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A B S T R A C T

The statistical characteristics of the largest observations in a sample are highly uncertain. In this work we
consider the problem of how to define empirical estimates of exceedance probabilities and return periods
associated with an ordered sample of observations. Understanding the sampling properties of these quantities
is important for assessing the fit of a statistical model and also for placing confidence bounds on estimates of
extreme events from Monte Carlo simulations. The empirical distribution function (EDF) is often defined as
the expected non-exceedance probability (NEP) associated with sample order statistics. Yet, due to the non-
linearity of the relations between return periods, quantiles and NEP, the return period (or quantile) associated
with the expected NEP is not equal to the expected return period (or quantile), leading to ambiguity. However,
the sampling distributions of exceedance probabilities, return periods and quantiles are, in fact, linked by a
simple relation. From this relation, it follows that defining the EDF in terms of the median NEP of the order
statistics gives a consistent framework for defining empirical estimates of all three quantities. We demonstrate
that the median value of the return period of the largest observation is 44% larger than the return period
calculated using the common definition of the EDF in terms of the expected NEP of the order statistics. We
also derive some new results about the size of the confidence intervals for exceedance probabilities and return
periods.
1. Introduction

Estimating the frequency of occurrence of extreme events is an
important topic in offshore and coastal engineering. Many design stan-
dards for marine structures require the design to be assessed in sea
states associated with specific return periods. The usual approach for
estimating return values of metocean variables is to fit a statistical
model to observed or hindcast data and extrapolate into the tail of
the fitted model. For extreme value analyses, the fit of the model is
usually assessed using plots of the observations together with various
quantities derived from the empirical distribution function (EDF), such
as exceedance probabilities, return periods or quantiles.

In this work we consider the problem of how to define empirical
estimates of exceedance probabilities, return periods and quantiles and
the related problem of calculating their sampling properties. Under-
standing the sampling properties of these quantities is important for
assessing the fit of a statistical model and also for placing confidence
bounds on estimates of extreme events from Monte Carlo simulations,
model tests or field data.

Suppose we have a sequence of 𝑛 independent random variables
𝑋1,… , 𝑋𝑛, assumed to have common distribution function 𝐹𝑋 . The
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ordered variables, denoted 𝑋(1) ≤ ⋯ ≤ 𝑋(𝑛), are referred to as the order
statistics. We denote the non-exceedance probability associated with
the 𝑘th order statistic as

𝑃𝑘 = 𝐹𝑋 (𝑋(𝑘)) = Pr
{

𝑋 ≤ 𝑋(𝑘)
}

∈ [0, 1]. (1)

The return period, 𝑇 , of level 𝑥 is defined as the inverse of the
exceedance probability

𝑇 (𝐹𝑋 (𝑥)) =
1

1 − 𝐹𝑋 (𝑥)
∈ [1,∞]. (2)

We denote the return period of the 𝑘th order statistic as 𝑇𝑘 = 𝑇 (𝑃𝑘).
The quantities 𝑋(𝑘), 𝑃𝑘 and 𝑇𝑘 are random variables. In general, for
extreme value analysis, the data-generating distribution 𝐹𝑋 is not
known. Consequently, for a given sample, the values of 𝑃𝑘 and 𝑇𝑘 are
not known. However, as discussed below, the sampling distribution of
𝑃𝑘 is well known and is straightforward to derive (e.g Balakrishnan and
Rao, 1998; David and Nagaraja, 2003).

In the following, we make no assumptions about how 𝑋1,… , 𝑋𝑛
are sampled, only that observations are independent and identically
distributed (iid). If 𝑋1,… , 𝑋𝑛 are a sample of annual maxima, then 𝑇
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has units of years. If 𝑋1,… , 𝑋𝑛 are a sample of peaks-over-threshold,
with a mean rate of 𝑚 peaks per year, then 𝑚𝑇 has the unit of
years. Thus, the difference between samples of annual maxima and
peaks-over-threshold only affects the units of 𝑇 .

The EDF is the non-exceedance probability assigned to the order
statistics. Here, we denote the EDF as �̂�𝑘, to indicate that it is an
estimate of the unknown non-exceedance probability associated with
the 𝑘th order statistic. One way to define the EDF is in terms of
proportion of observations in the sample less than or equal to 𝑋(𝑘),
so that �̂�𝑘 = 𝑘∕𝑛 (Beirlant et al., 2004; de Haan and Ferreira, 2006).
However, this gives �̂�𝑛 = 1, which is undesirable when considering
the extremal properties of a sample, since it implies that the largest
observation is the upper end point of the distribution. To avoid this
issue, the EDF can be defined as the expected value of 𝑃𝑘 (e.g Coles,
2001; Davison, 2003; Madsen et al., 2006):

�̂�𝑘 = E(𝑃𝑘) =
𝑘

𝑛 + 1
. (3)

This definition was originally proposed by Weibull (1939) and was
popularised by Gumbel (1958). It has the attractive properties that it is
simple and has a well-founded theoretical justification. However, since
𝑇 (𝑝) and 𝐹−1

𝑋 (𝑝) are nonlinear functions of 𝑝 (apart from the special case
where 𝑋 is uniformly distributed in which case 𝐹−1

𝑋 is linear), we have

E(𝑇𝑘) ≠ 𝑇 (E(𝑃𝑘)), (4a)

(𝑋(𝑘)) ≠ 𝐹−1
𝑋 (E(𝑃𝑘)). (4b)

n fact, since 𝑇 (𝑝) is a convex function, from Jensen’s inequality, we
ave E(𝑇𝑘) ≥ 𝑇 (E(𝑃𝑘)). However, since the quantile function 𝐹−1

𝑋 (𝑝) can
e either concave or convex, E(𝑋(𝑘)) can be either less than on greater

than 𝐹−1
𝑋 (E(𝑃𝑘)). The difference between E(𝑋(𝑘)) and 𝐹−1

𝑋 (E(𝑃𝑘)) has
led to many other definitions of the EDF, so-called plotting positions,
̂′𝑘, for which 𝐹−1

𝑋 (�̂�′𝑘) ≈ E(𝑋(𝑘)). Since E(𝑋(𝑘)) depends on the data-
generating distribution 𝐹𝑋 , unbiased estimates of �̂�′𝑘 are dependent on
𝐹𝑋 . The problem of defining plotting positions has been considered
in many studies over the years and is still an active topic of re-
search (Gumbel, 1943; Bernard and Bos-Levenbach, 1953; Blom, 1958;
Gringorten, 1963; Cunnane, 1978; Adamowski, 1981; Harter, 1984;
Harter and Wiegand, 1985; Arnell et al., 1986; Guo, 1990; Hosking and
Wallis, 1995; De, 2000; Yu and Huang, 2001; Erto and Lepore, 2011,
2013; Cook and Harris, 2013; Fuglem et al., 2013; Hong and Li, 2014;
Lozano-Aguilera et al., 2014; Hosseini and Takemura, 2016; Lepore,
2017).

It used to be common practice to fit extreme value models to
observations using a least-squares fit to observed quantiles plotted on
probability paper (plots of order statistics against the EDF, with various
transformations applied to the axes, such that if the data follow a
straight line this indicates that it follows a certain distribution). In this
case, the choice of plotting position can affect the inferences made from
the data. Although modern methods for statistical inference, such as
maximum likelihood or Bayesian inference, mean that this type of least-
squares fitting is now less common, using graphical means to assess
the fit of a model is still commonplace. For extreme value models, we
are interested in the fit of the model for the largest observations. The
purpose of the present work is to illustrate how the definition of the
EDF can have a large impact on the probabilities and return periods
associated with the largest observations.

In this work, we argue that a common framework can be used
for defining the empirical estimates of either exceedance probabili-
ties, return periods or quantiles, where the EDF is defined as �̂�𝑘 =
median(𝑃𝑘), rather than �̂�𝑘 = E(𝑃𝑘). The use of the median in this
context has been advocated by various authors in the past (Beard,
1943; Bernard and Bos-Levenbach, 1953; Yu and Huang, 2001; Folland
and Anderson, 2002; Erto and Lepore, 2011, 2013; Lozano-Aguilera
et al., 2014; Hosseini and Takemura, 2016). In the current paper, we
2

present a brief review the theory of the sampling properties of order
tatistics. We show that the sampling distributions of the exceedance
robabilities, return periods and quantiles are all linked by a simple
elation, that makes the use of the median value appropriate for all
ases. This relation is then used to derive some results about the
onfidence intervals associated with extreme observations. The results
re of interest either when using diagnostic plots for assessing the fit
f an extreme value model, or when Monte Carlo simulation is used to
stimate extreme events.

The work is organised as follows. The sampling distributions of
xceedance probabilities, return periods and quantiles are discussed
n Section 2 and the definition of the EDF is discussed in Section 3.
he impact of sampling variability and the definition of the EDF on
iagnostic plots for extreme value models is discussed in Section 4.
inally, some properties of confidence intervals for empirical estimates
f extreme events are derived in Section 5. Conclusions are presented
n Section 6.

. Sampling distributions of exceedance probabilities, return pe-
iods and quantiles

To derive the sampling distribution of 𝑃𝑘, first note that the proba-
bility that an individual observation, 𝑥𝑘, has 𝐹𝑋 (𝑥𝑘) ≤ 𝑝 is a Bernoulli
rial with probability of success 𝑝. As the observations are independent,
he cumulative distribution function (CDF) of 𝑃𝑘, denoted 𝐹𝑃𝑘 (𝑝), is
imply the probability that at least 𝑘 observations have 𝐹𝑋 (𝑥) ≤ 𝑝:

𝑃𝑘 (𝑝) =
𝑛
∑

𝑗=𝑘

(

𝑛
𝑗

)

𝑝𝑗 (1 − 𝑝)𝑛−𝑗 . (5)

or the smallest and largest observations we have 𝐹𝑃1 (𝑝) = (1 − 𝑝)𝑛

nd 𝐹𝑃𝑛 (𝑝) = 𝑝𝑛. From the relationship between binomial sums and the
egularised incomplete beta function, 𝐼 , (see e.g. Wadsworth, 1960),
e can write

𝑃𝑘 (𝑝) = 𝐼(𝑝, 𝑘, 𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!(𝑘 − 1)! ∫

𝑝

0
𝑠𝑘−1(1 − 𝑠)𝑛−𝑘d𝑠. (6)

o 𝑃𝑘 follows a beta distribution, 𝑃𝑘 ∼ beta(𝑘, 𝑛 − 𝑘 + 1). Taking the
erivative, we obtain the probability density function (PDF) as

𝑃𝑘 (𝑝) =
𝑛!

(𝑛 − 𝑘)!(𝑘 − 1)!
𝑝𝑘−1(1 − 𝑝)𝑛−𝑘. (7)

xamples of the PDF 𝑓𝑃𝑘 (𝑝) for a sample size of 𝑛 = 49 and various
alues of 𝑘 are shown in Fig. 1. For 1 ≪ 𝑘 ≪ 𝑛 the PDF is approximately
ymmetric, with exact symmetry for 𝑘 = (𝑛 + 1)∕2. For 𝑘 close to 1 the
istribution is positively skewed and for 𝑘 close to 𝑛 the distribution is
egatively skewed.

To derive the sampling distributions of the order statistics and their
eturn periods, we note that since 𝐹−1

𝑋 (𝑝) and 𝑇 (𝑝) are monotonically
ncreasing functions we have

𝑃𝑘 (𝑝) = 𝐹𝑇𝑘 (𝑇 (𝑝)) = 𝐹𝑋(𝑘)
(𝐹−1

𝑋 (𝑝)). (8)

he PDF of 𝑇𝑘 is therefore given by

𝑇𝑘 (𝑡) =
𝑑
𝑑𝑡

𝐹𝑇𝑘 (𝑡) =
𝑑𝑝
𝑑𝑡

𝑑
𝑑𝑝

𝐹𝑃𝑘 (𝑝) =
𝑛!

(𝑛 − 𝑘)!(𝑘 − 1)!
𝑝𝑘−1(1 − 𝑝)𝑛−𝑘𝑡−2

= 𝑛!
(𝑛 − 𝑘)!(𝑘 − 1)!

(𝑡 − 1)𝑘−1𝑡−𝑛−1. (9)

he PDF of 𝑋(𝑘) is given by

𝑋(𝑘)
(𝑥) = 𝑑

𝑑𝑥
𝐹𝑋(𝑘)

(𝑥) =
𝑑𝐹𝑋
𝑑𝑥

𝑑
𝑑𝐹𝑋

𝐹𝑃𝑘 (𝐹𝑋 )

= 𝑛!
(𝑛 − 𝑘)!(𝑘 − 1)!

(𝐹𝑋 (𝑥))𝑘−1(1 − 𝐹𝑋 (𝑥))𝑛−𝑘𝑓𝑋 (𝑥). (10)

It is important to note that the PDFs of 𝑃𝑘 and 𝑇𝑘 do not depend
on the data-generating distribution 𝐹𝑋 , so these can be calculated
without having to estimate 𝐹𝑋 . However, obviously, the PDF of 𝑋(𝑘)
does depend on 𝐹𝑋 . In practice, the data-generating distribution 𝐹𝑋
is not known. Instead, we can substitute an estimate, 𝐹𝑋 , into (10) to

̂
obtain an estimate 𝑓𝑋(𝑘)
(𝑥).
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Fig. 1. PDF of non-exceedance probability, 𝑃𝑘, associated with order statistic 𝑋(𝑘) for
a sample size of 𝑛 = 49 and various values of 𝑘.

. Definition of the empirical distribution function and empirical
eturn periods

From the properties of the beta distribution, the expected value,
ode, median and quantiles of 𝑃𝑘 are given by

E(𝑃𝑘) =
𝑘

𝑛 + 1
, (11a)

mode(𝑃𝑘) =
𝑘 − 1
𝑛 − 1

, (11b)

edian(𝑃𝑘) = 𝐼−1(0.5, 𝑘, 𝑛 − 𝑘 + 1), (11c)

𝑃𝑘,𝛼
def
= 𝐹−1

𝑃𝑘
(𝛼) = 𝐼−1(𝛼, 𝑘, 𝑛 − 𝑘 + 1), for 𝛼 ∈ [0, 1]. (11d)

Apart from the special cases of 𝑘 = 1 and 𝑘 = 𝑛, it is not possible
to write down an explicit expression for the median or quantiles 𝑃𝑘,𝛼 .
It is possible to derive various simple approximations for the median
(see Appendix). However, approximations for the quantiles are more
complicated (see Abramowitz and Stegun, 1964, §26.5.22 or Temme,
1992 for large sample approximations). However, efficient algorithms
to compute 𝐼 and 𝐼−1 are available in most software languages (MAT-
LAB, Python and R all have built-in functions, and various libraries are
available for Fortran and C++), so the lack of an explicit formula is not
restrictive.

We denote empirical estimates of the return period 𝑇𝑘 as 𝑡𝑘. If the
tandard definition of the EDF, given in (3), is used to estimate return
eriods, then we have

̂𝑘 = 1
1 − E(𝑃𝑘)

= 𝑛 + 1
𝑛 + 1 − 𝑘

. (12)

From the sampling distribution of 𝑇𝑘, (9), and the relation to 𝐹𝑃𝑘 , (8),
we can derive expressions for the expected value, mode and quantiles
of 𝑇𝑘 as

E(𝑇𝑘) =
𝑛

𝑛 − 𝑘
, (13a)

ode(𝑇𝑘) =
𝑛 + 1

𝑛 + 2 − 𝑘
, (13b)

𝑇𝑘,𝛼
def
= 𝐹−1

𝑇𝑘
(𝛼) =

(

1 − 𝐼−1(𝛼, 𝑘, 𝑛 − 𝑘 + 1)
)−1 . (13c)

Note that for largest observation we can approximate the quantiles of
the distribution of 𝑇𝑘 as

𝑇𝑛,𝛼 =
(

1 − 𝛼1∕𝑛
)−1 ≈ − 𝑛 . (14)
3

ln(𝛼) 9
able 1
arious statistics of the return periods for the largest two observations. Approximate
xpressions are for large sample size, 𝑛.
Quantity 𝑘 = 𝑛 − 1 𝑘 = 𝑛

Exact Approx. Exact Approx.
(

1 − E(𝑃𝑘)
)−1 𝑛+1

2
0.5𝑛 𝑛 + 1 𝑛

E(𝑇𝑘) 𝑛 𝑛 ∞ ∞
mode(𝑇𝑘)

𝑛+1
3

0.33𝑛 𝑛+1
2

0.5𝑛
median(𝑇𝑘)

(

1 − 𝐼−1(0.5, 𝑛 − 1, 2)
)−1 0.60𝑛

(

1 − 0.51∕𝑛
)−1 1.44𝑛

(This approximation can be obtained by expanding
(

1 − 𝛼1∕𝑛
)−1 as a

Laurent series). Moreover, from (13a) we can see that the expected
value of the return period of the largest observation is E(𝑇𝑛) = ∞. This
has led some authors to dismiss the use of return periods for graphical
assessments of extreme value models (Cook, 2012). However, in Sec-
tion 5, it will be shown that if a logarithmic scale is used, then return
periods are as useful as exceedance probabilities for model diagnostics,
despite the infinite expected value for the largest observation.

Nevertheless, it is important to note that for the largest observations
there are large differences between

(

1 − E(𝑃𝑘)
)−1, E(𝑇𝑘), mode(𝑇𝑘) and

edian(𝑇𝑘). Table 1 lists the values of these quantities for the largest
wo observations. Both the exact expressions and approximate values
or large 𝑛 are listed. If E(𝑃𝑘) is used to define an empirical estimate
f the return period (or empirical return period, ERP), then the ERPs for
he two largest observations are approximately 𝑛∕2 and 𝑛. In contrast,

the expected values of 𝑇𝑘 for the two largest observations are 𝑛 and ∞,
so there is a factor of 2 difference for the second largest observation,
whereas the expected value of 𝑇𝑛 is infinite. For the mode of 𝑇𝑘 we
have mode(𝑇𝑛) =

(

1 − E(𝑃𝑛−1)
)−1. Finally, for the median value, we have

median(𝑇𝑛) ≈ 1.44𝑛 compared to
(

1 − E(𝑃𝑛)
)−1 = 𝑛 + 1.

So, if empirical estimates of return periods are defined in terms of
E(𝑃𝑘), then the values obtained do not correspond to the mean, mode
or median of 𝑇𝑘. However, from (8), we see that the quantiles of 𝑇𝑘 and
𝑋(𝑘) are given directly in terms of the quantiles of 𝑃𝑘:

𝑇𝑘,𝛼 = 𝐹−1
𝑇𝑘

(𝛼) = (1 − 𝑃𝑘,𝛼)−1, (15a)

𝑋(𝑘),𝛼 = 𝐹−1
𝑋(𝑘)

(𝛼) = 𝐹−1
𝑋 (𝑃𝑘,𝛼). (15b)

Therefore, if we define empirical estimates of probabilities, return peri-
ds and quantiles in terms of the medians of the sampling distribution,
hen this gives a consistent framework that can be used in all types of
odel diagnostic plots, as discussed further in the next section. It is

herefore recommended that the EDF and ERP are defined as

�̂�𝑘 = median(𝑃𝑘) = 𝐼−1(0.5, 𝑘, 𝑛 − 𝑘 + 1), (16a)

𝑡𝑘 = median(𝑇𝑘) = (1 − �̂�𝑘)−1. (16b)

sing this definition, we then have

edian(𝑋(𝑘)) = 𝐹−1
𝑋 (�̂�𝑘). (17)

The variation of the different statistics of 𝑃𝑘 and 𝑇𝑘 with sample
ize is shown in Fig. 2, plotted against the ranks 𝑗 = 𝑛 − 𝑘 + 1 (where
anks are defined here in descending order, so that 𝑗 = 1 indicates
he largest observation). Logarithmic scales are used for both plots
nd the direction of the 𝑥-axis has been reversed so that the value
ssociated with the largest observation appears on the right. When
is large there is little difference between the various definitions of

mpirical exceedance probabilities and return periods, and 𝑗 ≈ 𝑛∕𝑡𝑘.
o the 𝑥-axis values in Fig. 2 can be interpreted as the ratio of sample
ize to the return period of an observation. From (11b), we see that
−mode(𝑃𝑛) = 0, so this cannot be plotted on a logarithmic scale, since
og(0) = −∞. The 5% and 95% quantiles of 𝑃𝑘 and 𝑇𝑘 are also shown in
ig. 2. It is apparent that, when plotted on a log scale, the width of the

0% confidence interval is similar between sample sizes and similar for
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Fig. 2. Values of various statistics of 𝑃𝑘 and 𝑇𝑘 against rank 𝑗 = 𝑛 − 𝑘 + 1 (i.e. 𝑗 = 1 is the largest observation) for various sample sizes, 𝑛.
both exceedance probabilities and return periods. Moreover, the width
of the confidence interval as a function of rank, appears not to vary
with sample size. This is considered further in Section 5.

4. Diagnostic plots for extreme value models

Four types of diagnostic plots that are commonly-used to assess
the fit of an extreme value model are listed in Table 2. The plots all
involve quantities derived from the observed order statistics, 𝑥(𝑘), and
quantities derived from either the EDF or ERP. Probability plots and
quantile–quantile (QQ) plots both just involve a single set of points,
relating the observations and fitted model. In contrast, exceedance
probability plots and return period plots both involve two sets of points,
4

one corresponding to the observations and the other corresponding to
the fitted model.

Examples of the plots listed in Table 2 are shown in Fig. 3. In
these plots, 50 independent observations have been simulated from
a generalised Pareto (GP) distribution with shape parameter 𝜉 = 0,
scale parameter 𝜎 = 1. The data have been fitted with a GP model
using maximum likelihood. In this case, we know that the fitted model
is the same as the data-generating model, so any differences are due
to sampling effects and any bias is due to the parameter estimation
method (see e.g. de Zea Bermudez and Kotz, 2010; Mackay et al., 2011).
The plots are shown using various definitions of the EDF and ERPs.

The various type of plot show the correspondence between the fitted
model and observations in different ways. Probability plots give an



Ocean Engineering 239 (2021) 109791E. Mackay and P. Jonathan

o
d
s

Table 2
Diagnostic plots used to assess the fit of extreme value models, involving the fitted distribution function, 𝐹𝑋 , order statistics,
𝑥(𝑘), empirical distribution function, �̂�𝑘, and empirical return period, 𝑡𝑘.

Description Variables Axes scales

Probability plot
{(

�̂�𝑘 , 𝐹𝑋 (𝑥(𝑘))
)

∶ 𝑘 = 1,… , 𝑛
}

Linear

Quantile–quantile (QQ) plot
{(

𝑥(𝑘) , 𝐹 −1
𝑋 (�̂�𝑘)

)

∶ 𝑘 = 1,… , 𝑛
}

Linear

Exceedance probability plot
{(

𝑥(𝑘) , 1 − �̂�𝑘
)

∶ 𝑘 = 1,… , 𝑛
}

Ordinate on log-scale
{(

𝑥, 1 − 𝐹𝑋 (𝑥)
)

∶ 𝑥0 ≤ 𝑥 ≤ 𝑥1
}

Return period plot
{(

𝑡𝑘 , 𝑥(𝑘)
)

∶ 𝑘 = 1,… , 𝑛
}

Abscissas on log-scale
{(

(1 − 𝐹𝑋 (𝑥))−1 , 𝑥
)

∶ 𝑥0 ≤ 𝑥 ≤ 𝑥1
}

Fig. 3. Examples of model diagnostic plots for GP fit to data generated from GP distribution.
t
e

indication of the agreement over the full range of observations. For
extreme value models, we are typically interested in the fit of the model
in the tail. This can be difficult to assess from a probability plot, as the
tail is compressed in the upper right corner of the plot. For this type
of plot, there is little difference in defining the EDF as �̂�𝑘 = E(𝑃𝑘) or
�̂�𝑘 = 𝑃𝑘,50. However, substituting �̂�𝑘 = 𝑃𝑘,±𝛼∕2 gives a 1 − 𝛼 confidence
interval for �̂�𝑘, which is useful for judging if the fitted model differs
from the observations at a given significance level.

QQ plots give an assessment of the fit of the model on the scale of
the data, which gives a better indication of the fit in the tail. For QQ
plots, the alternative definitions of �̂�𝑘 = E(𝑃𝑘) or �̂�𝑘 = 𝑃𝑘,50 result in
nly small differences for most observations, but do lead to a visible
ifference for the largest value. However, the difference is relatively
mall compared to the width of the 90% CI.
5

In a QQ plot there two types of uncertainty in the model quan-
iles: the sampling uncertainty in the estimate of the empirical non-
xceedance probability, �̂�𝑘, and the uncertainty in the estimated dis-

tribution 𝐹𝑋 . The uncertainty in 𝐹𝑋 is related to sampling effects,
but also includes uncertainty due to model misspecification and any
bias introduced by the inference method. In exceedance plots and
return period plots, these two types of uncertainty can be considered
separately. For exceedance plots, the difference in the definition of
�̂�𝑘 is, again, relatively small compared to the width of the confidence
interval. For the return period plot, three alternative definitions of ERPs
are used. In this case, defining 𝑡𝑘 = E(𝑇𝑘) results in slightly larger values
than the other definitions. However, since E(𝑇𝑛) = ∞, this value cannot
be plotted.

Gumbel plots are used by practitioners in some fields of extreme
value analysis, such as estimation of extreme wind speeds. These plots
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E

consist of the points
{(

− ln(− ln(�̂�𝑘)), 𝑥(𝑘)
)

∶ 𝑘 = 1,… , 𝑛
}

with both axes
on linear scales. This is similar to a QQ plot if the fitted model is a Gum-
bel distribution, since − ln(− ln(𝑝)) = (𝑥−𝜇)∕𝜎 are normalised quantiles
of the Gumbel distribution, where 𝜇 and 𝜎 are the location and scale
parameters. Due to the similarity with QQ plots, the comments on QQ
plots above, also apply to Gumbel plots.

5. Confidence intervals

In this section we derive some results about the width of confidence
intervals (CIs) for the exceedance probabilities and return periods of
observations. The results are useful when interpreting either model
diagnostic plots or when considering the accuracy of extreme quantities
estimated from Monte Carlo simulation, model tests or field data.

5.1. CIs for exceedance probabilities and return periods have equal widths
on a log scale

We denote the quantiles of the exceedance probability associated
with the 𝑘th order statistic as 𝑄𝑘,𝛼 = 1 − 𝑃𝑘,1−𝛼 . Using (15a), the width
of the 1 − 2𝛼 CI for 𝑄𝑘, when plotted on a log scale, is given by

ln(𝑄𝑘,1−𝛼) − ln(𝑄𝑘,𝛼) = − ln(𝑄−1
𝑘,1−𝛼) + ln(𝑄−1

𝑘,𝛼) = ln(𝑇𝑘,1−𝛼) − ln(𝑇𝑘,𝛼). (18)

Therefore, the width of CIs for exceedance probabilities and return peri-
ods are equal on a log scale. This was apparent in Figs. 2 and 3. Due to
the equivalence between the width of the CIs for exceedance probabil-
ities and return values, we will consider only exceedance probabilities
in the remainder of the section.

5.2. Width of CI for exceedance probabilities is asymptotically independent
of sample size

This result was also apparent in Fig. 2. For the largest observation,
the asymptotic width of the 1− 2𝛼 CI, when plotted on a log scale, can
be calculated using (14):

ln(𝑄𝑛,1−𝛼) − ln(𝑄𝑛,𝛼) = ln(1 − 𝛼1∕𝑛) − ln(1 − (1 − 𝛼)1∕𝑛),

→ ln
(

−
ln(𝛼)
𝑛

)

− ln
(

−
ln(1 − 𝛼)

𝑛

)

, 𝑛 → ∞

= ln
(

ln(𝛼)
ln(1 − 𝛼)

)

. (19)

This limit is independent of sample size, 𝑛.
For the general case, consider the approximate form of the inverse

ncomplete beta function (Abramowitz and Stegun, 1964, §26.5.22):

𝑘,𝛼 ≈
𝑗

𝑗 + 𝑘𝑒2𝑤(𝛼)
, (20)

where

𝑤(𝛼) =
(

1
2𝑗 − 1

− 1
2𝑘 − 1

)

(

𝜆(𝛼) + 5
6
− 2

3ℎ

)

−𝛷−1(𝛼)
(ℎ + 𝜆(𝛼))1∕2

ℎ
,

𝜆(𝛼) =

(

𝛷−1(𝛼)
)2 − 3

6
,

ℎ = 2
(

1
2𝑗 − 1

+ 1
2𝑘 − 1

)−1
,

and 𝛷 is the CDF of the standard normal distribution. Suppose that both
𝑛 and 𝑘 are large and that 𝑗 ≪ 𝑘. The width of the CI on a log scale can
then be approximated as:

ln(𝑄𝑘,1−𝛼) − ln(𝑄𝑘,𝛼) ≈ ln
(

𝑗
𝑗 + 𝑘𝑒2𝑤(1−𝛼)

)

− ln
(

𝑗
𝑗 + 𝑘𝑒2𝑤(𝛼)

)

= ln
(

𝑗 + 𝑘𝑒2𝑤(𝛼)

𝑗 + 𝑘𝑒2𝑤(1−𝛼)

)

→ ln
(

𝑒2𝑤(𝛼)

𝑒2𝑤(1−𝛼)

)

, 𝑘 → ∞

= 2 𝑤(𝛼) −𝑤(1 − 𝛼) . (21)
6

( )
Fig. 4. Width of 90% confidence interval for exceedance probabilities against rank 𝑗
for various samples sizes and asymptotic approximation (22).

The functions 𝑤 and ℎ tend to limits that are independent of sample
size and dependent only the rank, 𝑗. Taking the limits as 𝑘 → ∞, we
can write

ln(𝑄𝑘,1−𝛼) − ln(𝑄𝑘,𝛼) ≈ −2𝛷−1(𝛼)
(4𝑗 − 2 + 𝜆(𝛼))1∕2

2𝑗 − 1
. (22)

This approximation only depends on the rank, 𝑗, and the value of 𝛼, and
is independent of sample size. Fig. 4 shows the width of the 90% CI for
𝑄𝑘 against rank 𝑗 for various sample sizes, together with the asymptotic
approximation (22). The agreement between the exact results and the
asymptotic approximation is good for 2 < 𝑗 < 𝑛∕10. In Fig. 4, the width
of the confidence interval using a natural logarithm scale is shown. This
scale is used due to the connection with the confidence intervals for
quantiles, discussed in the next section. In extreme value plots, it is
more common to use a log10 scale. The CI width on the log10 scale can
be obtained from Fig. 4 by dividing by ln(10) ≈ 2.30. It is apparent that
to obtain a 90% CI width of less than 0.1 on a log10 scale, the sample
size needs to be approximately 200 times the return period. Of course,
the quantity that is probably of greater interest is the CI for the return
values rather than the return periods. As discussed in Section 2, this CI
is dependent on the data-generating distribution. Various methods for
obtaining this CI from the sampling properties of the order statistics are
discussed in the following subsection.

5.3. Relation between CI for probabilities and CI for quantiles

Given that the quantiles of 𝑋(𝑘) are directly related to the quantiles
of 𝑄𝑘 through (15b), an estimate of the CI for the quantiles can be
obtained by substituting either the exact or approximate expressions for
the quantiles of 𝑄𝑘 into the quantile function for the fitted distribution.
In the case that 𝑛 is large and 1 ≪ 𝑘 ≪ 𝑛, the beta distribution of 𝑄𝑘
an be approximated by a normal distribution (Johnson et al., 1995),
iving a particularly simple expression for the quantiles of 𝑄𝑘. From the
roperties of the beta distribution, the expected value of 𝑄𝑘 is given by

(𝑄𝑘) = 1 − E(𝑃𝑘) =
𝑛 − 𝑘 + 1
𝑛 + 1

, (23)

and the variance is

var(𝑄𝑘) =
𝑘(𝑛 + 1 − 𝑘)

(𝑛 + 1)2(𝑛 + 2)
. (24)

The quantiles of the exceedance probabilities can then be approximated
as:

−1 √

var(𝑄 ). (25)
𝑄𝑘,𝛼 ≈ E(𝑄𝑘) +𝛷 (𝛼) 𝑘
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Fig. A.1. Ratio of return periods calculated using various methods to the median return period, 𝑇𝑘,50, for various sample sizes 𝑛.
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We can also establish a more direct link between the CI for ex-
ceedance probabilities and the CI for quantiles. Suppose we are trying
to estimate the 𝑇 -year return value of a variable 𝑋 using Monte Carlo
simulation from a sample of size 𝑛 ≥ 𝑇 . Monte Carlo simulation might
be used when we do not have an explicit model for 𝑋, but the values of

can be calculated in terms of other variables, e.g. when 𝑋 represents
he response of a structure to environmental loading. Let 𝑘 be the value
orresponding to 𝑡𝑘 = 𝑇 , where 𝑘 is not necessarily an integer. The
stimate of the 𝑇 -year return value is �̂�𝑇 = 𝑥(𝑘) and the 1−2𝛼 CI for the
stimate is given by (𝐹−1

𝑋 (𝑃𝑘,𝛼), 𝐹−1
𝑋 (𝑃𝑘,1−𝛼)). If Monte Carlo simulation

s being used, then it is unlikely that 𝐹𝑋 is known explicitly. However, if
he interest is in the extreme values of 𝑋, asymptotic arguments can be
sed to show that if 𝑋 are block maxima then 𝑋 will be well-modelled
sing a generalised extreme value (GEV) distribution, for sufficiently
arge block size. Alternatively, if 𝑋 are peaks-over-threshold, then 𝑋
ill be well-modelled by a generalised Pareto (GP) distribution, for

ufficiently high threshold levels (Coles, 2001). In these cases, the CDF
f 𝑋 is given by:

𝑋 (𝑥) =

{

exp(−𝑧), if 𝑋 ∼ 𝐺𝐸𝑉
1 − 𝑧, if 𝑋 ∼ 𝐺𝑃

(26)

here

=

⎧

⎪

⎨

⎪

⎩

exp
(

−
𝑥 − 𝜇
𝜎

)

, 𝜉 = 0,
(

1 + 𝜉
𝑥 − 𝜇
𝜎

)−1∕𝜉

+
, 𝜉 ≠ 0,

(27)

and 𝑠+ = max {𝑠, 0}, 𝜇 ∈ R, 𝜎 > 0 and 𝜉 ∈ R. For large return periods,
is small and exp(𝑧) ≈ 1 − 𝑧, so the tail of the GEV distribution tends

o a GP distribution with the same parameters. Therefore, we can just
onsider the GP case, where the quantile function is given by:

−1
𝑋 (𝑝) =

⎧

⎪

⎨

⎪

⎩

𝜇 − 𝜎 ln(1 − 𝑝), 𝜉 = 0,
𝜇 + 𝜎

𝜉
(

(1 − 𝑝)−𝜉 − 1
)

, 𝜉 ≠ 0, (28)

for 𝑝 ∈ [0, 1]. The normalised width of the 1 − 2𝛼 CI for �̂�𝑇 = 𝑥(𝑘) for
arge 𝑇 can therefore be approximated by:

𝑥𝑇 ,1−𝛼 − 𝑥𝑇 ,𝛼
𝜎

≈

⎧

⎪

⎨

⎪

⎩

ln
(

𝑄𝑘,1−𝛼
)

− ln
(

𝑄𝑘,𝛼
)

, 𝜉 = 0,
1
𝜉

(

𝑄−𝜉
𝑘,𝛼 −𝑄−𝜉

𝑘,1−𝛼

)

, 𝜉 ≠ 0,
(29)

o, in the special case that 𝜉 = 0, the normalised width of the CI for
he return value of 𝑋 is given by the width of the CI for exceedance
robabilities, when plotted on a natural logarithmic scale. If 𝜉 > 0
hen the width of the CI for �̂�𝑇 will be greater than the width of the
I for exceedance probabilities, and vice versa when 𝜉 < 0. In ocean
ngineering, many key variables, such as wave heights or wind speeds,
re often assumed to follow distributions which have exponential tails
i.e. 𝜉 = 0), such as Weibull or lognormal distributions. In these
ases, the relationship between the CI for probabilities and quantiles
7

s particularly useful.
. Conclusions

In this work it is argued that defining the empirical distribution
unction in terms of the median value of the non-exceedance probabil-
ty of the order statistics, provides a consistent framework for making
mpirical estimates of exceedance probabilities, return periods and
uantiles of extreme events. It is shown that the median value of
he return period of the largest observation is 44% larger than the
eturn period calculated using the common definition of the EDF in
erms of the expected value of the non-exceedance probability of the
rder statistics. Although the definition of the EDF influences model
iagnostic plots for assessing extreme value models, arguably, a more
mportant consideration is adding confidence bounds to these plots.
ome simple results concerning the size of confidence intervals for ex-
eedance probabilities and return periods are derived. These can aid the
nterpretation of model diagnostic plots and quantify the uncertainty
elated to Monte Carlo estimates of extreme events.
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ppendix. Approximations for the beta median

Various authors have derived approximations for the median value
f 𝑃𝑘. Bernard and Bos-Levenbach (1953) derived

𝑃𝑘,50 ≈
𝑘 − 0.3
𝑛 + 0.4

, (A.1)

hile Jenkinson (1977) derived a very similar approximation (for the
erivation see Folland and Anderson (2002)):

𝑘,50 ≈
𝑘 − 0.31
𝑛 + 0.38

. (A.2)

Yu and Huang (2001) used numerical simulation to derive

𝑃𝑘,50 ≈
𝑘 − 0.326
𝑛 + 0.348

. (A.3)

inally, Lepore (2010) used a slightly different analytical approach, to
erive

𝑘,50 ≈
𝑘 − 𝑎

𝑛 + 1 − 2𝑎
, 𝑎 = 𝑛 + 𝑛 − 1

21∕𝑛 − 2
. (A.4)

ig. A.1 shows the ratio of return periods calculated using various
ethods to the median return period, 𝑇𝑘,50, for various sample sizes 𝑛.

Despite the relatively small differences, it was found that Jenkinson’s
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approximation was more accurate than Bernard and Bos-Levenbach’s
or Yu and Huang’s approximations, so these are not shown in Fig. A.1.
The figure compares return periods derived using the EDF defined
in terms of the expected non-exceedance probability (12), or using
Jenkinson’s approximation for the median non-exceedance probability,
denoted 𝑇𝑘,𝐽 , or using Lepore’s approximation, denoted 𝑇𝑘,𝐿. There is a
large difference between return periods calculated using expected non-
exceedance probability, with a difference of around 30% for the largest
value. Both Jenkinson’s and Lepore’s approximations give errors less
than 1% over all values of 𝑘 and 𝑛 considered. Jenkinson’s approxima-
tion gives a slightly smaller errors for 𝑇𝑘,50∕𝑇𝑛,50 < 0.7, whereas Lepore’s
method is exact for 𝑘 = 1 or 𝑛. For practical purposes, both Jenkinson’s
nd Lepore’s approximations appear adequate if an exact method for
alculating the inverse incomplete beta function is not available.
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