IEEE INTERNET OF THINGS JOURNAL

Privacy-Preserving Federated Deep Learning for
Cooperative Hierarchical Caching in Fog Computing

Zhengxin Yu, Jia Hu, Geyong Min, Zi Wang, Wang Miao, Shancang Li

Abstract—Over the past few years, Fog Radio Access Networks
(F-RANs) have become a promising paradigm to support the
tremendously increasing demands of multimedia services, by
pushing computation and storage functionalities towards the
edge of networks, closer to users. In F-RANSs, distributed edge
caching among Fog Access Points (F-APs) can effectively reduce
network traffic and service latency as it places popular contents
at local caches of F-APs rather than the remote cloud. Due to
the limited caching resources of F-APs and spatio-temporally
fluctuant content demands from users, many cooperative caching
schemes were designed to decide which contents are popular
and how to cache them. However, these approaches often collect
and analyse the data from Internet-of-Things (IoT) devices at a
central server to predict the content popularity for caching, which
raises serious privacy issues. To tackle this challenge, we propose
a Federated Learning based Cooperative Hierarchical Caching
scheme (FLCH), which keeps data locally and employs IoT
devices to train a shared learning model for content popularity
prediction. FLCH exploits horizontal cooperation between neigh-
bour F-APs and vertical cooperation between the BaseBand Unit
(BBU) pool and F-APs to cache contents with different degrees
of popularity. Moreover, FLCH integrates a differential privacy
mechanism to achieve a strict privacy guarantee. Experimental
results demonstrate that FLCH outperforms five important
baseline schemes in terms of the cache hit ratio, while preserving
data privacy. Moreover, the results show the effectiveness of the
proposed cooperative hierarchical caching mechanism for FLCH.

Index Terms—Cooperative Caching, Fog Computing, Feder-
ated Learning, Internet-of-Things, Privacy

I. INTRODUCTION

With the rapid development of Internet-of-Things (IoT), the
number of IoT devices is expected to grow to 14.7 billion by
2023 [1]. The unprecedented amounts of data generated from
the emerging IoT devices place a heavy burden on traditional
mobile networks. To deal with this challenge, Fog Radio
Access Networks (F-RANs) has been regarded as a promising
solution by pushing computation and storage functionality
towards the edge of networks. F-RANs are able to reduce the
service latency and alleviate the network traffic.

In the F-RANs, edge nodes, e.g., Remote Radio Heads
(RRHs) and Fog Access Points (F-APs), are capable of local
signal processing, distributed caching and cooperative radio
resource management [2]. The distributed caching among edge

Z. Yu, J. Hu, G. Min, Z. Wang, W. Miao are with the Department
of Computer Science, College of Engineering Mathematics and Physical
Sciences, University of Exeter, Exeter, EX4 4QF, U.K. Email: {zy246, J.Hu,
G.Min, zw300, Wang.Miao } @exeter.ac.uk

S. Li is with the Department of Computer Science and Creative Tech-
nologies, University of the West of England, Bristol BS16 1QY U.K. Email:
shancang.li@uwe.ac.uk

Corresponding authors: Jia Hu and Zi Wang

nodes is a key functionality of F-RANs. Placing popular
contents as close as possible to users at the edge nodes can
greatly reduce duplicate data transmission and service latency.
As the cache capacity of edge nodes is limited compared to
a huge number of contents [3], the effective utilization of the
available cache capacity has a profound effect on the service
performance.

Cooperative caching is an effective way to optimise the
management of cache capacity for edge nodes to satisfy users’
requests. However, it largely depends on the popularity of
contents, which is highly dynamic and difficult to predict.
Machine Learning (ML) has demonstrated its great potentials
to make accurate predictions. Therefore, it is important to
design a learning-based cooperative caching scheme that can
learn dynamic content popularity trends to make smart caching
decisions under the complex environment of F-RANs.

Despite many research efforts, there are still open challenges
for learning-based cooperative caching. 1) Privacy: Popularity
prediction models in the majority of the existing caching
schemes are built on the gathered massive IoT data. However,
sending these data to a central server for model training may
result in severe privacy issues. 2) Utilisation: The contents
may be stored repeatedly in the cache capacity of edge
nodes, which lacks the global optimisation of cache resource
utilisation. It is non-trivial to decide how and where to cache,
given the limited cache sizes at the different edge nodes. 3)
Mobility: Users are likely to request similar contents, but they
frequently move from one edge node to another. This means
that the cached contents at one edge node might become out
of date after users move out, while another edge node has
not cached the contents for the incoming users. Thus, the
lack of consideration of user mobility may lead to low cache
efficiency.

To address the above challenges, we propose a privacy-
preserving Federated Learning based Cooperative Hierarchical
edge caching scheme (FLCH). It enables to make the intelli-
gent decision for caching contents at the edge while protecting
data privacy. The FLCH scheme trains a shared global learning
model at the F-AP with training data distributed over users’
IoT devices. Only the parameters of the trained local models
are uploaded to the central server, instead of the IoT data [4].
To further protect the privacy of user data, the FLCH scheme
integrates a differential privacy mechanism. We consider a Fog
Computing scenario that consists of three tiers. The bottom
tier contains users equipped with IoT devices. The middle tier
includes F-APs with small cache storages. The top tier has a
BaseBand Unit (BBU) pool with large cache storage. This
hierarchical caching architecture achieves better utilisation

IEEE INTERNET OF THINGS JOURNAL

of available caches with mobile users, since the requested
contents can be obtained from the local F-AP, neighbour F-
APs and BBU.

The major contributions of this work are as follows:

1) A privacy-preserving federated learning based caching
scheme is designed to make caching decision by analysing
the content retrieval history and context information of users.
In this caching scheme, the training data is left locally on IoT
devices and a shared global model is learnt by aggregating
locally-computed models. An integrated differential privacy
mechanism is applied to achieve a strict privacy guarantee.

2) A hierarchical cooperative caching architecture is pro-
posed to leverage the horizontal cooperation between the F-
APs and vertical cooperation between the BBU pool and F-
APs in order to enhance the overall caching performance and
global cache resource utilisation.

3) We propose a one-class collaborative variational au-
toencoder (OCC-VAE) to predict content popularity. The
variational autoencoder is utilised to extract the hidden rep-
resentations of users and contents. Moreover, the one-class
collaborative filtering is exploited to effectively process the
input data for a better recommendation of popular contents.

The remainder of this paper is structured as follows: Section
II introduces the related work. Section III describes the system
architecture of the proposed FLCH caching scheme. The
detailed implementation of the FLCH is presented in Section
IV. Section V provides the performance evaluation of the
FLCH. Finally, Section VI concludes this paper.

II. RELATED WORK

Extensive efforts have been made by using ML techniques
to solve problems in different aspects of IoT, such as commu-
nication [5], privacy [6], and security [7] [8]. Sagduyu et al.
[7] utilised adversarial machine learning to attack and defend
IoT networks. Salimitari et al. [8] designed an Al-enabled
blockchain platform with a two-step consensus protocol to
improve the fault tolerance of hyperledger fabric. In this
section, we summarise the existing works about cooperative
caching and federated learning in IoT and smart environment
paradigms, respectively.

A. Cooperative Caching

Yang et al. [9] proposed a cooperative caching strategy,
where base stations within a local cloud cooperate with each
other for caching contents. Li et al. [10] developed a coopera-
tive caching system in wireless networks. This caching system
is combined with Device-to-Device (D2D) transmission, which
mobile devices collaboratively cache popular contents. All the
above caching schemes assume that the content requests from
users are followed by Zipf distribution. In reality, content
popularity is dynamic and has temporal and spatial depen-
dencies, which is hard to be accurately modelled. Therefore,
ML has been widely used in the cooperative caching scheme
to improve caching efficiency.

Hou et al. [11] investigated a cooperative proactive caching
scheme in Mobile Edge Computing (MEC) to reduce trans-
mission cost and improve user’s quality of experience by

exploiting transfer learning approach. Mehrizi et al. [12]
presented a proactive cooperative caching scheme by utilising
a probabilistic dynamical model to predict content popularity.
Variational Bayes approach is proposed to tackle overfitting.
Zhang et al. [13] designed a spatially cooperative caching
strategy to improve caching efficiency and reduce the storage
space taken by optimising the caching probabilities of cache
nodes. Qiao et al. [14] developed a cooperative caching
scheme that is based on deep reinforcement learning. A double
time-scale markov decision process is exploited to model the
caching problem to update the caching contents. Huang et al.
[15] introduced a cluster-based cooperative caching strategy in
vehicular named data networking with considering the mobil-
ity of vehicles. Mo et al. [16] presented a cooperative caching
strategy by considering content popularity and making full use
of the rules of node distribution. Wu et al. [17] proposed a
social-aware cooperative caching scheme to improve content
sharing performance and utilise cache resource of users. Gao
et al. [18] exploited a cooperative coded caching scheme
by using reinforcement learning and the maximum-distance
separable coding. It also models the proposed caching scheme
as a Markov decision process to realise the dynamic content
popularity. Yang et al. [19] developed a recurrent neural
network based cooperative caching scheme to predict user
mobility and content popularity.

Most of the prior works on cooperative caching schemes are
designed for a highly controlled environment, where training
data needs to be uploaded to a central server for processing.
Security and privacy concerns are key obstacles for the existing
cooperative caching schemes. Thus, federated learning has
been considered as a promising framework to train ML models
without sharing data.

B. Federated Learning

Federated Learning (FL) is firstly proposed by Google [4],
which presents a new approach to fitting ML techniques into
the edge of networks. Mcmahan et al. [4] developed the
primitive FL protocol. It performs synchronous optimization
in federated settings. Many FL variants have been designed
to improve FL from different aspects such as communication
cost, model accuracy, and round efficiency [20]. Wang et al.
[21] developed a control algorithm to decide the interval of
global model aggregation adaptively. Nishio and Yonetani [20]
designed a protocol to filter out slow users in MEC framework,
which is based on the estimated work time of users, in order
to reduce round length. Koneveny er al. [22] proposed the
sketched updates and structured updates to reduce communica-
tion costs. Xie et al. [23] introduced an asynchronous federated
learning (FedAsync), which adopts the non-blocking update of
the global model and regularises local optimization. Similar to
[23], Sprague et al. [24] exploited an asynchronous protocol
to train a global model for a geo-spatial application, which
allows users to join the training halfway. However, Chen et al.
[25] proved that stochastic gradient descent in a synchronous
manner outperforms asynchronous methods in terms of model
accuracy.

The distinct advantage of FL is to protect users’ privacy and
reduce security risks, because only the parameters of the model

IEEE INTERNET OF THINGS JOURNAL

Cloud Layer You Tube
o N
Fog Layer / Y . .
2 Y : Core Network I Cache BBU BBU Pool BBU BBU E Cooperative Caching
| -
B g2 2 =
I | 1

. : | h=1 |

g Backhaul " =~=======—~ B (e — jﬁr 777777777 I [(F-AP J»{ F-AP Je>{ F-AP
é‘_ | Fronthaul

; MBS F AP Download (5[5 from

% @ :’F AP Caching Content Lists : F-AP F-AP 1. Local F-AP to Device

S === == (()) @ (()) 2. Neighbor F-AP to Device
-E“ Il F-AP1 F APN;I - Model 3. BBU to Device

BL_EEE (> Aggregation 4. Cloud to Device

@ / \\ @ Model Upload/Download @ / \ @
Device Layer = = = = = _
[aD) B > . @ D IoT Devices
S - - -
= = = Local Training

Fig. 1.

are uploaded to the server, instead of users’ data. However,
some works demonstrate that analysing the model parameters
from users still can divulge the users’ private data and the
model remains as attack surfaces. Therefore, we proposed
a privacy-preserving federated deep learning for cooperative
hierarchical caching scheme to improve caching efficiency and
protect the privacy of user data.

III. OVERALL DESIGN OF FEDERATED LEARNING BASED
COOPERATIVE HIERARCHICAL CACHING IN F-RANS

A. Fog Radio Access Networks

The F-RANs integrate fog computing with radio access
networks (RANs), which evolved from cloud radio access
networks (C-RANS) [26]. In C-RANSs, a crowd of RRHs are
deployed distributively within a particular region and are con-
nected to a centralised BBU pool via high-bandwidth fronthaul
links. A BBU pool greatly reduces power consumption and
largely improves resource utilisation, while it also places a
heavy burden on the fronthaul at the same time, resulting in
the high service latency for users. F-RANs address the above
issues of C-RANs through extending computing and caching
functions to the edge of the network. For example, F-APs,
which evolved from traditional RRH, are equipped with caches
in F-RANSs and are able to manage the caches flexibly.

B. The System Architecture of Federated Learning based Edge
Caching

Fig. 1 illustrates the system architecture of our proposed
federated learning based edge caching scheme in F-RANs. We
consider a three-level Device-Fog-Cloud hierarchical structure.
The Device level distributes users who are equipped with IoT
devices. The Fog level consists of two tiers. The upper tier
contains a BBU pool, while a Macro Base Station (MBS)
and some F-APs are located in the lower tier. The MBS

System Architecture of the Federated Learning based Cooperative Hierarchical Caching for F-RANs.

and F-APs all connect to the BBU pool. More specifically,
the F-APs are connected to the BBU pool via high-speed
fronthaul links. The MBS connects to the BBU pool with
a reliable backhaul link. It is responsible for delivering the
overall control signalling and providing seamless coverage for
IoT devices. The Cloud level is the Internet where content
providers are located remotely. In F-RANs, the BBU pool and
F-APs are equipped with caches. We assume that the storage
capacity for the BBU and F-APs are up to M and N contents,
respectively, where M > N.

The aim of our work is to take advantage of distributed
caching storages at the F-RANs. It requires to know content
popularity distribution. However, content popularity is subject
to change dynamically due to the mobility of users. Different
users prefer different contents since the preference of users are
various. The preference of users may link to many factors, such
as gender, age and occupation. Even the location of connected
users, the connected time of day and the type of connected
equipment device also influence the preference of users and
further affect the content popularity. Hence, the popularity of
contents changes according to the fluctuating users and their
context. In our scheme, the content popularity decides what
and where to cache at edge nodes.

Federated learning (FL) is to train a shared high-quality
model distributively without gathering users’ data. In our
proposed FL based caching scheme, each user associated with
an F-AP performs local training by using its own data. The
parameters of the training model from these users are then
aggregated at the F-AP to jointly learn a model that is used to
predict the local content popularity, as shown in Fig. 1. Based
on the predicted content popularity, each user uploads a list of
popular contents to the local F-AP. The F-AP aggregates the
lists from each connected user and constructs an aggregated
list of local popular contents that will be uploaded to the MBS.
The N highly popular contents are selected to cache at F-APs,

IEEE INTERNET OF THINGS JOURNAL

- B) Local Training -----------------

Updated

ML Model @ +
7
N

Local @D
Dataset ‘e’
—

o
Downloaded
ML Model

D Upload Model

\

A

Fig. 2. Federated Learning Process for Edge Caching

to provide local caching services to their associated users. By
contrast, the BBU pool caches the M less popular contents.
Based on the knowledge of the content popularity from F-APs,
the place of caching (at F-APs or BBU pool) can be decided,
as described in the next subsection.

C. The Design of Cooperative Hierarchical Edge Caching

The cache hit ratio is used to evaluate the performance of
caching schemes, which describes the percentage of content
requests that can be served by cache. The proposed FLCH
aims to maximise the cache hit ratio by leveraging the vertical
cooperation (V-FLCH) between the BBU pool and F-APs,
and the horizontal cooperation (H-FLCH) between the local
F-AP and neighbour F-APs. Users can fetch the requested
content not only from the cache of the local F-AP but also
from the neighbour F-APs and the BBU pool. Specifically, as
shown in Fig. 1, a user who is located in the coverage area
of the F-AP can send the content request to the local F-AP.
The requested content will be firstly searched whether it is
stored in its cache [27]. If so, the requested content would
be directly delivered to the user. Otherwise, the request will
be searched in a caching content list for all neighbour F-APs
maintained. The caching content list of each F-AP is stored
at the cache manager in the MBS. According to the list, if
the requested content is cached at any other F-APs, the found
F-AP would transmit the requested content to the user. In this
way, the user does not need to connect the BBU pool to fetch
the requested content, which relieves the burden on fronthaul
between the BBU pool and F-APs. If the requested content is
not stored in any F-APs, the local F-AP will send the request
to the BBU pool. Upon receiving a request from the F-AP,
it conducts a search to look for the content. If the content
can be found in the BBU pool, the BBU pool delivers the
corresponding content to the requesting F-AP via fronthaul
link. The requested content can be provided by caching at
either F-APs or the BBU pool, therefore, it greatly reduces
the traffic between the core network and the cloud. However,
if the requested content is neither cached at F-APs nor BBU
pool, the request would be forwarded to the Internet to obtain
the content from the source (i.e., content provider) in the cloud.

A DownloadModel / \ § Farl o FAPN i

r'E Aggregation ¥ - -(F) Cache Decision ---------,

i Contents Aggregation=> Caching

\@@@E@@@@@@\

Popular Contents

F- APs Cachmg Lists Storagc

3 BBU Cachmg List Storagc

IV. PRIVACY-PRESERVING FEDERATED DEEP LEARNING
MODELS FOR EDGE CACHING

In this section, the proposed privacy-preserving federated
learning based edge caching is introduced in detail. It consists
of three parts: privacy-preserving FL, one-class collaborative
variational autoencoder (OCC-VAE) and cooperative caching.
The privacy-preserving FL framework is utilised to train the
content popularity model while protecting users’ privacy. The
content popularity model we applied in FL is OCC-VAE,
which can obtain the relationship between users and contents,
and find its hidden representations. The historical requests of
users together with their contextual information (e.g., time,
location, age), as the training data for the OCC-VAE, are
exploited to learn the popularity of content in order to make
smart caching decisions. The training data is binary where
1 (positive examples) and 0 (negative examples) represent
requested contents and unrequested contents, respectively, but
the negative examples are often absent. Marking all missing
examples as negative examples is a bias prediction. One-class
collaborative filtering with a random sampling mechanism is
used to correct this bias in OCC-VAE.

A. Privacy-Preserving Federated Learning for Edge Caching

Most of the existing learning-based caching schemes need to
collect the data from users to train the prediction model. How-
ever, these data may contain private and sensitive information
(e.g., gender, age, location and occupation). Uploading users’
data to the central server will result in the users’ privacy risk.
By leveraging the local computation capacity and dataset of
users, FL can perform distributed training. This training needs
to run multiple FL. communication rounds. In our proposed FL
communication round, the F-AP firstly sends a global model
to selected users. Next, selected users compute their updated
models independently, which is based on their local resources.
Then, the updated model from each selected user will be
collected by the associated F-AP. All updated models are
used to construct an improved global model by the weighted
averaging method [4]. The weight of each user depends on
their data size. Users who contain more training data make
more contributions to the global OCC-VAE prediction model
in FL .

IEEE INTERNET OF THINGS JOURNAL

As shown in Fig. 2, a FL. communication round executes at
users and their F-APs, which has five steps [22]:

o Step A: The users who have good network connections,
enough energy and computing resources are chosen to
attend the FL. communication round. Their associated F-
APs will send the current global model to them.

« Step B: Each selected user utilises its local dataset to
compute the updated global model.

« Step C: Local differential privacy mechanism applies to
calculated models.

« Step D: The updated model from selected users are sent
to their associated F-APs.

« Step E: Each F-AP aggregates received models to gen-
erate a new global model.

All the above steps are repeated until the achieved results
are stable. After that, Step F in Fig. 2 can be executed. Which
contents can be cached at F-APs and BBU are determined.

In our FL setting, we assume the whole data size of the
training dataset is d which is formed by the training examples
over K selected users with C contents. The training goal is to
minimise the following objective of FL [4]:

1 d
a 20

where f; (w) = € (u;, ¢;; w) is the loss function of the prediction
on the example (u;, ¢;) made with model parameters w. Based
on the resource situation of each user, we select K users to
participate in the FL training, where K users are indexed by
k. Denote the set of indexes of training examples on user & is
Dy, with dy. = |Dg|. Thus, the objective can be re-written as

min f(w) = ()

K
min f() =)" F). where £ (w) = - 3 £ 0.
k=1 lEDk

2)

Typically, stochastic gradient descent (SGD) is implemented
to optimise the OCC-VAE model. In the FL setting, with
applying SGD optimisation, each communication round only
calculates a single batch of gradients. It may cause large
communication costs, since FL requires plenty of commu-
nication rounds to train a high-quality OCC-VAE model.
Therefore, we use the federated stochastic gradient descent
method (FedSGD) [4] for optimisation. FedSGD allows each
user to iterate multiple rounds and then takes the average
of gradients VF (w,) on its local data at the parameters of
model w, in the 7 round. These average gradients are sent
to the server and then applied to generate the global OCC-VAE
model. Additionally, the local dataset in each selected user k
is generated from the usage of its device, e.g., content requests
in daily life. Some users make heavy use of certain specific
applications, which causes the data imbalance problem for
the federated training. To handle this problem, we implement
the weighted aggregation method to aggregate the model in
the edge server. The equations of updates of the model and
aggregation are given by

K
d
Wit e =1) =V F (), 3)

k=1

Witr

Writ — Z “)
where 7 is the learning rate. The weighted sum is implemented
in the aggregation method. Weights for parameter aggregation
depend on the corresponding data size of users. More data on
user k makes more contributions to update the shared OCC-
VAE model.

During the FL training process, the parameters of OCC-VAE
model have been exchanged. Privacy leakage still may happen
by analysing the parameters of the model. Therefore, we utilise
local differential privacy mechanism into the proposed FLCH
to prevent privacy leakage and model attacks.

B. Differential Privacy Mechanism

In the FL framework, each user computes an updated OCC-
VAE model based on the current global model. Then, a
differential privacy mechanism will be used to perturb the
original local models, to prevent privacy leakage.

Data Distortion: Given the parameters of model w¥,
a Gaussian mechanism is exploited to distort the w.
A scaled version of w is generated by VFj (wlr‘*) =

k |7 F (i)l .
VF (wr) /max 1, S [28], where S is the upper

bound of the sensitivity of the scaled model, defined as
S = median {VFk (wk)}. Choosing the value of S is a trade-
off. The larger S makes the larger noise variance and thus the
accuracy of model may decrease. With scaled to S, noise is
added to the model. The updated model at user side is:

ven == ot s 1R f0)

(&)

where the probability distribution of noise follows a normal
distribution AV (0, 0>S?), which is scaled to S [28].

The proposed privacy-preserving federated learning scheme
is outlined in Algorithm 1. The integrated model of the one-
class collaborative variational autoencoder (OCC-VAE) is the
model trained in privacy-preserving FL.

C. One-Class Collaborative Variational Autoencoder

The OCC-VAE is proposed to predict content popularity
ahead of time. VAE is a powerful unsupervised learning
method, which aims to realise the data distribution p(x)
from the training set. Moreover, VAE is naturally suitable
for estimating content popularity, which can effectively cluster
data in the latent space [29]. An overview of VAE is depicted
in Fig. 3. An inference neural network ¢ (z | x) maps the input
x to a distribution (i.e. Gaussian distribution) with estimating
the latent variable z. p(z | x) is a generative neural network,
which is used to decode the sampled latent variable z back
into an observed data x.

In our setting, we employ the VAE to learn deep latent repre-
sentations from user-by-content request matrix X and implicit
relationship between users and contents. The X consists of
samples of variable x;;, where X € NUXC | < 4y < U and
1 < ¢ < C. u and c represent the index of users and contents,

IEEE INTERNET OF THINGS JOURNAL

Algorithm 1 FLCH:
Server Execution:

1: Initialise the global model wy
2: for each round r = 1,2,... do:
3: K: asetof users, k € K.
4: U,: a set of selected users
5. for each user k in parallel do:
6: if k£ meet requirement of training model then
7: add k to U,
8: end if
9: end for
10: Get w,
11: for each user k € U, in parallel do:
12: wf +1 < UserUpdate(w,, k)
13: for each weight p € wk_ | do:
14: Sample a Bernoulli variable a
15: if a == 1 then
16: p*:k+r~zzti
17: else a == 1
18: p*zk—r-jifi
19: replace p as px
20 er(+1>'< - Wf+1
21: end for
2 wh e S G
23: for end
24: Return w,
User Execution:
1: Input Data: w,, X
2: UserUpdate(w, k):
3: for each local epoch from 1 to E do
4 for batch b € B do
5: Wrs1 — Wy — VI (w3 b) + N (0,0%5?)
6 end for
7 end for
8: Return w,

respectively. The x, = [x], ..., x¢]T € N€ is a vector with the
request number for each content from user u. Moreover, our
proposed FLCH is the context-aware content caching scheme.
The users’ content retrieval history and context are utilised to
learn the context-specific content popularity, hence, the context

of user 4 is appended to X.

However, the value of elements in X in our setting is only
1 or 0. The value of 1 represents the positive example of
the user’s interests. The value of O indicates an unknown
positive or negative example corresponding to missing, as it
is impossible for users to request all the contents. In fact,
the input matrix is sparse so that it is hard to identify the
negative examples. Furthermore, all negative examples and
missing positive examples are mixed which makes it difficult
to distinguish them [30]. For example, if we simply solve the
issue by marking all the missing examples as negative, then
the result may be inaccuracy. The reason is that the positive
examples may be included in the missing examples. Therefore,
we use a random sampling mechanism to mark the negative

o

Output | 0608|0301

Inpgt>I

+
0|0
1]0
0|1

plo|r

0|11

Additional Information @

Fig. 3. Variational Autoencoder

examples in the input matrix X.

The probability of random sampling is determined by the
preference of users for contents. The probability of content ¢
requested by the user u is

1

c
Priu,c) =11 Z X'+ T (6)
i=0 j=0 Xe

where ZiC:O x represents the number of contents requested
by user u. ZJL.IZO x/ means how many times that content ¢ has
been requested by users. ry,r, are coefficients.

In general, VAE assumes that for every x, € X, there are
one or many settings of the latent variables z,, ~ p (z,,) which
causes the model to generate something very similar to x,.
Here, p(z,) is the probability distribution of z,,. Mathemati-
cally speaking the goal is to maximise the probability of x,, in
the input data under the generative process, which is formally
defined as:

p () = / PG | 2) P (z) dzae)

In general, p(x, | z,) is typically parameterised with a
highly flexible function approximator such as neural networks.
While both prior p(z,) and likelihood p (x, | z,) can be for-

mulated exactly, the posterior p (z, | x,) = /p’z)(::”;il;()iz“ needs
an intractable integral over the latent space. Thlis, instead of
calculating the posterior p (z, | x,,), VAE takes an advantage of
a parametrized variational approximation ¢ (z,, | x,,) to provide
a distribution over the latent variables that are more likely
to produce the input data x. This is done by minimizing
the Kullback-Leibler (KL) divergence between ¢ (z, | x;,) and

p (Zu | xu):

KL [q (Zu | xu) ” p(zu | xu)] =

3
Ezu~q(2u |xu) [log ¢q (zu | xu) - log p(zy | xu)].

By applying Bayesian inference to p(z, | x,), we achieve

p(xu | Zu)
=Bz, ~g(zax) [102 4 (Zu | X)) + Bz <z x0) [10g P (x0)]

- Ezu ~q(zu |Xu) [log p (xy | zu)] = Ezu ~q(zu 1Xu) [log p (zu)]-
9

KL [q(zu | %) | Pz | %0)] = Bz, ~g(zu1x4) 108

IEEE INTERNET OF THINGS JOURNAL

Then, to maximise E., -4, |x,) [log p(x,)], Eq. 9 can be
rewritten as follow:

Ezu~q(zu B [10gp(xu)] - KL [g(zy | x0) || p(2zue | x0)] =
E,, ~q(zu |Xu) [log p (xy | zu)] +
Ezu~q(zu [x2) [log p (zu) — log q (zu | xu)]

= Ezu~q(zu [xu) [log p (xu | zu)] = KL[g(zu | xu) | P(zu)]-
(10)

The lower bound of E;, 4z, |x,.) [log p (x,)] is as:

log p (x,) 2B, ~q(zu |x) [log p (xu | zu)]
=KL [q (zu | %) |l p(zu)]-

The right hand-side of Eq. 10 is the variational lower bound
of VAE. The ¢ (z, | x,) follows a Gaussian distribution, which
is N (u, diag (0'2)). o means variance and u represents the
mean. To maximise the variational lower bound, p (x, | z.)
and ¢ (z, | x,) can be trained. Also, the reparameterisation
trick [31] z, = ¢+ 0 © € is exploited to obtain the unbiased
estimate of low variance bound. o (x,) is covariance, u(x,)
is the mean, and e follows the standard normal distribution
N(0, 1). The update equation is the following:

(1)

Eq(zu [x2) [log p (xu | Zu)] =

(12)
Ee-no.) [10g p(xu | 24 = p+ o 0 €)],

where € is drawn from € ~ N (0, 1). By utilising the repa-
rameterisation trick, p (x, | z,) and ¢ (z, | x,) are trained by
SGD.

Therefore, we feed X with incomplete rows (resp. columns)
into VAE to learn the latent representation Z. X can be
recovered from Z, where the outputs are a matrix containing
predicted missing values. The highest score contents in outputs
are caching contents in the cache-enabled server. The cache de-
cisions are made by inference through the encoder and decoder
networks that consist of fully connected layers. Therefore, the
computational complexity of the OCC-VAE model should be
the same as the forward propagation of fully connected layers,
O(n), where n is the size of the input data.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed proactive content
caching scheme using a real world datasets and compare its
performance to six reference algorithms. We conduct experi-
ments via a fog computing-like testbed with 10 nodes.

A. Testbed and Dataset

The testbed consists of three HP Z440 workstations with
64G memory and 10 Raspberry Pi devices. This represents a
simple fog computing environment. Two workstation as the
F-APs are applied to aggregate the parameters of the OCC-
VAE model and one workstation is the MBS. All Raspberry
Pi devices as users conduct the training of the OCC-VAE
model [21]. Keras is employed as the framework of VAE with
tensorflow as backend.

To evaluate the performance of the proposed FLCH caching
scheme, the dataset we used is a real-world dataset, MovieLens
IM [32]. It is collected by GroupLens Research, which has

about 1 million ratings of 3883 movies from 6040 users.
UserID, MovielD, Rating, Timestamp and user information
(such as gender, age, Zip-code and occupation) are included in
the dataset. In our experiments, MovieLens dataset is divided
into 10 users. To be specific, the dataset for each user consists
of 604 users’ data in the MovieLens’ dataset. A real scenario
is considered in this paper that users have unbalanced data due
to their different activities and behaviours.

Our proposed FLCH can also be adapted to more complex
environments (e.g., Internet of Vehicles, [oT, and Multi-access
Edge Computing) by modifying the proposed deep learning
model and iterative optimisation algorithm for FL.

B. Performance Evaluation

We firstly compare FLCH with six reference algorithms
which are Oracle, Random, Least Recently Used, Least Fre-
quently Used, AutoEncoder and Stacked AutoEncoder. We
then evaluate the performance of hierarchical caching with
cooperation between the BBU pool and F-APs. The four
reference algorithms are presented as follows:

o Oracle: Oracle algorithm gets the best cache hit ratio,
as it knows the perfect prior knowledge of requests from
users.

« Random: Random algorithm randomly selects the con-
tents to cache.

« Least Recently Used (LRU): When the caching storage
is limited, LRU removes the content based upon the time
of usage. The content will be replaced if it has not been
requested for a long time. If the content has not been
requested in the most recent period of time, it may not
be requested in the future as well.

o Least Frequently Used (LFU): LFU keeps tracking
the number of times that a content has been requested
and replaces the caching content based on the historical
request frequency of cache content. If a content has been
requested for multiple times in the past, the frequency of
this requested content may be higher in the future. LFU
evicts the least popular content.

« AutoEncoder (AE): AE attempts to copy its input data
to its output data by reconstructing input data from the
latent representation, which is an unsupervised learning
model.

« Stacked AutoEncoder (SAE): Stacked AE is a deep
structure, which stacks multiple AEs. It aims to learn a
compressed hidden representation from the input.

Fig. 4 shows the impact of cache size on the cache hit ratio
for an F-AP without the hierarchical cooperative caching (N-
FLCH). With increasing cache size, the overall cache hit ratios
of all caching algorithms rise. Oracle has the perfect prior
knowledge about the user demands in future that provides an
upper bound to other caching algorithms. Whereas, random
gives the worst cache hit ratio which is the lower bound.
The cache performance of N-FLCH, Stacked AE, AE based
caching scheme outperform LFU and LRU caching schemes,
as they learn the latent relationship between users and contents
to predict content popularity, while LFU and LRU do not

IEEE INTERNET OF THINGS JOURNAL

—4—Oracle
60 ——N-FLCH
r Stacked AE
——AE
—e—LFU

r LRU

| —v—Random

Cache hit ratio
w
o

204

50 100 150 200 250 300 350 400
Cache size

Fig. 4. Cache hit ratio: N-FLCH vs Reference caching schemes

80 | ——H-FLCH
—6—V-FLCH
N-FLCH

Cache hit ratio

50 100 150 200 250 300 350 400
Cache size

Fig. 5. Cache hit ratio of the FLCH with different cooperative strategies
(H-FLCH, V-FLCH, N-FLCH)

consider the changing trend of content popularity. The N-
FLCH shows a better performance compared to SAE and AE,
because N-FLCH clusters the request of users in the latent
space. LFU obtains a high cache hit ratio than LRU. Both of
them study from the historical requests of users. The order of
users’ requests influences the cache hit ratio of LRU and LFU
caching scheme as they make caching decision by observing
local recent user request patterns.

Fig. 5 reveals that using the hierarchical cooperative caching
mechanism can achieve the higher cache hit ratio. Compared
with the hierarchical cooperative caching schemes V-FLCH
and H-FLCH, N-FLCH only caches contents at F-APs, which
gives the lowest cache hit ratio. The cache hit ratio of H-
FLCH is higher than V-FLCH. In H-FLCH, if the requested
content is not stored in the local F-AP, the request will be
sent to neighbour F-APs, which will deliver the content to the
requester if found in their caches. V-FLCH allows a content to
be fetched from the BBU cache through cooperation between
BBU and F-APs, which obtains the highest cache hit ratio as
expected. When the cache size of F-APs is set to 50, the cache
hit ratios for N-FLCH, H-FLCH and V-FLCH reach 15.6%,
30.3% and 35.2%, respectively. With the cache size of F-AP
increasing to 400, the cache hit ratios of N-FLCH, H-FLCH
and V-FLCH are 54%, 68.9% and 75.5%, respectively.

Fig. 6 indicates the influence of the proposed differential

| Il N-FLCH without Differential Privacy
IIN-FLCH

S [$)) [o2]
o o o
T T

Cache hit ratio
w
o

100 200 300
Cache size
Fig. 6. Cache hit ratio: N-FLCH without differential privacy vs. N-FLCH
24 T T
p —&—N-FLCH |
- —— N-FLCH with Differential Privacy
oL i
181
c
S
=16
o
514
g12r
-
s 1r
g
208r
>
0.6
0.4
0.2
0 ; ; ; ; ;
0 50 100 150 200 250 300
Training Time (s)
Fig. 7. Training loss vs. Training time

privacy mechanism to the cache hit ratio. The experiment
results compare the impact of varying cache size on cache
hit ratio with differential privacy mechanism and without
differential privacy mechanism. Fig. 6 also shows the achieved
cache hit ratios for N-FLCH and N-FLCH without differential
privacy mechanism are similar. N-FLCH without differential
privacy mechanism slightly outperforms N-FLCH. When the
cache size is 100 and the number of users is 10, the average
cache hit ratio of N-FLCH achieves 23.4%, while N-FLCH
without differential privacy mechanism get the cache hit ratio
of 24%. The same trend has been exhibited for the other cache
sizes. This experiment results demonstrate the differential
privacy mechanism keeps high accuracy during the OCC-VAE
model training as well as protecting user’s privacy.

Fig. 7 shows the results of the loss function in FLCH. Along
with the training time increasing, values of the loss function
in FLCH are decreasing. The loss values of N-FLCH and
N-FLCH without differential privacy decrease quickly at the
beginning. After 150s, the loss values become stable, but they
continue reducing. Both two approaches converge reasonably
quickly, but the speed of convergence of N-FLCH without
differential privacy is quicker than N-FLCH, and N-FLCH
without differential privacy can achieve a lower loss value.
When the training time is 300s, the loss value of N-FLCH

IEEE INTERNET OF THINGS JOURNAL

30

25 1
20 #
2
©
5|]
(o]
<
[}
©
o
101 1
5l 1
——N-FLCH without Differential Privacy
—4—N-FLCH
0
0 10 20 30 40 50

Communication rounds

Fig. 8. Cache hit ratio vs Communication rounds

without differential privacy is 0.14, while N-FLCH can only
get 0.34. This is because some noises are added to N-FLCH,
which makes it hard to train and influence the training results,
but the achieved results are not much different.

Fig. 8 compares the cache hit ratio of the FLCH with and
without differential privacy mechanism against the number
of FL communication rounds. Two approaches show the
same trend. To achieve the optimal cache hit ratio, more
communication rounds are needed. Fig. 8 shows that N-FLCH
reaches the optimal cache hit ratio after 10 FL communication
rounds, while FLCH without the differential privacy mecha-
nism achieves it after 5 rounds. However, when the number
of communication round is 50, two approaches can achieve
similar cache hit ratios that are 26.39% and 25.9%, respec-
tively. Thus, this experiment demonstrates that our proposed
differential privacy mechanism can get a similar cache hit ratio
while further protecting user’s privacy.

VI. CONCLUSION

In this paper, we propose a novel privacy-preserving feder-
ated learning based cooperative hierarchical caching scheme
(FLCH) for F-RANSs. FLCH protects users’ privacy by utilising
the emerging federated learning framework with differential
privacy. Through integrating the one-class collaborative varia-
tional autoencoder, FLCH is able to predict the context-specific
content popularity by utilising the request history of users and
their context information. To further enhance the cache hit
ratio and reduce users’ latency, FLCH leverages the vertical
and horizontal cooperations between the BBU pool and F-APs.
The experimental results demonstrate that FLCH achieves the
higher cache hit ratio than other caching schemes, such as
stacked autoencoder and LRU. The differential privacy mech-
anism in FLCH can achieve a strict privacy guarantee while
maintaining the performance of learning models. Moreover,
the proposed hierarchical cooperative caching mechanism can
further improve the caching performance. In our future work,
we will investigate blockchain empowered federated learning
methods for content caching to further enhance security. More-
over, we will conduct research into a theoretical framework to
analyse the convergence of the proposed algorithm.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

C. V. N. Index, “Global mobile data traffic forecast update, 20172022
white paper,” Cisco: San Jose, CA, USA, 2019.

H. Zhang, Y. Qiu, X. Chu, K. Long, and V. C. Leung, “Fog radio access
networks: Mobility management, interference mitigation, and resource
optimization,” IEEE Wireless Communications, vol. 24, no. 6, pp. 120-
127, 2017.

P. Liu, Y. Ding, and T. Fu, “Optimal throwboxes assignment for big
data multicast in vdtns,” Wireless Networks, 2019. [Online]. Available:
https://doi.org/10.1007/511276-019-01974-z

H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, 2016.

M. Jindal, J. Gupta, and B. Bhushan, “Machine learning methods for
iot and their future applications,” in 2019 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS). IEEE,
2019, pp. 430-434.

T. Fu, P. Liu, K. Liu, and P. Li, “Privacy-preserving vehicle assignment
in the parking space sharing system,” Wireless Communications and
Mobile Computing, vol. 2020, pp. 1-13, 2020.

Y. E. Sagduyu, Y. Shi, and T. Erpek, “Iot network security from the
perspective of adversarial deep learning,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON). IEEE, 2019, pp. 1-9.

M. Salimitari, M. Joneidi, and M. Chatterjee, “Al-enabled blockchain:
An outlier-aware consensus protocol for blockchain-based iot networks,”
in 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1-6.

S. Yang, S. Fan, G. Deng, and H. Tian, “Local content cloud based
cooperative caching placement for edge caching,” in 2019 IEEE 30th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC). 1EEE, 2019, pp. 1-6.

Q. Li, X. Wang, and D. Wang, “Optimal D2D cooperative caching
system in sdn based wireless network,” in 2019 IEEE 30th Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC). 1EEE, 2019, pp. 1-7.

T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” International
Journal of Communication Systems, vol. 31, no. 11, p. €3706, 2018.
S. Mehrizi, S. Chatterjee, S. Chatzinotas, and B. Ottersten, “Online
spatiotemporal popularity learning via variational bayes for cooperative
caching,” IEEE Transactions on Communications, vol. 68, no. 11, pp.
7068-7082, 2020.

S. Zhang, W. Sun, and J. Liu, “Spatially cooperative caching and opti-
mization for heterogeneous network,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 11, pp. 11260-11270, 2019.

G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 247-257, 2019.

W. Huang, T. Song, Y. Yang, and Y. Zhang, “Cluster-based cooperative
caching with mobility prediction in vehicular named data networking,”
IEEE Access, vol. 7, pp. 23442-23 458, 2019.

Y. Mo, J. Bao, S. Wang, Y. Ma, H. Liang, J. Huang, P. Lu, and J. Chen,
“CCPNC: a cooperative caching strategy based on content popularity and
node centrality,” in 2019 IEEE International Conference on Networking,
Architecture and Storage (NAS). 1EEE, 2019, pp. 1-8.

D. Wu, B. Liu, Q. Yang, and R. Wang, “Social-aware cooperative
caching mechanism in mobile social networks,” Journal of Network and
Computer Applications, vol. 149, p. 102457, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804519303170

S. Gao, P. Dong, Z. Pan, and G. Y. Li, “Reinforcement learning based
cooperative coded caching under dynamic popularities in ultra-dense
networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5442-5456, 2020.

Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based Q-
learning for content placement in cooperative caching,” IEEE Transac-
tions on Communications, 2020.

T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. of 2019 ICC. 1EEE,
2019, pp. 1-7.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205-1221, 2019.

IEEE INTERNET OF THINGS JOURNAL

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party Machine Learning,
2016.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2018, pp. 21-28.

J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” in [International Conference on
Learning Representations Workshop Track, 2016. [Online]. Available:
https://arxiv.org/abs/1604.00981

H. Zhang, Y. Qiu, K. Long, G. K. Karagiannidis, X. Wang, and
A. Nallanathan, “Resource allocation in NOMA-based fog radio access
networks,” IEEE Wireless Communications, vol. 25, no. 3, pp. 110-115,
2018.

Q. Li, W. Shi, X. Ge, and Z. Niu, “Cooperative edge caching in software-
defined hyper-cellular networks,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 2596-2605, 2017.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,”
Proceedings of the 26th International Joint Conference on Artificial
Intelligence, 2017.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and
Q. Yang, “One-class collaborative filtering,” in Proceedings of the Sth
IEEE International Conference on Data Mining, ICDM. IEEE, 2008,
pp. 502-511.

D. M. Blei, A. Y. Ng, and M. 1. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, p. 19, 2016.

Zhengxin Yu is a Ph.D. student in the Department
of Computer Science within College of Engineering,
Maths and Physical Science at the University of
Exeter, UK. She received an MSc in Information
Technology Management for Business from the Uni-
versity of Exeter in 2016. Her research interests fo-
cus on deep learning, federated learning and mobile
edge computing.

Jia Hu is a Senior Lecturer in Computer Science
at the University of Exeter. He received his Ph.D.
degree in Computer Science from the University
of Bradford, UK, in 2010, and M.Eng. and B.Eng.
degrees in Electronic Engineering from Huazhong
University of Science and Technology, China, in
2006 and 2004, respectively. His research interests
include edge-cloud computing, resource optimiza-
tion, applied machine learning, and network security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
¥ versity of Exeter, United Kingdom. He received
the PhD degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003,
and the B.Sc. degree in Computer Science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include Com-
puter Networks, Wireless Communications, Parallel

and Distributed Computing, Ubiquitous Computing, Multimedia Systems,
Modelling and Performance Engineering.

—
Ly
<>

B
———

)

Zi Wang is currently a computer science Ph.D.
student in the College of Engineering, Mathematics
and Physical Science at the University of Exeter,
UK. He received his M.Sc. and B.E. in computer
science from the University of Electronic Science
and Technology of China (UESTC) in 2018 and
2015, respectively. His research interests focus on
deep learning, applied machine learning, cloud and
edge computing and computer networks.

Wang Miao received his Ph.D. degree in Computer
Science from the University of Exeter, United King-
dom in 2017. He is currently a Postdoctoral Research
Associate at the College of Engineering, Mathe-
matics, and Physical Sciences of the University of
Exeter. His research interests focus on Network
Function Virtualization, Software Defined Network-
ing, Unmanned Aerial Networks, Wireless Commu-
nication Networks, Wireless Sensor Networks, and
Performance Modelling and Analysis.

Shancang Li received the Ph.D. degree in com-
puter science from Xi’an Jiaotong University, Xi’an,
China, in 2008. He is currently a Senior Lecturer
with the Network Forensics, University of the West
of England (UWE Bristol), Bristol, United Kingdom.
Over the last few years, he has been working on
a few research projects funded by EU, EPSRC,
A4B (Academic expertise for Business), Technology
Strategy Board, and industry. He has authored and
co-authored several papers based on these research
projects. His current research interests include net-

work forensics, device security, wireless sensor networks, Internet of Things,
and lightweight cryptography over IoT.

