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Abstract—Cellular communications have been regarded as
promising approaches to deliver high-broadband communication
links for Unmanned Aerial Vehicles (UAVs), which have been
widely deployed to conduct various missions, e.g. precision
agriculture, forest monitoring and border patrol. However, the
unique features of aerial UAVs including high-altitude manipula-
tion, three-dimension (3D) mobility, and rapid velocity changes,
pose challenging issues to realize reliable cellular-enabled UAV
communications, especially with the severe inter-cell interference
generated by UAVs. To deal with this issue, we propose a novel
position-based robust beamforming algorithm through comple-
mentarily integrating the navigation information and wireless
channel information to improve the performance of cellular-
enabled UAV communications. Specifically, in order to achieve
the optimal beam weight vector, the navigation information
of the UAV system is innovatively exploited to predict the
changes of Direction-of-arrival (DoA) angle. To fight against the
high mobility of UAV operations, an optimization problem is
formed by considering the tapered surface of DoA angle and
solved to correct the inherent position error. Comprehensive
simulation experiments are conducted and the results show that
the proposed robust beamforming algorithm could achieve over
90% DoA estimation error reduction and up to 14dB SINR
gain compared with five benchmark beamforming algorithms,
including Linearly Constrained Minimum Variance (LCMV),
Position-based beamforming, Diagonal Loading (DL), Robust
Capon Beamforming (RCB) and Robust LCMV algorithm.

Index Terms—Cellular Communications, Unmanned Aerial
Vehicle, Robust Beamforming, Direction-of-Arrival, GPS Navi-
gation

I. INTRODUCTION

Recent years have witnessed the rapid development of
Unmanned Aerial Vehicles (UAVs) and their explosive usages
in human society. For instance, UAVs have been used to deliver
medicine and vaccines into and out of remote or inaccessible
regions [1]. UAV also have been used to patrol the border
and monitor the oil pipeline [2]. Wireless communication is
critically important for UAVs to accomplish their missions.
The Control and Command and airborne camera/sensor data
need to be securely and reliably sent through wireless commu-
nication to enable safe flight and swift task accomplishment.
Owning to their merits of wide deployment, high speed and
stable transmission links, cellular communications such as
the existing cellular and the coming Fifth Generation (5G)
networks, have been regarded as the most potential candidates
to offer high broadband wireless services and out-of-sight
control and monitoring for UAV flight and mission execution.

For cellular-enabled UAV communications, there are two
challenges that need to be carefully considered and addressed.
Firstly, the patterns that Ground User Equipment (GUE)

and Aerial User Equipment (AUE) are served by cellular
networks are quite different. For terrestrial wireless communi-
cation, GUEs consume more downlink bandwidth for watching
videos, browsing online contents and viewing social networks.
While in the sky, AUEs become the sources of high-definition
videos and require high-performance wireless networking sys-
tem to transmit these visual data. The design of cellular
network architecture that caters to downlink transmission does
not pay enough attention to the potential requirements from
the uplink transmission. Secondly, due to the lack of obstacles
and widely existing Line of Sight (LoS) paths, AUEs produce
more uplink interference (UAV to Base Station (BS)) than
ground mobile devices, significantly affecting the performance
of wireless communications. In addition, UAVs are equipped
with high-resolution cameras to capture High Definition (HD)
video, which facilitates the operations of spotting a miss-
ing person and identifying the slight corrosion of building
or bridges, the crevice of oil pipelines or any damages of
telecommunication facilities. However, the value of all those
data cannot be fully explored if they are not delivered to the
underground control centre in time.

Receiving beamforming has been considered a promising
technology for cellular communication to address the serves
interference issue and support the emerging UAV applications
[3] [4] [5] [6] [7]. Through adaptively adjusting the antenna
radiation patterns, the array elements at BS could be combined
constructively or destructively to form the peaks and nulls
in the antenna beam, which provides the benefits of simul-
taneously enhancing the signal transmission and mitigating
the adverse interferences [8]. The accurate Direction-of-arrival
(DoA) estimation plays an important role in beamforming
algorithms to achieve the optimal antenna response. While
traditional beamforming algorithms suffer from serious per-
formance degradation due to the inaccurate DoA estimation
caused by the high mobility of UAV operations. To address
this issue, tremendous research efforts have been made to
design high-performance robust beamforming algorithms, e.g.
Diagonal Loading [9], Robust Capon Beamforming [10], and
robust Linearly Constrained Minimum Variance (LCMV) [11].
Through the introduction of noise factors in the variance func-
tion of the input signal, robust beamforming algorithms are
able to improve the DoA error tolerance through broadening
the main-lobe of antennas, however, at the cost of degraded
output power and Signal to Interference plus Noise Ratio
(SINR), and struggle to satisfy the high-broadband require-
ments of UAV applications. Therefore, how to enhance the
design of robust beamforming becomes urgent and important
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for cellular networks to realise stable UAV communications.
To address these issues, we propose a novel robust beam-

forming algorithm to efficiently cancel the inter-cell interfer-
ence and boost the system throughput for the cellular-enabled
UAV communication system. The major contributions of this
work are summarised as follows:
• Through complementarily integrating the navigation in-

formation of UAV system and DoA information of wire-
less communication system, a new robust beamforming
optimization problem is formed and solved with the aim
of maximizing the output SINR under the constraint of
strong interference.

• To make the optimal beam weight vector tolerate to
DoA errors, we exploit the UAV position and mobility
information to track UAV, predict the changes of DoA
angle, adaptively adjust the beamforming weights and
realize optimal signal reception. A mathematical analysis
is conducted to theoretically investigate the effects of
DoA error on the output power of the beamforming
algorithm.

• To fight against the dynamic mobility of UAV operation,
an optimization problem is established and solved to
correct position errors through minimizing the distance
between error positions and the tapered surface formed
by DoA angle. By cooperatively utilizing navigation
and DoA information, the proposed robust beamforming
algorithm could achieve higher output power and SINR.

• To evaluate the performance of the proposed algorithm,
extensive simulation experiments are conducted and the
results show that the proposed algorithm achieves over
90% DoA error reduction and up to 14dB SINR gains
compared with the well-known robust LCMV algorithm
and position-based beamforming without position correc-
tion.

The rest of this paper is organized as follows. Section II
presents the state-of-the-art of receiving beamforming. Section
III discusses the network architecture and system model. Sec-
tion IV proposes a novel position-based robust beamforming
algorithm to track UAV positions and enhance the throughput
for cellular-enabled UAV communication. The performance
of the proposed algorithm is validated in Section V. Finally,
Section VI concludes this paper.

II. STATE-OF-THE-ART

Receiving beamforming is a promising technology for cel-
lular communication to increase the SINR of signal recep-
tion, reduce inter-cell interference and enhance overall system
performance. Due to its superior performance improvement,
receiving beamforming has been considered as one of the most
important key technologies in 5G communication together
with MIMO, small cell, millimetre wave communications soft-
ware defined networking and network function virtualisation to
realize its 1000 times throughput improvement [12] [13] [14]
[15]. Therefore, tremendous research efforts have been made
in the area of beamforming design. For example, the authors
in [5] designed a MIMO conjugate beamforming algorithm
to effectively improve the performance of the terrestrial cel-
lular network and enhance the spectrum efficiency. Ramy et

al. [16] proposed a novel system framework of cooperation
transmission to support reliable connectivity and developed a
new mobility model to capture the omnipresent mobility of
UAVs. The experiment results show that the proposed solu-
tions could significantly improve the coverage probabilities
of UAV system, from 28% to 60%, nearly 2.5 times perfor-
mance enhancement. In addition, the authors in [7] proposed
a novel cell-free massive MIMO architecture to support the
communications of UAVs in the air. With the assumption
of the Rican channel, this work discusses the strategies to
allocate transmission power and radio resources, jointly con-
sidering the allocation fairness and spectrum efficiency. The
minimum output energy (MOE) beamformer in [17] defines
an optimization criterion to minimize the total output energy
while simultaneously keeping the gain of the array on the
desired signal fixed. Because the gain on the signal is fixed,
any reduction in the output energy is obtained by suppressing
the interference and noise. Minimum variance distortionless
response (MVDR) is a special form of MOE beamformer
and obtained by setting the gain of the desired signal as a
constant value, which means the desired signal is not distorted
during minimizing the output signal power. Different from
MOE and MVDR focusing on output power, the authors in
[18] designed a successive multiuser beamforming scheme
in a multi-cell cooperative uplink transmission to maximize
the SINR to meet the transmission requirement for each user.
These beamforming algorithms could achieve optimal antenna
responses, and therefore are called as the optimal beamformers
in wireless communication.

Although optimal beamformers could potentially achieve
the optimal performance by isolating the interesting signal
from interference and noise, to explore them for UAV data
communications meets significant challenges. Because optimal
beamforming algorithms require the advanced acquisition and
tracking technologies to ensure that signal sources are covered
by the main beams and have high SINR for information
transmission. For example, optimal beamformers assume that
the DoA could be accurately estimated and achieved. However,
due to the unique features of UAV operations, e.g. high mobil-
ity and 3D movement, it is quite difficult to accurately estimate
the DoA, which makes the existing optimal beamforming
algorithms suffer from serious performance degradation. To
address this issue, blind robust beamforming algorithms, e.g.
Diagonal Loading [9], Robust Capon Beamforming [10], and
robust LCMV [11], have been proposed. Through the intro-
duction of noise factors in the variance function of the input
signal, robust beamforming algorithms are able to broaden the
antennae’s main-lobe and improve the DoA error tolerance,
however, at the cost of degraded output power and SINR. For
example, recent research work [19] revealed that the naviga-
tion and mobility information of UAVs universally exists at
the ground control centre, BSs even remote cloud for UAV
safety management. Comparing with the robust beamforming
strategies, UAV’s navigation and mobility information can be
utilized to compensate for DoA errors, adaptively adjust the
beamforming weights and realize optimal signal reception. The
functions of GPS and mobility information in the beamforming
algorithm are to calculate and predict the DoA angles when
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UAV is operated in the sky.
Actually, the idea of exploiting the position information to

conduct beamforming has been used in the ground mobile
communication systems to support vehicles and trains. For
example, Xiong et al. [16] exploited the vehicles current
position and velocity information to design a broad beamform-
ing approach to improve the Signal-to-Noise Rate (SNR). In
addition, the authors in [20] developed a location information-
based beamforming algorithm to leverage cellular networks
to support the communication services of high-speed rail-
way. The proposed algorithm pre-calculates the beamforming
weights based on the train location information and can be
completed through an off-line calculation, significantly reduc-
ing the complexity of the algorithm design and implementa-
tion. Although some interesting results have been produced
in the area of the position-based beamforming design, the
existing studies can be hardly used to support the cellular-
based UAV communications. Because they didn’t consider
the unique features of UAV applications e.g. 3D mobility,
interference cancellation, position error and so on. According
to the test results [21], the number of cells receiving the
interference is increasing with the growth of the altitudes that
UAVs are operating. The range and strength of the interference
in cellular-enabled UAV communication are much larger than
that of the traditional cellular communication. The interference
cancellation should not only consider the interference sources
from its neighboring cell, but also the remote cells. In addition,
different from the 2D fixed tracks of the trains or vehicles,
e.g. rails, roads or bridges, UAVs are operated in the sky with
dynamic speeds and directions, calling for efficient methods
to handle the position error caused by operational dynamics.

To bridge this gap, this paper proposes a position-based
robust beamforming algorithm for cellular-based UAV com-
munications. To the best of our knowledge, interference can-
cellation coupled with the position error correction has not
been reported in the existing literature. In detail, a new beam-
forming algorithm is designed with the aim of cancelling the
interference from the UAVs in the neighbor and maximizing
the overall system throughput. Furthermore, to fight against the
dynamic mobility of UAV flight, a position correction method
is developed in this work to minimize the position error. The
mechanisms of the beamforming algorithm design and the
position correction method will be introduced in Sections III
and IV.

III. NETWORK ARCHITECTURE AND MODEL
DESCRIPTION

In this section, we first describe a general network archi-
tecture for cellular network to support UAV system and then
present the system model of beamforming design in cellular-
enabled UAV communications.

A. Network Architecture

Fig. 1 shows a holistic network architecture of cellular-
enabled UAV communication system, which consists of Bc
eNode BS (eNBs) stations with distinct cell IDs cb, where
cb ∈ NBc

. NBc
denotes the subset of natural numbers with

BS 3

BS 2

BS 1

EPC
GUE

AUE

Signal

Interference
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Fig. 1: Network architecture of cellular-enabled UAV commu-
nications (GUE: Ground User Equipment; AUE: Aerial User
Equipment; BS: Base Station; and EPC: Evolved Packet Core)

cardinality Bc. There are Na
cb AUEs served by the cbth eNB

together with Ng
cb

GUEs. Compared with the traditional cellu-
lar system, the cbth eNB needs to guarantee normal wireless
mobile services for ground GUEs, at the same time offers high-
performance wireless services for AUEs. The first challenging
issue for realizing UAV-supported cellular networks is the
serious interference generated by AUEs. According to the
research results published by Ericsson [22], AUEs produce
more uplink interference in the cellular network than GUEs
because free space propagation increases the probability that
signals could be transmitted and received by neighbour cells.
Since both the AUEs and GUEs will coexist and be served by
cellular networks, the first requirement for the beamforming
algorithm to be designed is the high capability of strong
interference cancellation. In addition, bandwidth-intensive ap-
plications will be transmitted from the AUE to eNB, the
beamforming algorithm should be developed to maximize
the output throughput and provide high broadband to meet
transmission requirements.

The communications between AUEs and BS involve two
kinds of wireless channels, Ground to UAV (G2A) and UAV
to Ground (A2G) [23], exhibiting different transmission char-
acteristics. For instance, G2A is mainly used to deliver the
flight command or task message, requiring stable and reliable
transmissions. While the A2G is in charge of high-volume
of data delivery, consuming huge channel bandwidth and has
various delay requirements for different applications. In this
work, the robust beamforming will be designed to improve
the performance of the uplink transmission. However, due to
its feature of utilizing position information to estimate DoA,
the proposed algorithm can also be applied to the downlink
wireless communication transmission.

B. System Model

Let x0(k) and xi(k) present the interesting and interfering
signal received by the cbth eNB at the kth resource allocation
slot. Then the receiving signal of antenna system s(k) could
be expressed as [24]

s(k) = α(θ0)x0(k) +

Ni∑
i=1

α(θi)xi(k) + n(k), (1)

where Ni denotes the number of the interfering sources and
α(θ0) and α(θi) are the antenna steering vector for the
interesting and the ith interfering signals with DoAs of θ0
and θi. n(k) stands for the additive white Gaussian noise at
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the BS. For i ∈ Ni, α(θ0) and α(θi) are calculated by the
following equation,

α(θ)=[1, exp{−j 2π

λ
d sin θ}, ..., exp{−j 2π

λ
d(L− 1) sin θ}]

T

,

(2)
where L, λ and d denote the antenna number, sig-
nal wavelength and distance between two antenna ele-
ments. Let A(θ) = [α(θ0), α(θ1), ..., α(θN )] and x(t) =
[x0(k), x1(k), ..., xN (k)], then Eq. (1) could be transformed
to s(t) = A(θ)x(t)

T
+ n(k). Given a beamforming weight

vector, ω, the output signal, y(t), is calculated as

y(k) = ωHs(k). (3)

IV. ROBUST BEAMFORMING DESIGN

A. Beamforming Design
By exploiting the navigation information from GPS and

IMU, this subsection aims at designing a new robust beam-
forming algorithm to satisfy the performance requirements of
the data transmission. The proposed algorithm is to maximize
the output throughput, realize the interference cancellation and
fight against the high mobility of the AUEs. The output signal
is shown as

y(k) = ωH

[
α(θ0)x0(k) +

N∑
i=1

α(θi)xi(k) + n(k)

]
. (4)

And the SINR of y(k), ρ, can be calculated by [24]

ρ=
E
{∣∣ωHα(θ0)x0(k)

∣∣2}∑N
i=1E

{
|ωHα(θi)xi(k)|2

}
+E

{
|ωHn(k)|2

} . (5)

where α(θ0) and α(θi) are the antenna steering vector for the
interesting and the ith interfering signals with DoAs of θ0 and
θi.

According to the Shannon Theorem [25], the throughput,
R, is a function of output SINR shown as

R = B log2(1 + ρ). (6)

Therefore, the maximization of the throughput could be guar-
anteed by maximizing the output SINR under the resources
restriction (bandwidth B), described as max (R) = max (ρ).
Denote the power of the signals from the interested and
interference UAVs as P0 and Pi, then the maximization of
the output SINR is described as

(7)

max
E
{∣∣ωHα(θ0)x0(k)

∣∣2}∑N
i =1E

{
|ωHα(θi)xi(k)|2

}
+E

{
|ωHn(k)|2

}
= max

P0E
{∣∣ωHα(θ0)

∣∣2}∑N
i=1 PiE

{
|ωHα(θi)|2

}
+E

{
|ωHn(t)|2

} .
It should be noticed that Eq. (7) aims to maximize the

SINR of beamforming output at the BS. Towards this aim,
we transform Eq. (7) to the following optimization problem,

ωopt = arg minE
[∣∣ωHRnω∣∣2] ,

s.t.

{
ωHα(θ0) = 1,
ωHα(θi) = 0, i = 1, 2, ..., N.

(8)

where Rn is the autocorrelation matrix of the noise received
by the BS. The aim of Eq. (8) is to find an optimal beam-
forming vector, which maximizes the antenna response in the
direction of the signal source (the denominator of Eq. (7))
and minimizes the response for the interference sources (the
numerator of Eq. (7)). By utilizing the Lagrange Multiplier
[26] (see APPENDIX A), the optimal beamforming weight
could be calculated by

ω = −
[
A(θ)

H
Rn
−1A(θ)

]−1
R−1A(θ)F, (9)

where F = [1, 0, ..., 0].

B. DoA Error Analysis

To achieve the optimal performance of beamforming design,
one of the key issues is to calculate the accurate DoA
information from the signal received. However, due to the
high mobility of the UAV system, the accuracy of the DoA
estimation is greatly affected by the UAV flight status and
channel condition. In this subsection, we analyze DoA errors
and their impacts on the output power of the optimal beam-
forming algorithm. In the next subsection, a position-based
DoA correction method is proposed to reduce DoA error,
which is very important for achieving optimal performance for
beamforming design. Let αt(θ) + ∆α(θ) denote the steering
vector with an error ∆α(θ). Given the power of the arrival
signal as P , then the output power of the beamforming
algorithm is given by

Ps = PωHA(θ)
H
A(θ)ω. (10)

Eq. (10) calculates the output power under the accurate DoA
estimation and Eq. (9) provides the method to calculate the
optimal beamforming weight. While, due to the long distance
transmission and GPS signal fading, there is inherent position
error in GPS coordinate information, which could result in the
inaccurate DoA estimation and affect the performance of the
optimal beamforming algorithm in Eq. (9). In this case, the
beamforming weight, ω could be updated as

ωe = {[A(θ) + ∆α(θ)]
H
Rn
−1[A(θ) + ∆α(θ)]}

−1
∗

Rn
−1[A(θ) + ∆α(θ)]F.

(11)

Under the estimated steering vector, the output power of the
beamforming algorithm is calculated by

Pe = Pωe
HA(θ)

H
αt(θ)ωe. (12)

Due to the existence of DoA error, the output power loss,
Pl, can be defined as

Pl = Ps − Pe. (13)

By taking the values of ωe, ω, αt and ∆α(θ) into Eq. (13),
the output power loss can be calculated as

Pl =Ps(µ
2 − µ2

1)A(θ)
H

(Rn
−1)

H
∆α(θ)A(θ)

H
Rn
−1∆α(θ)−

Psµ
2
1(Rn

−1)
H

∆α(θ)A(θ)
H
Rn
−1∗

[A(θ)A(θ)
H

+A(θ)(∆α(θ))
H

+(∆α(θ))
H

∆α(θ)].
(14)
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where µ and µ1 are calculated by µ = [A(θ)
H
Rn
−1A(θ)]

−1

and µ1 = [(A(θ) + ∆α(θ))
H
Rn
−1 (A(θ) + ∆α(θ))]

−1
.

The DoA error ∆θ is closely related to the UAV flight status.
The same moving direction, speed and acceleration would
result in different DoA errors when the UAVs are operated
at different horizontal and vertical distances from the BS. For
instance, when the UAV is near to the BS, the communication
system would experience large scale of DoA errors. While,
when the UAV is far from the BS, small DoA error would
be introduced to the steering vector. The relationship between
the DoA estimation at the kth resource allocation slot and the
position and movement information is given by the following
equation,

θk = arctan


√
xk2 + (zk − zbk)2

yk

 , (15)

where (xk, yk, zk) is the three-dimensional position informa-
tion at the kth moment and zbk is the height of the BS.
Let (vxk−1, v

y
k−1, v

z
k−1), (axk−1, a

y
k−1, a

z
k−1), and τ denote the

speed and acceleration of the (k− 1)th transmission and time
interval between the kth and (k−1)th transmissions. Then the
position update could be calculated in the following equation,xkyk

zk

T =

xk−1yk−1
zk−1

T + τ

vxk−1vyk−1
vzk−1

T + τ2 ∗

axk−1ayk−1
azk−1

T . (16)

Eqs. (15) and (16) provide the methods to calculate the DoA
from the coordinate and how to update the coordinate between
two resource allocation slots. As there are inevitable errors in
the GPS coordinate and same amount of GPS coordinate error
would result in different DoA estimation error when UAV are
at different spatial positions. In order to reveal the relationship
between the DoA estimation errors and the spatial positions,
we conducted simulation experiments by setting the GPS error
as 10m. UAV is operating at the horizontal distances of 10m,
50m, 100m, 150m, respectively, and the vertical altitudes in
the range of [0, 300m]. The height of BS is set to be 15m.
The results are collected every 10m in the vertical direction
and are drawn in Fig. 2. It should be noticed that we adopt
a 10m fixed GPS error in the simulation configuration and
a determinate DoA estimation error is obtained from the
simulation. Instead of adopting random GPS errors, such fixed
GPS error configuration helps us to obtain a smooth curve to
clearly show the trend of the DoA estimation errors with the
increase of the UAV altitudes at different horizontal distances.
From Fig. 2, it can be seen that the position-based DoA
estimation approach suffers from serious estimation error when
UAV is flying near to BS and has little DoA error when UAV
is flying far from the BS. It should be noticed that we adopt
a 10m fixed GPS error in the simulation configuration, which
would result in shown in determinate DoA estimation errors as
shown in Fig. 2. This setting could help us to obtain a smooth
curve to clearly show the trend of the DoA estimation error
with the increase of the UAV operating altitudes at different
horizontal distances. In addition, there is a horizontal line at
each curve in Fig. 2. This is because 10m GPS position error

0 50 100 150 200 250 300
Vertical Distance (m)

0

1

2

3

4

5

6

D
oA

 E
rro

r (
de

gr
ee

)

Horizontal Distance: 10m
Horizontal Distance: 50m
Horizontal Distance: 100m
Horizontal Distance: 150m

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2: DoA error by varying the vertical and horizontal
distances between UAV and BS

would result in the same amount of DoA estimation errors
when UAV are at the altitudes of 10m and 20m, and BS is
at the height of 15m. This phenomenon can be explained as
follows: assume UAVs are at the coordinates of [x, y, z1] and
[x, y, z2] and BS is at the coordinate of [0, 0, zb]. From Eq.
(15), we can observe that if |z1 − zb| = |z2 − zb|, the position
error, [∆x,∆y,∆z], would result in the same DoA estimation
error, ∆θ, at points [x, y, z1] and [x, y, z2]. Thus, when UAVs
are at the altitudes of 10m (z1) and 20m (z2), and BS is at
the height of 15m (zb), the position of UAVs would satisfy
the condition of |z1 − zb| = |z2 − zb|, which would lead to
the same DoA estimation errors as shown in Fig. 2.

Furthermore, we need to analyze the relationship between
DoA error and UAV movement. Towards this aim, we need to
firstly exploit Eq. (16) to transfer the velocity and acceleration
into the position information and then use Eq. (15) to calculate
the DoA. The typical velocity and acceleration errors are
around 0.1m/s and 2m/s2 [27]. It should be noticed that as
the resource allocation slot of cellular-enabled UAV commu-
nication is at the millimetre-second level, the velocity error
of 0.1m/s and acceleration errors of 2m/s2 would have very
limited impact on the DoA estimation error. For instance, when
the resource allocation slot is 0.05s, and UAV is flying at the
velocity of 44m/s (160km/h) and the acceleration of 10m/s2,
and with the coordinate of [50m, 50m, 50m], the position error
and DoA estimation error caused by 0.1m/s velocity error and
2m/s2 acceleration error, are 0.01m and 0.0025o, respectively.
Compared with the inherent GPS error (up to 20m) and serious
DoA estimation error (up to 5o from Fig. 2), the impact of
the inherent mobility error on the performance of the DoA
estimation is insignificant.

C. Navigation Information Correction

In order to fight against the DoA error caused by UAV
mobility, we proposed a hybrid DoA estimation method to
exploit the complementary position and channel condition
information. Compared with the working mechanism of GUE,
navigation and sensor information of UAV devices are required
to be transmitted to the ground control centre for decision mak-
ing, e.g. flight control, forbidden-zone setting, etc. Therefore,
different from the traditional beamforming algorithms used in
terrestrial communication systems, the position and mobility
information are ubiquitously available and could be exploited
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to improve the accuracy of DoA estimation. Instead of solely
utilizing GPS position information to obtain DoA angle, we
jointly consider the GPS information and channel condition
information to design robust beamforming.

For UAV systems, GPS signals are sent by satellites and
received by UAVs to estimate its positions. Although GPS
satellites use atomic clocks, which are very accurate, the
atomic clocks can drift up to a millisecond and results in 10-
meter level position error in the receiving UAVs. Comparing
with GUE, AUEs require more accurate GPS position informa-
tion for safe operations. Currently, most the commercial UAVs
have implemented various algorithms, e.g. Kalman Filter [28],
which could reduce 10-meter GPS error to around 2 meters.
Depending on the practical implementation, different GPS
receivers have different accuracies for position estimation. In
order to make the proposed algorithm working for most of the
existing GPS devices, 10-meter level GPS error is considered
in this study during the algorithm derivation and performance
validation.

When UAVs are flying far from the BS, the channel
condition-based methods hardly provide accurate DoA esti-
mation. In this situation, GPS and sensor information could
be used to calculate the DoA angle. From Fig. 2, relatively
small DoA error exists in the position-based DoA estimation
in this case. While, when UAVs are flying near to the BS, the
inherent position error of GPS system would cause large scale
of DoA estimation error. In this situation, directly utilizing
GPS information could not obtain the satisfying accuracy of
DoA estimation. When UAVs are flying near to the BS, we
exploit MUltiple SIgnal Classification (MUSIC) to estimate
DoA information. MUSIC algorithm has been widely deployed
in the wireless communication system, which calculates the
autocorrelation matrix of the received signal and searches
the frequency content of the signal autocorrelation matrix
in the eigenspace. The stronger signal strength is, the larger
frequent content can be searched and the higher accuracy DoA
estimation could obtain. In this study, we jointly exploit the
MUSIC-driven and position-based approaches to accurately
estimate DoA.

The position data in Eqs. (15) and (16) is updated by
measuring signal transmission time from the satellite to UAV.
The original GPS coordinate will be mapped into the curved
surface formed by DoA, as shown in Fig. 3. Let (xek, y

e
k, z

e
k)

and (xck, y
c
k, z

c
k) denote the original and corrected GPS coordi-

nates, respectively. Through mapping (xek, y
e
k, z

e
k) to the DoA

surface, the corrected position coordinate,(xck, y
c
k, z

c
k) could

be calculated by forming the following optimization problem
under the constraint of θ 6= 0,

(xck, y
c
k, z

c
k)=arg min

√
(x
c
k−xek)

2
+(yck − yek)

2
+(zck − zek)

2
,

s.t.

√
(xck)

2
+ (zck − zbk)

2

yck
= tan(θ).

(17)

By applying the Lagrange Multiplier [26] to Eq. (17) (see
APPENDIX B), the corrected GPS coordinate, (xck, y

c
k, z

c
k),

Fig. 3: Navigation information correction in three-dimensional
coordinate

can be calculated as

xck =
xeky

c
k(tan θ)

2

yck(1 + (tan θ)
2
)− yek

,

zck =
(zek − zbk)yck(tan(θ))

2

yck(1 + (tan(θ))
2
)− y

e

k

+ zbk.

(18)

yck is calculated by the following equation,

yck =
yek +

√
((xek)

2
+ (zek)

2
)(tan(θ))

2
)

1 + (tan θ)
2 . (19)

The detailed derivation of Eq. (19) is given in the appendix.
The optimization problem of Eq. (17) is formulated based on
the assumption that θ 6= 0. If θ = 0, the corrected coordinate
(xck, y

c
k, z

c
k) could be directly obtained by mapping the original

GPS to x-z plane. In order to analyse the performance of
coordinate mapping process, let (xtk, y

t
k, z

t
k) denote the true

position of UAV device. Let
−→
N denote the normal line of

the point T that is on the DoA curve. DET and ECT
represent the error distances of the erroneous GPS coordinate
and the corrected GPS coordinate. We draw a perpendicular
line from the point C of DoA curve, which intersects with
the line ET at point p. Then the angle formed by line CT
and CP is 90o. The relationship between EP and CT is
given by DET = DEP + DPT = DEP + DCT /cos(ϕ). As
cos(ϕ) < 90o, DET > DCT . Denote the angles of 6 ETC
and 6 TEC as φ and ϕ. After a series of geometry derivation,
the relationship between EP and CT can be quantitatively
analyzed from the following equation∣∣∣∣DET

DCT

∣∣∣∣ =
sin(ϕ)+ sin(φ) cos(φ+ϕ)

cos(φ) cos(ϕ)
. (20)

Eq. (20) demonstrates that the smaller values of φ and ϕ
bring a better effect of coordinate correction. Let 6 ΘETN

denote the angle of line
−→
N and line ET . The actual values
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of φ and ϕ is largely determined by 6 ΘETN . Small value
of 6 ΘETN results in small values of φ and ϕ, giving better
coordinate correction. On the other hand, even if the error
GPS coordinate is located in the position far from the normal
line

−→
N , the proposed mapping process could still achieve

lower DoA error. As both the corrected GPS and true GPS
are located on the DoA curve as shown in Fig. 3, we can
exploit the UAV movement information (the velocity and
the acceleration) to update the corrected GPS to track the
UAV, predict the change of DoA angles between two resource
allocation slots, and adjust beamforming vector to enhance the
signal reception.

V. PERFORMANCE VALIDATION AND ANALYSIS

To evaluate the performance of the proposed robust beam-
forming, we conducted comprehensive simulation experi-
ments. The parameter configuration is summarised in Table
I. According to commercial UAV products [29], GPS signals
are generated at the frequency of 20Hz and with the error
10m. Without loss of generality, the Rural Macro (RMa)
channel scenario defined by 3GPP TR 38.901 [30] is used
in this study to generate the A2G links. Totally up to 300 rays
were generated in this simulation, each of which is allocated
with the different delays, power and DoA angles. The power
distribution is generated by the exponential delay distribution,
and power distribution given by [30]. During the channel
simulation, 300 rays are grouped into 10 clusters, each of
which includes 30 rays. The first cluster is to simulate the
LoS path and the remaining nine clusters are used to model
the NLoS path. To obtain a deep understanding of the features
of UAV A2G channel, the power distribution of LoS and NLoS
is added in the revised manuscript, as shown in Fig. 4. From
Fig. 4, it can be seen that the majority of transmission power
(around 93%) is located in the first cluster, revealing that LoS
dominates the overall channel response in UAV scenario. In
addition, there are three UAVs modelled in the simulation, the
interesting UAV (UAV1), and two interference UAVs (UAV2
and UAV3). To capture the characteristics of the real-world
cellular-enabled UAV communication, UAV1 is allocated in
the serving BS and UAV2 and UAV3 are assigned in the
neighbouring BSs to generate the interference signals. The
Semi-Random Circular Movement (SRCM) mobility [31] is
adopted in the simulation to update the UAV positions at each
transmission slot. SRCM is an important UAV mobility model,
mainly used in the scenarios where a potential target location is
known, and UAVs are dispatched to collect information in the
nearby area, e.g. search and rescue. The results are collected
and averaged from 100 runs, each of which lasts 120 resource
allocation slot. Because the GPS measurement work [32] [33]
adapts 20 Hz as the frequency sampling, each allocation slot
is set to be 50 millimetre-seconds (ms) in the simulation
experiments. Six benchmark algorithms are chosen to conduct
performance comparison, which include optimal beamforming
algorithm, Linearly Constrained Minimum Variance (LCMV)
algorithm, Position-based beamforming algorithm, Diagonal
Loading (DL) algorithm, Robust Capon Beamforming (RCB)
and Robust LCMV algorithm. The aim of adapting the optimal

TABLE I: Simulation parameter configuration

Parameters Values
Carrier frequency (fc) 2.4GHz
Light speed (c) 3.0 ∗ 108m/s
Signal wavelength (λ) c/fc

Number of Antennas at BS (N ) 8, 16, 32, 64

UAV speed (V ) 160km/h

Flight heights (hAUE(1,2,3)) 50m, 100m, .., 250m, 300m

Flight heights (hBS ) 15m

Number of interfering UAVs (N ) 2

UAV transmission power (Ps) 23dBm

Antenna inter-element distance (d) λ/2

Signal-to-Noise-Ratio (SNR) 10dB

Signal-to-Interference-Ratio (SIR) 2dB

MUSIC Search Resolution (Search) 0.1o

GPS Error (GPSe) 10m

Symbol Length (TB ) 66.7 ∗ 10−6s

Sampling Interval (TS ) 0.03255 ∗ 10−9s

Bandwidth (B) 5MHz

Channel Model (h) RMa Scenario defined in [30]
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Fig. 4: Power distribution of 3GPP A2G channel model

beamforming algorithm in the simulation experiments is to
obtain the upper-bound beamforming performance, which is
meaningful for conducting the performance comparison and
obtaining a comprehensive understanding of the beamforming
design. The performance of different algorithms is analysed
in terms of DoA error, interference power, noise power and
output SINR,

In Fig. 5, we investigate the DoA error, ∆θ, of UAV1
for different beamforming algorithms. ∆θ is defined as the
absolute difference between real DoA and estimated DoA,
∆θ = |θt − θe|. We can see that the proposed algorithm
with the position correction approach shows a significant
gain over the well-known LCMV approach in [34] and the
position-based beamforming algorithm, the inherent position
error of which is not corrected. Compared with the other two
approaches, the proposed method could achieve a reduction
of 90-99% DoA error. In addition, all three algorithms show
the periodic changes. This is because DoA error is largely
determined by the UAV flight status. As introduced in the
previous paragraph, the flight path is generated by the SRCM
model and UAV1 are flying around a certain point. After a
certain amount of flight time, UAV1 would finish one round
search and start the next round. DoA is closely related to the
direction of the signal sent out and the DoA error has a similar
change pattern as the mobility model.

In Figs. 6 and 7, we investigate the performance of the
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Fig. 5: DoA error of the interesting UAV1

0 20 40 60 80 100 120
Resource Allocation Time (50ms Interval)

3

6

9

12

15

18

21

24

27

SI
NR

 (d
B)

Optimal Beamforming Algorithm
LCMV Algorithm
Position-based Beamforming without Position Correction
Proposed Algorithm with Position Correction
RCB Algorithm
DL Algorithm
RLCMV Algorithm

Fig. 6: Ouput SINR comparisons of different beamforming
algorithms
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Fig. 7: Cumulative probability function of the output SINR of
different beamforming algorithms

achieved SINR of the proposed algorithm. In order to clearly
show the performance gains, the real DoA values are used in
the optimal beamforming algorithm to calculate the optimal
beamforming performance. Fig. 6 shows that the proposed
algorithm outperforms the other five approaches. Due to the
significant reduction of DoA error, the proposed robust beam-
forming has least-error position information for calculating the
steering vector in Eq. (2) and beamforming weight vector in
Eq. (9), thus achieving good SINR output. In addition, as
shown in Fig. 6, LCMV, RCB, DL and robust LCMV can
occasionally achieve good SINR performance at the resource
allocation time of 30th, 60th, 90th and other time slots (the
interval of 30 slots), but could not provide stable SINR output.
The reason for this phenomenon is that when UAV is operated
in the vertical direction of BS, slight DoA error is introduced
between two resource allocation slots and good performance
of the receiving SINR could be achieved, however, when UAV
changes its flight status according to the mission requirements,
the large scale of DoA error would be generated, which results
in low receiving SINR. In this case, the position correction
process proposed in this work can be used to reduce the DoA
error and achieve good and stable receiving SINR.
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Fig. 8: Comparison of the output interference power for
different beamforming algorithms
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Fig. 9: Cumulative probability function of the output interfer-
ence power for different beamforming algorithms
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Fig. 10: Comparison of the output noise power for different
beamforming algorithms
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Fig. 11: Cumulative probability function of the output noise
power for different beamforming algorithms

In Figs. 8 and 9, we investigate the performance of the
proposed algorithm in terms of interference cancellation. The
results show that the proposed algorithm has lower interference
responses compared with the other five algorithms. As shown
in Eq. (8), the first constraint condition guarantees that the
signal from interesting UAVs could be responded without any
power loss after multiplying the beamforming weight solution
ω. And the second optimization constraint guarantees that the
interfering signals are blocked by the beamformer through
setting the null points in the direction of interfering sources. In
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TABLE II: Output SINR of the proposed algorithm (dB)

50m 100m 150m 200m 250m 300m

N=8 -3.6113 10.7829 14.2031 15.1893 15.4845 15.5643
N=16 10.7983 17.9725 18.0841 18.1704 18.1896 18.1925
N=32 17.8571 18.8746 19.2446 19.3299 19.3403 19.3734
N=64 18.9302 19.4574 19.7396 19.7921 19.8049 19.8145
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Fig. 12: The impact of the interval length on the performance
of the proposed algorithm

addition, the optimal beamforming algorithm achieves the best
performance in terms of interference cancellation. Because
DoA error would result in the leakage of interfering power
and the optimal beamforming algorithm does not suffer from
any DoA error, and therefore it achieves the best performance
for interference cancellation.

Furthermore, the performance of noise minimization is also
investigated in Figs. 10 and 11. The output SINR is not only
related to the output signal and interference power, but also
determined by the level of output noise power, as described
in Eq. (5). As shown in Fig. 10, the proposed algorithm has
lower noise power (around 10dBm) compared with the LCMV
and the position-based beamforming algorithms. Instead of
minimizing the output power adopted by LCMV algorithm, the
proposed algorithm split the minimization of the output power
into three aspects, cancelling the interference, guaranteeing the
interesting signal and minimizing the output noise power as
shown in Eq. (8). As the receiving noise is independent with
the receiving signal, then BS could utilize the Noise Analyser
or Meter (NFM) to measure the noise figure, calculate the
noise autocorrelation matrix, Rn, and design effective beam-
forming vector to minimize the output noise ωHRnω. It can
be seen that the proposed algorithm achieves a similar level
of output noise power as that of the optimal beamforming
algorithm.

In addition, the antenna model and AUE altitude would
have significant impacts on the performance of the proposed
robust beamforming. Therefore, we investigate the output
SINR performance by varying the antenna numbers (8, 16,
32 and 64) and AUE altitudes (from 50m to 300m with an
interval of 50m). The simulation results are shown in Table. II.
From the simulation results in each column of the table, it can
be seen that the increase of the antenna number is benefitable
to the output SINR improvement. This is because the main-
lobe width of the antenna beamforming is largely determined
by the antenna number. The increased number of the antenna
enables the BS to narrow the beam width and increase the

antenna response in the direction of the signal source, thus
improving the output SINR. Furthermore, through comparing
the SINR in each row of Table. II, we can observe that the
performance of the proposed algorithm is enhanced with the
increase of the AUE altitudes from 50m to 300m. This is
because the A2G channel consists of both LoS and NLoS.
The higher UAV altitude would lead to the more transmission
power to be allocated to the LoS paths, which brings the
enhanced performance with respect to the output SINR for
the proposed algorithm.

The interval length would affect the accuracy of the de-
signed algorithm. In order to investigate the relationship be-
tween the accuracy of the proposed solution and the interval
length, we conducted experiments through varying the length
of the interval from 0.01s to 1s and the simulation results are
drawn in Fig. 12. It can be seen that, with the increase of the
interval length from 0.01s to 0.1s, the proposed algorithm can
obtain stable performance with respect to the output SINR.
While from 0.1s to 1s, there is slight performance degradation
for the proposed algorithm. This is because the proposed
position-based beamforming exploits velocity and acceleration
information to track the movement of UAV, predict the changes
of UAV, and adjust the beamforming weights for signal recep-
tion enhancement. In this context, the velocity and acceleration
information can be obtained at a very high frequency, such
as 250Hz [35]. If the interval length is long such as 1s, the
velocity and acceleration used in the position prediction may
be out-of-date, resulting in the performance degradation for the
proposed position-based beamforming design. Therefore, there
is a need to ensure the resource allocation slot is small than
100ms to implement the proposed algorithm in the practical
UAV system.

VI. CONCLUSION

A novel position-based robust beamforming algorithm was
proposed in this study to enhance the performance of the
cellular-enable UAV communication. To mitigate the serious
interference generated by UAVs in cellular networks, we pro-
posed a new beamforming optimization approach to maximize
the system throughput under the constraint of interference
and noise minimization, which was solved by exploiting the
Lagrange multiplier approaches. The implementation of the
optimal beamforming is largely determined by the accuracy
of DoA estimation. While the rapid velocity changes of
UAV devices make it difficult to achieve accurate position
information. To address this issue, we developed a mapping
approach to iteratively utilize the MUSIC algorithm to correct
the position information and exploit the updated position
information to predict the DoA information. By making full
use of two complementary information resources, the proposed
algorithm is able to enhance the received signal power, sup-
press interferences and noises, thus improving the receiving
SINR. Comprehensive simulation experiments showed that
the proposed algorithm outperforms the Linearly Constrained
Minimum Variance (LCMV) algorithm, Position-based beam-
forming algorithm, Diagonal Loading (DL) algorithm, Robust
Capon Beamforming (RCB) and Robust LCMV algorithm. In
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addition, the proposed algorithm can be deployed in the current
and future cellular system to enhance the communication
quality of UAVs and mitigate their strong interference to other
ground and aerial users.
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APPENDIX A
DETERMINATION OF EQ. (9).

In order to find the solve the optimization problem in Eq.
(8), we form the Lagrangian function as follows,

Ł(ωH , λ) = ωRnω + λ(ωHA(θ)− F ), (21)

where F = [1, 0, ..., 0]. Then,

∂Ł(ωH , λ)

∂ωH
= Rnω + λA(θ) = 0, (22)

and
∂Ł(ωH , λ)

∂λ
= ωHA(θ)− F = 0. (23)

Through jointly solving Eqs. (22) and (23), the beamforming
weight vector, ω, could be calculated by

ω = −
[
A(θ)

H
Rn
−1A(θ)

]−1
R−1A(θ)F. (24)

APPENDIX B
DETERMINATION OF EQ. (18) AND EQ. (19).

To solve the optimization problem of Eq. (17), instead of
directly working out the optimization problem of this equation,
we transfer the Eq. (17) to the following optimization problem,

(xck, y
c
k, z

c
k) = arg min(x

c
k − x

e
k)

2
+ (yck − yek)

2
+ (zck − zek)

2

s.t. (xck)
2

+ (zck − zbk)
2

= (yck)
2
(tan(θ))

2
.

(25)

Applying the Lagrange multiplier to Eq. (25) and defining
the Lagrangian expression as follows,

Ł(xck, y
c
k, z

c
k, η) = (xck − xek)

2
+ (yck − yek)

2
+

(zck − zek)
2

+ η((xck)
2

+ (zck − zbzk)
2 − (yck)

2
(tan θ)

2
),

(26)

where η is a Lagrange multiplier. Exploiting the feature of
Lagrange multiplier and solving ∇xc

k,y
c
k,z

c
k,η

Ł(xck, y
c
k, z

c
k, η) =

0 can achieve the following three equations,

∂Ł(xck, y
c
k, z

c
k, η)

∂xck
= xck − xek + ηxck = 0

=> η =
xek
xck
− 1,

(27)

∂Ł(xck, y
c
k, z

c
k, η)

∂yck
= yck − yek − ηyck(tan(θ))

2
= 0

=> η =
yck − y

e
k

yck(tan(θ))
2 ,

(28)

and
∂Ł(xck, y

c
k, z

c
k, η)

∂zck
= zck − zek + η(zcz − zbz) = 0

=> η =
zek − zck
zck − zbk

.
(29)

By linking Eqs. (27) and (28) through η, xck could be
expressed as a function of yck,

xek
xck

=
yck − y

e
k + yck(tan(θ))

2

yck(tan(θ))
2

=> xck =
xeky

c
k(tan(θ))

2

yck(1 + (tan(θ))
2
)− y

e

k

.

(30)

Similar to the derivation of xck, zck could also be denoted as
the function of yck as follows:

zck =
(zek − zbk)yck(tan(θ))

2

yck(1 + (tan(θ))
2
)− y

e

k

+ zbk. (31)

By taking xck, yck and zck into the optimization constraint
condition of Eq. (25), (xck)

2
+ (zcz)

2
= (yck)

2
(tan(θ))

2, yck
could be calculated in the following equation,[

xeky
c
k(tan(θ))

2

yck(1 + (tan(θ))
2
)− y

e

k

]2
+

[
(zek − zbk)yck(tan(θ))

2

yck(1 + (tan(θ))
2
)− y

e

k

+ zbk

]2
= [yck]2(tan(θ))

2
.

(32)
After a series of derivation, yck could be calculated as yck =

−B±
√
B2−4AC
2A under the constraint of B2− 4AC ≥ 0, where

A, B, and C are calculated by,

A = (1 + (tan(θ))
2
), (33)

B = −2yek(1 + (tan(θ))
2
), (34)

and
C = (yek)

2 − ((xek)
2

+ (zek)
2
)(tan(θ))

2
. (35)
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