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Abstract

We measure the impact of a first-order integer auto-regressive, INAR(1), demand process on order-
up-to (OUT) replenishment policy dynamics. We obtain a unique understanding of the bullwhip
behaviour for slow moving integer demand. We forecast this integer demand in two ways; with
a conditional mean and a conditional median. We investigate the impact of the two forecasting
methods on the bullwhip effect and inventory variance generated by the OUT replenishment policy.
While the conditional mean forecasts result in the tightest inventory control, they result in real
valued orders and inventory levels which is incoherent with the integer demand. However, the
conditional median forecasts are integer-valued and produce coherent integer order and inventory
levels. The conditional median forecasts minimise the expected absolute forecasting error, but it is
not possible to obtain closed forms for the variances. Numerical experiments reveal existing results
remain valid with high volume correlated demand. However, for low volume demand, the impact
of the integer demand on the bullwhip effect is often significant. Conditional median bullwhip can
be both lower and higher than the conditional mean bullwhip; indeed it can even be higher than
a known conditional mean upper bound (that is valid for all lead times under real-valued, first-
order auto-regressive, AR(1), demand), depending on the auto-regressive parameter. Numerical
experiments confirm the conditional mean inventory variance is a lower bound for the conditional
median inventory variance.

Keywords: Integer auto-regressive demand processes, Intermittent demand, Bullwhip effect,
Conditional mean forecasts, Conditional median forecasts, Poisson distribution.

1. Introduction

The bullwhip effect refers to the tendency for supply chain replenishment decisions to amplify
the variability of the demand when releasing production orders onto the factory shop floor or plac-
ing replenishment orders onto suppliers (Lee et al., 2000). A rich literature has been developed in
the last 25 years on the bullwhip effect since the seminal work of Lee et al. (1997). Many of the
existing studies on the bullwhip effect (Chen et al., 2000a; Dejonckheere et al., 2003) have assumed
that real-valued demand exists. That is, demand can take on any number, even fractional values.
For some products sold by volume or weight (for example, powders, granules, or liquids) this may
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Figure 1: Low volume, occasionally zero, integer demand for two products from a single store of a UK grocery retailer

be appropriate. However, for other products, only integer (or batch) demand makes sense. For ex-
ample, you can’t buy half a bicycle or half a laptop. In these situations, demand and replenishment
orders must be integers. For some situations, with high volume demand, replenishment calcula-
tions can ignore integer effects as rounding becomes negligible. However, low volume demand
settings may be more susceptible to integer effects. Consider, for example, the daily demand for
a single product in a single grocery store in Figure 1. These products have low volume, integer,
occasionally zero, demands.

Continuous-valued time series can be modeled using auto-regressive integrated moving aver-
age (ARIMA) type processes (Box et al., 2015). First order ARIMA demand processes are popular
assumptions in bullwhip studies due to their mathematical simplicity and their relevance to prac-
tical settings. These demand processes are often forecasted with minimum mean squared error
(MMSE) forecasting methods (Graves, 1999; Chen et al., 2000a,b; Hosoda and Disney, 2006; Duc
et al., 2008). However, standard ARIMA modeling techniques are not suitable for modelling non-
negative integer-valued series (Silva and Oliveira, 2004). Therefore, another family of stationary
models, integer auto-regressive moving average processes (INARMA), have been proposed, Al-
Osh and Alzaid (1988).

Wang and Disney (2016) provide a comprehensive review of bullwhip research categorizing it
into empirical, experimental, and analytical approaches. They note integer demand processes have
not been extensively covered. The bullwhip effect can be measured in different ways, however it
is often convenient to quantify it via the ratio of the variance of orders to the variance of demand.
For normally distributed errors in the demand process, the capacity costs are known to be a linear
function of the standard deviation of the orders. The standard deviation of the orders is closely
related to the bullwhip measure. The other side of the bullwhip problem is the variance of the
inventory levels. In a linear system (where a positive net stock represents inventory holding and
a negative net stock represents unmet demand, or a backlog) and it is often convenient to use the
term net stock amplification (NSAmp) as a moniker for the variance of the net stock divided by the
variance of the demand. NSAmp is an important measure as it is closely related to the the expected,
per period, inventory holding and backlog costs when normally distributed error terms are present
in the demand process when a linear system system exists. Later in this paper we will explore the
economic consequences of Poisson distributed errors and non-normal orders and net stock levels.

Our contribution is to investigate the consequences of integer demand on the performance of
the OUT replenishment policy when two different forecasting approaches are used. The first fore-
casting method is based on the–frequently assumed–conditional mean of future demand (Wang
and Disney, 2016). While, this forecasting method creates a MMSE forecast of future demands,
it results in non-integer, forecasts, orders, and inventory levels. This is in tension with the integer
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demand assumption. The second forecasting method is based on the conditional median forecast
which produces–conceptually consistent–integer forecasts, orders, and inventory levels. We find
the conditional mean forecasts for INAR(1) demand results in exactly the same variance ratios as
the conditional mean forecasts under real-valued AR(1) demand. The conditional median forecasts
produce different order and inventory dynamics. Numerical experiments show existing results for
real-valued demand can be used with confidence when we have high volume demand integer de-
mand. However, under low volume, possibly intermittent, integer demand there can be a significant
difference between the real- and integer-valued Bullwhip and NSAmp predictions.

The structure of the paper is as follows. §2 provides background information on the INAR(1)
process and the OUT replenishment policy. §3 is devoted to creating conditional mean forecasts;
§4 to creating conditional median forecasts. §5 characterises the Bullwhip and NSAmp performance
of the OUT policy with the two different forecasts. Integer, independent and identically distributed
(i.i.d.) demands are considered in more detail in §6. §7 concludes and highlights future research.

2. Model development

In this section, we first present the INAR(1) demand process and the OUT policy.

2.1. The INAR(1) demand process
We assume the demand follows a first-order integer auto-regressive process, INAR(1), where

demand d in period t is given by:

dt = φ ◦dt−1 + zt , (1)

Here, dt is the demand in period t, 0 ≤ φ ≤ 1 is the auto-regressive parameter, and zt is a sequence
of i.i.d. non-negative integer-valued Poisson distributed random variables, with mean λ and finite
variance λ (Silva et al., 2009). The atomic expression φ ◦dt−1 is the binomial thinning operation,

φ ◦dt−1 =
dt−1

∑
i=1

Xi. (2)

Here, Xi is a sequence of i.i.d. Bernoulli indicators with parameter φ (i.e. with P(Xi = 1) = φ for
i = {1,2, ...,dt−1}). A natural interpretation of (1) is that dt is the total number of guests in a hotel
at time t, zt is the number of new guests that arrived today, and φ ◦ dt−1 is the number of guests
that remained in the hotel from the day before (Ristić and Nastić, 2012). Silva and Oliveira (2004)
provide a number of useful relations and properties of the INAR(1) model. Notably, the relations

E[φ ◦dt ] = φE[dt ], (3)

E[φ ◦dt ]
2 = φ

2E[d2
t ]+φ(1−φ)E[dt ], and (4)

V[φ ◦dt ] = E[φ ◦dt ]
2 − (E[φ ◦dt ])

2 = φV[dt ], (5)

are useful. Here, E[·] is the expectation operator and V[·] is the variance operator.

Lemma 1. The INAR(1) demand process has mean, µd , and an auto-covariance with lag j, γ j, of

µd =
λ

1−φ
and γ j =

{
λ

1−φ
, j = 0,

φ jγ0, j ≥ 1.
(6)

Proof. The proof is provided in Appendix A. □
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Figure 2: Probability mass function of the demand for different φ when λ = 1.

The auto-covariance function at lag j = 0 gives the demand variance. Silva et al. (2009) show the
INAR(1) demand has a Poisson distribution with a shape parameter of λd = λ/(1−φ):

P[d = k] =
λ k

d e−λd

k!
. (7)

Figure 2 illustrates the probability mass function (pmf) of the demand for different φ and λ . The
probability of a zero demand is increased with a small φ and small λ , demonstrating the power
of the INAR(1) demand model for modelling low volume, intermittent, integer demand processes.
Figure 3 illustrates example INAR(1) time series with different φ and λ in the right column of
panels. When φ and λ are small the time series is intermittent; increasing φ (or λ , see (6)) increases
the average demand. The left column of panels of Figure 3 provides an exact pmf (from (7)) of the
corresponding time series. The probability of zero demand, e−λ/(1−φ) → 1 when {φ ,λ}→ 0.

2.2. The order-up-to replenishment policy
At the end of period t, the retailer uses the OUT policy to order qt items from the manufacturer;

qt = st − st−1 +dt . (8)

The order-up-to level, st , in time period t is determined by

st = d̂t,L +SS, (9)

where d̂t,L = ∑
L
i=1 d̂t+i is the forecast of the demand over the lead-time L, SS is a safety stock used

to achieve a given target level of inventory availability. The usually assumed, per period inventory
holding and backlog costs

Ci,t = h[it ]++b[−it ]+, (10)
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Figure 3: Demand distributions and example time series: Increasing φ produces demand processes with trends and
higher means. Note: the pmf is produced is calculated from (7). The random seed is identical for all time series.

lead to SS = F−1
i [b/(b+ h)] via a standard newsvendor analysis, Boute et al. (2022). Note, here

F−1
i [x] is the inverse of the inventory distribution evaluated at x, h is the per unit, per period in-

ventory holding cost and b is the per unit, per period inventory backlog cost. As the inventory
distribution is stationary, SS has no influence on the order and inventory variances.

The inventory balance equation is given by

it = it−1 +qt−L −dt (11)

where it is the inventory level at time t, qt−L are the replenishment orders placed in period t −L,
and L ≥ 1 is the integer lead-time that includes a sequence of event delay. Note, an order with zero
lead time is not deemed to have been received until the next order quantity is determined. Eq. (11)
implies the following sequence of events is present: 1) Orders placed in period t −L are received at
the start of the period t. 2) Throughout period t, demand is observed and satisfied from inventory.
3) The order-up-to level, st , is updated and 4) orders are placed at the end of the period.

The inventory variance calculation requires the determination of: the variance of demand over
the lead time, the variance of forecast, and the co-variance between demand and its forecast over
the lead time. In the following sections we develop these expressions which depends upon the
forecasting method present. We will consider two forecasting methods:

• Real-valued conditional mean forecasts, denoted d̄, that originate from an MMSE forecast.

• Integer valued conditional median forecasts, denoted d̃, that minimise the expected absolute
forecast error.

In the next section, we define and explore these two forecasting approaches under INAR(1) demand.

3. Forecasting demand over the lead time with the conditional mean

Here we assume the demand forecast minimizes the mean square forecast error over the lead-
time and review period, conditional upon dt . That is, d̂t+k = d̄t+k = E[dt+k|dt ].

5
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Lemma 2. Under INAR(1) demand, the conditional mean forecast of demand over the lead time is

d̄t,L =
φ(1−φ L)

1−φ
dt +

Lλ (1+L)
2

. (12)

Proof. We start by deriving an exact expression of demand k periods ahead, dt+k. We note

dt+k = φ ◦dt+k−1 + zt+k and (13)
dt+k−1 = φ ◦dt+k−2 + zt+k−1. (14)

Substituting (14) into (13) recursively (for dt+k−2,dt+k−3, . . . ), and collecting φ terms (3) yields,

dt+k = φ
k ◦dt + zt+1 + zt+2 + ...+ zt+k. (15)

Replacing the future values of zt+i in (15) with their expectation, E[zt+i] = λ , yields,

d̄t+k = E[φ k ◦dt + zt+1 + zt+2 + ...+ zt+k|dt ] = φ
kdt + kλ . (16)

Summing ∑
L
k=1
(
φ kdt + kλ

)
provides (12), the stated relation for d̄t,L. □

Note d̄t,L ∈R is increasing in dt . The first term is increasing in L as 0 ≤ φ ≤ 1, and independent
of λ . The second term simplifies out in subsequent analysis.

3.1. Consequences forecasting INAR(1) demand with the conditional mean
Under i.i.d. integer demand, the demand forecasts based on the conditional mean are constant

over time, d̄t,L = d̄t−1,L = Lµd = Lλ , and from (8), orders equal demand, qt = dt . Furthermore,
as the variance of the demand is λ when φ = 0, V[qt ] = λ and V[it ] = Lλ . As both the demand
and the orders are integer processes, so are the inventory levels. However, for correlated INAR(1)
demand, the forecast is dynamic (d̄t,L ̸= d̄t−1,L) and is also real valued (d̄t,L ∈ R). This means real
valued orders and inventory levels are present under correlated demand. These non-integer orders
and inventory are incoherent with the integer demand assumption. Hence, we now seek integer
forecasts via conditional median forecasts which lead to integer orders and inventory levels.

4. Forecasting INAR(1) demand over the lead time with the conditional median

Let d̃t+k|t be an integer forecast of the demand k periods ahead, conditional upon dt . The median
of the pmf provides coherent integer forecasts which Freeland and McCabe (2004) claim minimises
the expected absolute error conditional upon dt , E[|dt+k − d̃t+k||dt ]. The median k periods ahead
forecast, d̃t+k = X , where X is the smallest X such that

X

∑
x=0

P[d̃t+k = x|dt ]> 1/2. (17)

Lemma 3. The pmf of d̃t+k = x, given dt is

P[d̃t+k = x|dt ] =

(
dt

Mk

)
e

2λ(φk−1)
1−φ

(
φ

k
)Mk

Γ(dt +1−Mk)
(

1−φ
k
)dt−Mk

(
λ
(
φ k −1

)
φ −1

)x−Mk

× 2F̃2

[
1,−Mk;dt +1−Mk,x+1−Mk;

φ−k (φ k −1
)2

λ

φ −1

]
, (18)
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where, x = 0,1, ... is a non-negative integer, Γ(·) is the Gamma function, Mk = (d̃t+k ∧ dt) is the
minimum of d̃t+k and dt , and 2F̃2[a1,a2;b1,b2;z] is the regularized generalized hypergeometric
function, Mathworld (2021).
Proof. Freeland and McCabe (2004) and Silva et al. (2009) provide the following expression for
the pmf of d̃t+k, given dt:

P[d̃t+k = x|dt ] = e
λ(1−φk)

φ−1

Mk

∑
i=0

1
(x− i)!

(
dt

i

)(
φ

k
)i(

1−φ
k
)dt−i

(
λ
(
1−φ k)
1−φ

)x−i

. (19)

Algebra allows one to close the sum, producing (18). □

Further analytical work cannot be done with this forecasting technique; however (17) and (18) can
be easily implemented and studied numerically in software such as Excel, Mathematica, and R.

4.1. Forecasting i.i.d. integer demand with the conditional median
An i.i.d. integer demand can be modelled within the INAR(1) framework by setting φ = 0.

However, the pmf of d̃t+k when φ = 0 given by (18), is indeterminate and another approach to
determine the median forecasts must be taken. When φ = 0, the INAR(1) demand degenerates into
an i.i.d. random variable drawn from a Poisson distribution with mean and variance λ those pmf is

P[dt = x] =
λ xe−λ

x!
. (20)

Substituting (20) into (17) produces an implicit expression for the median forecast of the Poisson
demand; the median forecasts concur with the smallest X that ensures

X

∑
x=0

λ xe−λ

x!
=

Γ[1+X ,λ ]

Γ[1+X ]
> 1/2. (21)

Here Γ[·, ·] is the incomplete Gamma function. Note, when λ is a positive integer, the median of
the Poisson demand is equal to its mean λ . When λ is not an integer, (21) implies d̃t+k = ⌈λ⌉
or d̃t+k = ⌊λ⌋ depending on the value of λ . Notice, there are no time dependent variables in
(21); the median forecast and st remains constant over time. The consequences of this ensure the
orders always equal the demand under i.i.d. Poisson demand (that is, qt = dt). This is exactly
how the order-up-to policy responds to real valued demand patterns. Further note, V[qt ] = λ and
V[it ] = Lλ , concurring with the order and inventory variances of the conditional mean forecasted
OUT policy.

5. Analysis of the OUT variances with INAR(1) demand

In this section we compare how the OUT policy responds to the INAR(1) demand with the two
different forecasting methods. The analysis will focus on the Bullwhip and NSAmp ratios as they
are often used to assess dynamic supply chain performance, Wang and Disney (2016):

Bullwhip = V[qt ]/V[dt ] and NSAmp = V[it ]/V[dt ]. (22)

When Bullwhip > 1 we say there is a bullwhip effect present. The demand variance was given in
(6). In §5.1 we determine the order and inventory variance when the conditional mean is used to
forecast demand in order to investigate the Bullwhip and NSAmp measures. §5.2 does the same for
the OUT policy with conditional median forecasting.
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5.1. Order and inventory variance with conditional mean forecasting
Vassian (1955) shows V[it ] is given by the variance of forecast error over lead time:

V[it ] = V
[
dt,L − d̂t,L|dt

]
= V[dt,L]+V[d̂t,L|dt ]−2cov[dt,L, d̂t,L|dt ]. (23)

We need three components: the variance of the demand over the lead time V[dt,L], the variance
of the forecast of the demand over the lead time V[d̂t,L], and the co-variance between the demand
over the lead-time and the forecast of the demand over the lead time cov[dt,L, d̂t,L|dt ]. These are
provided in the following three Lemmas.

Lemma 4 (The variance of demand over lead time L). The variance of the lead-time demand is

V [dt,L] = Lγ0 +2
L−1

∑
j=1

j

∑
i=1

γ0φ
i =

λ
((

φ 2 −1
)

L−2φ
(
φ L −1

))
(φ −1)3 . (24)

Proof. The lead time demand is given by

dt,L =
L

∑
i=1

dt+i = dt+1 +dt+2 + ...+dt+L. (25)

The variance of demand over the lead time is calculated from

V [dt,L] = V [dt+1 +dt+2 + ...+dt+L] =
L

∑
i=1

(V [dt+i]+2cov[dt+1,dt+2]+ ...+2cov[dt+1,dt+L]

+2cov[dt+2,dt+3]+ ...+2cov[dt+2,dt+L)+ ...+2cov[dt+L−1,dt+L]). (26)

Using (6) in (26) yields the variance of the demand over the lead time,

V [dt,L] = Lγ0 +2(γ1 + γ2 + ...γL−1)+2(γ1 + γ2 + ...γL−2)+ ...+2γ1 (27)

Using (6) and the telescoping method, the nested sum in (27) becomes the stated relation (24). □

Lemma 5 (Variance of the forecast over the lead time). First, note the forecast d̂t,L = d̄t,L with
conditional mean forecasting. From (6) and (12), the variance of the forecast over the lead time is

V
[
d̂t,L|dt

]
= V

[
dt

φ(1−φ L)

1−φ
+

Lλ (1+L)
2

]
= V

[
dt

φ(1−φ L)

1−φ

]
=

λ

1−φ

(
φ(1−φ L)

1−φ

)2

. □

(28)

Eq. (28) is increasing in L as 0 ≤ φ ≤ 1.

Lemma 6 (Covariance of the demand and its forecast over L). The covariance of demand over
lead time and its forecast is calculated as,

cov
[
dt,L, d̂t,L|dt

]
= cov

[
dt+1 +dt+2 + ...+dt+L, d̂t,L|dt

]
. (29)
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By substituting (12) into (29), using (6) and the additive law of covariance (the covariance of a
random variable with a sum of random variables is the sum of the covariances with each of the
random variables) we have:

cov
[
dt,L, d̂t,L|dt

]
= cov

[
dt+1 + ...+dt+L,dt

φ(1−φ L)

1−φ
+

Lλ (1+L)
2

]
=

φ(1−φ L)

1−φ
(γ1 + γ2 + ...+ γL) = γ0

(
φ
(
1−φ L)
1−φ

)2

. □ (30)

Finally, we can now provide the inventory variance expression in Proposition 1:

Proposition 1 (Variance of the inventory levels). The inventory variance is given by

V[it ] =
λ

1−φ

(
L+2φ

(
φ L +L(1−φ)−1

(φ −1)2

)
−
(

φ(1−φ L)

1−φ

)2
)
. (31)

Proof. Eq. (23) highlighted the variance of the inventory levels is given by the variance of the
forecast error over the lead time. Substituting (6), (24), (28), and (30) into (23) yields (31). □

The NSAmp measure, plotted in Figure 4, for the OUT policy under INAR(1) demand is the
same as the NSAmp measure under AR(1) demand, Disney and Lambrecht (2008). Notice, as
φ → 1, the demand variance V[dt ] → ∞. Together with a finite inventory variance, this means
NSAmp → 0 as φ → 1. Further NSAmp → L as φ → 0.

Proposition 2 (Variance of the orders). The variance of the replenishment orders is given by

V [qt ] =
λ

1−φ

(
1+2φ

(
1−φ

L)(1+
φ
(
1−φ L)
1−φ

))
. (32)

Proof. First note, substituting st and st−1 from (9) into (8) yields

qt = d̂t,L − d̂t−1,L +dt . (33)

Using d̂t,L and d̂t−1,L from (12) in (33) and collecting together like terms we obtain:

qt =
Lλ

1−φ
+φ

(
dt −

λ

1−φ

)(
1−φ L

1−φ

)
− Lλ

1−φ
−φ

(
dt−1 −

λ

1−φ

)(
1−φ L

1−φ

)
+dt

=(dt −dt−1)φ

(
1−φ L

1−φ

)
+dt . (34)

The variance of order quantity is calculated as follows:

V [qt ] =V
[

φdt(1−φ L)

1−φ
− φdt−1(1−φ L)

1−φ
+dt

]
=V

[
φdt(1−φ L)

1−φ

]
+V

[
φdt−1(1−φ L)

1−φ

]
+V [dt ]+2cov

[
φdt(1−φ L)

1−φ
,dt

]
−2cov

[
φdt(1−φ L)

1−φ
,
φdt−1(1−φ L)

1−φ

]
−2cov

[
φdt−1(1−φ L)

1−φ
,dt

]
. (35)

As V[dt−k] = γ0 and ∀k ≥ 1, cov[dt ,dt−k] = γk, (35) reduces to (32). □
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Figure 4: The NSAmp maintained by the OUT policy under INAR(1) demand with conditional mean and conditional
median forecasting.

By substituting (6) and (32) into (33) we obtain the following expression for the bullwhip effect,

Bullwhip = 1+2φ
(
1−φ

L)(1+
φ(1−φ L)

1−φ

)
. (36)

Eq. (36) is interesting. First the Poisson distribution, λ , has no influence on the bullwhip effect.
Second, (36) has the same structural form as the Bullwhip generated by the OUT policy with MMSE
forecasting under AR(1) demand, Disney and Lambrecht (2008). This should not be a surprise; the
autocorrelation function (ACF) of the demand process ACF=φ k, given in (6), has exactly the same
form as the ACF for the real valued AR(1) process. Furthermore, as 0 ≤ φ ≤ 1, (36) is increasing
in L and always Bullwhip > 1 indicating bullwhip always exists under an INAR(1) demand process
with conditional mean forecasts, regardless of φ and L.

Figure 5 illustrates the impact of the demand process parameter and lead time on the bullwhip
effect confirming it is always present and increases in the lead time L. Luong (2007) provides an
upper bound for the bullwhip effect, valid for all lead times and real-valued demand and forecasts,
given by (1+φ)/(1−φ) that is also relevant here. This upper bound is also plotted in Figure 5.

5.2. Order and inventory variance with conditional median forecasting
As no further analytical work on the conditional median forecasts is possible, we resort to

a numerical investigation of the orders and inventory variance. We built a simulation in the R
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Figure 5: The bullwhip effect in the OUT policy under INAR(1) demand.

software that ran on a HAWK High-Performance Computing Cluster. To generate the demands
in each period t, we first generated randomly Poisson distributed error terms, zt and constructed
demand series using (1). Then, k period ahead conditional median forecasts were generated using
(17); these were summed to create integer forecasts of demand over the lead time. Following that,
inventory balance and orders are calculated using (11) and (8), respectively. Finally, the Bullwhip
and NSAmp ratios are calculated using (22). The parameter values used in the simulation are
0 < λ = [1,9] < 1 and 0 < φ < 1 in steps of 0.01. For all combinations of λ and φ , a time series
of one million observations is generated. We have plotted the results of this exercise in Figure (4)
(for the NSAmp ratio) and Figure (5) (for the Bullwhip ratio).

Figure 4 revealed the NSAmp expressions under conditional mean forecasting is a good predic-
tor of the NSAmp measure when conditional median forecasting is present, especially with high
volume integer demand (i.e. when λ >> 1). As the conditional mean forecast minimises the mean
squared error forecasts over the lead-time and review period, the conditional mean NSAmp repre-
sents a lower bound of conditional median NSAmp; lower demand volumes (small λ and φ near
0.5) increase the conditional median NSAmp.

The conditional median Bullwhip curves in Figure 5 were somewhat more complex. When φ

is near zero, the Bullwhip curves remain unchanged from the i.i.d. case, close to unity, probably as
a result of the forecast remaining unchanged from the i.i.d. case. In the region φ ≈ 0.1 to φ ≈ 0.8
there is a period of seemingly erratic Bullwhip which may be either above or below the conditional
mean Bullwhip curve; it may also be above the AR(1) bullwhip upper bound, Luong (2007). When
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φ is close to unity, above φ ≈ 0.8, the conditional median Bullwhip curves closely resembles the
conditional mean Bullwhip curve. We do not know whether a conditional median ever produces
Bullwhip < 1.

6. Economic performance of the OUT policy under i.i.d. integer demands

When φ = 0, we have i.i.d. Poisson distributed demands, the demand forecasts are a constant
and it is easy to verify the inventory pmf is a simple reflection and translation of the pmf of the sum
of demand over the lead-time:

P[it = x] =
(Lλ )Lλ+ī−xe−Lλ

(Lλ + ī− x)!
. (37)

We can determine the mean and variance of the inventory levels directly from the mean and variance
of the sum of L Poisson distributed random variables:

E[it ] =
Lλ+ī

∑
x=−∞

(Lλ )Lλ+ī−xe−Lλ

(Lλ + ī− x)!
= ī, and V[it ] =

Lλ+ī

∑
x=−∞

(Lλ )Lλ+ī−xe−Lλ

(Lλ + ī− x)!
(x−E[it ])2 = Lλ . (38)

The expected per period inventory holding and backlog costs (see (10)) can be then obtained from
(37) as follows:

E[Ci
t ] =

0

∑
x=−∞

b(−x)
(

eLλ (Lλ )ī+Lλ−x
)

(ī+Lλ − x)!
+

Lλ+ī−1

∑
x=1

hx
(

e−Lλ (Lλ )ī+Lλ−x
)

(ī+Lλ − x)!
+he−Lλ (īr+Lλ )

=
(b+h)e−Lλ

(
(Lλ )ī+Lλ+1 + īeLλ Γ[ī+Lλ +1,Lλ ]

)
Γ[ī+Lλ +1]

−bī (39)

Using (39) it is easy to conduct a search on the integers for the optimal i⋆, the ī that minimises
(39). Conceptually, i⋆ is the safety stock that minimises the expected per period inventory costs as
for most reasonable cost settings will imply 0 ≤ i⋆ ≤ Lλ . This search is facilitated by the fact that
the backlog costs are non-increasing in ī and the holding costs are non-decreasing in ī. This means
there is only one minimum (or two consecutive minimums) in the inventory costs. The search
results for i⋆ are shown in Figure 6 (left panel) for integer L and integer λ . The safety safety stock
i⋆ appears to be symmetrical about L = λ and increasing in both λ and L.

In a like manner, due to the constant forecasts under i.i.d. INAR(1) demand, (8) shows that the
order pmf is simply equal to the demand pmf and and Bullwhip = 1. The per period production
cost Cq

t , with a nominal hours unit cost of u within a nominal capacity of K and flexible per unit
overtime cost of um, where m is the overtime multiplier, (Boute et al. (2022)):

Cq
t = uK +um[qt −K]+. (40)

Using (20), the expected per period capacity costs are given by

E[Cq
t ] = uK +

∞

∑
x=k

mu(x−K)e−λ λ x

x!
(41)

= u

e−λ λm
(

λ k − eλ Γ[k+1,λ ]
)

Γ[k+1]
+

mΓ[k+1,λ ]
Γ[k]

+K +m(λ −K)

 (42)
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Figure 6: Optimal OUT policy settings. Panel a) The safety stock, i⋆, required to minimise the inventory costs when
h = 1,b = 9 for different demand λ and lead times L. Panel b) The optimal capacity, K⋆, required to minimise the
capacity costs costs when u = 4 for different demand λ and over-time multiplier m.

Notice, in (41), the first addend uK is increasing in K, and the second addend, the sum, is decreasing
in K. Thus, there is a unique K (or at most two consecutive Ks) that minimise the expected capacity
costs. Consequently, (41) can also be minimised effectively via a line search on the integers for K.
Doing so, yields Figure 6 (right panel) which shows the K⋆, the K that minimises (41). K⋆, is both
increasing in λ and m.

7. Conclusions

We have examined the Bullwhip and NSAmp behavior of the OUT policy under an integer-
valued INAR(1) demand series with two different forecasts methodologies; one based on the con-
ditional mean, the other forecast on the conditional median. The variance ratios were derived for
conditional mean forecasts under integer demand and found to be the same as for the correspond-
ing real-valued demand. This should be expected as the results for the real demand variance are
distribution free. The Poisson distribution parameter λ had no impact on the variance ratios under
INAR(1) demand. However, the real order and inventory levels produced are incoherent with the
integer demand. The bullwhip effect always exists regardless of the auto-regressive parameter and
the lead time. There exists a lower bound, Bullwhip > 1, and an upper bound which is a function of
the auto-regressive parameter, φ . For a given value of φ , the upper bound represents the maximum
value of the bullwhip effect regardless of the lead time L. The upper bound is tight when φ is small.

When conditional median forecasts are used, bullwhip is somewhat more erratic and can de-
viate (positively and negatively) significantly from both the conditional mean bullwhip and the
upper bound. The Bullwhip and NSAmp expressions can be used with confidence in high volume
settings. However, low values of φ and λ lead to intermittent demand series that contain a high
proportion of zeros and to time series where the integer effects become more significant. Bullwhip
seems to always exists for INAR(1) demand; the inventory variance (and the NSAmp measure) for
conditional mean forecasts is a lower bound for the inventory variance under conditional median
forecasts. When the demand is i.i.d., a constant forecast is produced by both forecasting methods
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that meant qt = dt . For this case we were able to extend our variance ratio analysis to include an
economic study of the system that included a search for the target safety stock to minimised the
expected inventory holding and backlog costs and the target capacity level to minimise the regular
labour and overtime costs.
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Appendix A. Auto-covariance function of the demand

We can show that the mean of dt is given by,

E [dt ] = E [φ ◦dt−1 + zt ] = E [φ ◦dt−1]+E [zt ] = φE [dt−1]+λ . (A.1)

INAR(1) processes are stationary, E[dt ] = E[dt−1] and (A.1) reduces to E [dt ] = λ/(1−φ). As the
variance of a sum is the the sum of the variances of the addends and twice the covariance between
the addends, the variance of demand at period t is

V [dt ] = V [φ ◦dt−1 + zt) = V [φ ◦dt−1]+V [zt ]+2cov [dt−1,zt ] . (A.2)

Algebra then leads to

V [dt ] = V [φ ◦dt−1]+λ (As cov [dt−1,zt ] = 0)
= φV [dt−1]+λ (V[φ ◦dt−1] = φV[dt−1])
= φV [dt ]+λ (As demand is stationary, V [dt−1] = V [dt ])
= λ/(1−φ). (After collecting together terms)

By recursive substitutions of dt−k for k ≥ 1, (1) can be written as

dt = φ
k ◦dt−k +

k−1

∑
j=0

φ
jzt− j. (A.3)

The auto-covariance of lag k ≥ 1 can then be calculated as

γk = cov [dt ,dt−k] = cov

[
φ

k ◦dt−k +
k−1

∑
j=0

φ
j ◦ zt− j,dt−k

]

= φ
kcov [dt−k,dt−k]+ cov

[
k−1

∑
j=0

φ
j ◦ zt− j,dt−k

]
. (A.4)

As the correlation between dt−k and zt− j for all j ≤ k − 1 is equal to zero, the covariance term

cov
[
dt−k,∑

k−1
j=0 φ j ◦ zt− j

]
= 0. The auto-covariance function of lag k ≥ 1 for INAR(1) demand is

γk = φ
kcov [dt−k,dt−k] = φ

k
γ0. (A.5)
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