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Ductal carcinoma in situ (DCIS), a stage 0 form of breast 
cancer, accounts for about 14.9% of all new breast can-

cer diagnoses (1). Although DCIS is not life threatening 
and many cases of DCIS may never progress to invasive 
cancer (2,3), it is a potential precursor to invasive ductal 
carcinoma (4). Among patients with core-needle biopsy–
proven DCIS, concurrent invasive ductal carcinoma is 
found at the time of definitive surgery (upstaging) in 0%–
26% of women (5–10). Currently, it is standard of care for 
DCIS to be excised; thus, occult invasive disease, if present, 
is detected at surgical excision. However, nonsurgical man-
agement strategies, including active surveillance, are being 
explored to address concerns about DCIS overtreatment. 
A major challenge to the feasibility of active surveillance 

is delayed detection of occult invasive cancer previously 
detected at surgery. Therefore, improving the presurgical 
diagnosis of occult invasive cancer in women with newly 
diagnosed DCIS can have important clinical implications 
and can assist providers and patients in choosing optimal 
management strategies (11,12).

Previous studies have investigated the factors associated 
with DCIS upstaging to invasive cancer in patients with 
DCIS at core-needle biopsy. In a large meta-analysis, Bren-
nan et  al (10) found that mammographic abnormalities 
including mass, architectural distortion, asymmetry, lesion 
palpability, and lesion size were significantly associated with 
upstaging, but DCIS manifesting as pure calcifications can 
also harbor occult invasive disease. The task of predicting 

Background:  Improving diagnosis of ductal carcinoma in situ (DCIS) before surgery is important in choosing optimal patient man-
agement strategies. However, patients may harbor occult invasive disease not detected until definitive surgery.

Purpose:  To assess the performance and clinical utility of mammographic radiomic features in the prediction of occult invasive can-
cer among women diagnosed with DCIS on the basis of core biopsy findings.

Materials and Methods:  In this Health Insurance Portability and Accountability Act–compliant retrospective study, digital magnifica-
tion mammographic images were collected from women who underwent breast core-needle biopsy for calcifications that was per-
formed at a single institution between September 2008 and April 2017 and yielded a diagnosis of DCIS. The database query was 
directed at asymptomatic women with calcifications without a mass, architectural distortion, asymmetric density, or palpable dis-
ease. Logistic regression with regularization was used. Differences across training and internal test set by upstaging rate, age, lesion 
size, and estrogen and progesterone receptor status were assessed by using the Kruskal-Wallis or x2 test.

Results:  The study consisted of 700 women with DCIS (age range, 40–89 years; mean age, 59 years 6 10 [standard deviation]), 
including 114 with lesions (16.3%) upstaged to invasive cancer at subsequent surgery. The sample was split randomly into 400 
women for the training set and 300 for the testing set (mean ages: training set, 59 years 6 10; test set, 59 years 6 10; P = .85). 
A total of 109 radiomic and four clinical features were extracted. The best model on the test set by using all radiomic and clinical 
features helped predict upstaging with an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.62, 0.79). For 
a fixed high sensitivity (90%), the model yielded a specificity of 22%, a negative predictive value of 92%, and an odds ratio of 2.4 
(95% CI: 1.8, 3.2). High specificity (90%) corresponded to a sensitivity of 37%, positive predictive value of 41%, and odds ratio of 
5.0 (95% CI: 2.8, 9.0).

Conclusion:  Machine learning models that use radiomic features applied to mammographic calcifications may help predict upstaging 
of ductal carcinoma in situ, which can refine clinical decision making and treatment planning.
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different. Among the training set, 140 patients (105 with pure 
DCIS and 35 with upstaged DCIS) were reported in a previous 
study (14). This previous study focused on analyzing the adjunc-
tive roles of two classes (atypical ductal hyperplasia and invasive 
ductal carcinoma) in improving prediction performance.

The prebiopsy digital mammograms were collected. All 
women underwent digital mammography with magnification 
views acquired by systems with a magnification factor of either 
1.53 or 1.83 (Senographe Essential, GE Healthcare; or Selenia 
Dimensions, Hologic).

The institutional review board approved this retrospective 
study and waived written informed consent. The study complies 
with the Health Insurance Portability and Accountability Act.

Feature Extraction
Each breast lesion was identified by a fellowship-trained breast 
radiologist (L.J.G., with 6 years of experience), who was pro-
vided all available images and reports to guide his annotations. 
Calcifications were automatically segmented by using a U-Net 
convolutional neural network trained on a previously reported 
computer vision algorithm (14,15).

Model Building and Testing
The pipeline of this study is depicted in Figure 1. Before models 
were built, all features were standardized with zero mean and unit 
variance separately for each vendor (GE or Hologic), with train-
ing and test set normalized separately. The data set was randomly 
shuffled and was divided into training and internal test sets by 
balancing their upstaging rate. The training set was used for re-
peated cross validation. The internal test set was reserved and 
not used until the final testing. Negative corresponded to pure 
DCIS without upstaging and positive indicated DCIS that was 
upstaged to invasive cancer at the time of surgery. This presented 
a difficult image classification challenge because these two classes 
were both diagnosed as having only DCIS at initial core biopsy. 
For the subset of women with positive results later relabeled as 
upstaged after surgery, each lesion therefore was composed of a 
mix of both DCIS and invasive components in close proximity. 
Thus, any image features describing DCIS versus invasive disease 
would also be mixed together within the same lesion. We further 
analyzed the performance of radiomic or clinical features sepa-
rately and in combination, and with or without feature selection. 
Because there were only four clinical features, feature selection 
was not applied on the model with only clinical features. The 
differences among all five models are illustrated in Table 1.

During training, fivefold cross-validations were repeated 200 
times after random shuffling of the training set, which reduced 
bias from sample ordering across the training folds. During each 
repeat, we use a nested cross-validation; the outer loop handles 
resampling while the inner loop performs hyperparameter tun-
ing and stabilized feature selection (16,17) using default param-
eters of the gridsearchCV function (Python module scikit-learn 
0.20). The five models were trained by using logistic regression 
with L2 regularization (18).

For the test set evaluation, a final classifier was created 
by fixing the hyperparameters and features to the most fre-
quently selected values during cross-validation training, 

upstaging in women with DCIS who present only with calcifica-
tions has been persistently difficult for radiologists (13).

By using digitally extracted mammographic radiomic fea-
tures, we conducted a retrospective cohort study to investigate 
whether radiomics with a machine learning approach could be 
used to distinguish pure DCIS from DCIS with occult inva-
sive cancer. Specifically, we focused on women with DCIS who 
presented only with calcifications because these women may 
be eligible for de-escalation treatment strategies such as active 
surveillance. In addition, we evaluated the use of our model in 
surgical treatment planning for patients undergoing surgery. The 
purpose of our study was to assess the performance and clinical 
utility of mammographic radiomic features in the prediction of 
occult invasive cancer among women diagnosed with DCIS on 
the basis of core biopsy findings.

Materials and Methods

Study Sample
We searched medical records for all patients who underwent 
mammography, had calcifications, and were diagnosed with 
DCIS on the basis of a 9-gauge vacuum-assisted core-needle 
biopsy at a single health system between September 2008 and 
April 2017. We excluded women who presented with a mass, 
asymmetry, architectural distortion, or palpable disease; were 
younger than 40 years; had synchronous contralateral breast 
cancer; or had a history of breast cancer or surgery. Estrogen 
receptor and progesterone receptor status, as well as nuclear 
grade, were recorded from the initial core-needle biopsy reports. 
The subsequent surgical excision pathologic reports were also re-
viewed to determine whether there was subsequent invasive can-
cer (upstaging). All initial pathologic interpretations were made 
by pathologists with specialty training in breast surgical pathol-
ogy; no new interpretations were made for this study.

Training and test sets were split randomly within each class to 
balance for upstaging rate. After the split, we confirmed that the 
ages of women in the training and test sets were not significantly 

Abbreviations
AUC = area under receiver operating characteristic curve, DCIS = ductal 
carcinoma in situ

Summary
Mammographic radiomic features may help predict occult invasive 
disease in core-needle biopsy–proven ductal carcinoma in situ.

Key Results
	N Mammograms from 700 women with asymptomatic ductal carci-

noma in situ (DCIS) were used to develop logistic regression with 
regularization models to predict upstaging. Upstaging rate was 
16.3% (114 of 700) and a total of 109 radiomic and four clinical 
features were extracted.

	N Combining clinical and radiomic features provided the best pre-
diction performance (area under receiver operating characteristic 
curve, 0.71).

	N The model can hypothetically provide 90% sensitivity and 92% 
negative predictive value for guiding patients with DCIS who are 
considering active surveillance.
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which were applied over the entire training set 
to create the fixed model for testing.

Statistical Analysis
Performance was assessed by the area under the 
receiver operating characteristic curve (AUC) 
with 95% CIs (19). Characteristics of the study 
sample and markers were summarized accord-
ing to individual diagnosis at core biopsy. Dif-
ferences between DCIS training and test sets 
were statistically analyzed with Kruskal-Wallis 
tests for continuous variables and x2 test for cat-
egorical variables. All statistical tests were two-
tailed, with a significance level of .05. Feature  
extraction and machine learning models were implemented 
in Python. Statistical analysis was implemented in R software  
(R Project for Statistical Computing). The entire code is pub-
licly available on GitLab (https://gitlab.oit.duke.edu/railabs/
LoGroup/mammographic-radiomics-to-predict-dcis-upstaging).

Results

Study Sample Characteristics
We retrospectively identified all DCIS with stereotactic biopsied 
calcifications (n = 1791) from January 1, 2008, through May 1,  

2017. The study excluded patients with a mass, architectural 
distortion, asymmetric density, or palpable disease (n = 491), 
patients younger than 40 years (n = 72), and patients with any 
type of previous cancers or breast surgery (n = 528). The final 
study sample included 700 consecutive women. A flowchart of 
patients included for analysis is shown in Figure 2. There were 
114 of 700 women (16.3%) with DCIS upstaged to invasive 
cancer. A total of 400 women (335 with pure DCIS and 65 with 
upstaged DCIS; 16.3% upstage rate) were randomly selected 
for the training set. The remaining 300 women (251 with pure 
DCIS and 49 with upstaged DCIS; 16.3% upstage rate) were 

Figure 1:  Illustration of the study pipeline (step 1). A total of 700 women were identified (step 2). Lesion annotations were masked by a breast radiologist, and calcifica-
tions (calcs) were masked by a computer vision–based algorithm and a deep learning–based U-net segmentation network (step 3). A total of 109 radiomic features and 
four clinical features were collected (step 4). Models with those extracted features and training data were trained (step 5). Selected models were validated on test data.  
NPV = negative predictive value, OR = odds ratio, PPV = positive predictive value, ROC = receiver operating characteristic, ROI = region of interest, sens = sensitivity,  
spec = specificity.

Table 1: Comparison of Model Attributes and Performance during 
Validation and Testing

Model  
Name

Radiomic  
Features

Clinical  
Features

Feature  
Selection Validation AUC Test AUC

1 Yes ... ... 0.63 (0.56, 0.71) ...
2 Yes ... Yes 0.68 (0.61, 0.75) 0.69 (0.60, 0.77)
3 ... Yes ... 0.59 (0.51, 0.67) 0.60 (0.51, 0.69)
4 Yes Yes ... 0.63 (0.56, 0.71) 0.71 (0.62, 0.79)
5 Yes Yes Yes 0.68 (0.61, 0.75) ...

Note.—Data in parentheses are 95% CIs. AUC = area under the receiver operating 
characteristic curve.
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Figure 2:  Study inclusion flowchart of patients with ductal carcinoma in situ (DCIS).

Table 2: Demographic Characteristics of Women and Lesion Characteristics in Total and in 
Training and Test Sets

Characteristic Training (n = 400) Test (n = 300) P Value
Upstaged .98*
  No. of upstaged DCIS cases 65 49
  Upstaging rate (%) 16.3 16.3
Mean age at diagnosis (y)† 59 (40–89) 59 (40–88) .85‡

Mean lesion size (mm)† 27.1 (1.4–174.2) 28.3 (1.8–184.6) .08‡

Estrogen receptor status .87*
  Positive 319 (79.8) 245 (81.7)
  Negative 74 (18.5) 55 (18.3)
  Unknown 7 (1.7) 0 (0.0)
Progesterone receptor status .10*
  Positive 287 (71.8) 209 (69.7)
  Negative 105 (26.2) 90 (30.0)
  Unknown 8 (2.0) 1 (0)
Nuclear grade .08*
  Low (grade I) 21 (5.2) 6 (2.0)
  Intermediate (grade II) 149 (37.3) 102 (34.0)
  High (grade III) 230 (57.5) 192 (64.0)

Note.—Unless otherwise indicated, data in parentheses are percentages. DCIS = ductal carcinoma 
in situ.
*x2 test.
† Data in parentheses are the range.
‡ Kruskal-Wallis test.
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reserved for testing. The characteristics of women 
with DCIS and markers were well matched be-
tween women in the training and test sets, with-
out significant differences between sets in age at 
presentation, DCIS extent, hormone receptor sta-
tus, or nuclear grade. Characteristics of the study 
sample and markers with P values are in Table 2. 
A total of 109 radiomic features were collected, 
representing each lesion’s imaging characteris-
tics to describe both individual calcifications and 
the overall calcification cluster (20). In addition, 
four clinical features were extracted from the core 
biopsy pathologic report: estrogen receptor, pro-
gesterone receptor, nuclear grade, and age at di-
agnosis. Detailed descriptions of these features are 
shown in Table 3.

Training by Cross-Validation
The model performance obtained with use of clin-
ical features only, either individually or in com-
bination, was consistently poor. Each individual 
feature resulted in an AUC ranging from 0.51 to 
0.57: age, 0.53 (95% CI: 0.45, 0.60); estrogen 
receptor, 0.56 (95% CI: 0.44, 0.68); progester-
one receptor, 0.57 (95% CI: 0.45, 0.69); nuclear 
grade, 0.55 (95% CI: 0.46, 0.64). None of the 
95% CIs of any model excluded chance (AUC, 
0.5). The AUC for the model with all four clinical 
features was 0.59 (95% CI: 0.51, 0.67).

Performances for the models involving different 
combinations of radiomics and clinical features are 
shown in Table 1. The use of all radiomic features 
generated a training AUC of 0.63 (95% CI: 0.56, 
0.71). Then, applying feature selection resulted in 
a set of 11 selected features and an improved AUC 
performance of 0.68 (95% CI: 0.61, 0.75). The se-
lected features were standard deviation, maximum, 
minimum, and mean of individual calcifications 
normalized degree (21); standard deviation of cal-
cifications mean background intensity; standard 
deviation and maximum of calcifications distance 
to cluster centroid; number of calcifications in the 
lesion; standard deviation of calcifications mean in-
tensity; maximum of calcifications minor axis; and 
maximum of calcifications third Hu moment (22).

Combining both radiomic and clinical fea-
tures achieved a similar AUC of 0.63 (95% CI: 
0.56, 0.71) to the model with radiomic features 
alone (AUC, 0.63; 95% CI: 0.56, 0.71; P = .85). 
After feature selection, the highest-performing 
model was feature selection with both radiomic 
and clinical features (AUC, 0.68; 95% CI: 0.61, 
0.75), which incorporated the same 11 radiomics 
features as the model of radiomic features along 
with feature selection. In other words, none of 
the added clinical variables were selected, and 

Table 3: Radiomic and Clinical Features

Feature Description

Individual calcification-level features
  Shape
    Calcification perimeter Length of calcification contour
    Calcification area No. of pixels inside calcification contour 

3 pixel size
    Calcification circularity

;
  

measure of “roundness”
    Calcification eccentricity Fit into an ellipse
    Calcification major axis Length of calcification major axis
    Calcification minor axis Length of calcification minor axis
    Calcification Hu moments 3 7 Hu moment invariants: image moment 

invariants regarding translation, scale, 
and rotation (22)

  Topology
    Calcification distance to centroid Distance to calcification cluster centroid
    Calcification distance to closest Distance to nearest calcification 

neighbor
    Calcification normalized degree Sum of normalized weights of 

calcification degree (21), number of 
edges incident to the calc

  Texture
    Calcification background 3 2 Mean and standard deviation of 

surrounding background pixel 
intensities

    Calcification foreground 3 2 Mean and standard deviation of 
calcification pixel intensities

    Calcification GLCM 3 4 Measures computed from gray level co-
occurrence matrices

Calcification cluster-level features 3 13
  Shape
    Cluster area Area of cluster
    Cluster major axis Length of cluster’s major axis
    Cluster eccentricity Eccentricity of cluster
  Topology
    Cluster calc number No. of calcifications in this cluster
    Cluster coverage

  Texture
    Background 3 2 Mean and standard deviation of cluster’s 

surrounding pixel intensities
    Foreground 3 2 Mean and standard deviation of 

calcification pixel intensities in cluster
    GLCMs 3 4 Computed from GLCMs for cluster
Diagnosis-level features 3 4
  Clinical
    Nuclear grade Low and intermediate vs high
    Estrogen receptor Negative versus positive
    Progesterone receptor Negative versus positive
    Age In years

Note.—Four statistical pooling including mean, standard deviation, minimum, 
and maximum were applied on each feature vector. GLCM = gray-level co-
occurence matrix.
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therefore the models of feature selection on either radiomic fea-
tures alone or both radiomic and clinical features were the same.

Independent Testing
On the basis of our training performance, a subset of mod-
els was selected for the final evaluation on the independent 
test set. The model of radiomic features without feature 
selection was excluded because of lower performance than 

that of radiomic features with feature selection. The model 
combining radiomic and clinical features with feature selec-
tion was excluded because it was exactly the same model 
(based on the same 11 features) as the model of radiomics 
features along with feature selection. This resulted in three 
final models, with AUC and 95% CIs shown in Table 1. 
The model that included both radiomic and clinical fea-
tures demonstrated the highest performance (AUC, 0.71; 

Figure 3:  Mammographic images of patients with biopsy-proven ductal carcinoma in situ (DCIS). (A) A 55-year-old woman 
(right magnification craniocaudal view) diagnosed with DCIS only; model correctly classified as negative findings. (B) A 64-year-
old woman (left magnification mediolateral oblique view) with DCIS at core biopsy but subsequently upstaged to invasive disease; 
model correctly classified as positive findings. Red and blue polygons show lesions annotated by the radiologist.

Figure 4:  Graph shows receiver operating characteristic (ROC) curves and odds ratios (ORs) of prediction models. Re-
ceiver operating characteristic curves are shown for two models: one using radiomic and clinical features (gray) and one us-
ing clinical features alone (orange). Both receiver operating characteristic curves are plotted as sensitivity (secondary vertical 
axis on the right) versus specificity (horizontal axis). Blue dashed line is OR curve, plotted as OR (primary vertical axis on left) 
versus specificity (horizontal axis). Two operating points are shown with symbols and are described in the text: high-sensitivity 
active surveillance (purple circle); high-specificity surgical planning for sentinel node biopsy alongside with lesion removal 
surgery (red circle). AUC = area under receiver operating characteristic curve, NPV = negative predictive value, PPV = posi-
tive predictive value, Sens = sensitivity, Spec = specificity.
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95% CI: 0.62, 0.79), but the other model of radiomic 
features along with feature selection performed similarly 
(AUC, 0.69; 95% CI: 0.660, 0.77). All testing results were 
slightly better than training while still remaining within 
the 95% CIs, reflecting inevitable consequences of data 
sampling, even for this relatively large cohort. Figure 3  
shows correctly classified examples from both classes: pure 
DCIS and upstaged DCIS.

Clinical Management Strategies
To consider hypothetical clinical management strategies, 
Figure  4 applies the best model, combining radiomic and 
clinical features, on the test data to depict the relationship 
between odds ratio and the receiver operating character-
istic curve. The odds ratio is greatest when the specificity 
is high and sensitivity is low, and it drops with decreasing 
specificity and increasing sensitivity. Therefore, depending  
on the clinical circumstances, we can select different, hypo-
thetical operating points. The purple circle is a high-sensitivity  
operating point that may be appropriate for active surveil-
lance of women with pure DCIS, where a fixed 90% sen-
sitivity yields 22% specificity (95% CI: 17, 27), 92% 
negative predictive value (95% CI: 89, 93), and odds ratio 
of 2.4 (95% CI: 1.8, 3.2). Alternatively, the red circle de-
picts a high-specificity operating point for women with 
high-risk DCIS to consider combination surgery compris-
ing standard breast-conserving surgery with concurrent 
sentinel lymph node biopsy, in which a fixed 90% specific-
ity yields 37% sensitivity (95% CI: 24, 51), 41% positive 
predictive value (95% CI: 32, 49), and an odds ratio of  
5.0 (95% CI: 2.8, 9.0).

We compared the performance of our best model to key 
clinical features associated with low-risk DCIS. The predic-
tive performance of individual features of estrogen receptor, 
progesterone receptor, and nuclear grade are shown in Table 
4. For the purposes of calculating sensitivity, specificity, and 
odds ratio, high-risk outcomes are considered as the positive 
class, and low-risk outcomes are considered as negative. The 

radiomics models had the highest performance to identify 
women with upstaged DCIS, compared with individual clini-
cal features of risk.

Discussion
Although many ductal carcinomas in situ (DCIS) may not 
progress to invasive cancer, current standard of care requires 
that all patients with DCIS undergo surgical excision. Improv-
ing the presurgical diagnosis of upstaged DCIS is important 
to determine eligibility for alternative management strategies. 
Our study showed that radiomic features from mammography 
have the potential to predict upstaging of DCIS. The combina-
tion of clinical and radiomic features provided the best pre-
diction performance (area under the receiver operating char-
acteristic curve [AUC], 0.71; 95% CI: 0.62, 0.79). From that 
receiver operating characteristic curve, two hypothetical oper-
ating points were described: active surveillance of women not 
likely to have invasive cancer at 92% negative predictive value 
and odds ratio of 2.4, and inclusion of sentinel lymph node 
biopsy surgery for women likely to be upstaged at 41% positive 
predictive value and odds ratio of 5.0. Notably, this model did 
not perform significantly better than the model with radiomic 
features alone (P = .11). Both radiomics models performed 
substantially better than the clinical features alone that have 
been used for this task previously (ie, age, estrogen receptor/
progesterone receptor status, and nuclear grade). None of the 
individual clinical features performed well enough to exclude 
chance, and none were chosen in the feature selection.

Related research evaluated radiologist performance for pre-
dicting DCIS upstaging in a two-stage observer study on a total 
of 300 women (13). Mean performance of nine radiologists in-
creased to an AUC of 0.77 (95% CI: 0.62, 0.85; P = .045) after 
the development of a set of consensus criteria. Given the wide 
CIs, however, the radiologists’ performance is similar to that in 
our study. Our most selected radiomics feature of “normalized 
degree” describes how calcifications extend over a lesion area, 
which is similar to the feature in the radiologists’ consensus cri-
teria that densely packed calcifications are related to upstaging. 

Table 4: Prediction Performance for Diagnostic Criteria on Test Set

Criteria

Upstaging Rate

Specificity Sensitivity Odds Ratio†High Risk* Low Risk
Model with active surveillance 18.3 (44/241) 84.7 (5/59) 22 (54/251) 90 (44/49) 2.4 (1.8, 3.2)
Model with surgical planning 40.9 (18/44) 12.1 (31/256) 90 (225/251) 37 (18/49) 5.0 (2.8, 9.0)
Estrogen receptor status 23.6 (13/55) 14.7 (36/245) 83 (209/251) 27 (13/49) 1.80 (0.88, 3.68)
Progesterone receptor status 24.4 (22/90) 12.4 (26/209) 73 (183/251) 46 (22/48) 2.28 (1.21, 4.29)
Nuclear grade 18.2 (35/192) 13.0 (14/108) 38 (94/251) 71 (35/49) 1.50 (0.77, 2.93)

Note.—Data are percentages; data in parentheses are numerator/denominator unless otherwise indicated. Table is based on test set of 
300 patients (251 with pure and 49 with upstaged ductal carcinoma in situ). Progesterone receptor data are not available for one patient. 
“Model” refers to the same model using both radiomics and clinical features without feature selection, thresholded at different cutoff values 
for active surveillance versus surgical planning scenarios.
* Definition of high risk for each individual feature: estrogen receptor status, negative; progesterone receptor status, negative; nuclear  
grade, III.
† Data in parentheses are 95% CIs.



Prediction of Upstaging in Ductal Carcinoma in Situ on the Basis of Mammographic Radiomics

8	 radiology.rsna.org  n  Radiology: Volume 000: Number 0—Month 2022

Recent work in breast MRI radiomics and pathologic radiomics 
(23–25) suggests the potential for integrating markers from dif-
ferent domains to improve performance.

There are three notable differences between our study and 
previous reports. First, our study developed a mammography 
radiomics model to predict DCIS upstaging, whereas previous 
studies (5,10) were based on clinical, radiologic, and histologic 
findings. Second, we specifically excluded lesions with well- 
established clinical features associated with upstaging, such 
as mass, architectural distortion, palpability, and asymme-
try (26,27). We excluded these lesions because they confer 
a well-established higher risk for upstaging, are readily iden-
tified by radiologists, and already serve as the basis for ex-
clusion criteria in active surveillance trials. Therefore, con-
straining this study to lesions with only calcifications made 
the task of predicting upstaging much more difficult, but the 
results have greater clinical relevance by enabling changes 
in management. Third, our study uses the largest DCIS  
mammography data set to date, with training and testing sets 
that are fivefold greater than the size of the next largest study, 
which included only 140 women with DCIS (35 women 
with upstaged DCIS) (14). Notably, that study used 113 fea-
tures, whereas we performed the same task using a subset of 
11 radiomic features. When other DCIS data sets become 
available, the model should undergo external validation to 
confirm its generalizability.

Classification models for upstaging have the potential 
to inform clinical management of patients with DCIS. Ac-
tive surveillance has recently been proposed as a potential 
management strategy for patients with low-risk DCIS and 
allows patients to forego surgery initially, opting instead for 
close monitoring, including regularly scheduled mammog-
raphy. By intention, our study already excluded higher-risk 
women not suitable for active surveillance (ie, those with 
mass, asymmetry, architectural distortion, palpability, and 
previous cancer), which may otherwise have greatly increased 
the sensitivity. Although hypothetical and applied retro-
spectively, the 92% negative predictive value shows prom-
ise for guiding patients who are considering active surveil-
lance. As a complementary alternative, women identified as  
having high-risk DCIS may undergo combination surgery  
comprising standard breast-conserving surgery with concur-
rent sentinel lymph node biopsy. For women with occult in-
vasive disease, concurrent sentinel lymph node biopsy would 
obviate a second operation to assess nodal status, thus reducing 
morbidity and streamlining clinical management. The benefit 
of concurrent sentinel lymph node biopsy must be weighed 
carefully against the cost of false-positive results, however, as 
sentinel lymph node biopsy procedures may be associated with 
up to 5% morbidity, including lymphedema and paresthesias. 
By way of context, molecular predictors such as DCIS score 
and DCISionRT have hazard ratios of 1.97 and 2.03, respec-
tively, in identifying cohorts at increased risk for recurrence 
following lumpectomy for DCIS (28,29).

Our study had limitations. First, despite considerable differ-
ences in training strategies, the performances of the radiomics 
models were similar (AUCs of approximately 0.71), which may 

indicate an upper bound in the use of radiomic features from 
mammography for this difficult diagnostic task. Specifically, the 
handcrafted radiomic features were on the basis of character-
istics that radiologists deemed important. However, automatic 
feature extraction, such as features from deep learning models, 
may have the ability to capture additional differences between 
these classes (30). Second, although these performances may 
seem modest, the challenging task of predicting upstaging was 
made more difficult by excluding conspicuous features, such 
as a mass or distortion. Our best model already outperforms 
existing nonradiomic criteria, providing potentially clinically 
relevant performance in terms of sensitivity versus specificity 
and odds ratios. As the field  of radiology seeks to refine patient 
selection for personalized and risk-based treatment pathways, 
radiomic approaches will become increasingly relevant, aug-
menting standard clinical data and routine radiologic review. 
Third, the sensitivity and specificity of the two operating points 
we described were estimated from the internal test receiver op-
erating characteristic. For future external testing, cutoffs in 
model output values should be established during the training 
so that the performances reflect the true uncertainty of inde-
pendent testing. Finally, although the data set was split into 
training versus test sets while matching three key factors (age, 
lesion size, and prevalence), there was still sampling bias that 
caused the test performance to be better than training. This 
sampling bias may be minimized by resampling, but that may 
affect both the training and testing performances differently 
across multiple models.

In conclusion, we found that radiomic features derived 
from mammography can classify occult invasive disease in 
ductal carcinoma in situ (DCIS), with performance superior 
to that of clinical criteria alone. This suggests potential to use 
imaging algorithms to improve patient care and assist in the se-
lection of patients for clinical trials. Additional ongoing efforts 
in our team include the use of deep learning prediction models 
and acquiring external test data from other centers and imag-
ing platforms. The use of such tools for risk stratification may 
provide a tractable way forward to enable safe de-escalation of 
treatment in low-risk clinical settings. These combined efforts 
are aimed to allow better risk stratification, thus enabling a 
tractable way forward toward risk-based treatment for DCIS.
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