � to cope with them when estimating reaction coe¢ cients, exploit

external instrumental variables. In order to qualify as an e¤ective external instrument,

a variable should not be explanatory for the dependent variable indeed (its exclusion

from the model should be valid), and it should be �preferably strongly �correlated with

the potentially endogenous regressors. Veri�cation of the latter property is relatively

straightforward, whereas the former is usually tested by the Sargan (1958) test � in
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relatively simple linear models �or by its generalization, the Hansen (1982) test. Various

studies �see, for instance, Hayashi (2000, p.218), Parente and Santos Silva (2012) and

Kiviet (2017) �have spelled out a fundamental methodological limitation of these tests,

being that they can only verify over-identifying restrictions, while implicitly adopting

untestable just-identifying restrictions.

This limitation is usually not seriously addressed in empirical work. One reason

for this may be that in the literature very little attention has been paid to illustrating

its actual consequences. Here we provide numerical �ndings obtained from simulating

a simple illustrative model. They show how deceiving high p-values of Sargan tests

can be, simply because these are very likely to be found, even when instruments are

patently invalid. In addition, it is shown that mildly invalid instruments may already

seriously bias instrumental variables based coe¢ cient estimates, especially when the

invalid instruments are strong and any valid instruments are weak. A possible way out

is indicated in the concluding section.

2. Design of the experiments

By simulation experiments, we examine Sargan test and coe¢ cient estimation outcomes

for a simple linear regression model under a range of practically relevant circumstances.

This model is given by

y = c+ �x+ u; (2.1)

where u is a disturbance, x a possibly endogenous explanatory variable with constant

numerical coe¢ cient �; c a constant intercept, and y is the dependent variable. Regres-

sor x is generated such that its correlation with u; indicated by �xu; can be varied in the

experiments. Next to the internal instrument established by the constant, also two exter-

nal variables z1 and z2 are generated. Their correlations with u can be controlled by �z1u

and �z2u respectively. When �zju = 0 (j = 0; 1), then zj quali�es as a valid instrument.

Moreover, the correlations �z1x and �z2x; determining instrument strength/weakness, can

be varied. Samples of size n will be generated for fy; x; u; z1; z2g which are i.i.d. (in-
dependent and identically distributed). In this study, we have restricted ourselves to

examining Gaussian data sets.

For various interesting combinations of numerical values for �xu; �z1x; �z2x; �z1u;

�z2u and n; we investigate: (i) the rejection probability of the Sargan test at nominal

signi�cance level �; where we shall consider 0:01 � � � 0:5; and (ii) the distribution of

2



the estimation errors �̂�� for various estimators of the slope coe¢ cient, namely ordinary
least squares (OLS), instrumental variable (IV, just using the external instrument z1)

and two-stage least squares (TSLS, using both z1 and z2) estimation.

Not all values smaller than one in absolute value for the �ve correlation coe¢ cients

are compatible. For instance, it is self-evidently impossible to have �z1u = 0; whereas

both �xu and �z1x are close to unity. Close to boundary values, and to notoriously

problematic cases such as �z1x ! 0; �xu ! 1; or n very small, instrumental variable

estimators may show pathological behavior. It is not our intention here to demonstrate

that such cases exist and are also problematic for the Sargan test.1 Our primary aim is

here to demonstrate that serious problems occur, too, for parameter combinations which

seem pretty harmless at �rst sight. Therefore, we start to examine a reasonably large

sample (n = 250) and rather middle of the road combinations of the correlations, viz.:

�xu 2 f0:2; 0:4g; �z1u 2 f0:0; 0:1g; �z1x 2 f0:3; 0:6g;
�z2u 2 f0:0; 0:2g; �z2x 2 f0:1; 0:4g:

(2.2)

Hence, the instruments will not be chosen ultra-weak, nor extremely invalid. The es-

timation errors will in fact be examined by presenting graphs of their quartiles for all

values 0 � �xu � 0:9 that are compatible with the other correlations.
All �ndings to be presented are invariant with respect to the actual values of the

intercept c; the slope �; the means of the variables x; z1 and z2; and regarding �2z1 and

�2z2 ; the variances of z1 and z2: The rejection frequencies of the Sargan test are invariant

with respect to both �u and �x; whereas the quartiles of the various estimation errors

will be presented for �u=�x = 1: Outcomes for di¤erent �u=�x ratios can be obtained

simply by adapting the scale of the vertical axis of the graphs, as we shall show below.

Hence, all �ndings will have wide relevance, especially for cross-sectional applications

from which any additional uncontested exogenous regressors have been partialled out

from the instruments and from the model, so that just one potentially endogenous re-

gressor remains.2

3. Findings

Figures 1 and 2 have two rows of two panels. Each row combines particular �z1u and �z2u

values. The left-hand panels present rejection frequencies of the Sargan test (vertical

1This is one of the main objectives in Davidson and MacKinnon (2015).
2Technical details on the generation of the simulated data series, derivation of invariance properties,

and some extra simulation results are available as Supplementary Material.
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axis) at nominal signi�cance � (horizontal axis, 0:01 � � � 0:5) for eight combinations of
�xu; �z1x; �z2x values. For seven di¤erent estimator/instrument combinations, the right-

hand panels present three similarly colored/marked lines, being the quartiles of the

estimation error distribution (vertical axis), at endogeneity correlation �xu (horizontal

axis, for feasible �xu 2 [0; 0:9]). For each triple of lines the central one is the median. The
other two provide an impression of the dispersion of the distribution of the estimation

errors around the median. Their vertical distance represents the interquartile range at

�xu (50% of the generated estimation errors landed between these two lines).3

[Figure 1 about here]

In the top-row of panels in Figure 1, both instruments are valid. Its left-hand panel

shows that for the examined eight cases (mentioned in the legend) the Sargan test

shows no size problems: the actual probability of type I errors is extremely close to

the nominal signi�cance level for all � values examined. In the top right-hand panel,

for all estimators/cases represented, except OLS, the three lines are found to be almost

horizontal. Thus, these distributions are hardly determined by endogeneity of x, and

they suggest median unbiasedness, especially for moderate values of �xu. On the other

hand, the bias of OLS seems proportional to the degree of endogeneity. The graphs for

IV and TSLS show the decreasing e¤ects on the dispersion of using stronger or (one)

extra instruments. Note that the dispersion of OLS improves for higher �xu and is not

beaten by any of the much less biased instrumental variable estimators.

The bottom-row of graphs shows what the e¤ects are when one of the two instru-

ments is mildly invalid. When the valid instrument is relatively weak, the rejection

probability of the Sargan test barely exceeds the signi�cance level, especially when the

invalid instrument is relatively strong. At � = 0:05; instrument invalidity will be de-

tected with probability 0.3 at most (for the sample size and correlation combinations

examined). Thus, the type II error probability (wrongly approving the instruments) is

high, exceeding 0.7. The adjacent panel shows that the often undetected instrument

invalidity (of just �z1u = 0:1) is devastating for the TSLS estimators based on a valid

and an invalid instrument, especially when both instruments are relatively weak. For

the just-identi�ed IV estimator �for which the Sargan test is not available �just using

a mildly invalid instrument yields substantial bias, especially when this instrument is

3Taking a 95% interpercentile range leads to comparable relative di¤erences between the various
estimators. The presentation of means and standard errors has been avoided, because their population
equivalent does not exist for some of the instrumental variable estimators.

4



relatively weak. For all IV and TSLS estimators presented, the probability of a positive

estimation error exceeds 0.75. For �xu small, OLS yields smaller estimation errors than

IV and TSLS. Note that in both rows of panels the OLS results are similar, because

they are invariant to the properties of the two instruments. For judging cases where

�u=�x = � > 0; one should simply scale the �gures along the vertical axis by the factor

�.

[Figure 2 about here]

In the top-row of panels in Figure 2, again one instrument is valid and the other one

invalid, but more seriously invalid than in row two. Self-evidently, the Sargan test rejects

more frequently now, but at � = 0:05 with a probability still below roughly 0.6 when the

valid instrument is relatively weak and the invalid one relatively strong. On the other

hand, using � = 0:5 leads for all cases examined to a detection of the invalidity with a

probability of 0.9 or larger. For the TSLS estimation errors, the closeness of the median

to zero deteriorates when the valid instrument gets weaker and the invalid one stronger.

Note that the IV results (using valid z1) are similar to those in the top right-hand panel

of Figure 1.

In the bottom-row both instruments are invalid. This case highlights the perils of

the Sargan test not being consistent for inference on validity of both instruments. For

some cases the rejection probability of instrument validity is quite high, but for two of

them it hardly exceeds the nominal signi�cance level. These are the two cases where

�z1x = 0:3 and �z2x = 0:4; so the most seriously invalid instrument is also the strongest.

The area in the parameter space where the Sargan test lacks any power in the present

simple model is represented by (for proof see Supplementary Material):

�z1u=�z1x = �z2u=�z2x: (3.1)

Hence, when for the two instruments their ratios of invalidity over strength are equal

(or close), then the Sargan test is unable (or has great di¢ culty) to detect instrument

invalidity, irrespective of the seriousness of this invalidity. This �nding dramatically

undermines trust in instrument-based methods, as this shows that the TSLS estimator

for these two cases (where the ratios �z1u=�z1x and �z2u=�z2x are 0.33 and 0.5 respectively)

is very badly biased over the whole range of �xu values, whereas the Sargan test lacks

power.
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Results for n = 50 and n = 2500 are provided as Supplementary Material. The

size control is still found to be close to perfect in the much smaller sample. As ex-

pected, the detection probabilities of instrument invalidity are generally lower/higher

in smaller/larger samples, and the estimators have a smaller/larger dispersion, whereas

the median varies little with n: For small n, more parameterizations show a futile power

of the Sargan test. For n = 2500 the power of the Sargan test is often (almost) unity,

except for cases that come close to satisfying (3.1), and these are also the cases where

the TSLS estimation errors are furthest distributed away from zero.

4. Conclusions

Sargan/Hansen tests are only applicable when more candidate external instruments are

available than the regression has potentially endogenous explanatories, and they just test

the overidentifying restrictions. From our analytic and numerical results it follows that

the Sargan test is not a trustful guide to decide on validity of all external instruments

indeed, because its rejection probability can be close to the chosen signi�cance level, even

when instruments are seriously invalid and the sample size arbitrarily large. In a simple

model, this occurs when for one endogenous regressor two external instruments are

available, while these happen to have an almost similar ratio between their correlations

regarding degree of invalidity and degree of strength. The test is shown to have poor

power to detect instrument invalidity, too, when from the external instruments one (say,

z1) is valid and relatively weak, while the other one (z2) is invalid and relatively strong,

so that �z2u�z1x=�z2x is close to �z1u = 0:

Regarding possible size distortions of Sargan-Hansen overidentifying restrictions tests,

the literature provides mixed evidence.4 In the linear static homoskedastic model ex-

amined here, we establish that size problems seem not a major issue, except perhaps

for (not examined) pathological parameter combinations. To counter (putative) over-

rejection problems, Hansen (2021, Ch.12) advises practitioners to use the Sargan test

at a very low nominal signi�cance level. Given our �ndings, however, we would argue

in favor of testing at a very high nominal signi�cance level, because an insigni�cant

value of the test is used in practice to approve validity of all instruments. Therefore,

given the devastating e¤ects that we established of even mildly invalid instruments on

instrumental variable estimators, the primary worry should be to fail to reject invalid

4Hayashi (2000, p.218) suggests substantial over-rejection in �nite samples, whereas Bowsher (2002)
and Kiviet et al. (2017) report serious under-rejection in dynamic panel data models.
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instruments (commit type II errors), and not so much to limit type I errors (wrongly

rejecting valid instruments). Hence, one might decide to corroborate instruments and

resulting TSLS �ndings only when the p-value of the Sargan test is really high; perhaps

only when it is larger than 50% or even higher, instead of the habitual 5%, or just 1%

as Hansen suggests!

In the simple static model, the results con�rm that when the regressor is exogenous

the OLS estimator is unbiased with the most attractive interquartile range, whereas

for soaring endogeneity its bias sharply increases while its interquartile range slightly

shrinks. Instrumental variable estimators are found to be almost (median) unbiased

when the employed instruments are valid and not very weak. The �ndings on the

relative width of their actual interquartile range when instruments are mildly weak al-

ready indicate that successful identi�cation-robust5 IV/TSLS inference must necessarily

produce relatively uninformative inference. When instruments are invalid, just- and

over-identi�ed IV/TSLS are biased, and we �nd that this bias is largely invariant re-

garding the degree of endogeneity (unlike for OLS) and size of the sample. Currently,

practitioners seem much more concerned about the misleading inference that will result

from using supposedly valid though weak instruments than from invalid instruments,

possibly because weakness �unlike invalidity �can directly be observed.

It is not self-evident how to examine in practice the sensitivity of IV/TSLS with re-

spect to varying degrees of invalidity of instruments, whereas this is simpler and already

feasible for OLS, because degree of endogeneity and instrument invalidity are the same

thing for OLS, which uses its regressors as instruments. Kripfganz and Kiviet (2021)

provide computer code and detailed instructions for a method, obtained in Kiviet (2020),

which uses plausible assumptions on �xu to correct OLS regarding its endogeneity bias

while preserving its attractive dispersion. Next, inference can be obtained regarding the

adequacy of the model speci�cation (which may have an arbitrary number of endogenous

regressors) and on its coe¢ cients, including an alternative test for over-identi�cation re-

strictions. This inference is endogeneity robust in the following sense. Specialized to the

simple model of this study, these inferences are valid provided �xu 2 [�Lxu; �Uxu] � (�1; 1):
Choosing a narrow interval [�Lxu; �

U
xu] leads to narrow and thus attractive con�dence in-

tervals for the coe¢ cients (with the risk that they are invalid if actually �xu =2 [�Lxu; �Uxu]),
and choosing [�Lxu; �

U
xu] wider yields more trustworthy wider (and ultimately unbounded)

5This primarily aims to overcome the e¤ects of poor estimation of the standard errors of IV/TSLS
estimators when instruments are really weak, without coping with the estimator�s bias and actual
ine¢ ciency. See Andrews et al. (2019) for a recent overview.
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and thus less informative intervals.
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Supplementary material for the paper:

Instrument approval by the Sargan test and
its consequences for coe¢ cient estimation

by Jan F. Kiviet and Sebastian Kripfganz

22 May 2021

Simulation design and invariance properties

The variables fu; x; z1; z2g introduced in Section 2 of the paper are obtained as linear
transformations of four mutually independent series "i; �i; �i1 and �i2 (for i = 1; :::; n);

where all elements are iid(0; 1) drawings from a distribution we chose to be normal. The

four transformations are given by

ui = �u"i � iid(0; �2u); (S.1)

xi = �x[(1� �2xu)1=2�i + �xu"i] � iid(0; �2x); (S.2)

zij = �zj(�zj�j�ji + �zj��i + �zju"i) � iid(0; �2zj) for j = 1; 2; (S.3)

where all � coe¢ cients do not exceed 1 in absolute value; moreover,

�2zj�j + �
2
zj�
+ �2zju = 1 for j = 1; 2: (S.4)

Obviously, �xu = �xu�x�u; �zju = �zju�zj�u and �zjx = �zj�x[�zj�(1� �2xu)1=2 + �zju�xu];
hence �zjx = �zj�(1� �2xu)1=2 + �zju�xu; which yields

�zj� = (�zjx � �zju�xu)(1� �2xu)�1=2; (S.5)

for j�xuj < 1: From (S.4) we also have

�zj�j = (1� �2zj� � �
2
zju
)1=2: (S.6)

Hence, when values for �u > 0; �x > 0; �zj > 0; j�xuj < 1;
���zjx�� � 1 and

���zju�� � 1

are chosen, we can generate series for ui and xi; and �nd from (S.5) and (S.6) matching

values for �zj� and �zj� ; which enable to generate the series zi1 and zi2 as well.

However, values for �xu; �zjx and �zju are only compatible if they yield
���zj��� � 1 and���zj�j �� � 1: This requires

(�zjx � �zju�xu)2(1� �2xu)�1 � 1 (S.7)



and 0 � 1� �2zj� � �
2
zju
� 1, which �substituting (S.5) �boils down to

0 � (1� �2xu)(1� �2zju)� (�zjx � �zju�xu)
2 � 1� �2xu: (S.8)

From the two inequalities expressed by (S.8), it is obvious that the one yielding��2zju(1�
�2xu)� (�zjx � �zju�xu)2 � 0 will always be met, while satisfying the other one, being

(�zjx � �zju�xu)2 � (1� �2xu)(1� �2zju); (S.9)

would imply (S.7). Hence, by choosing values j�xuj < 1; and for j = 1; 2 values
���zjx�� � 1

and
���zju�� � 1 obeying (S.9), we can �nd admissible �zj� and �zj�j values to generate ui;

xi and zij accordingly.

From each realization in the 100,001 simulation replications of the series ui; xi and

zij (i = 1; :::; n; j = 1; 2); we may �rst subtract the respective sample average, next

generate yi = �xi + ui; skipping the intercept. In that way, just regressing y on x; the

slope of a model with one regressor x and an arbitrary intercept can be estimated by

�̂OLS = x
0y=x0x = � + x0u=x0x;

�̂
(j)
IV = z

0
jy=z

0
jx = � + z

0
ju=z

0
jx; j = 1; 2;

�̂TSLS = x
0Z(Z 0Z)�1Z 0y=x0Z(Z 0Z)�1Z 0x = � + x0PZu=x

0PZx;

where x; y; u; z1 and z2 are column vectors stacking the n sample observations, Z =

(z1; z2) and PZ = Z(Z 0Z)�1Z 0: Note that these estimators may be inconsistent, namely

OLS when �xu 6= 0, IV(j) when �zju 6= 0; and TSLS when �z1u 6= 0 or/and �z2u 6= 0:
For the estimation errors we �nd, writing xi = �x��i where �

�
i = (1��2xu)1=2�i+�xu"i;

�̂OLS � � = (�u=�x)�i(��i "i)=�i(��2i ); (S.10)

�̂
(j)
IV � � = (�u=�x)�i(�zj��ij"i + �zj��i"i + �zju"2i )=�i(�zj�j�ij��i + �zj��i��i + �zju"i��i );

(S.11)

�̂TSLS � � = x0PZu=x0PZx: (S.12)

It is directly seen that all estimation errors are invariant regarding �; are a multiple

of �u=�x; and that PZ is invariant with respect to the scale of the vectors z1 and z2.

Hence, without loss of generality, we may choose in the simulations � = 0; �x = 1; and

�z1 = �z2 = 1: Then the dispersion of all estimators can be regulated by just varying �u:

However, relative di¤erences between dispersions will be invariant with respect to �u:

So, by just choosing �u = 1 all relevant information will be obtained through choosing

compatible values for the remaining design parameters: n; �xu; �zjx and �zju; where

the latter two determine �zj� and �zj�j : Due to the symmetry of the distribution of all

2



variables, changing the sign of any of the correlations, while keeping their absolute value

�xed, has mostly simple (anti-)symmetric e¤ects just on the sign of the estimation errors.

Therefore, by just investigating nonnegative values for �xu; �zjx and �zju we will already

get a rather complete picture.

Since the TSLS residuals equal ûTSLS = y � �̂TSLSx = u � (x0PZu=x0PZx)x; the
Sargan test statistic can be expressed as

S = n � û0TSLSPZ ûTSLS=û0TSLSûTSLS

= n
u0PZu(x

0PZx)
2 � (x0PZu)2x0PZx

u0u(x0PZx)2 � 2u0x(x0PZu)x0PZx+ x0x(x0PZu)2
: (S.13)

It is obvious that S is invariant with respect to � and to all scale factors, because all

individual terms in both the numerator and denominator are multiples of �2u�
4
x:

It is well known that the Sargan test is equivalent to literally testing over-identi�cation

exclusion restrictions. In the present design, this amounts to estimating the model

yi = �xi + �jzij + ui; where j is either 1 or 2, while using both instruments, and then

testing the signi�cance of �j: Under the null hypothesis we have �j = 0; thus�
�̂

�̂j

�
=

�
z01x z01zj
z02x z02zj

��1�
z01y
z02y

�
=

�
�
0

�
+

�
z01x z01zj
z02x z02zj

��1�
z01u
z02u

�
;

so that

plim �̂j = plim
(z01x)(z

0
2u)� (z02x)(z01u)

(z01x)(z
0
2zj)� (z02x)(z01zj)

;

which has numerator

plim[(z01x=n)(z
0
2u=n)� (z02x=n)(z01u=n)] = �u�x(�z1x�z2u � �z2x�z1u):

So, plim �̂j = 0 when

�z1u=�z1x = �z2u=�z2x: (S.14)

This explains that when (S.14) holds, the Sargan test will asymptotically reject the

exclusion restriction with probability equal to the chosen signi�cance level, even when

�z1u and �z2u are far away from zero.

Further simulation results for a smaller and a larger sample

Figure S.1 provides results for n = 50 and Figure S.2 for n = 2500: In each �gure

the four rows of panels correspond to the four examined di¤erent cases of (in)validity of

the instruments z1 and z2.
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Figure S.1: Simulation results for n = 50; �u=�x = 1; and the chosen set of correlation values
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Figure S.2: Simulation results for n = 2500; �u=�x = 1; and the chosen set of correlation values
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