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We investigate how volume flexibility, defined by a sourcing cost premium beyond a base capacity, at a local

responsive supplier impacts the decision to reshore supply. The buyer also has access to a remote supplier

that is cheaper with no restrictions on volume flexibility. We show that with unit lead time difference between

both suppliers, the optimal dual sourcing policy is a modified dual base-stock policy with three base-stock

levels Sf
2 , Sf

1 , and Ss. The replenishment orders are generated by first placing a base order from the fast

supplier of at most k units to raise the inventory position to Sf
1 , if that is possible. After this base order, if

the adjusted inventory position is still below Sf
2 , additional units are ordered from the fast supplier at an

overtime premium to reach Sf
2 . Finally, if the adjusted inventory position is below Ss, an order from the

slow supplier is placed to bring the final inventory position to Ss. Surprisingly, in contrast to single sourcing

with limited volume flexibility, a more complex dual sourcing model often results in a “simpler” policy that

replaces demand in each period. The latter allows analytical insights into the sourcing split between the

responsive and the remote supplier. Our analysis shows how increased volume flexibility at the responsive

supplier promotes the decision to reshore operations and effectively serves as a cost benefit. It also shows

how investing in base capacity or additional volume flexibility act as strategic substitutes.

Key words : Dual Sourcing, Flexibility, Reshoring, Optimal Policy, Modified Dual Base-Stock

1. Introduction

Trade tensions—with the recent trade war between the United States and China as a prime

example—and disruptions such as the Covid-19 pandemic, congestion in global shipping lanes, and

truck driver shortages are forcing companies to rethink their offshore sourcing strategy in favor of

more agility by sourcing locally. Sourcing simultaneously from two sources (or countries) is referred

to as dual sourcing, a classic inventory problem that combines fast, responsive replenishment from

a more expensive source with slow sourcing from a more economic one.

Most dual sourcing models assume linear sourcing costs for both suppliers. This implies both

suppliers have perfect volume flexibility and can produce without any quantity limitations. These
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Figure (1) Piece-wise linear and convex sourcing costs. The first k units are charged a unit cost cf ; units

exceeding k cost mcf per unit (where m≥ 1 stands for the overtime multiplier).

assumptions may not hold in practice. Many companies have a workforce that can only be utilized

within regular working hours, imposing a limit on the daily production quantity. Increasing the

base workforce increases the supplier’s capacity but also leads to higher unit labor cost if worker

utilization is reduced. Alternatively, firms may produce beyond their daily limit by offering the

existing workforce overtime or by hiring more expensive external temporary workers (agency staff).

Both practices limit the volume flexibility to source any quantity at equal unit cost. Stronger

legislation related to overtime awards labor working beyond regular working hours with an overtime

premium; the additional flexibility of hiring temporary workers also comes at a cost premium.

Such limited volume flexibility at the local responsive supplier may impact the decision to reshore

operations. We study the impact of the piece-wise linear sourcing cost at the responsive supplier,

where sourcing beyond its base capacity incurs an overtime premium, as shown in Figure 1. The

marginal cost of units sourced within the base capacity, k, is cf . When the responsive supplier

produces beyond its base capacity k, the marginal cost of units sourced increases to mcf , with

overtime multiplier, m≥ 1. The multiplier m acts as a flexibility reduction coefficient.

When m = 1, the responsive supplier’s workforce has perfect flexibility as all units may be

produced at a unit cost of cf . Increasing m beyond unity limits volume flexibility. In the absence

of a slow supplier (local single sourcing), it modifies the optimal replenishment policy of the buyer

from a conventional base-stock policy, in which the inventory position before ordering is raised

up to a base-stock level S [Karlin and Scarf 1958], to a modified base-stock policy [Porteus 1990,

Mart́ınez de Albéniz and Simchi-Levi 2005] (see top panels of Figure 2). The latter introduces an

additional base-stock level: the base capacity is used to (try to) raise the inventory position up to

the higher base-stock level S1; if this raises the inventory position above the lower base-stock level
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S2, no overtime is used. Else, the base capacity and overtime are used to raise the inventory position

up to S2. This creates a region of inaction where demand is not fully replaced and only k units are

ordered. In contrast to the conventional base-stock policy, where the order quantity always equals

the demand of the past period when demand is stationary and iid, the single sourcing modified

base-stock policy is not a demand replacement policy. As a result, the optimal policy parameters

(and related costs) of the modified base-stock policy can only be obtained numerically.

When a buyer has access to two suppliers that both have linear sourcing costs (i.e, both have

perfect volume flexibility) with the slow supplier charging a lower cost cs ≤ cf , and the lead time

difference between both suppliers equals one, a dual base-stock policy is optimal [Fukuda 1964].

Dual base-stock policies have two base-stock levels; one for the fast supplier, Sf , and one for the

slow supplier, Ss. If the inventory position before ordering is below Sf , a fast order is placed to raise

the inventory position up to Sf . After the fast supplier order is added to the inventory position,

the order size with the slower source is determined in a similar way using Ss (see panel (c) of

Figure 2).

We extend the above results by investigating a dual sourcing system where the responsive supplier

has a base capacity with limited volume flexibility. We show that a modified dual base-stock policy

with three base-stock levels (see panel (d) of Figure 2) minimizes a buyer’s cost in such a dual

sourcing system with unit lead time difference between both suppliers. Orders from the responsive

supplier follow a modified base-stock policy, with base-stock levels Sf1 and Sf2 . If, after ordering

from the fast supplier, the adjusted inventory position does not exceed the slow base-stock level Ss,

the slow order is used to raise the inventory position up to the slow base-stock level. Interestingly,

a more complex model often1 results in a simpler optimal policy that is a demand replacement

policy. This allows for analytical expressions of the optimal policy parameters and related costs. The

analytic tractability reveals how limited volume flexibility delays—or postpones—replenishments

from the responsive supplier to the slow supplier. In addition to quantifying the impact of volume

flexibility on the optimal replenishment structure of the buyer, our analysis supports a deeper

analysis on how additional base capacity or flexibility investments allows the responsive supplier

to absorb more demand variability and reshore more supply. The magnitude of this increase grows

with a higher demand uncertainty. Base capacity or volume flexibility at the responsive supplier

are strategic substitutes: We show to what extent the base capacity should be increased for a

given overtime premium (or vice versa) in order to reshore a target sourcing volume. We also

demonstrate how more volume flexibility effectively functions as a (cost) benefit: Keeping the

average sourcing cost per unit sourced identical, more will be reshored when the fast supplier has

1 In §5 we derive the sufficient conditions.
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Figure (2) The optimal single sourcing policy with linear costs (perfect volume flexibility) is a base-stock policy,

panel (a). When the sourcing costs are piece-wise linear convex (limited volume flexibility), a modified

base-stock policy is optimal, panel (b). The optimal dual sourcing policy with linear sourcing costs

(perfect volume flexibility) at both suppliers and unit lead time difference between both suppliers is a

dual base-stock policy, panel (c). When local sourcing costs are piece-wise linear and convex (limited

volume flexibility), a modified dual base-stock policy is optimal, panel (d).
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linear sourcing costs compared to when its supply is characterized by a piece-wise linear sourcing

cost. We acknowledge that reshoring decisions involve many issues, such as quality, lead time

uncertainty due to port operations or import tariffs. However, the focal point of our paper is to

study the impact of restricted volume flexibility that is often prevalent to local, reshored, supply.

We position our work in §2, formulate our model in §3, characterize and prove the optimal policy

and parameters in §4 and §5 respectively, and provide insights on how volume flexibility at the

responsive supplier impacts the sourcing split and costs in §6. Throughout this article we adopt

the following notation. Arguments of functions are given in square brackets [·]. The cumulative

distribution function (CDF) of a random variable X is given by FX [x] = P[X ≤ x]; its density by

fX [x]. The tail distribution is given by F̄X [x] = 1−FX [x] while the inverse CDF, F−1
X [p], corresponds

to the value x for which FX [x] = p holds. To avoid notational clutter we drop the subscript when it

is unambiguous which random variable is used. The minimum and maximum operators are given by

a∧b= min
{
a, b
}

and a∨b= max
{
a, b
}

, respectively. The positive part operator
[
a
]+

= max
{
a,0
}

and by definition,
∑0

i=1 = 0.

2. Related literature

The seminal work of Karlin and Scarf [1958] considers a single sourcing setting with sourcing

costs that are linear in the ordered volume, inventory mismatch costs that are convex in the net

stock levels, and unmet demand that can be backlogged. They show a base-stock policy minimizes

expected costs. When sourcing costs are convex, Karlin [1958] shows the optimal base-stock level

becomes state-dependent and is non-decreasing with respect to the inventory levels before order

placement. Intuitively, when inventory is low it is better to postpone (a part of) the order, hereby

incurring an additional backlog cost instead of fully replacing the demand at the more expensive

unit cost. Porteus [1990, p662] refers to this as a generalized base-stock policy and shows there are

finitely many base-stock levels if the ordering cost is piece-wise linear and convex. We adopt the

more recent moniker of a modified base-stock policy (MBS) [Mart́ınez de Albéniz and Simchi-Levi

2005].

Whereas the optimal single sourcing policy structure is known for models with convex sourcing

costs, the optimal base-stock levels cannot be captured in closed form, and have to be obtained

through numerical analysis. Lu and Song [2014] use dynamic programming to obtain the optimal

base-stock levels. Mart́ınez de Albéniz and Simchi-Levi [2005] demonstrate how to reduce the

computational effort by limiting the search space. Henig et al. [1997] investigate a single sourcing

model where a buyer commits to base volume (capacity) in advance and the first k units can be

purchased at no cost. The optimal inventory policy of their model satisfies a MBS policy. As they

employ a single sourcing system, they have to numerically obtain the base-stock levels and expected
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cost to assess whether the investment in capacity offsets the benefits of having contracted volume

at no additional cost (even under a zero lead assumption).

The optimal policy structure of the dual sourcing problem is only known in limited settings.

During the early 1960s, several works characterize and prove the optimality of Dual Base-Stock

policies when the lead times of the fast and slow supplier equal zero and one, respectively [Barankin

1961, Neuts 1964, Bulinskaya 1964a,b]. They adopt conventional assumptions; the sourcing costs of

both suppliers are linear in the sourcing quantities and the inventory mismatch function is convex.

Fukuda [1964] extends this result towards general consecutive lead times ls = lf + 1, with ls and lf

being the lead time of the slow and fast supplier, respectively.2

Whittemore and Saunders [1977] show the optimal policy structure is no longer a (dual) base-

stock type policy for larger lead time gaps. To circumvent the complexity of tracking the entire

pipeline vector, the single index policy of Scheller-Wolf et al. [2003] simply tracks total inventory,

which is the sum of the on-hand inventory and units in-transit. Dual index policies include two

inventory positions, the sum of the inventory on hand and outstanding orders within the lead time

from the fast and slow source respectively [Veeraraghavan and Scheller-Wolf 2008]. Sun and Van

Mieghem [2019] show that the Capped Dual Index policy is robustly optimal for general lead times,

i.e., it minimizes the worst case performance across a range of deterministic demand scenarios,

and show numerically this policy also performs well in a stochastic setting. Their policy is a dual

base-stock dual index policy that places a cap on slow orders that naturally smooths the variability

of the slow orders. Xin and Goldberg [2017] show that when the lead time gap grows to infinity,

the Tailored Base-Surge (TBS) policy of Allon and Van Mieghem [2010] is asymptotically optimal.

The TBS policy places a constant order from the slow source while a base-stock policy is used to

control the fast source. TBS is a capped dual index policy.

Studies that extend the linear sourcing cost assumption in dual sourcing systems are scarce.

Federgruen et al. [2021] find optimal dual sourcing policies for capacitated dual sourcing systems

using (C1,C2,K1,K2)-convexity. They show when the fast source is capacitated, a capped base-

stock policy is optimal for the fast supplier: order up to the base-stock level if you can, else order

the cap. We extend this case by showing the value of adding volume flexibility to the fast supplier.

Tomlin [2006] includes volume flexibility in a dual sourcing system but assumes equal lead times

with one unreliable supplier and one reliable (but more expensive) supplier with volume flexibility.

Our model focuses on the impact of volume flexibility at responsive suppliers in reshoring decisions,

while other aspects are left out of scope to retain focus. Chen and Hu [2017], for instance, analyses

the impact of offshore dependence of the onshore supplier.

2 We will denote the local responsive supplier the fast supply with subscript (or superscript) f and the remote supplier
the slow supply with subscript (or superscript) s.

J. Gijsbrechts, R.N. Boute, S.M. Disney, and J.A. Van Mieghem, (2022),  
Volume Flexibility at Responsive Suppliers in Reshoring Decisions: Analysis of a Dual Sourcing Inventory Model, 

Accepted for publicaiton in Production and Operations Management, 3/3/2022.



Volume Flexibility at Responsive Suppliers in Reshoring Decisions
7

-
. . .. . .

Start
period t

End
period t

6

Observe ending inventory It−1

and outstanding orders

(qit−li
, . . . , qit−1), i∈ {f, s}.

?
Orders qft and

qst placed.

6

Orders qft−lf
and

qst−ls
arrive.

?
Demand dt

observed and satisfied.

6

Ending inventory

It = It−1 + qft−lf
+ qst−ls

− dt.

?
Costs

are computed.

Figure (3) Sequence of events in dual-source supply chains with lead times lf/ls for fast/slow supply.

Boute and Van Mieghem [2014] use the MBS policy in a single sourcing setting to motivate a

linear smoothing heuristic in a dual sourcing model where the fast source has an installed capacity

(i.e., a capacity for which one always has to pay regardless of the ordered quantity). In the same

setting, Boute et al. [2021] adopt a constant order policy for the slow supplier, combined with a

proportional base-stock policy for the fast supply. The proportional base-stock policy enables one to

smooth the orders to avoid expensive overtime production beyond the installed capacity. Although

their heuristic is not optimal, it is analytically tractable, even for correlated and non-stationary

demand. In contrast, we identify the optimal policy (for consecutive lead times). Whereas Boute

and Van Mieghem [2014] and Boute et al. [2021] impose a sunk cost kcf and set the marginal cost

of units produced within the base capacity equal to zero, we assume local units sourced below the

base capacity k scale linearly in the ordered volume, with cf ≥ cs.

3. Model Formulation

Let It−1 denote the buyer’s net stock at the end of period t− 1, which is the inventory on-hand

minus the backorders. The sequence of events in period t is visualized in Figure 3. First, based on

the previous period’s ending inventory, It−1, and outstanding orders (qit−li , . . . , q
i
t−1), i∈ {f, s}, we

decide how much to order from the fast supplier, qft , and from the slow supplier, qst . Second, orders

placed lf periods ago from the fast supplier qft−lf , and ls periods ago from the slow supplier qst−ls ,

arrive, and are added to the inventory. Third, demand ξt is observed and satisfied, resulting in the

following inventory balance equation:

It = It−1 + qft−lf + qst−ls − ξt. (1)

Finally, we tally the costs of period t. These consist of the sourcing costs paid to both suppliers

and the inventory mismatch costs. Although we assume the sourcing cost of the fast supply to be

piece-wise linear (as in Figure 1), sourcing costs for the slow supplier are linear3:

Ct[It, q
s
t , q

f
t ], qst cs + cf

(
qft ∧ k

)
+mcf [qft − k]+ +h[It]

+ + b[−It]+. (2)

3 The latter is motivated by the fact that one can source any quantity as long as one is willing to wait. We assume
the slow supplier has, effectively, an infinite capacity, perhaps facilitated by multiple outsourcing opportunities.
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Here, qst cs is the cost of purchasing qst units from the slow supplier at marginal cost cs, cf
(
qft ∧ k

)
is the cost of producing units from the fast supplier’s base capacity at marginal cost cf , and

mcf [qft − k]+ is the cost of producing units beyond the fast supplier’s base capacity at marginal

cost mcf (with overtime multiplier, m≥ 1). As conventionally assumed, the inventory mismatch

costs are linear in both positive and negative inventory, h[It]
+ + b[−It]+, where h and b denote the

unit inventory holding and backlogging cost respectively. We also define the expected inventory

mismatch in period t as

Lt[yt],

{∫ yt
0
h(yt− ξt)f [ξt]dξt +

∫∞
yt
b(ξt− yt)f [ξt]dξt if yt > 0∫∞

0
b(ξt− yt)f [ξt]dξt if yt ≤ 0

, (3)

where yt = It−1 +qft−lf +qst−ls represents the net inventory after order arrival but before the demand

is observed, and the demand in period t, ξt, is a random variable with density f [ξt].

The objective of our dual sourcing problem is to find the purchasing policy that minimizes the

long-run average cost. Let Π denote the set of all feasible ordering policies. A feasible policy, π,

consists of a sequence of mappings fπt : Rlf+ls+1 7→ R2, t ≥ 1. That is, based on the net ending

inventory and all outstanding orders, the quantity sourced from each supplier, is determined via4

(qft , q
s
t ) = fπt [qst−ls , . . . , q

s
t−1, q

f
t−lf , . . . , q

f
t−1, It−1]. (4)

Let Cπ
t denote the cost of policy π in period t. The long-run average cost of policy π is given by:

C[π], lim
T→∞

1

T

T∑
t=1

E
[
Cπ
t

]
. (5)

The objective of our dual sourcing problem is to find the policy π ∈Π that minimizes the long-run

average cost:

COPT , inf
π∈Π

C[π]. (6)

We shall first derive the policy that minimizes the finite-horizon discounted cost

C[π,T,α, cT+1],
T∑
t=1

αtE
[
Cπ
t

]
, (7)

with discount factor 0 < α < 1 and salvage value for ending inventory of cT+1, and then invoke

standard results to show that the policy also minimizes the long-run average cost.

Whittemore and Saunders [1977] show that (4) is a complex function when the lead times of

both sources are non-consecutive, i.e., ls − lf > 1. When lead times are consecutive, however, the

problem is greatly simplified. If ls− lf = 1, the state space of the corresponding dynamic program

becomes one-dimensional, representing the dimension of the inventory position (i.e., the sum of

inventory on hand and all outstanding orders at the end of period t− 1).

4 The optimal orders are also dependent on the distributions of the demands from period t until the end of the horizon
T , (Dt, . . . ,DT ), but we omit them here as most of our analysis later on assumes continuous and iid demand.

J. Gijsbrechts, R.N. Boute, S.M. Disney, and J.A. Van Mieghem, (2022),  
Volume Flexibility at Responsive Suppliers in Reshoring Decisions: Analysis of a Dual Sourcing Inventory Model, 

Accepted for publicaiton in Production and Operations Management, 3/3/2022.



Volume Flexibility at Responsive Suppliers in Reshoring Decisions
9

4. Optimal Policy

When the lead time difference between the fast supplier and the slow supplier is one, we will show

that the policy that minimizes (7) is a modified dual base-stock policy with a sequence of time-

dependent order-up-to levels {(Sf2,t, S
f
1,t, S

s
t ) : t∈N}. The modified dual base-stock policy functions

as follows. First, place a base order from the fast supplier of, at most, k units to raise the inventory

position to Sf1,t, if that is possible. If, after this base order, the adjusted inventory position is still

below Sf2,t, then order additional units from the fast supplier at an overtime premium to reach

Sf2,t. Finally, if the adjusted inventory position does not exceed Sst , place an order from the slow

supplier to bring the final inventory position to Sst .

The formal proofs are relegated to the Appendix. We highlight the most important results below,

starting with establishing finite-horizon discounted cost optimality:

Theorem 1 In a dual sourcing setting with consecutive lead times where the fast supplier has a

piece-wise linear sourcing cost and the slow supplier’s sourcing costs are linear, the policy that

minimizes the finite-horizon discounted cost C[π,T,α, cT+1] is a modified dual base-stock policy

with a sequence of time-dependent order-up-to levels {(Sf2,t, S
f
1,t, S

s
t ) : t= 1, · · · , T} that define the

optimal order quantities at t= 1, · · · , T . The fast order follows a modified base-stock policy:

qf,?t =


0 if Sf1,t ≤ xt−1,

Sf1,t−xt−1 if Sf1,t− k≤ xt−1 <S
f
1,t,

k if Sf2,t− k≤ xt−1 <S
f
1,t− k,

Sf2,t−xt−1 if xt−1 <S
f
2,t− k,

(8)

after which the slow order raises the updated inventory position (xt−1 + qf,?t ) up to Sst :

qs,?t =
[
Sst −xt−1− qf,?t

]+
. (9)

Theorem 1 is proven by backward induction for a finite horizon of length T (extending Xin and

Van Mieghem [2021]). In particular, we obtain the policy with optimal discounted cost-to-go vt[xt−1]

from t until T starting with inventory level xt−1 that satisfies the well-known Bellman equation for

every period t∈ {1, · · · , T}:

vt[xt−1] = min
q
f
t ,q

s
t≥0

{
mcf [qft − k]+ + cf (qft ∧ k) + csq

s
t +Lt[xt−1 + qft ] +αE[vt+1[xt−1 + qft + qst −Dt]]

}
,

(10)

and terminal value function vT+1[xT ] =−cT+1xT , where cT+1 ≥ 0.

We first show that the value function in period T is jointly convex in the inventory before ordering

xT−1, and the order-up-to-level, yfT :

Lemma 1 The value function in period T , vT [·], is jointly convex in xT−1 and yfT .
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The novel part of our proof is to demonstrate a modified dual base-stock policy is optimal in

the penultimate period T − 1, leveraging convexity of vT [·]. We identify four cases dependent on

whether the fast and slow order are positive or zero: the interior case where both optimal quantities

are positive: qf,?T−1 > 0 and qs,?T−1 > 0 (Case A). Then we consider the three boundary cases: q?,fT−1 = 0

while qs,?T−1 > 0 (Case B); qf,?T−1 > 0 while qs,?T−1 = 0 (Case C); and finally qf,?T−1 = qs,?T−1 = 0 (Case D).

Determining when the boundary cases arise will have important implications on the possibility to

determine the policy parameters explicitly in §5. Combining the four cases reveals that a modified

dual base-stock policy is optimal in period T − 1.

In all four cases, the value function preserves convexity:

Lemma 2 If the value function in period T is convex and a modified dual base-stock policy is

optimal in period T − 1, then the value function in period T − 1 remains convex.

We can follow the same line of argument for period T − 2 and repeating until period t reveals a

modified dual base-stock policy is optimal in every period.

In general, the order quantities are time-dependent. Later we demonstrate that when demand

is iid, the horizon is infinite (or a specific salvage cost is chosen for the finite horizon problem),

and when the the modified dual base-stock policy is demand replacement, the base-stock levels

are stationary and can be obtained easily. While the first two pre-requisites are common assump-

tions to express base-stock levels in inventory management, the demand replacement property is

typically fulfilled implicitly. We will show that for our model, a sufficient condition for demand

replacement is that Sf1,t < Sst , which holds for most problem settings (we provide more details in

§5 and Appendix C).

Appendix 2 demonstrates that the necessary conditions listed by Huh et al. [2011] hold for our

model such that our results hold when we minimize the infinite-horizon average cost:

Theorem 2 The modified dual base-stock policy is optimal in the infinite horizon average-cost

setting.

In the remainder of this paper we will characterize the optimal policy for the case with consecutive

lead times for both sources. For notational simplicity, we choose a system where lf = 0 and ls = 1.

Appendix B details how to retrieve the results for general consecutive lead times.

5. Policy parameters

In this section, we characterize the time-dependent order-up-to levels {Sf2,t, S
f
1,t, S

s
t }, for each period

t∈ {1, · · · , T}. Henceforth, we assume demand is continuous and iid, but we note the same results

hold when the demand distribution of each period weakly dominates the distribution of the previous
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one, i.e., when for each period t: ∀ξ ∈ (−∞,∞) FDt [ξ]≤ FDt+1
[ξ]. A sufficient condition to obtain

expressions of the base-stock levels is that Sf2,t <S
f
1,t <S

s
t (see also Appendix C for a more elaborate

discussion). In this case we always order up to the slowest base-stock level so the actual demand

of the previous period ξt−1 is always replaced, i.e., qft + qst = ξt−1. The fast base-stock levels then

satisfy fractile solutions, according to part A of the proof of Theorem 1, whereas the slow base-stock

level then is obtainable by taking first order conditions on the Bellman equation.

Formally, we define two myopic order-up-to levels Sf2,M and Sf1,M:

Sf2,M , F
−1
D

[
b− (mcf − cs)

b+h

]
≤ Sf1,M , F−1

D

[
b− (cf − cs)

b+h

]
, (11)

and consider the function g(x) for x≥ Sf1,M:

g[x] = (cs−αcs) + (cs−mcf )F̄D[x−Sf2,M+ k] +

∫ x−Sf
2,M+k

x−Sf
1,M+k

L′[x− ξ+ k]f [ξ]dξ+

(cs− cf )(F̄D[x−Sf1,M]− F̄D[x−Sf1,M+ k]) +

∫ x−Sf
1,M

0

L′[Ss− ξ]f [ξ]dξ. (12)

The function g is the derivative of the optimal value function and, given the value function is

convex, g is increasing. Therefore, if a solution exists where g[x] = 0, it is unique and quickly found

numerically (e.g., using the bisection, Regula-Falsi, or Newton-Rhapson method). If there exists an

x0 ≥ Sf1,M for which g[x0] = 0 holds, then we define the slow order-up-to level Ss = x0. (Otherwise,

part C in the proof applies: there may be periods where only the fast supplier is used. Then the

optimal policy may not be demand-replacing in every period such that computing the probability

of the ending inventory in period t would become dependent on the ending inventory in period

t− 1, complicating analytical tractability.)

We will show, when the terminal salvage cost, cT+1 = cs/α and Sf2,M ≤ S
f
1,M < Ss, then Sf2,M,

Sf1,M and Ss are the optimal base-stock levels in every period. We express this result in Corollary 1:

Corollary 1 If demand is continuous and iid, and Sf2,M ≤ S
f
1,M <Ss, then Sf2,M, Sf1,M and Ss are

the optimal base stock levels in each period when the terminal salvage cost is given by cT+1 = cs/α.

Corollary 1 extends to infinite horizon and average cost. Informally, given the policy parameters

are independent of the horizon T , they hold for any T and α. They will thus also hold in the limit

T →∞ and α→ 1. As with any limiting arguments, a rigorous proof would be much more involved

and is beyond the scope of this paper.

A special case of Corollary 1, when F̄ [Ss − Sf1,M] = 0, exists when we never source fast. Using

(12), determining the slow order then reduces to a newsvendor critical fractile over two periods of
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demand such that for any period t when α= 1: Sst = F−1
Dt,t+1

[b/(h+ b)], with Dt,t+1 representing the

random variable of two periods of demand.

In what follows we shortly discuss the impact when Sf2,t <S
f
1,t <S

s
t no longer holds. First, when

Sst < Sf2,t the slow supplier will never be used and our model becomes a single sourcing model

with piece-wise linear sourcing costs. For this setting we know that no simple expression exists to

obtain the base-stock levels, even when demand is iid (see e.g., Porteus [1990], Mart́ınez de Albéniz

and Simchi-Levi [2005]). Alternatively, when the slow base-stock level would fall in between the

fast base-stock levels (Sf2,t < Sst < Sf1,t) it is also difficult to obtain an expression for the policy

parameters in an expression as the fast orders also impacts the costs in the next period. Yet,

the latter scenario is a rather pathological case that rarely occurs. We show this numerically in

Appendix C.

To summarise, Theorem 1 may result in four potential ordering strategies: (1) single sourcing

from the slow supplier; (2) dual sourcing with demand replacement; (3) dual sourcing without

demand replacement; and (4) single sourcing from the fast supplier. Corollary 1 shows that the

first two strategies allow for a characterization of the policy parameters under specific conditions.

Strategy 3 and 4 require numerical analysis as analytical solutions are not available.

6. The impact of volume flexibility at the responsive supplier

The characterization of the optimal policy (parameters) facilitates a deeper analysis of the impact

of the responsive supply’s volume flexibility on a buyer’s decision to reshore production. In what

follows we focus our analysis on the regular dual sourcing settings where a modified dual base-stock

policy with demand replacement (and stationary base-stock levels Sf2 ≤ S
f
1 <S

s) is optimal.

We will analyze the sourcing split between the responsive and offshore supply, as well as their

impact on the order variability at both suppliers. We also show how the base capacity k and

the volume flexibility, measured through the overtime premium m, act as strategic substitutes.

Finally, we provide a sensitivity analysis by relaxing one of the main assumptions of our model

by numerically investigating the performance of the modified dual base-stock policy when the lead

time difference between both sources exceeds one period.

We denote the expected order quantities sourced from the slow supply at cost cs, the expected

order quantities sourced from the fast supply at regular cost cf , and the expected order quantities

sourced from the fast supply at overtime premium mcf , respectively as µs ,E[qs], µfr ,E[qfr ] and

µfo , E[qfo ] (such that µs + µfr + µfo = µ and µfr + µfo = µf ), and the standard deviation of the

order quantities placed at the slow and fast supply by σqs and σqf , respectively. The coefficient

of variation of orders placed to both suppliers is given by: CoVqs , σqs/µs and CoVqf , σqf /µf .

The sourcing split is defined as the long-run or average fraction sourced from each supply option:
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(1) the fraction sourced from the slow supply, ρs , µs/µ, (2) the fraction sourced from the fast

supply at regular cost, ρfr , µ
f
r/µ, and (3) the fraction sourced from the fast supply at overtime

cost ρfo , µ
f
o/µ. See also Appendix B for the explicit expressions of the sourcing splits.

Throughout the remainder of our analysis we will use pi to refer to the probability that the

inventory position before ordering (Ss −D) falls in region i, with i ∈ {0, I, II, III, IV}. Because

we investigate the modified dual base-stock policy with demand replacement, superimposing the

demand distribution over the regions (see panel (d) of Figure 2) results in the expected order

quantities and related costs. In particular, when region i has lower and upper bound Ss− ai and

Ss−bi, respectively, then pi = F [ai]−F [bi]. The base scenario for our numerical experiments, which

visually supports our analysis, is always: h= 1, b= 9, cf = 4, cs = 3.8, m= 1.1, and k= 1. Demand

is normally distributed with mean µ= 10 and standard deviation σ = 2.5 (similar to Boute et al.

[2021]).

6.1. Sensitivity with respect to base capacity k

The local supplier’s volume flexibility is characterized by its base capacity k, defining the volume

that can be sourced at regular cost, as well as the overtime multiplier m, defining the cost premium

for units sourced beyond base capacity. We first investigate the impact of increasing the base

capacity, for instance through a larger local supplier’s workforce. When k = 0, sourcing costs of

both supplies are linear with all units sourced locally at cost mcf and the optimal policy is a classic

dual base-stock policy (cf. panel (c) of Figure 2). An increase in base capacity to k > 0 shifts the

optimal policy to a modified dual base-stock policy (panel (d) of Figure 2). Our analysis captures

the impact of increasing k on the sourcing split by computing the gradient of the shares ρs, ρfr ,

and ρfo with respect to k. Using Leibniz’s rule for differentiation under the integral we find that

increasing k reshores volumes sourced locally at regular cost, ρfr . The substitution arises from a

reduction of both slow supply, ρs and fast supply at overtime cost, ρfo . The substitution effects are

as follows. The fraction sourced from the fast supply at regular cost increases according to

dρfr
dk

=
1

µ

(
pIV + pIII− pII

dSs

dk

)
≥ 0, (13)

by reducing both the volumes sourced from slow supply and from the fast supply at overtime cost:

dρs

dk
=

1

µ

(
(pIV + pII)

dSs

dk
− pIII

)
≤ 0 and

dρfo
dk

=
1

µ

(
−pIV

dSs

dk
− pIV

)
≤ 0. (14)

Here dSs/dk ∈ [−1,0] represents how much the slow base-stock level reduces when we increase

k, see (42) in the Appendix D for a more explicit expression. The fraction reshored is largest

when −dSs/dk→ 1. The value of dSs/dk is dependent on the underlying demand distribution,

as demonstrated in Appendix D. Therefore, without knowledge of the demand distribution we
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cannot show it is concave (or convex) in k. More so, for many distributions (such as the normal

distribution), it will have inflection points. However, in the limit, when k→∞, the marginal return

of a capacity addition equals zero. In this case, the modified base-stock policy converges again to a

classic dual base-stock policy with all units sourced locally occurring a cost of cf without overtime

production because dSs/dk, pIV, and pIII all reduce to zero for any demand distribution with finite

variance as

lim
k→∞

dSs

dk
= lim

k→∞
pIV = lim

k→∞
pIII = 0.

While the fraction sourced from the fast supply ρf is non-decreasing wrt k, the marginal increase

vanishes towards zero when k increases to infinity, limk→∞ dρ
f/dk= 0. Proposition 1 captures these

results:

Proposition 1 Increasing the local base capacity k reshores sourcing volumes from remote to

local suppliers and reallocates volume sourced locally from overtime to regular production. The

incremental volumes reshored decrease with a higher k and vanish to zero in the limit as k→∞.

Panel (a) of Figure 4 shows the impact of these substitution effects on the sourcing splits. The

hatched area quantifies how much is reshored from the slow to the fast supply due to a larger base

capacity k. It also shows the diminishing marginal returns of additional capacity investments.

In addition to reshoring orders, increasing the base capacity k also increases the standard devia-

tion of the orders placed to the fast supplier, while it reduces the standard deviation of the orders

placed at the slow supplier, see also panel (d) of Figure 4. More volume flexibility allows the buyer

to leverage one of the key strengths of the responsive supplier: to absorb more of the demand vari-

ability. While the slow supplier is used to leverage the sourcing cost advantage, the fast supplier’s

responsiveness is used to offset the inventory increase due to the slow supplier’s longer lead time.

A higher base capacity reduces the coefficient of variation of both suppliers’ orders, as visualized in

panel (g) of Figure 4. The reduction is largest for the fast supplier and converges for higher values

of k.

6.2. Sensitivity with respect to the volume flexibility reduction coefficient m

The overtime premium m captures the level of volume flexibility of the responsive supply. It

functions as a flexibility reduction coefficient: A higher overtime premium reduces the volume

flexibility, as volume sourced beyond the base capacity k (at overtime cost mcf ) becomes more

expensive. This reduces the volumes reshored to the local supply, both at regular and overtime

cost:

dρfr
dm

=
1

µ

(
−pII

dSs

dm

)
≤ 0, and

dρfo
dm

=
1

µ

(
−pIV

(
dSs

dm
− dS

f
2

dm

))
≤ 0, (15)
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Figure (4) Impact of base capacity, overtime premium and demand uncertainty on the sourcing split (top row),

the order variance (middle row) and the coefficient of variation of orders (bottom row). Base param-

eters: h= 1, b= 9, cf = 4, cs = 3.8, k= 1,m= 1.1, dt
d∼N (µ= 10, σ= 2.5)

in favor of a higher fraction sourced from the slow supply:

dρs

dm
=

1

µ

(
pII

dSs

dm
+ pIV

(
dSs

dm
− dS

f
2

dm

))
≥ 0, (16)

with dSs/dm and dSf2 /dm representing the sensitivity of the Ss and Sf2 with respect to m.

The expressions for (dSs/dm) ≥ 0 and dSf2 /dm = −cff [Ss − Sf2 ]/(b + h) ≤ 0, are provided in

Appendix D.

The reduction in reshoring increases with higher values of dSs/dm and −dSf2 /dm. Their values

depend again on the underlying demand distribution, as shown in Appendix D. The proportion

reshored to the local supply is non-increasing in m. In the limit dSs/dm and dSf2 /dm reduce to
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zero for any demand distribution with finite variance, so that nothing is produced in overtime when

m→∞:

lim
m→∞

dSs

dm
= lim

m→∞

dSf2
dm

= 0. (17)

We capture these results in Proposition 2:

Proposition 2 A higher overtime premium, m, reduces the reshored volumes at regular and over-

time cost in favor of more offshored supply ρs. The share reshored to the fast supply is non-

increasing but the gradient vanishes towards zero for large m.

Panel (b) of Figure 4 visualizes how a higher overtime premium m reduces the fraction reshored

to local supply. Compared to perfect volume flexibility with m = 1, orders are postponed when

m> 1 by shifting from the fast to the slow supply. Extending the delivery by one additional period

avoids the expensive overtime premium. When m→+∞, our policy reduces to a dual base-stock

policy with one base-stock level Sf1 for the fast supply (and Sf2 =−∞) and a cap on the fast order

at k, similar to the findings of Federgruen et al. [2021].

A higher overtime premium m also reduces the variance of the reshored orders, while it increases

the variance of the orders placed to the slow supply, see panel (e) of Figure 4. The increased

premium reduces the attractiveness of the fast supply such that more of the variance is taken by

the slow supplier. This effect is similar to an increase in base capacity. In §6.4 we show how k and

m act as strategic substitutes for the fast supplier when targeting a specific sourcing split. Whereas

the coefficients of variation of the order quantities of the slow source increase with an increasing

overtime premium m, the impact on the coefficient of variation of the fast supplier’s orders is not

monotone.

6.3. Impact of demand variability

We also investigate how demand variability impacts the orders placed under limited volume flex-

ibility of the responsive supply. Although it cannot be analytically proven, we conjecture (and

confirm through numerical results, see panel (c) of Figure 4) that more is reshored to the respon-

sive supply when demand is more uncertain: in these cases the responsive source covers the more

variable part of the demand. We find that a higher demand variability, σ, results in a shift between

fast (overtime) supply:

dρfr
dσ

=
1

µ

(
−pII

(
dSs

dσ
− z1

))
, and

dρfo
dσ

=
1

µ

(
−pIV

(
dSs

dσ
− z2

))
, (18)

and slow supply:

dρs

dσ
=

1

µ

(
pII

(
dSs

dσ
− z1

)
+ pIV

(
dSs

dσ
− z2

))
. (19)
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Unfortunately it cannot be shown analytically whether the shift is from fast to slow or vice versa,

which depends on the signs of (dSs/dσ−z1) and (dSs/dσ−z2). However, all our numerical experi-

ments confirm that volume is shifted from slow supply towards fast (overtime) supply. We find this

effect is largest for perfect volume flexibility, which follows from our results visualized in panels (a)

and (b) of Figure 4: more volume flexibility reshores a larger fraction of demand.

We also observe the order variability of both suppliers, measured by both standard deviation

and coefficient of variation, increases with higher demand uncertainty (panel (f) of Figure 4). The

magnitude of the results obtained in §6.1 and §6.2 are thus larger when demand is more variable.

6.4. Base capacity and flexibility as strategic substitutes

The above analyses reveal how more volume is reshored by increasing the base capacity or by low-

ering the overtime premium at the local supply. The local supplier thus has two levers to influence

the fraction reshored. These two levers interact with each other. We quantify to what extent: a) the

base capacity should be increased for a given overtime premium to retain target sourcing volumes,

and b) the overtime premium should be reduced to induce a reduction in base capacity while still

reshoring a target fraction of demand. Figure 5 illustrates, for the same parameters as in Figure 4,

how the base capacity and overtime premium interact to retain a given reshored fraction.5

We observe that when base capacity and overtime premium are high (top left corner), a significant

reduction in m is needed to compensate for a reduction in k. Likewise, a significant increase of the

base capacity, k is needed to compensate for an increase in m when the base capacity and overtime

premium are low (bottom right).

6.5. Comparison between perfect vs. limited volume flexibility

A higher base capacity k and lower overtime premium m promote the decision to reshore volumes

to the responsive supply. Figure 6, panel (a) visualizes the reshored volumes for various values of k

and m. In both cases, the volumes sourced locally at the regular cost cf and at overtime premium

mcf are impacted. This in turn will affect the resulting average sourcing cost per unit sourced

locally, which we define by c̄f , (cfµ
f
r +mcfµ

f
o)/(µfr +µfo), such that cf ≤ c̄f ≤mcf .

Panel (b) of Figure 6 illustrates how the resulting c̄f changes with k andm for the same parameter

values as panel (a). It shows how the average unit sourcing cost c̄f decreases with higher values of k

(as more units can be sourced at the lower cost cf ); and for lower values of m (as sourcing overtime

becomes less expensive). To compare perfect volume flexibility versus limited volume flexibility of

the responsive supply under the same average unit sourcing cost c̄f , panel (c) shows how much

volume is reshored when sourcing costs are linear with local sourcing cost c̄f for each unit sourced.

5 Results are plotted using a logarithmic scale with base 1.25.
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Figure (5) Isograph of the fixed fast sourcing fraction (or reshored fraction) in log-log scale. These indifference

curves quantify the substitution effect between base capacity and overtime premium in percentage

terms. The contours reveal how an increase in k can reduce the overtime premium (or vice versa) to

maintain the same fraction reshored. It also shows how increasing volume flexibility (through adding

base capacity or reducing the overtime premium) is largest for inflexible systems with low values of

m and vanishes to zero as the fast supply is more flexible for large m.

Panel (d) plots the difference between (a) and (c): it shows, for the same average unit cost

differential, how much less is reshored when the responsive supply has limited flexibility for different

values of k and m. More volume flexibility at the local responsive source encourages more reshoring

and serves as a (cost) benefit compared to the remote source.

6.6. Performance under non-consecutive lead times

A key condition to prove the optimality of the modified dual base-stock policy is that both sources

have consecutive lead times. We numerically investigate the impact of relaxing this assumption.

Under non-consecutive lead times, the optimal order quantity is no longer of a base-stock type,

but becomes a complicated, unknown function of the net inventory and all outstanding orders, i.e.,
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Increased 
Flexibility

(a) Re-shoring (Piece-wise linear) (b) Average unit sourcing cost c̄f

(c) Re-shoring (Linear at c̄f ) (d) Reduction due to limited flexibility

Figure (6) The top left panel plots the average share reshored for different values of k and m. We use these

results to compute the average fast sourcing cost per unit, c̄f (top right panel). We then show

the share reshored assuming linear sourcing cost c̄f for the fast supply (bottom left panel) and

demonstrate (bottom right panel) that a piece-wise linear sourcing cost functions works as a (cost)

disadvantage: less volume is reshored when costs are piece-wise linear (for an equal average cost per

unit). Base parameters: h= 1, b= 9, cf = 4, cs = 3.8, k= 1,m= 1.1, dt
d∼N (µ= 10, σ= 2.5)

the pipeline inventory vector.6 To operate our modified dual base-stock policy we will use both a

single index policy that keeps track of one inventory position that aggregates the net inventory

and all outstanding orders such as in Scheller-Wolf et al. [2003], and a dual index policy that keeps

track of two inventory positions that aggregate the net inventory and all outstanding orders to

arrive within the lead time of the fast and slow source respectively, such as in Veeraraghavan and

Scheller-Wolf [2008].

We adopt 36 of the numerical parameter settings of Scheller-Wolf et al. [2003] with a small

uniform demand support for numerical tractability. Their model does not include a base capacity

or overtime premium. We set the base capacity to either k = 1, such that only limited units are

available within the base capacity, or to k= +∞ indicating there is ample capacity and our model

is equivalent to conventional linear dual sourcing. The overtime premium is set to either m= 1.1

6 Whittemore and Saunders [1977] have shown this result under linear sourcing costs; our numerical results indicate
that in our setting when the sourcing costs of the fast supply are piece-wise linear and convex, the optimal policy is
also no longer a base-stock policy.
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in the base case, to m= +∞ to reflect the case with no volume flexibility, or to m= 1 to reflect

perfect volume flexibility (which is equivalent to k= +∞).

Table 1 reports the optimality gap of the single and dual index modified base-stock policies. The

cost of the optimal policies is obtained using a linear programming formulation of the underlying

dynamic program, and the cost of the modified dual base-stock policies by obtaining the steady-

state cost of the underlying Markov Chain with the best policy parameters found through an

exhaustive search.

We find that the optimality gaps under limited volume flexibility (k = 1 and m = 1.1) are of

the same order of magnitude as the scenario with no volume flexibility (k = 1 and m= +∞), as

well as the scenario with linear sourcing costs (k=∞) with the dual index policies outperforming

the single index policies (similar to the results of Scheller-Wolf et al. [2003] under linear sourcing

costs). The performance of both policies decreases as the lead time difference between both sources

gets longer, where the performance of the single index tends to decrease faster compared to the

dual index. As also outlined by Scheller-Wolf et al. [2003], this may be attributed to the fact that,

particularly when the demand support is small, a single index policy has no fine control. Finally,

our numerical results confirm Proposition 1 that limited volume flexibility reduces the fraction re-

shored and thus effectively works as a cost disadvantage. In other words, our key findings continue

to hold under non-consecutive lead times.

7. Conclusion

We investigate dual-source supply chains in which fast supply is not only more expensive, it also

is less flexible. Volumes sourced locally beyond a base capacity are charged an overtime premium.

We proved a modified dual base-stock policy is optimal when both supply options have consecutive

lead times. When sourcing costs are piece-wise linear, the parameters of the optimal single sourcing

policy cannot be captured analytically as the optimal policy is not a demand replacement policy.

When combined with a remote supplier that has linear sourcing costs, the resulting optimal dual

sourcing policy, while being more complex, is often a demand replacement policy. This simplifies

the characterization of the optimal policy parameters. Our analysis shows how a local supplier

becomes more competitive and captures more volume by increasing its base capacity or lowering

its overtime premium. Both levers act as strategic substitutes, of which we show their marginal

substitution rates. In practice, both actions require investments and, depending on the marginal

investment costs, one will be preferred over the other. Our key recommendation to local suppliers

is to consider investments that improve volume flexibility to compete with cheaper offshore supply.
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Parameters Optimality Gap Fraction reshored

cf ls b k m Single Index Dual Index Single Index Dual Index Optimal

1020 2 95 1 1.1 4,8% 1,6% 0,0% 1,7% 5,0%
+∞ 4,8% 1,6% 0,0% 1,7% 5,0%

+∞ 1 5,2% 0,6% 0,0% 6,1% 7,6%

495 1 1.1 3,0% 1,0% 10,0% 5,0% 2,5%
+∞ 3,0% 1,0% 10,0% 5,0% 2,5%

+∞ 1 12,7% 1,2% 10,0% 13,9% 9,3%

3 95 1 1.1 10,6% 2,7% 10,0% 6,0% 7,4%
+∞ 10,6% 2,7% 10,0% 6,0% 7,4%

+∞ 1 14,3% 2,9% 10,0% 14,3% 15,1%

495 1 1.1 12,4% 3,4% 10,0% 3,2% 4,5%
+∞ 12,4% 4,4% 10,0% 3,1% 4,5%

+∞ 1 27,4%. 2,8% 30,0% 14,3% 15,9%

1050 2 95 1 1.1 0,0% 0,0% 0,0% 0,0% 0,0%
+∞ 0,0% 0,0% 0,0% 0,0% 0,0%

+∞ 1 0,0% 0,0% 0,0% 0,0% 0,0%

495 1 1.1 8,4% 0,9% 0,0% 1,7% 2,5%
+∞ 8,4% 0,9% 0,0% 1,7% 2,5%

+∞ 1 8,4% 0,9% 0,0% 1,7% 2,5%

3 95 1 1.1 2,7% 0,4% 0,0% 3,1% 2,3%
+∞ 2,7% 0,4% 0,0% 3,1% 2,3%

+∞ 1 3,1% 0,8% 0,0% 1,5% 2,9%

495 1 1.1 12,1% 1,0% 0,0% 3,2% 4,1%
+∞ 12,1% 1,7% 0,0% 3,1% 4,1%

+∞ 1 17,7% 1,8% 0,0% 3,9% 4,9%

1100 2 95 1 1.1 0,0% 0,0% 0,0% 0,0% 0,0%
+∞ 0,0% 0,0% 0,0% 0,0% 0,0%

+∞ 1 0,0% 0,0% 0,0% 0,0% 0,0%

495 1 1.1 1,2% 0,0% 0,0% 1,7% 1,7%
+∞ 1,2% 0,0% 0,0% 1,7% 1,7%

+∞ 1 1,2% 0,0% 0,0% 1,7% 1,7%

3 95 1 1.1 0,0% 0,0% 0,0% 0,0% 0,0%
+∞ 0,0% 0,0% 0,0% 0,0% 0,0%

+∞ 1 0,0% 0,0% 0,0% 0,0% 0,0%

495 1 1.1 5,0% 0,7% 0,0% 1,3% 1,7%
+∞ 5,0% 0,7% 0,0% 1,3% 1,7%

+∞ 1 5,5% 1,1% 0,0% 1,5% 1,9%

Table (1) Performance of the modified dual base-stock policy for a larger numerical experiment. The fixed

numerical parameters are lf = 0, h= 5, and cs = 1000. Demand is discrete and uniform: D∼U [0,4].
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Appendix A: Proofs

Proof of Theorem 1 We prove discounted-cost optimality of the modified dual base-stock policy by back-

ward induction for a finite horizon of length T (extending Xin and Van Mieghem [2021]). In particular, we

aim to find the policy with optimal discounted cost-to-go vt[xt−1] from t until T starting with inventory level

xt−1 that satisfies the well-known Bellman equation for every period t∈ {1, · · · , T}:

vt[xt−1] = min
q
f
t ,qst≥0

{
mcf [qft − k]+ + cf (qft ∧ k) + csq

s
t +Lt[xt−1 + qft ] +αE[vt+1[xt−1 + qft + qst −Dt]]

}
. (20)

and terminal value function vT+1[xT ] =−cT+1xT , where cT+1 ≥ 0.

The cost in the last period T consists of the ordering cost of the fast source (both at regular and overtime

cost), the expected inventory mismatch, and the units left over at the end of the period may be returned

for a per-unit of revenue cT+1 (likewise, backlogged demand is fulfilled at per-unit cost cT+1). Later, we will

determine the specific salvage cost that ensures the optimal policy is stationary under certain conditions. No

order from the slow supplier will be placed in the last period, qs,?T = 0, as the ordered units will not arrive in

time to influence the inventory mismatch of period T . It only remains to determine qfT based on the ending

inventory of the previous period IT−1 and the slow order qsT−1 that arrives in period T . Without loss of

generalization, we only need to consider their sum, the inventory position xT−1.
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The value function in the last period T thus satisfies:

vT [xT−1] = min
q
f
T
≥0

{
mcf [qfT − k]+ + cf (qfT ∧ k) +LT [xT−1 + qfT ]−αE[cT+1(xT−1 + qfT −DT )]

}
. (21)

By a change of variables, yfT , xT−1 + qfT , the minimization becomes

vT [xT−1] = min
y
f
T
≥xT−1

{
mcf [yfT −xT−1− k]+ + cf ([yfT −xT−1]+ ∧ k) +LT [yfT ]−αE[cT+1(yfT −DT )]

}
, (22)

which is jointly convex in xT−1 and yfT as per Lemma 1.

Let yf,?T [xT−1], Sf
T [xT−1] be a minimizer. Including it in (22) yields:

vT [xT−1] =mcf [Sf
T [xT−1]−xT−1− k]+ + cf ([Sf

T [xT−1]−xT−1]+ ∧ k)+

LT [Sf
T [xT−1]]−αE[cT+1(Sf

T [xT−1]−DT )]. (23)

By convexity, established in Lemma 1, it is then optimal to order fast up to Sf
T [xT−1], with:

Sf
T [xT−1] =


xT−1 if Sf

1,T ≤ xT−1,
Sf
1,T if Sf

1,T − k≤ xT−1 <S
f
1,T ,

xT−1 + k if Sf
2,T − k≤ xT−1 <S

f
1,T − k,

Sf
2,T if xT−1 <S

f
2,T − k,

(24)

where the two fast order-up-to levels in period T are:

Sf
1,T = F−1DT

[
b− (cf −αcT+1)

b+h

]
≥ Sf

2,T = F−1DT

[
b− (mcf −αcT+1)

b+h

]
, (25)

which satisfy the sufficient first-order conditions on (22). As qf,?T = [Sf
T [xT−1]− xT−1]+, using (24), the fast

order becomes

qf,?T [xT−1] =


0 if Sf

1,T ≤ xT−1,
Sf
1,T −xT−1 if Sf

1,T − k≤ xT−1 <S
f
1,T ,

k if Sf
2,T − k≤ xT−1 <S

f
1,T − k,

Sf
2,T −xT−1 if xT−1 <S

f
2,T − k.

(26)

Proceeding backwards to period T − 1:

vT−1[xT−2] = min
q
f
T−1

,qs
T−1
≥0

{
mcf [qfT−1− k]+ + cf (qfT−1 ∧ k) + csq

s
T−1+

LT−1[xT−2 + qfT−1] +αE[vT [xT−2 + qfT−1 + qsT−1−DT−1]]
}
. (27)

We solve optimization (27) first for the interior case where both optimal quantities are positive: qf,?T−1 > 0 and

qs,?T−1 > 0 (Case A). Then we consider the three boundary cases: q?,fT−1 = 0 while qs,?T−1 > 0 (Case B); qf,?T−1 > 0

while qs,?T−1 = 0 (Case C); and finally qf,?T−1 = qs,?T−1 = 0 (Case D). Determining when the boundary cases arise

will have important implications on the possibility to determine the policy parameters explicitly in §5.

Case A: qf,?T−1 > 0 and qs,?T−1 > 0. As both orders are strictly positive, optimization (27) can be rearranged

such that the minimization of the slow order becomes an inner minimization:

vT−1[xT−2] = min
q
f
T−1

>0

{
mcf [qfT−1− k]+ + cf (qfT−1 ∧ k) +LT−1[xT−2 + qfT−1]+

min
qs
T−1

>0

{
csq

s
T−1 +αE[vT [xT−2 + qfT−1 + qsT−1−DT−1]]

}}
, (28)
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and by a change of variables: ysT−1 , xT−2 + qfT−1 + qsT−1 becomes7:

vT−1[xT−2] = min
q
f
T−1

>0

{
(mcf − cs)[qfT−1− k]+ + (cf − cs)(qfT−1 ∧ k) +LT−1[xT−2 + qfT−1]+

min
ys
T−1

>xT−2+q
f
T−1

{
cs(y

s
T−1−xT−2) +αE[vT [(ysT−1−DT−1)]]

}}
. (29)

Let ys,∗T−1 , S
s
T−1 be a minimizer of the inner minimization. Then:

vT−1[xT−2] = min
q
f
T−1

>0

{
(mcf − cs)[qfT−1− k]+ + (cf − cs)(qfT−1 ∧ k) +LT−1[xT−2 + qfT−1]+ (30)

cs(S
s
T−1−xT−2) +αE[vT [Ss

T−1−DT−1]]
}
,

and it is optimal to raise the inventory position to Ss
T−1 using both orders: qs,?T−1 = Ss

T−1−xT−2− qf,?T−1, yet it

remains to determine qf,?T−1. Given that Ss
T−1 >xT−2 + qf,?T−1 in Case A, Ss

T−1 is independent of the fast order,

qf,?T−1. The latter then minimizes the sum of the first three terms in (30) which are myopic, i.e., independent

of the future cost vT [·]. In that case, after a change of variables, yfT−1 , xT−2 + qfT−1, we denote a minimizer

of this myopic cost by:

UM[xT−2] = arg min
y
f
T−1
≥xT−2

{
(mcf − cs)[yfT−1−xT−2− k]+ + (cf − cs)([yfT−1−xT−2]+ ∧ k) +LT−1[yfT−1]

}
. (31)

The latter objective function is convex so that the sufficient first-order conditions reveal it is optimal to

order up to UM[xT−2], with

UM[xT−2] =

Sf
1,T−1 if Sf

1,T−1− k≤ xT−2 <S
f
1,T−1,

xT−2 + k if Sf
2,T−1− k≤ xT−2 <S

f
1,T−1− k,

Sf
2,T−1 if xT−2 <S

f
2,T−1− k,

(32)

where

Sf
1,T−1 = F−1DT−1

[
b− (cf − cs)

b+h

]
≥ Sf

2,T−1 = F−1DT−1

[
b− (mcf − cs)

b+h

]
. (33)

Hence: qf,?T =UM[xT−2]−xT−2 where:

qf,?T−1[xT−2] =

Sf
1,T−1−xT−2 if Sf

1,T−1− k≤ xT−2 <S
f
1,T−1,

k if Sf
2,T−1− k≤ xT−2 <S

f
1,T−1− k,

Sf
2,T−1−xT−2 if xT−2 <S

f
2,T−1− k.

(34)

We conclude by noting that, in support of our analysis in §5, Case A only holds when both orders are

are strictly positive. The inventory position thus needs to be below both base-stock levels: xT−2 <S
s
T−1 and

xT−2 <UM[xT−2].

Case B: qf,?T−1 = 0 while qs,?T−1 > 0. Optimization (27) simplifies to

vT−1[xT−2] = min
qs
T−1

>0

{
csq

s
T−1 +LT−1[xT−2] +αE[vT [xT−2 + qsT−1−DT−1]]

}
. (35)

Similar to Case A, let ys,∗T−1 , S
s
T−1 be a minimizer of (35). The optimal slow order quantity is then to order

up to Ss
T−1, hence: qs,?T−1 = Ss

T−1 − xT−2. As no fast order is placed in Case B (qf,?T−1 = 0) the optimal fast

order-up-to level simply equals xT−2. Note, Case B applies when the inventory position is at or above the

highest fast base-stock level of Case A (else ordering fast would reduce costs), and below the slow base-stock

7 Note that ∀k, qfT−1 = [qfT−1− k]+ + (qfT−1 ∧ k).
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level (else not ordering slow would reduce costs), i.e., Sf
1,T−1 ≤ xT−2 < Ss

T−1 where Sf
1,T−1 is defined as in

(33).

Case C: qf,?T−1 > 0 while qs,?T−1 = 0. Optimization (27) can then be expressed as:

vT−1[xT−2] = min
q
f
T−1
≥0

{
mcf [qfT−1− k]+ + cf (qfT−1 ∧ k)+

LT−1[xT−2 + qfT−1] +αE[vT [xT−2 + qfT−1−DT−1]]
}
. (36)

In this case, the fast order also impacts future periods. After a change of variables yfT−1 , xT−2 + qfT−1,

we denote a (non-myopic) minimizer in period T − 1 by:

UM[xT−2] = arg min
y
f
T−1
≥x

{
mcf [yfT−1−xT−2− k]+ + cf ([yfT−1−xT−2]+ ∧ k)+

LT−1[yfT−1] +αE[vT [yfT−1−DT−1]]
}
. (37)

Again, the objective function is convex so that the sufficient first-order conditions yield that it is optimal

to order up to UM[xT−2], with

UM[xT−2] =

Sf
1,T−1 if Sf

1,T−1− k≤ xT−2 <S
f
1,T−1,

xT−2 + k if Sf
2,T−1− k≤ xT−2 <S

f
1,T−1− k,

Sf
2,T−1 if xT−2 <S

f
2,T−1− k,

(38)

yet, in contrast to case A, no simple fractile expression on the demand in period T − 1 can be determined

for the fast base-stock levels, Sf
1,T−1 and Sf

2,T−1, as the fast order also impacts the cost in period T . The

optimal fast order satisfies qf,?T =UM[xT−2]−xT−2 where:

qf,?T−1[xT−2] =

Sf
1,T−1−xT−2 if Sf

1,T−1− k≤ xT−2 <S
f
1,T−1,

k if Sf
2,T−1− k≤ xT−2 <S

f
1,T−1− k,

Sf
2,T−1−xT−2 if xT−2 <S

f
2,T−1− k.

(39)

and, as per the boundary condition of Case C: qs,?T−1 = 0. Note, a necessary condition for case C to occur

is that the inventory position must exceed the slow base-stock level (as established in cases A and B) and

must not exceed the fast base-stock level: Ss
T−1 ≤ xT−2 <UM[xT−2]. In settings with stationary demand, the

latter condition will mostly hold when only the fast supplier is used, as we will show in §5 and Appendix C.

Case D: qf,?T−1 = qs,?T−1 = 0. Optimization (27) simplifies to

vT−1[xT−2] =LT−1[xT−2] +αE[vT [xT−2−DT−1]], (40)

which is again convex using similar arguments as above. The optimal order quantities are qs,?T−1 = qf,?T−1 = 0

as per the boundary condition such that Ss
T−1 ≤ xT−2. If Ss

T−1 <UM[xT−2] such that there exist inventory

positions for which case C may occur, then the following constraint on xT−2 must hold to enforce no fast

orders are made: UM[xT−2]<xT−2. If Ss >UM[xT−2] such that case C never appears, then UM[xT−2]<xT−2

must hold to enforce no fast orders. The latter conditions show that Case D only occurs whenever the

inventory position exceeds the highest base-stock levels of all possible Cases A, B and C.

Combining the four cases reveals that a modified dual base-stock policy is optimal in period T − 1 such

that (8) and (9) apply when t = T − 1. We can follow the same line of argument for period T − 2 (i.e.,

repeating the same arguments to show that vT−2[·] is convex as vT−1[·] is convex and so are all costs incurred
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in period T −2, and showing that a modified dual base-stock policy is again optimal in period T −2). (Note

that only convexity of vT−1[·] is required to ensure a modified dual base-stock policy is optimal; to express

the policy parameters, which we do in the next section, we also use that a modified dual base-stock policy

is optimal in period T − 1.) Repeating until period t reveals a modified dual base-stock policy is optimal in

every period. �

Proof of Theorem 2 We rely on Huh et al. [2011] who derived sufficient conditions. In particular, we

demonstrate how all the conditions to invoke Theorem 3.1 in Huh et al. [2011] are satisfied: They first

state two assumptions which are clearly satisfied as our problem is very close to the problems they study:

(1) our way of modeling the inventory problem and demand uncertainty does not deviate from their mild

assumptions on the underlying MDP (see their Assumption 1); (2) our piece-wise linear ordering cost and

convex inventory mismatch function satisfies the desired structure (see their Assumption 2). In addition to

these assumptions, they state a sufficient condition which implies that states with inventory positions outside

of a range [M,M ] are dominated by states that fall within the range. Our state space is one-dimensional

(consisting of the inventory position). A natural candidate for M is zero: all states with lower inventory

positions are dominated by M = 0 as long as infinite backlogging is sub-optimal. For the upper bound M we

can set its value to the first level at which the expected marginal increase in holding cost exceeds the cost

of ordering using the fast source (see also Sheopuri et al. [2010] for a more detailed dual sourcing example).

This concludes that the modified dual base-stock policy is infinite-horizon average-cost optimal. �

Proof of Corollary 1 From Theorem 1 we know that a modified dual base-stock policy is optimal in every

period. We focus on period T −1 and will show that if Sf
2,M ≤ S

f
1,M <Ss, which we henceforth assume, then

these are the optimal base-stock levels in period T − 1: Sf
2,T−1 = Sf

2,M ≤ S
f
1,T−1 = Sf

1,M <Ss
T−1 = Ss. As long

as the slow base-stock level is strictly larger than the fast base-stock levels, boundary case C of our proof in

which only the fast supplier is used (qs,?T−1 = 0 while qf,?T−1 > 0) will never occur. As a consequence, the fast

base-stock levels are always myopic. From our proof, it is clear that in case A, the fast base-stock levels are

given by (33) such that Sf
2,T = Sf

2,T−1 = Sf
2,M ≤ S

f
1,T = Sf

1,T−1 = Sf
1,M directly follows from assuming that

cT+1 = cs/α. In cases B and D, no fast order is placed as these cases correspond to inventory positions above

the highest fast base-stock level Sf
1,T−1 = Sf

1,M ≤ xT−2.

We now focus on determining Ss
T−1 which, in contrast to the fast order, does influence the costs in period

T . Because Sf
1,T−1 = Sf

1,M < Ss
T−1 as per our assumption, the inventory balance equation in period T − 1:

xT−1 = xT−2 + qfT−1 + qsT−1 −DT−1 is equivalent to xT−1 = Ss
T−1 −DT−1. Formulating the gradient of the

value function in period T − 1 wrt Ss
T−1 yields:

dvT−1[xT−2]

dSs
T−1

=

 cs +α
dvT [Ss

T−1−DT−1]

dSs
T−1

if xT−2 ≤ Ss
T−1, [Case A and B of Theorem 1’s proof.]

α
dvT [xT−2−DT−1]

dSs
T−1

if Ss
T−1 ≤ xT−2, [Case D of Theorem 1’s proof.]

(41)

with

dvT [Ss
T−1−DT−1]

dSs
T−1

=−αcs + (cs−mcf )F̄DT−1
[Ss

T−1−S
f
T,2 + k]+∫ Ss

T−1−S
f
T,2

+k

Ss
T−1
−S

f
T,1

+k

L′T [Ss
T−1− ξT−1 + k]f [ξT−1]dξT−1+
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(cs− cf )(F̄DT−1
[Ss

T−1−S
f
T,1]− F̄DT−1

[Ss
T−1−S

f
T,1 + k])+∫ Ss

T−1−S
f
T,1

0

L′T [Ss
T−1− ξT−1]f [ξT−1]dξT−1 = 0,

with ξT−1 representing the random demand in period T − 1 with density f [ξT−1] and the gradient of the

inventory mismatch, L′T [·], equal to hFDT
[·]−bF̄DT

[·]. The latter function is similar to results obtained in dual

sourcing systems with linear sourcing costs (see e.g., Bulinskaya [1964a,b], Whittemore and Saunders [1977])

but includes two new regions, i.e., regions III and IV in panel (d) of Figure 2, that emerge due to the piece-

wise linear cost function we adopt. As we assume demand is continuous and iid, the case where the starting

inventory position exceeds the slow base-stock level, Ss
T−1 <xT−2 is transient (Case D of Theorem 1’s proof).

Once the inventory position falls below the slow base-stock level, and assuming demand is non-negative, the

inventory position will not exceed the slow base-stock levels in future periods.

Following the same arguments for the preceding periods shows that both the fast base-stock levels and

the slow base-stock level remain stationary in all periods t ∈ {1, · · · , T − 2}, given by the values specified in

(11) and (12), in which we drop the time indices as the base-stock levels are stationary (with the exception

of the final period T where no slow order is placed). �

Proof of Lemma 1 The ordering cost and inventory loss function are convex, and so is their sum (positive

superposition) while subtracting the linear convex terminal value function preserves convexity. The objective

function is thus convex in y for each xT−1. Lastly, using Theorem A.4 of Porteus [2002] (minimization

preserves convexity under specific conditions which a base-stock policy satisfies) we can conclude that also

vT [·] is convex. �

Proof of Lemma 2 The ordering cost and inventory loss function are convex, and so is their sum (positive

superposition) whereas the value function in period T is convex as per Lemma 1. The proof of Theorem 1

identifies four cases. In Case A, the inner minimization of the fast order is convex as minimization preserves

convexity (Theorem A.4 of Porteus [2002]). Also for the slow order minimization, Theorem A.4 of Porteus

[2002] can be invoked such that vT−1[·] is convex in Case A. The latter argument (minimization preserves

convexity) directly holds for cases B, C and D, concluding that convexity of the value function is preserved.

�

Appendix B: Applying our model for general consecutive lead times

To apply our results in a system with general consecutive lead times where lf = l and ls = l+ 1, we use the

same approach as Fukuda [1964] (see their Eqs 42-46). By defining Lt+i[x], αi
∫∞
0
Lt+i−1[x−ξt+i]f [ξt+i]dξt+i

for i≥ 1, equations containing the inventory mismatch of period t, Lt[·], may be rewritten using the inventory

mismatch in period t+ lf , Lt+lf [·]. All inventory mismatch costs prior to period t− 1 + lf are ‘sunk’ as they

cannot be influenced by the current order quantities. Nonetheless, the analysis to obtain the optimal policy

and parameter remains the same, except that all results are obtained by using convolutions of the demand.

Appendix C: Comment on when the policy parameters can be expressed explicitly

In §5 we demonstrated how the base-stock levels can be obtained whenever the slow base-stock level strictly

exceeds the highest fast myopic base-stock level: Sf
1,M <Ss. The latter will hold when there exists a solution

for (12) where g[x] = 0. The function g[x] is a non-decreasing function (as it is the gradient on the convex
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value function). It will therefore have a solution where g[x] = 0 when g[Sf
1,M]< 0. The latter is easily satisfied

for a vast amount of numerical dual sourcing settings (we only focus on settings where both sources are

used). The only possible case where this condition would not hold is when the policy parameters are ordered

as follows: Sf
2 < Ss < Sf

1 . We tried to numerically construct an example of such a scenario which appeared

particularly difficult. A feasible, yet very extreme, scenario would be when demand is normally distributed

with mean µ= 10 and standard deviation σ = 2.5, as in the base scenario of the previous section, while the

unit holding cost is also kept fixed at h= 1. We then adapt the parameters as follows to create an extreme

case where Sf
2 < Ss < Sf

1 . We set the backlog cost to a small number: b = 0.01 such that the service level

is smaller than 1% (as in this case sourcing slow is discouraged to avoid holding costs). Subsequently we

set the cost gap between both sources equal to zero: cs = cf = 3.8 (again to encourage sourcing fast). The

overtime premium is set infinitely high, m= +∞, to create a large region of inaction in which only k units are

ordered. It remains to determine k: For values up to k= 30, the slow base-stock level exceeds the fast myopic

base-stock level. For values above k = 30, we do not find a slow base-stock level that satisfies Corollary 1.

Yet, the case is so extreme that it is highly unlikely that a slow order will ever be placed, as the demand

needs to exceed the mean demand by 8 standard deviations.

Appendix D: Base-stock sensitivities

Figure 7 visualizes the impact of changing the base capacity k (left panel) and the overtime premium m

(middle panel) on the three base-stock levels. The sensitivity of the slow base-stock level Ss wrt the base

capacity, k, is obtained by using implicit differentiation on (12) wrt k of both sides while solving for dSs/dk.

Using Leibniz’s rule we obtain:

dSs

dk
=−

∫ Ss−S
f
2+k

Ss−S
f
1+k

L′′t+1[Ss− ξ+ k]f [ξ]dξ∫ Ss−S
f
2+k

Ss−S
f
1+k

L′′t+1[Ss− ξ+ k]f [ξ]dξ+
∫ Ss−S

f
1

0
L′′t+1[Ss− ξ]f [ξ]dξ

,

=−

∫ Ss−S
f
2+k

Ss−S
f
1+k

f [Ss− ξ+ k]f [ξ]dξ∫ Ss−S
f
2+k

Ss−S
f
1+k

f [Ss− ξ+ k]f [ξ]dξ+
∫ Ss−S

f
1

0
f [Ss− ξ]f [ξ]dξ

≤ 0.

(42)

We observe partial substitution: −1 ≤ (dSs/dk) ≤ 0. Similarly, we can show the slow base-stock level Ss

increases by taking the derivative with respect to m of both sides while solving for dSs/dm, which will result

in:

dSs

dm
=

cf (1−F [Ss−Sf
2 + k])∫ Ss−S

f
2+k

Ss−S
f
1+k

L′′t+1[Ss− ξ+ k]f [ξ]dξ
=

cf (1−F [Ss−Sf
2 + k])

(h+ b)
∫ Ss−S

f
2+k

Ss−S
f
1+k

f [Ss− ξ+ k]f [ξ]dξ
≥ 0. (43)

The impact of m on Ss is strictly non-negative but reduces to zero when m increases to +∞. When demand

is normally distributed we find the slow base-stock level Ss is non-decreasing in σ:

dSs

dσ
=

1∫ Ss−S
f
1

0
L′′t+1[Ss− ξ]f [ξ]dξ+

∫ Ss−S
f
2+k

Ss−S
f
1+k

L′′t+1[Ss− ξ+ k]f [ξ]dξ

=
1

(h+ b)(
∫ Ss−S

f
1

0
f [Ss− ξ]f [ξ]dξ+

∫ Ss−S
f
2+k

Ss−S
f
1+k

f [Ss− ξ+ k]f [ξ]dξ)
≥ 0.
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Figure (7) Impact of base capacity, overtime premium and variability on the base-stock levels. Parameters:

h= 1, b= 9, cf = 4, cs = 3.8, k= 1,m= 1.1, dt
d∼N (µ= 10, σ= 2.5)

We also show the impact of the standard deviation when demand is normally distributed (right panel).

We see that Sf
1 is independent of k and m, which follows directly from (11). The lower fast base-stock level,

Sf
2 , is independent of the base capacity but does depend on m. The gradient is: dSf

2/dm=−cff [Ss−Sf
2 ]/

(b+h)≤ 0, which drops to −∞ when m→∞ as visually supported in panel (b) of Figure 7. This eliminates

the need for overtime; all orders are capped at the base capacity k. To capture the impact of the standard

deviation we assume demand is normally distributed with mean µ and standard deviation σ; its CDF and

pdf are denoted by Φ and φ, respectively. Denote

z1 = Φ−1
[
b− (cf − cs)

b+h

]
, and z2 = Φ−1

[
b− (mcf − cs)

b+h

]
, (44)

then the fast base-stock levels satisfy Sf
1 = µ+ z1σ and Sf

2 = µ+ z2σ. We observe that the fast base-stock

levels scale linearly wrt the standard deviation: dSf
1/dσ= z1 and dSf

2/dσ= z2 (see panel c of Figure 7).

Appendix E: Expressions for the sourcing splits

Here we provide explicit expressions to compute the sourcing shares of the fast supply at regular cost:

ρfr =

∫∞
Ss−S

f
1+k

kf [ξ]dξ+
∫ Ss−S

f
1+k

Ss−S
f
1

(ξ− (Ss−Sf
1 ))f [ξ]dξ

µ
; (45)

for the share of fast supply at overtime cost:

ρor =

∫∞
Ss−S

f
2+k

(
ξ− (Ss−Sf

2 + k)
)
f [ξ]dξ

µ
; (46)

and for the share of slow supply:

ρs =

∫∞
Ss−S

f
2+k

(
Ss−Sf

2

)
f [ξ]dξ+

∫ Ss−S
f
2+k

Ss−S
f
1+k

(ξ− k)f [ξ]dξ+
∫ Ss−S

f
1+k

Ss−S
f
1

(
Ss−Sf

1

)
f [ξ]dξ+

∫ Ss−S
f
1

0
ξf [ξ]dξ

µ
.

(47)
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