
Performance mutation mechanism and parametric characterization 

method of high-capacity lithium-ion battery 

Yubin Wang1, Caiping Zhang1*, Linjing Zhang1, Xiaohong Li2, Sijia Yang1, Xinyu Jia1 

1 National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong 

University, Beijing 100044, China 

2 Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of 

Exeter, Penryn Campus, Cornwall, TR10 9FE, United Kingdom 

Abstract 

The mutation of power battery performance brings serious reliability and safety 

problems, and has developed into an urgent common issue of electric vehicle power 

battery running and echelon utilization. It is essential to investigate the performance 

mutation mechanism and parametric characterization method of lithium-ion batteries. 

In this paper, the mutation effect of battery performance under state of charge (SOC) 

interval and temperature cyclic conditions is discovered. Moreover, thermodynamic 

investigation method based on the half-cell potential synthesis is implemented to 

explore the evolution of equilibrium potential. Furthermore, the dynamic investigation 

method based on distribution of relaxation time (DRT) and equivalent circuit model 

(ECM) are introduced to describe the impedance characteristics of batteries. Eventually, 

the mechanism of battery performance mutation is revealed and the parameters 

characterizing the mutation are extracted. The mutation effect contains inducing point 

and crossing point, and is caused by the mutation of the negative active material. In 

addition, the charge transfer impedance and diffusion impedance in the SOC range of 

10%-20% are particularly sensitive to the mutation, and a feasible method for 

identifying mutant battery and aging path based on the extracted parameters is proposed. 

It provides superintendence for the safe and economical application of power batteries. 
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1 Introduction 

The transition to electric vehicles (EVs) is set to accelerate over this coming decades 

as governments and legislatures around the world are increasingly committed to the 

electrification of road transport. Currently, the stock of EVs is rapidly soaring, and the 

large-scale adoption of EVs has contributed to the boom in power batteries [1]. 

However, though the mileage range of EVs is increasing impressively, the performance 

degradation of battery is always inevitable, which poses two challenges to be overcome, 

the safe running and recycling of EVs power batteries [2, 3]. 

It is often expected that the battery capacity degradation can be maintained at a 

steady level when subjecting to the increase of cycles number in the process of normal 

performance degradation [4]. We have conducted routine cycle aging tests on hundreds 

of commercial ternary lithium-ion batteries from two different manufacturers, and 

unexpectedly found that 50% of them experienced performance mutation[5]. 

Furthermore, when most batteries reach the knee point of the battery performance, the 

capacity retention rate is still greater than 90%. It is far from the decommissioning 

conditions of the EVs power batteries. Meanwhile, the performance mutation is 

accompanied by a significant expansion in size. It is a major hidden danger for the safe 

running of the battery system, in very unfortunate circumstances, it can result in a fire 

and explosion of the battery. In addition, when the batteries retire from EVs, if the 

performance nutation occurs, it may even have a negative impact on the echelon 

utilization of the batteries. It can be seen that the performance mutation is the common 

issue of EVs power battery operation running and echelon utilization. 

The research on lithium-ion battery performance mutation is now mainly focused 

on the mechanism, modeling and prediction methods. 

The exploration of the mechanism relies on qualitative analysis through post-

dismantling [6-12]. It is revealed that the uneven distribution of the internal pressure of 

the battery [7] and the lithium deposition at the interface between the negative electrode 



and the separator [9, 10] are responsible for the mutation. For example，Bacha et al. 

[7] reported that the unevenness of the pressure inside the battery in actual use leads to 

uneven current distribution, thereby causing the performance mutation of batteries. 

Sarasketa et al. [9] discovered that the capacity loss of the battery is aroused by the 

growth of the solid electrolyte interface (SEI) layer, leading to local lithium deposition. 

While most existing literature of degradation mechanism have been emphasized on 

lithium deposition [13], the effects of electrode active material loss and electrode 

dynamics loss on performance mutation have not been discussed in depth, and 

quantitative descriptions of the mutation mechanisms are even less available. 

There exists conventionally a considerable number of performance degradation 

modeling methods for batteries including empirical models [14-17, 28], equivalent 

circuit models [18, 19], impedance models [20-22] and electrochemical models [23, 

24]. Model parameters are determined by training a large amount of test data from the 

laboratory. However, due to the limitation of training data, especially when there is a 

significant difference between training conditions and actual conditions, the 

applicability of this method can be in question mark. For example, if the training data 

set contains only conditions for a steady degradation in battery performance, once the 

mutation occurs, the prediction of the model will be invalid. Pseudo two-dimensional 

(P2D) models [23], single particle (SP) models [25], and electrochemical models with 

degraded physical properties [26] have also been established to simulate the internal 

and external characteristics of battery performance mutation. The obvious obstacle is 

that due to the manufacturer's confidentiality measures and the coupling of multiple 

parameters, accurate parameter acquisition and identification are very difficult. 

The prediction of the knee point of the battery performance is generally based on 

data threshold [27] and probability derived from statistical methods [5]. It is dominated 

by personal will that apply threshold to identify the knee point of the battery 

performance. Maheshwari et al. [27] presumed that the criterion of the knee point is 

that the local rate of capacity degradation exceeds more than twice the overall rate. 

Moreover, the rate calculation should be performed every 100 equivalent full cycles 



(EFC) to avoid capacity fluctuations caused by capacity recovery effects and/or 

possible error of data measurement, which may cause the identification results to lag 

seriously. Some researchers have expanded battery capacity prediction and health state 

estimation methods [28-30]. Among them, Cong et al. [30] initially predicted the 

battery capacity, and then determined that the first-order derivative of the battery 

capacity exceeded the 3σ threshold range to achieve the purpose of identifying the knee 

point of battery performance. The above method considers only the features of capacity 

data. However, since the actual capacity is difficult to obtain accurately, its application 

is limited. Compared with the prediction method based on the battery degradation 

mechanism, the guiding significance is weakened. 

As indicated, the current research has highlighted that the core problem is that the 

mechanism of mutation and the characterization of related physical parameters are 

ambiguous. Therefore, this paper combines the half-cell model and impedance model 

to deeply explore their relationship with mutation in terms of battery positive/negative 

electrode capacity, available lithium-ion capacity, and positive and negative electrode 

kinetic parameters. The mechanism of battery performance mutation under different 

cycling conditions has been revealed. The foremost characterization parameters that 

induce performance mutation are extracted. It provides guidance for the prediction 

methods of performance mutation, and engenders considerable scientific value and 

practical implication for the safe and economical application of power batteries. 

2 Experimental test matrix and performance mutation phenomenon 

In this study, the battery selected in the experiment was a commercial ternary high-

capacity lithium-ion battery with Nickel–Manganese–Cobalt (NMC) based positive and 

graphite based negative electrodes. The nominal capacity of the cell is 114 Ah, and the 

charge-discharge cut-off voltage is 2.8-4.25 V. By aiming to observe the evolution of 

battery performance degradation, the experimental program is divided into performance 

test and cycle test. 

The performance test set includes rated capacity test, small current equilibrium 

potential test, and Electrochemical Impedance Spectroscopy (EIS) test. If not otherwise 



stated, the test temperature is set to 25 ℃. The acquisition of the rated capacity is 

carried out in accordance with the scheme provided in the battery manual, and the 

charging strategy adopts a step current charging method. A total of four different current 

rates are selected during the battery charging process. As the SOC increases, the current 

gradually decreases in the order of 1 C, 1/3 C, 1/10 C and 1/20 C, respectively. After 

being fully charged and standing for 6 minutes, the battery is discharged with a constant 

current of 1/3 C to the cut-off voltage of 2.8 V. The equilibrium potential is calculated 

by taking the mean of the charge and discharge voltage with constant current of 0.05 C. 

The EIS test of the battery is conducted sequentially at the decile of the battery SOC, 

and the voltage response of the battery does not exceed 10 mV to meet the requirements 

of its linearity and stability conditions. The frequency range from 10 kHz to 10 mHz is 

selected to obtain a complete and accurate impedance spectrum of the battery. 

The cycle test is conducted under two working conditions, the influential factors 

considered are the temperature and SOC interval. The temperature range covers from 

25 °C to 55 °C. The depth of discharge (DOD) for the SOC interval is 20%, and the 

mean of SOC is distributed on the low, medium and high levels of battery SOC namely, 

10% SOC (M10D20), 50% SOC (M50D20) and 90% SOC (M90D20). The charging strategy 

of the cycle test is consistent with the rated capacity test in the corresponding SOC 

interval. The slight difference is that the discharge rate of the cycle test is 1 C, and when 

the discharge reaches the cut-off voltage, it needs to be further switched to 1/3 C and 

discharged to the cut-off voltage again. 

To investigate the performance degradation of the battery under different 

temperatures and SOC intervals, the condition that the mean SOC is 50% and the DOD 

is 100% at 25 °C (25℃@M50D100) is used as a reference. During the experiment process, 

the basic performance test is performed after multiple cycles of the aging test. The 

detailed aging experiment matrix and declining state of battery are depicted in Table 1. 

To ensure the safety of the experiment and the consistency with the actual operating 

conditions, the batteries are tested with splints. The test equipment is American Arbin 

LBT21014 Battery Testing System and the experimental batteries are placed in a high 

and low temperature test chamber to keep the constant temperature. At least two 



batteries are tested at the same condition, so as to avoid the contingency of the 

experiment.  

Table. 1 Battery aging experiment matrix. The MxDy represents the condition of mean SOC x and 

DOD y. The ACC and Nor represent the accelerated and normal declining state of battery 

performance, respectively. 

Considered  

condition 

Temperature  

(℃) 

SOC interval  

(Level) 

Current rate  

Charge-Discharge (C) 

Declining 

state 

SOC interval 25 

M10D20 (Low) 1-1&1/3 Acc 

M50D20 (Medial) 1-1 Nor 

M90D20 (High) 1/3&1/10&1/20-1 Nor 

Reference 25 
M50D100  

(Full) 

1&1/3 &1/10 &1/20 

-1&1/3 
Acc/Nor 

Temperature 

35 
M50D100  

(Full) 

1&1/3&1/10&1/20 

-1&1/3 

Nor 

45 Nor 

55 Nor 
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Fig. 1. Decay curve of battery capacity retention rate (a) Decline curve of capacity retention 

rate under different SOC interval cycle conditions (b) Decline curve of capacity retention rate 

under different temperature cycle conditions 

The decay process of the rated capacity retention rate of the battery under various 

operating conditions is shown in Fig. 1. Due to the distinct difference in the number of 



battery cycles under different operating conditions, especially in the case of partial SOC 

interval, the EFC is used to facilitate unification. The capacity decay process of several 

batteries under the same working condition remains coincident, except for the 

inconsistent battery decay trend of the batteries in the reference working condition (25℃

@M50D100). Thus, only one battery with the consistent degradation process is displayed. 

Under the condition of 25 ℃ @M50D100, some batteries experienced accelerated 

capacity degradation, while other batteries still maintained approximately linear decline. 

In terms of SOC interval as illustrated in Fig. 1(a), the performance degradation of 

25℃@M50D20@Nor, 25℃@M90D20@Nor and 25℃@M50D100@Nor meets the 

expected stability, and the degradation speed of 25℃@M50D100@Nor is the highest. 

But the degradation speed of 25℃@M10D20@Acc and 25℃@M50D100@Acc is fast and 

a knee point appears. This phenomenon is defined as the performance mutation. 

Especially, the battery of 25℃@M10D20@Acc appears a cliff-like drop as shown by 

blue curve in Fig. 1(a).  

The performance mutation leads to a severe reduction in battery life. When declined 

to 80% of the rated capacity, the life span of 25℃@M50D100@Nor is 2000 EFC. 

However, the battery life of 25℃@M50D100@Acc is only about 1200 EFC, which is 

3/5 of the normal life. More seriously, for 25℃@M10D20@Acc, it begins to decline at 

an accelerated rate after 200 EFC, and the life is only 2/5 of the normal life. This could 

be a terrible experience for customers. In term of temperature as illustrated in Fig. 1(b), 

as the temperature increases, the degradation rate of the battery capacity does not 

change evidently. A trend of approximately linear decline is presented without any 

mutation. It can be concluded that under normal temperature conditions, whether it is 

charged or discharged in a complete or partial SOC range, the battery is very likely to 

encounter the mutation in performance degradation. And lifting the battery ambient 

temperature, it will not remarkably reduce the battery life and cause battery 

performance mutation. Although the correlation between mutation and operating 

condition has been investigated, the cause of the mutation is confusing. Therefore, in 

order to better understand mechanism of battery performance degradation and identify 



the knee point of performance, it is necessary to conduct in-depth investigation of the 

mutation mechanism and parametric characterization method. 

3 Investigation of battery performance mutation 

The manifestation of the battery performance is mainly determined by its 

equilibrium potential and impedance characteristics. Thence, it is necessary to start 

from its own properties of equilibrium potential and impedance to explore the evolution 

laws during the aging process, and to investigate the performance mutation mechanism. 

It is a potential method to synthesize the voltage of the whole battery based on the 

voltage curve of the positive and negative electrodes [31]. In the process of performance 

degradation, the contraction and translation characteristics of the voltage curve 

correspond to changes in capacity and impedance. It can further be utilized to determine 

the loss of positive electrode active material, negative electrode active material, 

available lithium ions and ohmic resistance during the decay process. Regretfully, the 

impedance of each part is lumped into an ohmic resistance, and the value is same in the 

entire SOC range. As a result, a significant error is caused and the inherent attenuation 

mechanism of each part impedance is hidden. Herein, based on the equilibrium 

potential of the half-cell, the equilibrium potential of the full-battery is accurately 

simulated, eliminating the error introduced by lumped resistance, and further takes 

advantage of the DRT and impedance model to reliably reflect the battery impedance 

features. Ultimately, the investigation methods of equilibrium potential and impedance 

characteristics are integrated to reveal the mutation mechanism of battery performance 

and to construct corresponding characteristic parameter set. 

3.1 Mutation mechanism and parametric characterization method based on 

equilibrium potential 
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Fig. 2. Schematic diagram of battery approximate equilibrium potential synthesis method and the 

approximate equilibrium potential evolution after performance degradation (a) Schematic diagram 

of battery approximate equilibrium potential synthesis method (b) Evolution of approximate 

equilibrium potential after performance degradation 

The credible acquisition of the cell equilibrium potential, also called the open 

circuit voltage (OCV), often requires several days of standing time, and thus is replaced 

by the approximate open circuit voltage (AOCV). Herein, for the positive half-cell, 

negative half-cell and full-battery, the voltage curves of charge and discharge at 0.05C 

are averaged to calculate AOCV. The low current and averaging strategy can extremely 

eliminate the influence of impedance on OCV. The AOCV of the positive electrode 

(AOCVP), the AOCV of the negative electrode (AOCVN) and the AOCV of the full-

battery (AOCVF) are illustrated in Fig. 2(a). As marked, KP and KN are contraction 

factors, and SP and SN are translation factors. SOCPE, SOCNE, and SOCF are the SOC 

of the positive half-cell, negative half-cell, and full-battery, respectively. The AOCVF 

of the new battery is calculated as follows: 

𝐴𝑂𝐶𝑉𝐹 = 𝐴𝑂𝐶𝑉𝑃 − 𝐴𝑂𝐶𝑉𝑁 = 𝑓(𝑆𝑂𝐶𝑃𝐸) − 𝑓(𝑆𝑂𝐶𝑁𝐸) (1) 

The loss of positive active material (LAMP), the loss of negative active material 

(LAMN), and the loss of available lithium ion (LLI) during the degradation of battery 

performance, resulting in the evolution of AOCV, as revealed in Fig. 2(b). Then the 

AOCVF of the aging battery is calculated: 

𝐴𝑔𝑒𝑑 𝐴𝑂𝐶𝑉𝐹 = 𝑓(𝑆𝑂𝐶𝑃𝐸 , 𝐿𝐴𝑀𝑃) − 𝑓(𝑆𝑂𝐶𝑁𝐸 , 𝐿𝐴𝑀𝑁, 𝐿𝐿𝐼) (2) 

 



Simulate the relationship between the AOCVP, AOCVN and the AOCVF at different 

stages of the battery life through the PSO optimization algorithm, so that the RMSE 

between the measured and simulated AOCVF is minimized. Thereby, the values of KP, 

KN, LAMP, LAMN, LLI can be determined. Furthermore, based on the correlation 

between the capacity of the new battery (QF) and specific parameters, the positive 

electrode material capacity (QP), negative electrode material capacity (QN) and 

available lithium-ion capacity (QLi) during the battery degradation are derived: 

𝑄𝑥 = {
𝐾𝑥 ∗ 𝑄𝐹 − 𝐿𝐴𝑀𝑥, 𝑥 = 𝑃, 𝑁

(𝐾𝑃 − 𝑆𝑃 + 𝑆𝑁) ∗ 𝑄𝐹 − 𝐿𝐿𝐼, 𝑥 = 𝐿𝑖
(3) 

The detailed introduction of the method can refer to our previous work[32]. In the 

light of fitting results of experimental lithium-ion batteries under different SOC 

intervals and different temperatures, the maximum error does not exceed 10 mV, and 

the model parameters are consistent. In addition, it has been verified on another battery 

that using a smaller charge and discharge current (0.02 C) to calculate the AOCV of the 

half-cell has a better fitting effect. 

Fig. 3(a, b, c, d, e) display the variation curves of capacity during battery aging 

under different SOC interval cycle conditions. It can be clearly seen that the initial state 

of the battery under any operating condition satisfies: QN>QLi>QP. Since the decay 

trends of each capacity are not parallel, the decay rates of QF, QP, QN and QLi are 

inconsistent. The capacity decline trend of each part of the battery that has not 

experienced the performance mutation is relatively flat, and none of them exhibits a 

notable acceleration, as shown in Fig. 3(c, d, e). Under the operating conditions of 

25℃@M10D20@Acc and 25 ℃ @M50D100@Acc where the performance mutation 

occurs, the capacity degradation of each part is accelerated. In particular, the mutation 

of the negative electrode material capacity is the most significant, and the phenomena 

of induction and crossing is discovered in the mutation process, as shown in Fig. 3(a, 

b). Taking the operating condition of 25℃@M10D20@Acc as an example. The 

degradation rate of each capacity is sluggish before 200 cycles. After that, the decay 

rate of QN suddenly accelerates, while the decay rate of QF, QP and QLi do not change 

appreciably. When QN decays below QP and QLi, QF, QP and QLi also begin to decline 



faster. To facilitate description and understanding, the moment when QN suddenly drops 

is defined as the mutation inducing point (the point inside the yellow circle in Fig. 3(a)), 

and the moment when QN intersects with QP or QLi is defined as the mutation crossing 

point (the point inside the red circle in Fig. 3(a)). Identical behavior is derived under 

25℃@M10D20@Acc working condition, so it can be considered that the accelerated 

degradation of battery performance is mainly caused by the mutation of the negative 

electrode material. Thus, the whole mutation process can be characterized by the load 

rate (LR): 

𝐿𝑅 =
𝑄𝑁

𝑄𝑃

(4) 
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Fig. 3. The variation curves of each capacity and LR during battery aging under different SOC 

interval cycle conditions (a) The variation curve of each capacity at 25℃@M10D20@Acc (b) The 

variation curve of each capacity at 25℃@M50D100@Acc (c) The variation curve of each capacity 



at 25℃@M50D20@Nor (d) The variation curve of each capacity at 25℃@M90D20@Nor (e) The 

variation curve of each capacity at 25℃@M50D100@Nor (f) The variation curve of LR under 

different SOC interval cycle conditions 

The variation curve of LR under different SOC interval cycle conditions is 

represented in Fig. 3(f). Taking LR=1 as the boundary, the battery aging process is 

divided into normal area and crossing area. In the initial stage of battery aging, LR is >1. 

If there is no accelerated performance degradation, LR will always be in the normal 

degradation area of the battery. Once the LR exceeds the boundary and enters the 

crossing area, it indicates that the decay rate of the negative electrode material is 

markedly faster than the decay rate of the positive electrode material, and the battery 

performance exhibits the mutation. 

 The above-mentioned thermodynamic analysis method is also applied to different 

temperature cycle conditions. Corresponding variation curves of each capacity and LR 

are expressed in Fig. 4(a, b, c, d). The degradation of battery performance does not 

abruptly accelerate with the increase of cycle temperature (T>25 ℃). However, LR 

reaches the boundary and enters the crossing area under the conditions of 35℃

@M50D100@Nor and 45℃@M50D100@Nor, as shown in Fig. 4(d). Although the 

representation of LR is similar with the conditions of 25℃@M50D100@Acc and 

25℃@M10D20@Acc, the variation curve of each capacity is diverse. Under the 

operating conditions of 35℃@M50D100@Nor and 45℃@M50D100@Nor, as shown in 

Fig. 4(a, b), when the negative electrode material decays to the mutation crossing point, 

its degradation rate begins to decrease, but it still accelerates at 25℃@M10D20@Acc 

(Fig. 3(a)). In addition, apart from the difference in negative electrode materials, the 

capacity of other parts does not accelerate decay in Fig. 4(a, b), but declines rapidly at 

25℃@M50D100@Acc (Fig. 3(b)). When the temperature improves to 55 ℃, as shown 

in Fig. 4(c), the mutation crossing point does not exist. Hence, the elevation of 

temperature is not the dominant factor that leads to the mutation of battery performance 

degradation. 
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Fig. 4. The variation curves of each capacity and LR during battery aging under different 

temperature cycle conditions (a) The variation curve of each capacity at 35℃@M50D100@Nor (b) 

The variation curve of each capacity at 45℃@M50D100@Nor (c) The variation curve of each 

capacity at 55℃@M50D100@Nor (d) The variation curve of LR under different temperature cycle 

conditions 

 As stated previously, the analysis of the battery equilibrium potential under 

different cycle conditions confirms that the battery with performance mutation enters 

the intersection area during the aging process. But the battery that enters the intersection 

area does not necessarily have mutation. Only after entering the crossing area, the 

degradation of any material is still accelerated, which will lead to mutation of the 

battery performance. That is, the sufficient condition for the mutation of battery 

performance degradation is that the capacity ratio of the positive and negative active 

materials reverses, and the accelerated degradation of any material after the reversal is 

a necessary and sufficient condition. Hereby, the thermodynamic characteristic 

parameter 𝜃𝑇𝐶𝑃 can be extracted. 

𝜃𝑇𝐶𝑃 = {𝑄𝑃, 𝑄𝑁, 𝑄𝐿𝑖 , 𝐿𝑅} (5) 



The mutation mechanism and parametric characterization based on equilibrium 

potential is realized through 𝜃𝑇𝐶𝑃 . To further explore the dynamic characteristic 

parameters related to the mutation, the battery impedance feature and its model research 

are carried out. 

3.2 Mutation mechanism and parameterized characterization based on impedance 

feature 

The EIS testing equipment employed is the French Bio-Logic VMP-300 multi-

channel electrochemical workstation. In order to extract the correct information from 

the impedance spectrum, the linearity, time invariance, and causality conditions must 

be satisfied. Lin-KK software based on Kramers-Kronig technology has been used to 

verify the reliability of all impedance spectroscopy experimental data [33]. According 

to the test results, a typical lithium-ion battery impedance spectrum is exhibited in Fig. 

5(a). If ignoring the inductive impedance part below the real axis generated by wire 

inductance and electrode winding, the impedance spectrum is mainly composed of four 

parts: 1) The intersection with the real axis is the ohmic resistance of the battery, 

including the resistance of the solution and the electrode. 2) That located in the high 

frequency region is a small capacitive reactance arc which represents the migration 

process of lithium ions in the SEI film. 3) There is an incomplete large capacitive 

reactance arc in the intermediate frequency region, indicating the charge transfer 

process of lithium ions at the interface of the SEI film and the electrode active material. 

4) An approximate straight line characterizing the diffusion process of lithium ions in 

the solid phase extends in the low frequency region. In special circumstances, the arcs 

of the high frequency region and the intermediate frequency region almost overlap, 

which increases the difficulty of clarifying the attributable electrochemical process. 
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Fig. 5. The impedance spectrum test result of a typical lithium-ion battery (a) The Nyquist plot of 

the impedance spectrum (b) The DRT curve of the impedance spectrum (c) The ECM with the 

fixed circuit structure determined by the DRT method (d) The Nyquist diagram of partial and 

whole impedance (e) The amplitude-frequency characteristic of partial and whole impedance (f) 

The phase-frequency characteristic of partial and whole impedance 

Essentially, capacitive reactance arc is a relaxation process in which a capacitor is 

charged and discharged through a resistor after being disturbed by a weak sinusoidal 



alternating current. The speed of the relaxation process is usually characterized by the 

time constant τ, and affects the frequency range of the capacitive reactance arc. The 

DRT method based on radial basis function and regularized regression can effectively 

separate the relaxation process in EIS and determine the time constants for each part of 

the impedance [34]. It regards the EIS of the battery as a circuit composed of an ohmic 

internal resistance 𝑅𝑜 and an infinite number of RC parallel branches with different 

time constants in series, and expresses the RC parallel branches through radial basis 

function discretization. Meanwhile, the discretization parameters are calculated with 

regularized regression, and then DRT parameters are obtained by fitting the measured 

impedance (𝑍𝑀𝑒𝑎). The expression of DRT impedance (𝑍𝐷𝑅𝑇) is as follows: 

𝑍𝐷𝑅𝑇 = 𝑅𝑜 + ∫
𝛾(ln 𝜏)

1 + 𝑗𝑤𝜏
𝑑 ln 𝜏

∞

−∞

(6) 

𝛾(ln 𝜏)  is a DRT function composed of N radial basis functions with central 

characteristic time 𝜏𝑛  and shape factor 𝜇 , The discretized expression is written as 

follows: 

𝛾(ln 𝜏) = ∑ 𝑥𝑛𝑒−(𝜇(|ln 𝜏−ln 𝜏𝑛|))
2

𝑁

𝑛=1

(7) 

𝑥𝑛 is the parameter to be identified, which is determined by fitting the measured 

electrochemical impedance spectrum. The sum of squares of errors between the fitted 

value and the measured value is used as the basic cost function, and the square of the 

first derivative of the DRT function is added to the cost function as a penalty term. It is 

aimed to solve the existing ill-conditioned problems through regularization methods. 

Thereby the cost function is determined as: 

min ∑ [𝛼Re(𝑍𝑀𝑒𝑎(𝑤) − 𝑍𝐷𝑅𝑇(𝑥, 𝑤))
2

+ 𝛽Im(𝑍𝑀𝑒𝑎(𝑤) − 𝑍𝐷𝑅𝑇(𝑥, 𝑤))
2

+ 𝜆
𝑑𝛾(ln 𝜏)2

𝑑 ln 𝜏
]

𝑤𝑚𝑎𝑥

𝑤=𝑤𝑚𝑖𝑛

(8) 

𝛼 and 𝛽 are weighting factors, Re and Im are functions of the real and imaginary 

parts of the impedance. 𝜆  is a regularization parameter, and the optimal value is 

searched by regression algorithm [35, 36]. The approximation method based on the 

radial basis function has the advantages of fast convergence, no special distribution, 

simple and flexible implementation. Eventually, the specific relationship between τ and 



𝛾(ln 𝜏) is confirmed, and the DRT curve of the typical lithium-ion battery is drawn in 

Fig. 5(b). It is composed of three obvious peaks, representing the SEI, charge transfer 

and diffusion process in EIS, respectively. Markedly, Pi is the intensity of the i-th 

(i=1,2,3) peak, and 𝜏𝑖 is the position, that is, the time constant of the relaxation process. 

Therefore, the feature parameter set 𝜃𝐷𝑅𝑇 that can be extracted.  

𝜃𝐷𝑅𝑇 = {𝑃1, 𝑃2, 𝑃3, 𝜏1, 𝜏2, 𝜏3, 𝑃3 − 𝑃2, 𝑃2 − 𝑃1, 𝑃3 − 𝑃1, 𝜏3 − 𝜏2, 𝜏2 − 𝜏1, 𝜏3 − 𝜏1} (9) 

 The parameter set 𝜃𝐷𝑅𝑇  only contains the time constant information of each 

process in the impedance spectrum. To obtain more abundant and detailed dynamic 

characteristic parameters, the ECM is constructed, with the fixed circuit structure 

determined by the DRT method, as depicted in Fig. 5(c). Ro、RSEI、Rct are the ohmic 

impedance, SEI film resistance and charge transfer resistance, respectively. Due to the 

inhomogeneity of the electrode/electrolyte interface, the arc in Fig. 5(a) is not an ideal 

semicircular trajectory, which is generally called the " dispersion effect". Hence, the 

constant phase element (CPE) with capacitive nature is introduced, and is denoted by 

Q. The capacitance of the SEI film and the electric double layer can be represented by 

QSEI and Qdl. Similarly, the approximate low-frequency straight line is considered to be 

an arc with an infinite radius, so that the diffusion impedance of the solid phase can 

also be expressed as Qw. The circuit description code (CDC) of the model is 

𝑅𝑜(𝑄𝑆𝐸𝐼𝑅𝑆𝐸𝐼)(𝑄𝑑𝑙(𝑅𝑐𝑡𝑄𝑤)), and the total impedance ZMod and the impedance of each 

part are expressed as: 

𝑍𝑀𝑜𝑑 = 𝑍𝑅𝑜
+ 𝑍(𝑄𝑆𝐸𝐼𝑅𝑆𝐸𝐼) + 𝑍(𝑄𝑑𝑙(𝑅𝑐𝑡𝑄𝑤)) (10) 

𝑍𝑅𝑜
= 𝑅𝑜 (11) 

𝑍(𝑄𝑆𝐸𝐼𝑅𝑆𝐸𝐼) =
𝑅𝑆𝐸𝐼

(𝑗𝑤)𝑛𝑆𝐸𝐼 ∗ 𝑄𝑆𝐸𝐼 ∗ 𝑅𝑆𝐸𝐼 + 1
(12) 

𝑍(𝑄𝑑𝑙(𝑅𝑐𝑡𝑄𝑤)) =
𝑅𝑐𝑡 + (𝑗𝑤)𝑛𝑤 ∗ 𝑄𝑤

(𝑗𝑤)𝑛𝑑𝑙 ∗ 𝑄𝑑𝑙 ∗ (𝑅𝑐𝑡 + (𝑗𝑤)𝑛𝑤 ∗ 𝑄𝑤) + 1
(13) 

 In the above formulas, n is the order of the CPE. It is an empirical constant that is 

often used to modify the capacitance when fitting the impedance spectrum. The PSO 

algorithm is executed to effectively identify the parameters of the model, and the 

optimization goal is to minimize the RMSE between ZMod and ZMea. To avoid the over-

fitting phenomenon caused by the complicated model parameters, 𝑛𝑆𝐸𝐼 and 𝑛𝑑𝑙 are 



fixed to 0.8 according to [37-39] and the statistical results of the identification 

parameters. Accordingly, the model parameter set 𝜃𝑀𝑜𝑑  to be identified and the 

optimization goal are as follows: 

min
𝜃𝑀𝑜𝑑

∑ (𝑍𝑀𝑒𝑎(𝑤) − 𝑍𝑀𝑜𝑑(𝑤, 𝜃𝑀𝑜𝑑))
2

𝑤𝑚𝑎𝑥

𝑤=𝑤𝑚𝑖𝑛

(14) 

𝜃𝑀𝑜𝑑 = {𝑅𝑜, 𝑅𝑆𝐸𝐼 , 𝑅𝑐𝑡 , 𝑄𝑆𝐸𝐼, 𝑄𝑑𝑙 , 𝑄𝑤, 𝑛𝑤} (15) 

Perform the proposed dynamic characteristic analysis method, and the RMSE of 

all the measured batteries does not exceed 4 × 10−6  Ohm. To comprehensively 

evaluate the fitting effect and explore the contribution of each part to the total 

impedance, the Nyquist diagram and Bode plot of partial and whole impedance are 

displayed in Fig. 5(d, e, f). From the perspective of the fitting effect, regardless of the 

Nyquist diagram or the Bode plot, the measured value and the fitted value are highly 

coincident. Comparing the contribution of each part to the total impedance in the 

amplitude-frequency characteristic, as shown in Fig. 5(e), 𝑅𝑜 is a constant value in the 

whole frequency range. Without considering 𝑅𝑜, the impedance of (𝑄𝑆𝐸𝐼𝑅𝑆𝐸𝐼) in the 

middle-high frequency segment dominates. On the contrary, as the frequency decreases, 

the impedance of (𝑄𝑆𝐸𝐼𝑅𝑆𝐸𝐼) tends to stabilize, and is exceeded by the impedance of 

(𝑄𝑑𝑙(𝑅𝑐𝑡𝑄𝑤)). In the entire impedance spectrum, each component is aliased, which is 

difficult to distinguish independently. Through model parameter identification and 

separate calculation, the proportion of each part of the impedance in different frequency 

ranges can be effectively confirmed. 
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Fig. 6. The Nyquist diagram of aged battery at different SOC (a) The Nyquist diagram of 

battery at the condition of 25℃@M50D100@Nor (b) The Nyquist diagram of battery at the 

condition of 25℃@M50D100@Acc 

The impedance characteristic of the battery is not only extremely related to the 

frequency range, but also strongly dependent on the SOC state of the battery due to the 

difference in the lithium insertion rate of the positive and negative materials. Taking the 

conditions of 25℃@M50D100@Acc and 25℃@M50D100@Nor as examples, the Nyquist 

diagrams of them at different SOC are shown in Fig. 6(a, b). It can be clearly observed 

that no matter whether the battery performance is accelerated decay or normal aging, 

the impedance varies with the SOC, and the degree of variation is also diverse. To in-

depth explore the impedance characteristics after accelerated degradation of battery 

performance, the 𝜃𝐷𝑅𝑇  and 𝜃𝑀𝑜𝑑  at different SOC can be utilized. They are 

uniformly characterized in the form of the change rate 𝜃𝐶𝑅, since the EFC and the state 

of health after battery aging are inconsistent. 

𝜃𝐶𝑅 =
𝜃𝑎𝑔𝑒 − 𝜃𝑛𝑒𝑤

𝐸𝐹𝐶
, 𝜃𝑎𝑔𝑒, 𝜃𝑛𝑒𝑤 ∈ {𝜃𝐷𝑅𝑇, 𝜃𝑀𝑜𝑑} (16) 

𝜃𝑛𝑒𝑤  and 𝜃𝑎𝑔𝑒  are the characteristic parameters corresponding to the new and 

aging state of the battery, respectively, which are belong to the 𝜃𝐷𝑅𝑇 and 𝜃𝑀𝑜𝑑. The 

evolution of all parameters in 𝜃𝐶𝑅  is statistically analyzed, and the dynamic 

characteristic parameter 𝜃𝐷𝐶𝑃 that is strongly associated with the battery performance 

mutation can be summarized. 

𝜃𝐷𝐶𝑃 = {𝜏2
𝐶𝑅 , (𝜏3 − 𝜏2)𝐶𝑅 , 𝑅𝑐𝑡

𝐶𝑅, 𝑄𝑤
𝐶𝑅} (17) 
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Fig. 7. The variation curves of dynamic characteristic parameter under different SOC interval 

cycle conditions (a) The variation curves of 𝜏2
𝐶𝑅 under different SOC interval cycle conditions (b) 

The variation curves of (𝜏3 − 𝜏2)𝐶𝑅 under different SOC interval cycle conditions (c) The 

variation curves of 𝑅𝑐𝑡
𝐶𝑅 under different SOC interval cycle conditions (d) The variation curves of 

𝑄𝑤
𝐶𝑅 under different SOC interval cycle conditions 

It is exciting to indicate the battery performance mutation through the variation of 

battery impedance parameter at different SOC. Fig. 7 demonstrates the variation curves 

of each parameter in 𝜃𝐷𝐶𝑃 with SOC under different SOC interval cycle conditions. 

Focusing on the low SOC area of 10%-20% (the green dotted line area in Fig. 7), the 

mutant battery and the normal battery are differentiated from each other. For the mutant 

batteries (the orange lines in Fig. 7), when the SOC changes from 10% to 20%, 𝜏2
𝐶𝑅 

and 𝑄𝑤
𝐶𝑅  increase significantly, 𝑅𝑐𝑡

𝐶𝑅  slightly increases, and (𝜏3 − 𝜏2)𝐶𝑅  presents a 

significant downward trend. Conversely, 𝜏2
𝐶𝑅  significantly decreases or slightly 

increases, (𝜏3 − 𝜏2)𝐶𝑅  significantly increases or slightly decreases, 𝑅𝑐𝑡
𝐶𝑅  decreases 

significantly, and 𝑄𝑤
𝐶𝑅 slightly increases for normal batteries, as the purple lines shown 

in Fig. 7. More specifically, for the normal batteries that cycled in partial SOC interval, 

𝜏2
𝐶𝑅  significantly decreases, and (𝜏3 − 𝜏2)𝐶𝑅  significantly increases. However, 𝜏2

𝐶𝑅 



slightly increases, and (𝜏3 − 𝜏2)𝐶𝑅  slightly decreases for the normal batteries that 

cycled in entire SOC interval. In view of this, the diverse exhibition of 𝜃𝐷𝐶𝑃 at the low 

SOC not only facilitates the accurate identification of battery performance mutation, 

but also promotes the judgment of battery aging path. 

Similar behavior can be deduced under different temperature cycle conditions, as 

proved in Fig. 8. It is worth noting that when the SOC is changed from 10% to 20% 

(the green dotted line area in Fig. 8), for the case of 35℃@M50D100@Nor, the change 

tendency of 𝑄𝑤
𝐶𝑅 is consistent with the mutant battery, as the square line shown in Fig. 

8(d). Thus, there may be a risk of lapse in identifying a mutant battery with only single 

parameter. As shown in Fig. 8(a, b, c), if other parameters that have obvious distinction 

between normal and mutation are combined, such as 𝜏2
𝐶𝑅, (𝜏3 − 𝜏2)𝐶𝑅, or 𝑅𝑐𝑡

𝐶𝑅, the 

accuracy will be ensured. In addition, the parameter difference between the temperature 

cycle conditions of normal batteries also exists. Especially, when the temperature 

reaches 45 °C and 55 °C, in the SOC range of 10%-20%, 𝜏2
𝐶𝑅 and (𝜏3 − 𝜏2)𝐶𝑅 exhibit 

the opposite trends compared to 25 °C and 35 °C. 
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Fig. 8. The variation curves of dynamic characteristic parameter under different temperature cycle 

conditions (a) The variation curves of 𝜏2
𝐶𝑅 under different temperature cycle conditions (b) The 



variation curves of (𝜏3 − 𝜏2)𝐶𝑅 under different temperature cycle conditions (c) The variation 

curves of 𝑅𝑐𝑡
𝐶𝑅 under different temperature cycle conditions (d) The variation curves of 𝑄𝑤

𝐶𝑅 

under different temperature cycle conditions 

The analysis results of temperature and SOC operating conditions further 

demonstrate the feasibility of identifying mutant battery and aging path based on the 

proposed parameter set. It can be seen that the prospect of impedance-based battery 

aging and abnormal state diagnosis is brilliant. Considering the physical meaning of 

𝜃𝐷𝐶𝑃, the performance mutation is mainly reflected in the abnormal charge transfer and 

diffusion process, and it is concentrated in the low SOC region of 10%-20%. 

Coincidentally, this region is embraced in the cyclic SOC interval where the 

performance mutation occurs. It can be concluded that the SOC cycle interval has an 

essential influence on the process of battery performance degradation, especially the 

low SOC interval, which is more liable to engender mutation. A blessing in disguise is 

that the charge transfer impedance and diffusion impedance in this SOC interval are 

more sensitive to mutation. With this feature, the effect of identifying performance 

mutation is excellent. 

4 Conclusion 

The performance mutation effect under different cyclic conditions has been studied. 

The thermodynamic investigation method based on the half-cell potential synthesis and 

the dynamic investigation method based on DRT and ECM are implemented. In 

addition, the equilibrium potential and impedance characteristics that determine the 

external performance of battery are explored. This research has proposed the 

mechanism of battery performance mutation and summarized as follows: 

1) Experiments have confirmed that under normal temperature conditions, whether 

cycling within full or partial SOC range, the battery is very likely experience 

performance mutation. Furthermore, the cyclic interval of low SOC is more liable to 

engender mutation. However, elevated temperature is not the dominant factor that 

causes the performance mutation. 



2) Mutation mechanism and parameterized characterization based on equilibrium 

potential are investigated. The mutation effect containing inducing point and crossing 

point is caused by the mutation of the negative active material. Moreover, the necessary 

and sufficient conditions for the occurrence of mutations are derived, and the 

thermodynamic characteristic parameters are extracted. 

3) Mutation mechanism and parameterized characterization based on impedance 

features are explored. The charge transfer impedance and diffusion impedance in the 

low SOC range are particularly sensitive to the mutation. And the dynamic parameters 

that characterize the mutation are proposed. 

The mutation mechanism of the battery and related extracted parameters have been 

proposed, providing the foundation for battery performance mutation diagnosis and 

prognosis. The online acquisition method of the parameters still needs further 

investigated. 
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