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Abstract
Grid-connected microgrids comprising renewable energy, energy storage systems and local load, play a vital role in decreas-
ing the energy consumption of fossil diesel and greenhouse gas emissions. A distribution power network connecting several
microgrids can promotemore potent and reliable operations to enhance the security and privacy of the power system. However,
the operation control for a multi-microgrid system is a big challenge. To design a multi-microgrid power system, an intelli-
gent multi-microgrids energy management method is proposed based on the preference-based multi-objective reinforcement
learning (PMORL) techniques. The power systemmodel can be divided into three layers: the consumer layer, the independent
system operator layer, and the power grid layer. Each layer intends to maximize its benefit. The PMORL is proposed to lead
to a Pareto optimal set for each object to achieve these objectives. A non-dominated solution is decided to execute a balanced
plan not to favor any particular participant. The preference-based results show that the proposed method can effectively
learn different preferences. The simulation outcomes confirm the performance of the PMORL and verify the viability of the
proposed method.

Keywords Multi-microgrid · Preference model · Multi-objective reinforcement learning · Independent system operator ·
Market operator · Pareto optimal

List of symbols
α Constant coefficient
β Constant coefficient
�sn Maximum charging/discharging power change

rate
γ Constant coefficient
λ(t) Electricity tariff
sn Maximum storage capacity of the battery
sn Minimum storage capacity of the battery
a Action
ag Constant coefficient of generator
bg Constant coefficient of generator
cg Constant coefficient of generator
Cm Normalization factor

B Ke Li
K.Li@exeter.ac.uk

Jiangjiao Xu
J.Xu@exeter.ac.uk

Mohammad Abusara
M.Abusara@exeter.ac.uk

1 College of Engineering, Mathematics and Physical Sciences,
Exeter University, Exeter, UK

Cpg (t) Generator cost functions
Fa Constraints function
fc(·) Cost function
Fg Main grid interest function
Fs Emergency power function
fu(·) Utility function
Fw Overall welfare function
Fmo Vector-valued MOP function with constraints
h(·) Positive/negative value in percentage at various

tariff
lbn (t) Value of the baseload
m Objective index
n Microgrid index
pg(t) Total power flow between microgrids and main

grid
pdn (t) Load demand
pgn (t) Power flow between main grid and microgrid
prn (t) Renewable energy generation
Q(·) Q value
rm(·) Reward function for each objective
rm, pre(·) Preference reward function
s State
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sn(t) State of charge of the battery
SoC State of charge
SQ(·) Scalar Q value
t Time index
ToD Time of day
rm,nor(·) Normal reward function

1 Introduction

The average annual domestic standard electricity bills by
households and non-home suppliers have been increased
£707 in 2020, based on an annual consumption of 3600 kWh
[1]. The non-hydro renewable energy source (RES) such as
solar, wind, tidal and geothermal energy continue to enter
the electricity market substantially. The percentage of RES
increased from 10.3% in 2008 to 18% in 2018 in the EU [2].
It is well known that wholesale price fluctuation is the essen-
tial feature of deregulation in the electricity market. Energy
buyers who are sensitive to electricity price may change their
consumption habits according to dynamic price signals [3].
This means that dynamic energy tariffs can decrease energy
demand during peak load periods and increase valley loads.
While the use of RES and energy storage can significantly
reduce the use of fossil fuels, thereby reducing power gener-
ation costs and greenhouse gas emissions.

In the dynamic tariff design, extensive research on
demand-side management is carried out. A demand response
method based on dynamic energy pricing is proposed in
[4], which realizes the optimal load control of equipment
by building a virtual power trading process. A smart grid
decision-making model considering demand response and
market energy pricing is proposed to interact betweenmarket
retail price and energy consumers [5]. In [6], a coopera-
tive operation procedure of the electricity and gas integrated
energy system in a multi-energy system is proposed to
develop the system performance and optimize the power
flow. However, the above demand side management (DSM)
research only optimizes energy prices from the perspective
of operation, and does not recognize the impact of electric-
ity market price changes and consumer demand fluctuation.
In addition, most of the current papers only study single-
objective optimization problems, such as modelling demand
figure [7], maximizing customer utility [8] and reducing total
cost [9]. When planning a multi-microgrid system, there will
be a coupling interaction among power grid, independent
system operator (ISO) and microgrids. These participants
usually have some conflicts in the planning process. The
impact of the dynamic tariff on a multi-microgrid system
with a multi-objective problem has not been fully investi-
gated.

For a comprehensive design and coordination of all par-
ticipants, we consider designing a multi-microgrid system,

including three microgrids, one independent system operator
(ISO), and one main power grid [10]. In general, micro-
grids are disconnected from each other with no exchange
of renewable energy power. In this multi-microgrid system,
a dynamic tariff scheme is implemented to evaluate the sys-
tem performance of all participants. It is necessary to use a
multi-objective optimal method to balance the requirement
of all participants without biasing towards any single one. In
[11], a multi-objective genetic algorithm (MOGA), which
adapts some changes to the physical features of the load
dispatch problem, is utilized to address a multi-objective
problem to optimize the time distribution of domestic loads
within the 36-h time-period in a smart grid scenario. An
energy optimization method, based on multi-objective wind-
driven optimizationmethod andmulti-objective genetic algo-
rithm, is employed to optimize operation cost and pollution
emission with/without the involvement in hybrid demand
response programs and incline block tariff [12]. However, the
genetic algorithm needs many iterations to obtain good con-
vergence results, the reinforcement learning can train policies
in advance and obtain the optimal solution faster based on
the trained policies [13].

Multi-objective reinforcement learning (MORL) is an
excellent algorithm that can solve multi-objective problems
of complicated strategic intercommunications. Reinforce-
ment learning algorithms learn policieswhen interactingwith
the environment, while evolutionary algorithms do not do.
In many cases, reinforcement learning algorithms can use
the interactive details of individual behaviours to be more
effective than evolutionary algorithms. Although evolution
and reinforcement learning algorithms share many features
and naturally work together, they can autonomously learn
with experience and adaptively reuse data pulled from rele-
vant problems as prior knowledge in new tasks. However,
evolutionary algorithms ignore most of the advantageous
structure of reinforcement learning problems. Such infor-
mation should enable algorithms to achieve more effective
searches [14]. In [15], the reinforcement learning environ-
ment is usually formalized by adopting the Markov Decision
Process (MDP). A Q-learning algorithm is introduced to
iteratively approximate the best Q value [16]. In a multi-
objective optimization problem, the objectives contain two or
more dimensions, and the conventionalMDPwill be general-
ized to multi-objective MDPs. The common straightforward
approach is to transform the multi-objective problem into
a standard single-objective problem using a scalar function
[17]. Most MORL methods rely on a single-policy strategy
to learn the Pareto optimal solution [15,18,19].

However, this transformationmay not be suitable for solv-
ing the nonlinear problem in the non-convex domain at the
Pareto front. In addition, when multi-objective problems are
investigated, MORLmethods based on the Pareto-optimality
criterion may not accomplish a meaningful search. Incorpo-
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rating preferences to the MORL optimization enhances the
specificity of the selection and facilitates better decisions
that consider all participants. Accordingly, the solutions will
focus on preferred alternative areas, and it is unnecessary to
generate the entire Pareto optimal set with equal accuracy.
This article developed a preference-based MORL algorithm
(PMORL) to achieve high-quality solutions with nonlinear
multi-objective functions. The proposed PMORL adopts the
L p metric to design a balanced multi-microgrid system plan
in terms of the approximate Pareto front (APF). To the best of
our knowledge, it is the first time for PMORL to be employed
in a multi-objective optimization scenario. The system plan-
ner implements the Pareto front to examine the connection
and importance among different objective functions, which
can provide the system planner with an option that is fair to
all participants. The main three contributions of this article
are as follows:

(1) This paper combines real-time dynamic energy tariff for
actual planning scenarios, considering the impact of real-
time fluctuation in energy tariff and renewable energy on
the design of a multi-microgrid system. Three conflict
objectives are proposed for a multi-microgrid system in
this paper:maximizing sales revenue frommain grid sup-
pliers, maximizing the life of energy storage,minimizing
energy consumption costs of consumers.

(2) We have developed a MORL algorithm based on the
L p metric to solve this multi-objective problem that
considers dynamic energy tariff and energy storage oper-
ations (such as charge/discharge/idle). It can provide the
entire Pareto front if enough exploration is given. The
performance of the proposed algorithm is verified by
comparing multi-objective genetic algorithm (MOGA)
and preference-based MOGA (PMOGA).

(3) An extendedMORL algorithm using a preference model
based on the Gaussian process is proposed to design a
self-governing and rational decision-making agent and
control the multi-microgrid system. The preferences of
individuals in the same selection are essential for simu-
lating human decision-making behaviour. The human’s
emotional system is capable of adjusting the perception
and evaluation of cases.

The rest of this article is arranged as follows. Section
2 outlines the main outline of the multi-microgrid system
and explains the mathematical models for the three partici-
pants. The multi-objective problem is presented in Sects. 3, 4
describes the proposed preference-based MORL method in
detail. In Sect. 5, the approximate Pareto front and dynamic
tariff based on the experimental results are given. Finally, the
conclusion is discussed in Sect. 6.

2 Multimicrogrid description

This paper is concerned with the design of a high-level
three-microgrid optimization system. An information and
communication technology (ICT) system is performed to
transfer the information among the three microgrids, includ-
ing the load demand, energy tariff and renewable energy
generation. The mathematical models of the multi-microgrid
system, including the microgrid, the ISO and the main power
grid, will be described in detail in the following subsec-
tions. Let N = 1, 2, . . . , N be the set of microgrids and
Ns = 1, 2, . . . , Ns be the set of microgrids with energy stor-
age system, where Ns ≤ N .

2.1 Microgrid model

Themicrogrid systemmodel shows the power balance among
energy storages (if available), local energy generation, other
microgrids, and main power grid. For microgrid n without an
energy storage system, the mathematical model can be given
as

pdn (t) = pgn (t) + prn (t). (1)

If pgn (t) is positive, the power flows from the grid to the
microgrid n, otherwise, the power flows from the microgrid
n to the grid, i.e., sell the extra electricity to the main power
grid.

For microgrid n with an energy storage system, the power
balance equation is given by

pdn (t) = pgn (t) + prn (t) + sn(t) − sn(t − 1). (2)

subject to ∀ t ∈ T
|sn(t) − sn(t − 1)| ≤ �sn (3a)

sn ≤ sn(t) ≤ sn (3b)

where (3a) represents the constraints of maximum charg-
ing/discharging rating power. 3b) is the constraints of the
maximum capacity of the storage. Note that we do not
consider self-discharge effect of the energy storage system
because the energy loss in a short-term period is too small to
be negligible [20].

Considering the shiftable loads, the load demand term
pdn (t) can also be given as

pdn (t) = fdn (λ(t), lbn (t)) = (1 + hn(λ(t)))lbn (t) (4)
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where lbn (t) is equal to the load demand in (2) without con-
sidering the shiftable loads. h(λ(t)) = a1λ(t)2+a2λ(t)+a3
and pdn (t) = (1+h(λ(t))lbn (t)) is the load demand based on
the baseload, n = 1, 2, . . . , N is the index of microgrid. The
baseload forecasting technology can achieve high-precision
forecasting outcomes because there are almost no fluctua-
tions in practice for the baseload. Therefore, we presuppose
that lbn (t) is a known data in advance.

Different domestic consumers may have different respo
nses to the same tariff. Different tariff plans can be estab-
lished by choosing an objective function of microeconomics
[21]. For each consumer, the objective function means
the consumer’s comfort corresponding to the total power
consumption. Up-to-date investigations show that certain
objective functions can precisely trace the behaviour of
energy consumers [22]. The overall objective function of
multi-microgrid can be demonstrated as [23,24]

max
λ(t)

: Fw = fw(pd1(t), . . . , pdN (t), λ(t))

=
N∑

n=1

( fu(pdn (t), ωn) − fc(λ(t), pdn (t)))
(5)

where

fc(λ(t), pdn (t)) = λ(t) ∗ pdn (t) (6a)

fu(pdn (t), ωn)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ωn + α)pdn (t)

− β

2
pdn (t)

2 + γ pdn (t)
3, i f 0 ≤ pdn (t) ≤ ωn

β
ωn

β
, i f pdn (t) ≥ ωn

β

(6b)

fu(pdn (t), ωn) is corresponding to the marginal benefit
which is concave [22,25]. The different power consumption
pdn (t) responses of a consumerwith amarginal benefit to dif-
ferent electricty prices λ(t). fc(λ(t), pdn (t)) is inflicted by
the electricity provider. For example, a use that consumers
pdn (t) kW electricity during the time period between t and
t + 1 at a rate of λ(t) is charged λ(t) ∗ pdn (t). bn(t) is the
base load. ωn is the parameter that can change between con-
sumers and at different time intervals of the day. α, β and
γ are the pre-determined coefficients to be calibrated [26].
Every consumer tries to adjust the energy usage to maximize
its welfare for each displayed tariff λ(t) at time t . This can
be achieved by placing the derivative of Fw to zero, which
means that the consumer’s marginal revenue will equal the
advertising tariff.

2.2 ISOmodel

The ISO described in this subsection mainly acts as an
emergency power provider to support emergency demand
response plans. In general, the ISOwill store as much energy
as possible to reach a safe level. In order to provide maxi-
mum emergency power and extend battery life, the objective
function can be expressed as:

max
λ(t),pgn (t)

: Fs =
Ns∑

n=1

sn(t). (7)

subject to ∀ t ∈ T
sn ≤ sn(t) ≤ sn .

(8)

2.3 Power grid model

Themain power grid releases energy into themicrogridwhen
renewable energy generation is insufficient. However, when
there is a surplus of renewable energy in the microgrid, it
can also absorb electricity from the microgrid. The objective
problem of the main power grid model can be given as

pg(t) =
N∑

n=1

pgn (t). (9)

The derivation of themaximum interest of themain power
grid based on the power distribution pg(t) can be denoted as

max
λ(t),pgn (t)

: Fg = fg(λ(t), pg(t))

= λ(t)pg(t) − Cpg (t)
(10)

where

Cpg (t) = ag pg(t)
2 + bg pg(t) + cg (11)

where ag > 0 and bg, cg ≥ 0.
Load demand and renewable generation data are based on

that of the Penryn Campus, University of Exeter. The univer-
sity office of general affairs acts as the ISO to buy energy
from the utility company and connect the energy storage
systemand renewable energy sources (RESs) to create a time-
varying electricity tariff. The current electricity tariff of the
campus is fixed. If the energy tariff varies at different times,
students may adjust their electricity consumption habits for
household appliances to reduce energy bills. Students liv-
ing in student apartments will decide when to use various
electrical appliances such as washing machines and dryers
based on dynamic electricity tariffs. In addition, the univer-
sity office can manage the time-varying electricity tariff to
decrease the peak load demand, optimize the energy storage
system operation, and reduce the energy purchase from the
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utility companies. The design of this scenario has very prac-
tical significance for the operation of the smart microgrid,
especially when smart meters are installed in every house-
hold. In 2019, nearly 1 million smart meters were installed
in British households [27]. As of Jun 30 2020, smart and
advanced meters increased to 21 million in homes and small
businesses, of which 17.4 million were in a smart mode [28].

3 Multi-objective problem formulation

In this section, a multi-objective problem (MOP) formula
will be proposed to design andmaximize the benefits of three
objectives for a multi-microgrid system. The following con-
tent will discuss the definition of the Pareto Optimality.

In order to solve the three objectives Fw, Fs and Fg men-
tioned above simultaneously, a MOP formula is rewritten as

max
λ(t)

Fw = fw(pd1(t), . . . , pdN (t), λ(t)) (12a)

max
λ(t),pgn (t)

Fs =
Ns∑

n=1

sn(t) (12b)

max
λ(t),pgn (t)

Fg = fg(λ(t), pg(t)) (12c)

subject to (1)−(4), (8) and (9)

where λ(t) and pgn (t) are the two variables correlated with
the ISO and they are restricted by the current renewable
energy generation and the charging/discharging status of
energy storage between time t − 1 and t . A supplementary
function is presented to solve the problem considering all the
constraints as bellow:

Fa =
Ns∑

n=1

[max(|sn(t) − sn(t − 1)| − �sn, 0)

+ max(sn(t) − sn, 0) + max(sn − sn(t), 0)]
(14)

where the stored energy in the energy storage system man-
ages Fa . When all constraints is satisifed, if and only if
Fa = 0. Otherwise, Fa is equal to a large positive penalty
coefficient. In terms of the formulation (14), theMOP in (12)
can be revised as

max
λ(t),pgn (t)

Fmo = [Fw Fs Fg − Fa]T (15)

To resolve the MOP, the Pareto optimality is employed to
prove the performance. The general discussion can be seen
as follows.

Definition - Pareto Dominance Let H(x) be a MOP func-
tion and� is a feasible solution space. TheMOP is optimized
to obtain a solution u ∈ � that satisfies the MOP function
H(x). It is defined that solution u dominates u

′
(written as

u ≺ u
′
) if Hi (u) ≤ Hi (u

′
) holds true for all i and at least

one i has Hi (u) < Hi (u
′
). It means that if a solution is bet-

ter on one objective function and equal on other objective
functions, this solution is better than others.

Definition - Pareto Optimal If there is no feasible solution
u

′ ≺ u∗ in the solution space that dominates it, then the
solution u∗ is Pareto optimal.

Definition - Pareto Optimal Set P∗ = {u∗ ∈ �} is defined
as the Pareto optimal set of the MOP, which means the solu-
tion set of all Pareto optimal.

Definition - Pareto Front The Pareto front is the boundary
determined by the set of all solutions mapped by the Pareto
optimal set.

4 Proposed algorithm for multi-microgrid
optimization

4.1 Multi-objective reinforcement learning

To obtain the Pareto front for the MOP, a multi-objective
Q-learning framework is introduced in this subsection. This
MORL structure is based on a single-policy strategy that
applies scalarization functions to decrease the dimensionality
of the MOP. In other words, the problem is solved by con-
verting the multi-objective problem into a single-objective
problem.

A scalarization function can be described as

F = f (x,w) (16)

where x andw are theQ-value vector and theweight vector in
the Q-learning environment, respectively. The scalar Q value
in a single-objective problem is replaced by a Q vector that
includes different Q values for all objectives, such as:

Q(s, a) = (Q1(s, a1), . . . , Qm(s, am)) (17)

A single and scalar Q-value value SQ(s, a) is obtained
as:

SQ(s, a) =
M∑

m=1

wm · Qm(s, am) (18)

where all weight values wm should satisfy
∑M

m=1 wm = 1.
However, the estimated SQ(s, a) value has a major weak-

ness in that the Pareto front can only be found in the convex
region based on the linear scalarization [29,30]. For multiob-
jective optimization problems, the weighting coefficients in
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the three objective functions can be set equal and normaliza-
tionmethod can also be utilized to avoid favoring a particular
participant. However, when the multi-objective optimization
problem has a concave Pareto front (PF), both methods may
not be effective. Even if PF is convex, it can introduce other
challenges by using utility functions derived from various
weights to approximate PF [30–32]. Therefore, this paper
develops the scalar function by adapting the L p metric to
solve this issue [33]. The L p metric measures the distance
between the utopian point z∗ and the selected point x in the
multi-objective space. z∗ is an adjustable value in the itera-
tion process. The L p metric between (x) and (z)∗ for each
function can be measured by

L p(x) =
(

M∑

m=1

wm |xm − z∗m |p
)1/p

. (19)

where 1 ≤ p ≤ ∞. If p = ∞, the metric can be acknowl-
edged as the weighted L∞ or the Chebyshev metric

L∞(x) = max
m=1,...,M

wm |xm − z∗m |. (20)

xm can be substituted by Qm(s, a) to update the SQ(s, a)

for the multi-objective problems

SQ(s, a) = max
m=1,...,M

wm |Qm(s, a) − Q∗
m(s, a)|. (21)

The elements of RL are explained below. These include
state space, action space, and reward functions, including
learning and exploration rates, and discount factors.

4.1.1 State Space

The state space is time of day (ToD j ) and State of charge
(SoCk).

s|s j,k = (ToD j , SoCk) (22)

where ToD is divided into 24 h ( j = 1, 2, . . . , 24), and the
SoC is discretised into 8 values which are set from 30 to
100%.

4.1.2 Action space

Action space is a mixture of tariff and charging/discharging/
idle status.

A = {a|(Tari f f , StorageCommand)} (23)

where the Tari f f is discretized into 8 values from 1.5 to
5.0 and the StorageCommand into three values: Charge,
discharge and idle.

4.1.3 Reward

The reward value rm(t) for each objective is the stimulation
obtained by taking an action while at state s. The reward
function is created to maximize the objective function. All
obtained reward values will be updated to the expanded Q
table accordingly.

rm,nor (s, am) = Cm · Fm (24)

where rm,nor (s, am) is corresponding to the value of each
objective function Fm (e.g., Fw, Fs, Fg). Cm is a constant
value for each objective which avoids favouring a partic-
ular participant. In terms of the SQ(s, a) table, the action
selection policy is updated and the appropriate action can
be chosen to receive the maximum reward, such as scalar ε

greedy strategy. The detailed scalar ε greedy strategy in this
paper can be discovered in Algorithm 1.

Algorithm 1: Scalarized ε greedy strategy
1: Initialise SQList
2: for each action a ∈ A do
3: Obtain {Q1(s, a1), ..., Qm(s, am)}
4: Update SQ(s,a) via (21)
5: Append SQ(s,a) to SQList
6: End for
7: return ε greedy(SQList)

4.2 Preference-basedmulti-objective reinforcement
learning

Essential RL considers a scenariowhere an agent runs in state
space by executing different actions. Reward signals provide
the agent with feedback about its behaviour. The aim of RL is
tomaximize the expected total rewards.However, the compu-
tational cost of comprehensive interactions among different
objectives with a decision-maker is expensive. Therefore,
extending the essential reinforcement learning framework is
necessary by using a preference learning model.

The basic idea of the proposed preference model is to
prefer various reward functions in terms of a human’s emo-
tional system. In this paper, the proposed PMORL employs
a preference reward function to enable the agent to learn
and perceive different preferences. The preference reward
function is introduced to learn various policies based on a
Gaussian distribution. We have used a multi-objective Q-
learning algorithmwith a scalar ε greedy strategy to discover
the optimal policy. The employed preference reward function
leads to a bias for oneparticular objective,which ismost com-
mon to choose good actions for this specific objective while
reducing the probability of selecting good actions for other
objectives.
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Then the reward function of each objective for updating
the scalar SQ(s,a) table can be revised as follows.

rm(s, am) = rm,nor (s, am) + rm,pre(s, am). ∀ m ∈ M (25)

For rm,pre(s, am) ∼ N (μm(s, am), σ 2
m(s, am)), where the

term N (μm(s, am), σ 2
m(s, am)) is the normal distribution,

μm(s, am) is the mean and σ(s, am) is the standard varia-
tion. For example, when an action preferencemodel (reward)
with μ2(s, a2) = 20, μ1(s, a1) = μ3(s, a3) = 1 and
σ1(s, a1) = σ2(s, a2) = σ3(s, a3) = 1 is applied. Introduc-
ing a preference model for action a2 based on specific target
Fs will lead to bias against action a2. In otherwords, the prob-
ability of actiona2 being selected is highwhile the probability
of actions a1 and a3 being selected will be reduced.

The proposed PMORL strategy is explained in Algorithm
2. First, three Qm(s, a) tables for each objective and one
SQ(s,a) table are initialized. Then the algorithm starts each
episode beginning with state s and picks action via the scalar
ε greedy strategy. Once the action is taken, the agent will land
to a new state s

′
and generate three reward values rm(s, a) in

equation (25) for each objective. In other words, these reward
values are calculated independently for each objective. Then
the scalar SQ(s,a) will be updated on the determined action
via (21). And the next state s

′
is determined and new action

a
′
will be taken to repeat steps 4–11 until the termination

condition is met.

Algorithm 2: Multi-objective Q-learning algorithm
1: Initialise Qm(s, a) and SQ(s,a)
2: for each episode do
3: Initialize state s
4: repeat
5: Select action a using scalar ε greedy strategy
6: Take action and observe new state s

′ ∈ S
7: Obtain reward vector r and select new action
8: for each objective m do
9: Qm(s, am) = Qm(s, am) + αt (rm(s, am)

+γ Qm(s′, a′
m) − Qm(s, am))

10: end for
11: update SQ(s,a)
12: s → s′
13: until s is terminal
14: end for

5 Simulation results and performance

The simulation results are demonstrated to evaluate the
performance of the proposed PMORL algorithm. In the
experimental environment, three microgrids (N = 3) are
considered in which two of them have energy storage (N∫ =
2). The sizes of the two energy storages are 250 kWh and

Fig. 1 Demand and RES generation of Microgrid 1 on Nov 17, 2019
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Fig. 2 Sample of load demand for three microgrids

200 kWh, respectively. Let�sn be set to 10% of the capacity
for each storage. The average power demand responding to
tariff λ can be achieved as explained in [34]. The baseload
lbn is from the Penryn Campus, University of Exeter. The
total baseload and renewable generation on Nov 17, 2019
are displayed in Fig. 1. The actual load demand can fluctuate
according to the tariff when the price signal changes. The
baseload of three microgrids has been given in Fig. 2.

Figure 3 presents a case of the preference-based results of
Approximated Pareto Front (APF) that maximize the objec-
tive function Fw. At the beginning of the iteration, all actions
are randomly selected, and the optimal policy is also random.
Therefore, it can be seen from Fig. 3 that the objective func-
tion corresponding to the randomly selected action in each
iteration fluctuateswildly.However, when the number of iter-
ations reaches 100, the simulation results begin to converge
and stabilize slowly. Finally, after 150 iterations, the results
converge to the optimal results. There are inevitable fluctua-
tions after 150 iterations because the action selection strategy
still has a very low probability that some actions will be ran-
domly selected. Nevertheless, the results of the other two
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Fig. 3 Sample of convergence rate of MORL

Fig. 4 APFs and non-dominated vectors F(p∗) sampled

objective functions (2 and 3) are not optimized and do not
converge to their minimums. Obviously, the objective func-
tions are in conflict with each other, and it is impossible to
find an optimal result thatmeets all objective functions. How-
ever, we can find an optimal solution that is biased towards a
specific objective function or a compromise solution that is
fair to all three objectives.

Figure 4 presents the results of APF based onMORL. The
experimental results show that there is a conflict between
different objective functions. When Fw is large, the other
two objectives will deviate from their optimal values, and
vice versa. Three different solutions p∗

1 , p
∗
2 and p∗

3 are the
extremedominance solutions of the three objective functions,
respectively. Thismeans that every solutionwill benefit every
single objective function only. In order to ensure the fairness
of all objective functions, a specific APF-based solution P∗
will be selected so as not to give any single objective an
advantage. In Fig. 4, there is a relatively special solution P∗
in the Pareto optimal solution set, which is located in the
centre of the Pareto optimal set. The distance between P∗

Fig. 5 APFs for different objectives by using the PMORL approach

to the three objective functions is the same, which indicates
that the provided point P∗ is a relative fair solution to three
objective functions.

ThePareto optimal set of the test outcomes inFig. 4 reveals
that MORL can preference a single objective function or
balance all objective functions. As the learned SQ(s,a) table
comprises the experience of the agent without re-solving the
decision-making problem, it can determine multi-objective
issues quicker than conventional optimization methods. In
short, all empirical results confirm the performance of
MORL. However, the extension of multi-objective rein-
forcement learning is necessary to develop psychological
and neurophysiological findings. For the sake of simulating
human decision-making behaviour, the expert preferences
based optimal policy is emulated. The favoring policy based
on three objective functions is presented independently over
300 independent runs in Fig. 5. The performance in Fig.
5 has a good preference compared to the results in Fig. 4.
The outcomes in Fig. 5 are straightforward and in line with
our expectations. It shows that the extra rewards controlled
by human’s emotional states can introduce preferences for
the optimal policy of traditional multi-objective reinforce-
ment learning. This enables the smart grid designers to use
the preference model to develop MORL agents with specific
preferences. The extra reward functions could be used to sim-
ulate rational components of decisionmakingwhile retaining
the main reward process to maximize the expected objec-
tives. Table 1 provide the average results for three objectives
over 500 independent runs. It is clear that the PMORL can
achieve the preference-based optimal results for each objec-
tive function as described in (12). The PMORL allows for
developing agents with preferences and specific targets. The
extra reward value (like Gaussian distribution) could simu-
late rational decision-making components while keeping the
primary potential reward process to maximize the expected
benefit. ThePMORLcanfind the best solution area according
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Table 1 PMORL based results

Mean

Pref Fw Fs Fg

Fw 8.97E+04 7.18E+04 −1.04E+04

Fs 3.63E+04 1.25E+05 −9.99E+03

Fg 3.48E+04 1.03E+05 −3.35E+03

Bold values indicate the optimal values of the preferred objective com-
pared with others, respectively

Table 2 Comparison with multi-objective genetic algorithm

MOGA PMOGA PMORL

Objective Pref Fw

Fw 8.85E+04 8.95E+04 8.97E+04

Fs 7.07E+04 7.19E+04 7.18E+04

Fg −1.03E+04 −1.04E+04 −1.04E+04

Pref Fs
Fw 3.78+04 3.64E+04 3.63E+04

Fs 1.17E+05 1.20E+05 1.25E+05

Fg −9.81E+03 −9.72E+03 −9.99E+03

Pref Fg
Fw 4.13E+04 4.52E+04 3.48E+04

Fs 9.57E+04 9.48E+04 1.03E+05

Fg −3.49E+03 −3.47E+03 −3.35E+03

Average running time

PMOGA 352 s

MOGA 350 s

PMORL 2.52 s

Bold values indicate the optimal values of the preferred objective com-
pared with others, respectively

to the preference for the specific function. In order to verify
the accuracy of the algorithm, we also compared the results
of the MOGA and PMOGA. It can be seen from Table 2 that
the experimental results of PMOGA and PMORL are very
close. The results of both PMOGA and PMORL are better
than those ofMOGA. The proposed PMORL can achieve the
best results. In addition, we also compared the running time
of these three algorithms. ComparedwithMOGA’s optimiza-
tion time of 350 s and PMOGA’s optimization time of 352 s,
the trained PMORL can complete the iteration in a very short
time and obtain excellent results. Grid designers can design
different multi-objective optimization models according to
their preferences.

Fluctuations in tariff signals play an important role in
smart grid energy management. Figure 6a shows that the
proposed method can generate appropriate dynamic tariffs,
and the energy storage system status is also demonstrated
in Fig. 6b. Ideally, high electricity tariffs will produce peak
reduction and discharge energy storage, while low electricity
prices will fill the trough load and charge energy storage. The

Fig. 6 Dynamic price signal λ by using the proposed MORL approach

results in Fig. 6a illustrate the relationship between electricity
tariffs and energy storage systems. At hour 3, the electricity
tariff is relatively high. Although the power storage is rel-
atively low, the selected action based on the optimal policy
does not charge the energy storage system but maintains the
idle state. The high electricity tariff means that we need to
buymore electricity from the grid. All three objectives desire
to maximize their benefits, the ISO does not worry about tar-
iffs and only concerns about emergency energy storage, the
main grid only considers its own profit maximization, and
consumers consider how to reduce electricity bills without
affecting the use of household appliances. This result is not
biased towards objective three, so the agent needs to try not to
charge the energy storage systemwhen the electricity tariff is
high, and at the same time, in order to ensure the largest pos-
sible emergency energy, the agent will try not to discharge it.

6 Conclusion

In this paper, a preference-based multi-microgrid planning
model considering dynamic electricity tariffs and renew-
able energy generation is proposed. Designing scenarios are
analyzed through a preference-based multi-objective rein-
forcement learning algorithm to optimize energy storage
operations and electricity tariffs. In addition, the dynamic tar-
iff of the microgrid system is restricted by the power demand
of the main grid, which takes into account the interests of
all three objectives. The experimental outcomes reveal that
the MORL algorithm can produce a fair and effective oper-
ation plan for all participants by controlling the operation of
energy storage and modifying the real-time electricity tariff.
Meanwhile, the proposed PMORL can introduce preferences
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for an optimal policy through additional reward functions
and develop agents based on preference objectives for grid
designers. It proves the ability of PMORL to learn the opti-
mal control strategy, and the proposed PMORL can also be
applied to other multi-objective environments. The coordi-
nated operation of the microgrid system benefits to increase
the utilization rate of renewable energy, improve the service
life of energy storage batteries, decrease the operating cost
of the microgrid, save electricity bills for consumers, and
maximize grid profits.
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