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Abstract

In this paper, a quasi-linear parameter varying sliding mode control allocation law is pro-
posed for the fault tolerant control of an octorotor. In the event of rotor faults/failures,
an allocation law redistributes the control effort among the remaining healthy rotors. The
sliding mode control law is designed to guarantee asymptotic tracking of a reference model
which is tuned on-line, through an interpolated feedback gain, to ensure that the control
signals remain within their saturation limits. A method for designing the parameterised
feedback gain is proposed which is shown to maximise a defined stability criteria whilst
preventing undesirable performance characteristics in the reference model. The proposed
scheme is tested on a non-linear octorotor model in the presence of severe rotor failures
and uncertainty/disturbances.

1 INTRODUCTION

Due to their low maintenance costs and high level of mobility,
multi-rotor Unmanned Aerial Vehicles (UAVs) have been pro-
posed in recent years for a wide variety of applications; these
have included automating warehouses [1, 2], delivering goods
[3, 4], surveillance [5, 6] and more [7]. UAVs have also gained
popularity for testing control systems, in both teaching [8] and
research [9, 10] environments, due to their simplicity and ease
of use within a laboratory setting.

To ensure safe operation commercially, it is important that
a UAV maintains some level of performance when presented
with rotor faults or failures—and this can be achieved through
the implementation of a Fault Tolerant Control (FTC) scheme.
Quadrotors are one of the more popular forms of multi-rotors
and many works have investigated FTC for these systems in the
presence of rotor faults [11–13]. Due to their lack of redun-
dancy, quadrotors are unable to deal with complete rotor fail-
ures without sacrificing the controllability of the yaw angle to
maintain controllability of the other states [10, 14, 15].

Other multi-rotors, such as the hexarotor or the octorotor,
feature a greater number of rotors. Not only does this allow
them to carry a greater payload, it also provides them with actu-
ator redundancy. This redundancy can be utilised by a FTC
scheme to maintain some level of system performance in the
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event of complete rotor failures—making them an inherently
safer alternative to the quadrotor. Several works have considered
the robust control of hexa/octorotors when presented with
rotor faults: these include Sliding Mode Control (SMC) [9, 16];
the backstepping approach in [17]; and adaptive methods pro-
posed in [18, 19]. In contrast, [20] proposes a bespoke method
which can handle a single rotor failure by ‘switching off’ the mir-
rored rotor - effectively turning an octorotor into a hexarotor.

Control Allocation (CA), in various forms, has proven a
popular choice for handling redundancy in over-actuated sys-
tems [21]. This allows the closed-loop performance (designed
through a robust ‘virtual’ control law) and the control distribu-
tion to the physical actuators, to be handled independently. In
[9] continuous Linear Parameter Varying (LPV) CA was used
within a SMC framework to effectively control an octorotor in
the presence of multiple rotor faults and failures. One issue in
achieving fault tolerance through control signal redistribution
is the added control effort that healthy rotors are expected to
contribute. If actuator limits are not directly considered in the
control synthesis, this can result in control signals saturating—
leading to loss of performance and even instability. This is a
particularly hard problem for multi-rotors due to their fast and
marginally stable open-loop dynamics.

Many works have highlighted the issue of saturating rotors
[22-30]. In [22] variable pitch rotors are suggested for
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increasing the total control effort available to the plant;
however, this can be expensive and impractical for many
smaller/mid sized multi-rotors. One common solution is
the use of an optimal version of CA: this was shown to be
effective in both [23] and [24] to ensure that the rotor con-
trol signals remained within their limits through solving a
series of constrained on-line optimisation problems, whereas
the work in [25] proposes a redistributed pseudo-inverse
approach. The works in [26, 27] propose versions of opti-
mised CA which prioritises performance in the height, roll
and pitch tracking (i.e., those channels that are most vital
to system stability) in favour of poorer yaw tracking. For
any of these methods to be effective (in removing the per-
formance degradation associated with rotor saturation), the
assumption needs to be made that the ‘virtual’ control (or at
least some of its components in the case of [26, 27]) remains
achievable with respect to the rotor’s health and saturation
limits. Such an assumption becomes difficult to justify when
presented with extreme fault/failure scenarios, aggressive
manoeuvres and disturbances/uncertainty (or a mixture of all
three).

Instead of preventing saturation through control effort redis-
tribution, [28, 29] propose forms of reference hedging in
which the multi-rotor’s path is adjusted to ensure that the
resulting control signals are feasible. However, these method
are ineffective in scenarios where saturation occurs when
just trying to regulate the system. The work in [30] pro-
poses a Model Predictive Control (MPC) scheme which deals
with the closed-loop performance and control distribution
in one step through a constrained optimisation scheme—
ensuring feasible signals are produced. However such a scheme
is computationally difficult to realise in real-time, particu-
larly with the limited computing capacity available on small
multi-rotors.

Due to its inherent ability to reject a certain class of distur-
bances/uncertainty, SMC has proven popular in the design of
FTC schemes. In [31] a Neural Network (NN) based fault toler-
ant Terminal SMC is developed. In [16] a Non-linear Dynamic
Inversion (NDI) law is modified to include a sliding mode.
An output SMC is proposed in [32] for FTC of time-varying
systems. Although not a huge focus of research, some SMC
works explicitly consider the effects of saturation. In [33] a
conventional SMC is designed for the FTC of chaotic systems;
however, the controller only provides some stability guarantees
when a control signal saturates and does not attempt to pre-
vent saturation occurring in the first place. In [34] and [35] the
super-twisting algorithm is employed: in these works the con-
troller ensures that control signals do not saturate—but at a cost
to performance when not in saturation. This is improved upon
in [36], which ensures performance is not sacrificed nominally,
however (similarly to [33]) the scheme does not prevent the
control signals from saturating. Out of [33–36] only [33] con-
siders the problem of actuator faults/failures. This situation is
more challenging in the sense that the actuator limits can change
during the controller operation as a consequence of the faults,
rather than the situation considered in [34, 35] where the limits

are known a-prior and the controller is designed cognizant of
the limitations. None of these aforementioned works consider
the problems of reference tracking.

In [37], to address the situation where the actuator limits
change during operation an SMC method is proposed which
interpolates between two control designs (one high perfor-
mance and one low performance). The controller is scheduled
such that the highest performance controller (subject to satu-
ration limits) is selected. This method relaxes the assumption
on the ‘virtual’ control and instead an assumption is made that
an acceptable low performance (stabilising) controller can be
designed. This method is also able to handle the problems of
saturation during both system regulation and reference track-
ing. The work in [38] proposes a form of model reference SMC
where, instead of interpolating between controllers, the con-
troller remains fixed and is instead used to track an interpolated
reference model (which is a blending of a high performance and
a low performance reference model). This allows the design and
analysis of both the interpolated reference model and the SMC
to be conducted independently of each other; however, stability
of the closed-loop is only guaranteed if both the high perfor-
mance and low performance reference models share a Common
Quadratic Lyapunov Function (CQLF). In practice, designing
two reference models (with significantly different performance
levels) subject to a CQLF is difficult.

In this paper the problem of rotor saturation is addressed
through a Sliding Mode Control Allocation scheme which is
used to track an on-line optimised interpolated reference model.
The proposed scheme increases the applicability of the ideas in
[22–27 through ensuring that the ‘virtual’ control remains fea-
sible despite faults/failures, aggressive manoeuvres and distur-
bances/uncertainty. Unlike the works in [28, 29] the proposed
scheme is also applicable to the regulation problem without the
large computational load of the MPC scheme in [30]. Since the
scheme also ensures that the control signals remain feasible,
there is no need for a complex stability analysis of the saturated
system (such as in [33, 36]). This paper also builds on the theo-
retical contributions in [9, 38] by:

∙ Explicitly considering the effects of control signal saturation.
∙ Proposing a novel form of scheduled reference model which

removes the CQLF requirement.
∙ Developing a computationally light bisection-like algorithm

which ensures that the scheduled reference model is operat-
ing at it’s highest possible performance level, without violat-
ing control signal constraints.

∙ Outlining an optimisation problem which aims to automate
the process of selecting the parameters within the interpola-
tion design - maximising stability and improving the blending
between the two reference models.

2 OCTOROTOR MODEL

In this section two different models of the Octorotor, shown in
Figure 1, are presented:
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FIGURE 1 Diagram of an octorotor

∙ A non-linear model—which will be used in the simulations
to assess the performance of the control schemes which will
be proposed.

∙ A Quasi-LPV model—which will be used for control design.

2.1 Non-linear model

Under some commonly made assumptions, the non-linear
dynamics of an octorotor can be described by [9, 39]

𝜙̇ = p + q sin(𝜙) tan(𝜃) + r cos(𝜙) tan(𝜃), (1)

𝜃̇ = q cos(𝜙) − r sin(𝜙), (2)

𝜓̇ = q sin(𝜙) sec(𝜃) + r cos(𝜙) sec(𝜃), (3)

ẍb =
cos(𝜙) sin(𝜃) cos(𝜙) + sin(𝜙) sin(𝜓)

m
𝜏1(t ), (4)

ÿb =
cos(𝜙) sin(𝜃) sin(𝜙) − sin(𝜙) sin(𝜓)

m
𝜏1(t ), (5)

z̈b = g +
− cos(𝜙) cos(𝜃)

m
𝜏1(t ), (6)

ṗ =
Iyy − Izz

Ixx
qr +

Jr

Ixx
qΩr (t ) +

𝜏2(t )
Ixx

, (7)

q̇ =
Izz − Ixx

Iyy
pr −

Jr

Iyy
pΩr (t ) +

𝜏3(t )
Iyy

, (8)

ṙ =
Ixx − Iyy

Izz
pr +

𝜏4(t )
Izz

. (9)

where xb, yb and zb denote position (m) in the Xb, Yb and Zb body
axes. The euler angles (rad ) are denoted by 𝜙, 𝜃 and 𝜓 (these are
commonly known as the roll, pitch and yaw angles), and their
respective angular velocities (rads−1) are denoted by p, q and r .
In the above equations, m denotes the octorotor’s mass (Kg); Ixx ,
Iyy and Izz denote the moments of inertia (Kgm2) around the Xb,
Yb and Zb body axes; whilst Jr denotes each rotor’s moment of
inertia (Kgm2).

In (7) and (8) the residual angular speed (rads−1) of the 8
rotors [39] is defined by

Ωr (t ) = −Ω1(t )−Ω2(t ) +Ω3(t ) +Ω4(t )

−Ω5(t ) −Ω6(t ) +Ω7(t ) +Ω8(t ),
(10)

where Ωi denotes the angular velocity (rads−1) of the ith rotor.
In this paper it is assumed that the angular velocities of the
rotors are known and therefore Ωr is available to the controller.
The individual contributions of each rotor cumulate to pro-
duce torques (Nm−1) and forces (N ) which can be calculated
through

⎡⎢⎢⎢⎢⎢⎣

𝜏1(t )

𝜏2(t )

𝜏3(t )

𝜏4(t )

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟

𝜏(t )

= BΩ

⎡⎢⎢⎢⎢⎢⎣

Ω1(t )2

Ω2(t )2

⋮

Ω8(t )2

⎤⎥⎥⎥⎥⎥⎦
⏟⎴⏟⎴⏟

u(t )

, (11)

where the individual components of 𝜏(t ), from top to bottom,
correspond to the total thrust and the torques in the roll, pitch
and yaw axes. Specifically, in (11), the matrix BΩ is given by

BΩ =

⎡⎢⎢⎢⎢⎣
b b b b b b b b

0 0 −bl −bl 0 0 bl bl

bl bl 0 0 −bl −bl 0 0

−d −d d d −d −d d d

⎤⎥⎥⎥⎥⎦
, (12)

where the coefficients b and d denote the thrust and drag factors
of the propellers, respectively, and l denotes the distance (m) of
the rotors from the octorotor’s centre of gravity.

To model the effects of saturation limits on the rotors,
this paper assumes that the ith component of u(t ) is bounded
according to the function

ui (t ) =

⎧⎪⎨⎪⎩
uci

(t ), for uimin
< uci

(t ) < uimax

uimax
, for uci

≥ uimax

uimin
, for uci

≤ uimin

, (13)

where uc (t ) = [uc1
(t ), … , uc8

(t )]T denotes the commanded con-
trol signal (generated by the controller). In this paper, the limits
uimax

and uimin
are assumed to be known. This model will be used

to assess the performance of the control schemes proposed later
in the paper.
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2.2 Quasi-LPV model

The non-linear equations of motion from §2.1 will now be
simplified to obtain a ‘control oriented’ model. As in previous
works [9, 39], assuming that the octorotor’s perturbations from
hover are small, then (𝜙̇, 𝜃̇, 𝜓̇) ≈ (p, q, r ). This allows the non-
linear model in Equations (2)–(9) to be presented in the follow-
ing ‘quasi-linear’ LPV structure [40]:

ẋ(t ) = A(𝜌)x(t ) + B𝜏 (𝜌)𝜏(t ) + E (𝜌)𝜁(t ) + fm (t , x, u), (14)

where the system state is assumed to be known and is given by

x(t ) =
[
h 𝜙 𝜃 𝜓 ḣ p q r

]T
, (15)

where h denotes the height (m) and the other states have been
defined previously. In (14), the signal 𝜁(t ) is defined as

𝜁(t ) =
[
Ωr (t ) g

]T
, (16)

where Ωr (t ) is defined in (10). The signal fm (t , x, u) ∶ ℝ ×
ℝ8 × ℝ4 → (B𝜏 (𝜌)) denotes matched uncertainty which is
unknown but assumed to be bounded according to

‖ fm (t , x, u)‖ ≤ k‖u‖ + 𝛼(t , x ), (17)

where k < 1 is a known scalar and 𝛼(t , x ) is a known function.
In (14) the system matrices A(𝜌) ∈ 8×8, B𝜏 (𝜌) ∈ 8×4 and

E (𝜌) ∈ 8 × 2 have the following structures

A(𝜌) =

[
04×4 I4
04×4 A22(𝜌)

]
, B𝜏 (𝜌) =

[
04×4

B𝜏,2(𝜌)

]
E (𝜌) =

[
04×2

E2(𝜌)

]
⎫⎪⎪⎬⎪⎪⎭
, (18)

where the scheduling parameter 𝜌(t ) ∈ Θ is defined as

𝜌(t ) =
[
𝜌1 𝜌2 𝜌3 𝜌4

]
=
[
p q r cos(𝜙) cos(𝜃)

]
,

(19)

where Θ ∈ ℝ4 represents a compact set. This assumes that the
angular rates remain bounded. Note that, due to the fact x(t )
from (15) is assumed to be known, the scheduling parameter
𝜌(t ) is also known.

Remark 1. The sub-matrix A22(𝜌) has a particular structure
which will be exploited for the control design. Specifically

A22(𝜌) = 𝜌1A22,1 + 𝜌2A22,2 + 𝜌3A22,3. (20)

For more detail on the matrices in (18) and (20) see [9, 39].

3 CONTROL ALLOCATION

Using the mapping of u(t ) ↦ 𝜏(t ) from (11), the system in (14)
can be expressed as

ẋ(t ) = A(𝜌)x(t ) + B𝜏 (𝜌)BΩ
⏟⎴⏟⎴⏟

B(𝜌)

u(t ) + E (𝜌)𝜁(t ) + fm (t , x, u),

(21)

where u(t ) represents the individual angular velocities of each
rotor as defined in (11). To model the effects of rotor faults and
failures in (21), consider the modified system

ẋ(t ) = A(𝜌)x(t ) + B(𝜌)W (t )u(t ) + E (𝜌)𝜁(t ) + fm (t , x, u),

(22)

where W (t ) = diag(w1(t ), … , w8(t )) represents the health of the
rotors. Each component wi corresponds to the health of the ith

rotor and is bounded such that 0 ≤ wi ≤ 1. A value of wi = 1
indicates a healthy rotor whilst a value of wi = 0 indicates a
failed rotor, a value between these two extremes indicates a
faulty rotor. Here the B(𝜌) matrix from (21) can be perfectly
factorised such that

B(𝜌) = BvB2(𝜌), (23)

where the fixed matrix Bv is given by

Bv =

[
04×4

I4

]
, (24)

and B2(𝜌) ∈ 4×8. Note that since fm (t , x, u) is a matched
uncertainty, it can be conveniently written in the form
fm (t , x, u) = Bv

̄f m (t , x, v) and therefore ‖ fm (t , x, u)‖ =‖ ̄f m (t , x, v)‖. In the event that W (t ) ≠ I (i.e., rotor faults
and failures are present) CA can utilise knowledge of the rotor’s
health in an effort to maintain some level of closed-loop system
performance. Typically exact knowledge of W (t ) is unavailable
to the controller and so any CA law would inevitably be based
on an estimate of W (t ), provided by a Fault Detection and
Isolation (FDI) scheme. Here the approximation is denoted by
Ŵ (t ) and is assumed to satisfy

W (t ) =
(
I + Δ(t )

)
Ŵ (t ), (25)

where Δ(t ) ∈ 8×8 is a diagonal matrix which represents the
uncertainty introduced in the fault reconstruction.

For the case where det(B2(𝜌)Ŵ (t )B2(𝜌)) ≠ 0, define the CA
law

uc (t ) = Ŵ (t )B2(𝜌)T
(
B2(𝜌)Ŵ (t )2B2(𝜌)T

)−1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
B† (𝜌,t )

v(t ), (26)
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where v(t ) ∈ 4 is a reduced order ‘virtual’ control signal to
be defined later. Assuming that the system is operating within
saturation limits (i.e., u(t ) = uc (t )), substituting (26) into (22),
and utilising (23) yields the faulty virtual system

ẋ(t ) = A(𝜌)x(t ) + B̄(𝜌, t )v(t ) + E (𝜌)𝜁(t ) + Bv
̄f m (t , x, v),

(27)

where

B̄(𝜌, t ) = BvB2(𝜌)
(
I + Δ(t )

)
Ŵ (t )B†(𝜌, t ), (28)

which, by utilising the fact that B2(𝜌)Ŵ (t )B†(𝜌, t ) = I , can be
rearranged into known and unknown components such that

B̄(𝜌, t ) = Bv + Bv B2(𝜌)Δ(t )Ŵ (t )B†(𝜌, t )
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

BΔ
2 (𝜌,t )

. (29)

Substituting (29) into (27) yields

ẋ(t ) =A(𝜌)x(t ) + Bv

(
v(t ) + BΔ

2 (𝜌, t )v(t )

+ ̄f m (t , x, v)
)
+ E (𝜌)𝜁(t ).

(30)

Remark 2. For the inverse in (26) to exist, and thus conse-
quently guarantee a well defined expression for u(t ), the follow-
ing assumptions are made:

∙ The actuator faults and failures Ŵ (t ) belong to a set

 = {Ŵ | det(B2(𝜌)Ŵ (t )2B2(𝜌)T ) ≠ 0∀𝜌 ∈ Θ}.

∙ The octorotor’s Euler angles remain within the bounds|𝜙| < 𝜋∕2 and |𝜃| < 𝜋∕2, this in turn ensures that
det(B2(𝜌)B2(𝜌)T ) ≠ 0 [9].

Therefore, due to the boundedness properties of pseudo-
inverses [41], there exists a value 𝛾0 which satisfies

‖Ŵ (t )B†
2 (𝜌, t )‖ ≤ 𝛾0. (31)

for any Ŵ (t ) ∈  and all 𝜌 ∈ Θ, where B
†
2 (𝜌, t ) is defined in

(26).

4 MODEL REFERENCE SLIDING
MODE CONTROL

This section proposes a SMC law v(t ) which forces the
states of (30) to robustly track an optimised reference model.
A schematic of the inner-loop control scheme is shown in
Figure 2. The CA was previously described in §3, the opti-
misation and reference model design will be discussed in
§5.

FIGURE 2 Schematic of the inner-loop controller

4.1 Model reference error system

Assume the controlled outputs associated with (30) are

y(t ) = Cx(t ), (32)

where C =
[
I4 04×4

]
, and therefore

y(t ) =
[
h 𝜙 𝜃 𝜓

]T
. (33)

Using the fixed system matrix A0, defined as A(𝜌)|𝜌=0, and Bv ,
defined in (24), a reference model can be designed1

ẋm (t ) = Am (𝜆)xm (t ) + BvG (𝜆)r̄ (t ), (34)

where xm (t ) ∈ 8 denotes the state of the reference model,
𝜆(t ) ∈ ℝ denotes a new interpolation parameter, r̄ (t ) ∈ 4

denotes the command reference signal and the matrices

Am (𝜆) = A0 + BvF (𝜆),

G (𝜆) = −
(

C
(
A0 + BvF (𝜆)

)−1
Bv

)−1
,

(35)

where F (𝜆) ∈ 4×8 is chosen to ensure Am (𝜆) is stable. A spe-
cific choice of F (𝜆) will be discussed in the next section. It
is easy to verify that at steady-state, ym (t ) = Cxm (t ) = r̄ (t ). To
develop a control law to ensure that x(t ) → xm (t ) define

e(t ) = x(t ) − xm (t ). (36)

Assuming that the control signals remain within their satura-
tion limits, taking the derivative of (36) and making substitutions
from (30) and (34) yields

ė(t ) =A(𝜌)x(t ) + Bv

(
v(t ) + BΔ

2 (𝜌, t )v(t ) + ̄f m (t , x, v)
)

+ E (𝜌)𝜁(t ) − Am (𝜆)xm (t ) − BvG (𝜆)r̄ (t ),
(37)

1 This choice of A0 resulting from 𝜌 = 0 has the property that A0,22 = 0 since
A22 (𝜌)|𝜌=0 = 0, where A22 (𝜌) is defined in (20). This is exploited in the development
which follows.
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which, by adding A(𝜌)xm (t ) − A(𝜌)xm (t ) to the right hand side
and using (35), allows (37) to be rearranged to have the form

ė(t ) =A(𝜌)e(t ) + Bv

(
v(t ) − vm (t ) + BΔ

2 (𝜌, t )v(t )

+ ̄f m (t , x, v)
)
+ E (𝜌)𝜁(t ) +

(
A(𝜌) − A0

)
xm (t ),

(38)

where

vm (t ) = F (𝜆)xm (t ) + G (𝜆)r̄ (t ). (39)

Note that due to the structure of A(𝜌) in (18) and its sub-matrix
A22(𝜌) in (20), the following property can be verified

A(𝜌) − A0 =

[
04×4 I4
04×4 A22(𝜌)

]
−

[
04×4 I4
04×4 04×4

]
=

[
04×4 04×4
04×4 A22(𝜌)

]
, (40)

which allows (38) to be simplified to

ė(t ) = A(𝜌)e(t ) + Bv

(
v(t ) − vm (t ) + BΔ

2 (𝜌, t )v(t )

+ ̄f m (t , x, v) + D2(𝜌)𝜉(t )
)
,

(41)

where

D2(𝜌) =
[
A22(𝜌) E2(𝜌)

]
, 𝜉(t ) =

[
xm,2(t )
𝜁(t )

]
, (42)

and xm,2(t ) ∈ 4 represents the bottom partition of xm (t ). The
objective now is to develop a ‘virtual’ control law v(t ) to ensure
e(t ), defined in (41), converges to the origin.

4.2 Sliding surface design

To develop a SMC law which ensures the system in (41) robustly
converges to the origin, consider a sliding surface  = {e(t ) ∈
8 ∶ Se(t ) = 0} where the switching function

s(t ) = Se(t ) =
[
M I4

]
e(t ), (43)

and M ∈ 4×4 represents design freedom. Because (41) is in
‘regular form’ (from the structure of Bv), exploiting the special
structure of A(𝜌) in (18), an ideal sliding motion on  is gov-
erned by

ė1(t ) = −Me1(t ), (44)

where e1(t ) ∈ 4 represents the top partition of e(t ) in (36).
Therefore, for this particular system, any matrix M which is pos-
itive definite ensures that (44) is stable.

Remark 3. Although the structure in (43) appears somewhat
restrictive, the specifics of this multi-rotor system means there
is sufficient design freedom available (the sliding motion in (44)

is completely specifiable by choice of M ). The structure in (43)
also means SBv = I4 which provides a decoupling of the com-
ponents of the sliding variable. This is also advantageous.

4.3 Sliding mode control laws

To ensure that the system in (41) achieves an ideal sliding
motion in finite time, consider a ‘virtual’ control law

v(t ) = vl (t ) + vn(t ) + vm (t ), (45)

where vm (t ) is defined in (39) and the linear and non-linear com-
ponents of (45) are

vl (t ) = −SA(𝜌)e(t ) − D2(𝜌)𝜉(t ), (46)

vn(t ) = −𝜇(t , x, v)
s(t )‖s(t )‖ , (46)

where 𝜇(t , x, v) is a scalar function.

Proposition 1. If the uncertainty in the fault reconstruction satisfies

‖Δ(t )‖ ≤ Δmax =
1 − k

𝛾0𝛾2
, (47)

where 𝛾0 is defined in (31), k is a bound on the uncertainty from (17) and

𝛾2 = max𝜌∈Θ ‖B2(𝜌)‖, then choosing 𝜇(t , x, v) to satisfy

𝜇(t , x, v) >
(𝛾0𝛾2 + k)‖vl (t ) + vm (t )‖ + 𝛼(t , x ) + 𝛾c

1 − k − Δmax𝛾0𝛾2
, (48)

where 𝛾c is a positive design scalar, ensures a sliding motion occurs in finite

time and can be maintained for all faults Ŵ (t ) ∈  .

Proof. From (41) and the definition of s(t ) in (43) it is easy to
verify that

ṡ(t ) = SA(𝜌)e(t ) + v(t )−vm (t ) + BΔ
2 (𝜌, t )v(t )

+ ̄f m (t , x, v) + D2(𝜌)𝜉(t ).
(49)

Substituting from (45) yields

ṡ(t ) = vn(t ) + BΔ
2 (𝜌, t )

(
vl (t ) + vn(t ) + vm (t )

)
+ ̄f m (t , x, v).

(50)

From the definition of vn(t ) in (46), the bound on ‖ fm (t , x, u)‖
in (17) and the fact that ‖ fm (t , x, u)‖ = ‖ ̄f m (t , x, v)‖, it follows
that

sT ṡ = −𝜇‖s‖ + sT BΔ
2 (vl + vn + vm ) + sT ̄f m

≤ −𝜇‖s‖ + ‖s‖‖BΔ
2 ‖(‖vl + vm‖ + 𝜇)

+ k‖s‖‖vl + vn + vm‖ + 𝛼‖s‖
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≤ −𝜇‖s‖(1 − ‖BΔ
2 ‖ − k) + ‖s‖‖BΔ

2 ‖‖vl + vm‖ (51)

+ k‖s‖‖vl + vm‖ + 𝛼‖s‖.
From (29)

‖BΔ
2 ‖ = ‖B2ΔŴ B

†
2‖ ≤ 𝛾0𝛾2Δmax . (52)

It can be verified, by substituting from (48), that

‖B2ΔŴ B
†
2‖ < 1 − k, (53)

and therefore choosing 𝜇 as described in (49) ensures

sT ṡ ≤ −𝛾c‖s‖, (54)

which guarantees that s(t ) → 0 in finite time. □

5 INTERPOLATED REFERENCE
MODEL FORMULATION

In this section the problem of designing the parameterised feed-
back gain F (𝜆), used within the reference model (34), is dis-
cussed. An appropriate interpolation law for 𝜆(t ) is proposed
which ensures that the rotor control signals are kept within their
saturation limits.

5.1 Parameterised feedback gain

Here the parameterised gain F (𝜆), from (35), is chosen as

F (𝜆) =
(
𝜆F1P1 + (1 − 𝜆)F0P0

)(
𝜆P1 + (1 − 𝜆)P0

)−1
, (55)

where the parameter 𝜆(t ) ∈
[
0 1

]
. The matrices P1 ∈ 8×8 and

P0 ∈ 8×8 are positive definite matrices which, respectively, sat-
isfy

P1(A0 + BvF1)T + (A0 + BvF1)P1 < −𝛾I

P0(A0 + BvF0)T + (A0 + BvF0)P0 < −𝛾I

}
, (56)

where 𝛾 is a positive design scalar. The structure in (56),
from [42], acts as an interpolation of two distinct static feed-
back gains F1 ∈ 4×8 and F0 ∈ 4×8. Evaluating (56) at the
extremes

F (𝜆)|𝜆=1 = F1, F (𝜆)|𝜆=0 = F0. (57)

In this paper F1 is designed such that A0 + BvF1 offers nomi-
nal high performance whilst F0 is designed such that A0 + BvF0
offers a degraded, but stable, performance. In [42] it is proven
that

ẋm (t ) = Am (𝜆)xm (t ), (58)

FIGURE 3 Example form of f (𝜆n )

is stable for all 𝜆(t ) ∈
[
0 1

]
as long as

|𝜆̇(t )| < 𝛾‖P1 − P0‖ . (59)

A method of choosing the matrices P1 and P0 will be discussed
later on in this paper.

5.2 On-line parameterised feedback gain
optimisation

The ‘virtual’ control law, described in (45), is mapped through
the control allocation law (26) to generate a commanded control
signal uc (t ). When saturation limits are violated the signal

ue (t ) = uc (t ) − u(t ), (60)

becomes nonzero and the analysis in §4 is invalid.

Assumption 1. The controller gain F0 can be chosen such that
when 𝜆 = 0, the error ue (t ) can be made zero, that is, in low
performance mode, saturation can be avoided.

The problem to be solved here is to find a scheme, with low
computational cost, to find the largest value of 𝜆 which ensures
ue (t ) = 0. First define the value of ue (t ) at a frozen time instant
t , evaluated at the nth iteration as uen

. At a fixed time t , uen
is

considered as a function of the interpolation parameter 𝜆n only
(since e(t ), s(t ) and r (t ) are taken as constant)—and therefore
uen

can be thought of as uen
(𝜆n ). Now consider the cost function

f (𝜆n ) = uen
(𝜆n )T uen

(𝜆n ) for 𝜆n ∈ [0 1]. (61)

Because of the quadratic nature of the cost function (62) and the
structure of the non-linearity from the saturation, at any given
fixed time t , f (𝜆n ) typically has the form shown in Figure 3
(an exception to this is when f (1) = 0 in which case f (𝜆n ) =
0 ∀ 𝜆n ∈

[
0 1

]
). Now the problem of providing the best per-

formance (that which is closest to 𝜆(t ) = 1) becomes the fol-
lowing optimisation problem

max
𝜆n∈[0 1]

𝜆n s.t . f (𝜆n ) = 0, (62)

assuming knowledge of the saturation limits.
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FIGURE 4 Bisection-like algorithm flowchart

In this paper a bisection-like algorithm is proposed to find the
solution of (63), denoted by 𝜆∗, which is described in Figure 4,
where 𝜖 > 0 is a small tolerance used as the stopping criteria for
the algorithm.

Initially the algorithm checks if the high-performance con-
troller avoids saturation (i.e., f (1) = 0), in which case 𝜆∗ = 1 is
chosen. If f (1) ≠ 0 then the bisection-like algorithm searches
the interval 𝜆 ∈

[
0 1

]
=
[
an bn

]
which (if Assumption 1 is satis-

fied) is known to contain 𝜆∗. For each iteration the center-point

of the interval
[
an bn

]
(given by 𝜆n =

an+bn

2
) is evaluated. The

search interval of the next iteration
[
an+1 bn+1

]
is then updated,

based on the value of f (𝜆n ), such that 𝜆∗ ∈
[
an+1 bn+1

]
,[

an+1 bn+1

]
⊂
[
an bn

]
and bn+1 − an+1 =

1

2
(bn − an ). This

process is continued until the desired accuracy for 𝜆∗ is met,
which is governed by the choice of 𝜖.

6 PARAMETERISED GAIN DESIGN

To design the gains F0 and F1, this paper uses an LQR
approach; although other linear state-feedback design meth-
ods could be used. The first step in designing these gains
is to select the weights used to generate F1. These should
be selected to provide nominal desired (high) performance.

Through experimentation these weights were chosen as 1 =
diag(50, 30, 40, 25, 1, 1, 1, 1) and 1 = 0.1 ⋅ I4. The second
step is to select the weights used to generate F0. These should be
selected such that ‖F1‖ ≫ ‖F0‖ to ensure that the control sig-
nal generated is small when 𝜆 = 0. Here this has been achieved
by selecting 0 = 1 and choosing 0 = 106 ⋅1. To ensure
the stability of Am (𝜆) for each fixed 𝜆 ∈

[
0 1

]
, P0 and P1 need

to be chosen to satisfy (57). Perhaps a natural choice for these
matrices would come from the solutions of the Riccati equa-
tions which are calculated during the LQR design process. How-
ever in this example ‖P1 − P0‖ is of the order 1011 and the
bound in (60) would be too small for practical use. Instead the
following optimisation problem is posed:

min
q1,q0∈9

c1

𝛾
‖P0 − P1‖ + c2‖P−1

0 ‖ + c3‖P−1
1 ‖

subject to

P1Am (1)T + Am (1)P1 = −Q(q1)

P0Am (0)T + Am (0)P0 = −Q(q0), (63)

where c1, c2, c3 > 0 represent scalar tuning parameters, 𝛾 is
defined in (57) and Q(⋅) ∈ 8×8 represents the positive definite
diagonal matrix generated from the decision variables q1, q0 ∈
9 (where the first 8 elements of the vector qi form the diago-
nal of Q(qi ) and the 9th element is used to scale the matrix). The
elements qi are bounded from below such that qi > 0 which
guarantees Q(qi ) > 0.

Remark 4. The use of the parameter 𝛾 in (64) allows the
bound on the scheduling parameter variation, defined in (60),
to be maximised.

Remark 5. Since Q(qi ) is symmetric positive definite and the
matrices Am (1) and Am (0) are Hurwitz, the solutions Pi to (64)
will always be symmetric positive definite.

Note that this optimisation can be solved quickly and conve-
niently with genetic algorithms. In (64) the term associated with
c1 effectively maximises the bound in (60), whereas the terms
associated with c2 and c3 prevent the values of P1 and P0 from
becoming ‘too small’. To demonstrate the effectiveness of (64),
3 different designs for the pair P1 and P0 are considered:

1. Un-optimised: whereby P1 and P0 are chosen according to
(64) where Q(q1) = Q(q0) = I .

2. Optimised without norm compensation: where P1 and P0 are
chosen from (64) with c1 = 1 and c2 = c3 = 0.

3. Optimised with norm compensation: whereby P1 and P0 are
chosen from (64) with c1 = 10000 and c2 = c3 = 1.

The simulation results presented in this paper use Design 3
which provides the smoothest transition between F0 and F1,
as shown in Figure 5, and guarantees stability of Am (𝜆) for‖𝜆̇(t )‖ < 235.
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FIGURE 5 Eigenvalues of Am (𝜆) for different interpolation designs

7 SIMULATION RESULTS

7.1 Design

The following results demonstrate the effectiveness of the pro-
posed control scheme, simulated using the non-linear octorotor
model, presented in [9], under input saturation and rotor fail-
ures. The reference model used has the structure of (34), and the
parameterised feedback gain F (𝜆) has the structure shown in
(56), where the design of F (𝜆) was discussed in §6 (see Design
3 in Figure 5). During the simulations the interpolation param-
eter 𝜆(t ) is updated using the bisection-like algorithm in §5.2
which is run for 50 iterations at every controller update (every
0.005 s). This was implemented using the solver ‘ODE14x’ with
a time-step of 0.005 s.

The matrix M , in (43), which determines the eigenvalues of
the reduced order motion, defined in (44), has poles at {−8 ±
3.5i, −7 ± 3i}. To alleviate ‘chattering’ [43], a modification was
made to the non-linear component of (45) such that

vn(t ) = −𝜇(t , x, v)
s(t )‖s(t )‖+𝛿 , (64)

where 𝛿 is a small positive scalar. In the simulation results which
will be presented 𝛿 is chosen as 0.001 and 𝜇(t , x, v) is chosen to
be fixed at 20. Note that using this approximation the controller
can only guarantee pseudo-sliding whereby the states converge
to a finite region around the sliding surface. Asymptotic conver-
gence of e → 0, resulting from (44), becomes instead a guaran-
tee of ultimate boundedness since ė1(t ) = −Me1(t ) + s(t ) where

the switching function s(t ) is small but not necessarily vanishing.
Convergence of e to a compact region of the origin 𝛿 is guar-
anteed, and furthermore 𝛿 → {0} as 𝛿 → 0 [44].

To facilitate full 3D position control, outer-loop PID con-
trollers are used to generate the reference signals for roll (to
control xb) and pitch (to control yb). A schematic of the outer-
loop control scheme is shown in Figure 6 where the plant is
described in Figure 2. For more information on the outer-loop
control see §7 in [9].

7.2 Nominal results

Figures 7 and 8 show the controller performance with the high
performance reference model being used (where 𝜆 is fixed at
1) under nominal fault-free conditions with no uncertainty. The
octorotor is commanded to follow a simultaneous height, xb and
yb command, whilst maintaining the yaw angle at zero. Figure 7
shows good tracking performance with no overshoot and a
reasonable rise time. At 2 and 35 s, when the pitch command
starts/ends, there is a small deviation in the yaw—although this
is negligible. From Figure 8 it can be seen that this manoeuvre
does not saturate any of the control signals (which are bounded
by a maximum speed of 850 rads−1).

7.3 Rotor failure results

In Figures 9 and 10 the effects of rotor failures are considered:
specifically the effectiveness matrix W (t ) is set to be fixed at
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FIGURE 6 Schematic of the outer-loop controller

FIGURE 7 Fixed (𝜆 = 1) and fault free—controlled outputs

W = diag(0, 1, 0, 1, 0, 1, 0, 1) from time t = 0. Note that due to
the CA law (26) the control signals sent to the failed rotors will
be zero and are therefore not plotted. Clearly from Figure 9 the
fixed controller (when 𝜆 = 1 is fixed to remain and this value
and which represents a typical model reference based SMC [45])
is unable to maintain stability and the closed-loop system begins
to go unstable almost immediately after saturation first occurs
at around 2 s. Looking at the control signals in Figure 10 it can
be seen that once the reference command begins, the controller
generates an infeasible signal (with respect to the saturation lim-
its) resulting in large oscillations around the height reference.

The same failure scenario is considered in Figures 11 and 12,
except in this case the proposed interpolated reference model
is used. Figure 11 shows that not only is the optimised scheme
able to maintain stability but it also produces a nearly identi-
cal response to the nominal case in Figure 7. In Figure 12 it
can be seen that the control signals never exceed their satura-
tion limits. This can be attributed to the interpolation param-
eter 𝜆 in Figure 13 which reduces the reference model’s per-
formance once the control signals reach their saturation limits.
Once the period of saturation is over the interpolation param-
eter returns to 1, restoring the high performance reference
model.

FIGURE 8 Fixed (𝜆 = 1) and fault free—commanded rotor velocities
(rads−1)

FIGURE 9 Fixed (𝜆 = 1) with rotor failures—controlled outputs

7.4 Uncertainty/disturbances

In Figures 14 and 15, the effects of uncertainty/disturbances on
the fault-free system are considered. In this case each compo-
nent of ̄f m (t , x, v) is selected as the summation of 3 sinusoids
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FIGURE 10 Fixed (𝜆 = 1) with rotor failures—commanded rotor
velocities (rads−1)

with random amplitudes (between 0.05 and 0.2), random fre-
quencies (between 0.5 and 3 Hz) and random phases. Addition-
ally the mass of the octorotor (and the relevant inertia matri-
ces) is increased by 75% to create further uncertainty and to
simulate the octorotor carrying an un-modelled payload (like-
wise, decreases in the mass/inertia could be considered to cap-
ture changes to the airframe, i.e., mechanical faults, due to dam-
age/collisions).

Figures 14 and 15 show the performance of the fixed con-
troller in the presence of the uncertainty. The responses are sim-
ilar to Figures 9 and 10 where instability occurs almost as soon
as the reference signal changes. It can be seen from Figure 15

FIGURE 11 Optimised (𝜆(t ) = 𝜆∗) with rotor failures—controlled
outputs

FIGURE 12 Optimised (𝜆(t ) = 𝜆∗) with rotor failures—commanded
rotor velocities (rads−1) for signals wi ≠ 0

FIGURE 13 Interpolation parameter 𝜆(t )—rotor failures

that the point of instability occurs when the controller gener-
ates infeasible control signals.

In comparison, Figure 16 shows that, when the interpo-
lated reference model is employed, the controller is able to
maintain close to the nominal performance despite the uncer-
tainty/disturbances. Figure 17 shows that the commanded rotor
speeds remain within their saturation limits. At the times when
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FIGURE 14 Fixed (𝜆 = 1) with uncertainty/disturbances - controlled
outputs

FIGURE 15 Fixed (𝜆 = 1) with uncertainty/disturbances—commanded
rotor velocities (rads−1)

FIGURE 16 Optimised (𝜆(t ) = 𝜆∗) with
uncertainty/disturbances—controlled outputs

FIGURE 17 Optimised (𝜆(t ) = 𝜆∗) with
uncertainty/disturbances—commanded rotor velocities (rads−1)

FIGURE 18 Interpolation parameter 𝜆(t )—uncertainty/disturbances

the limits are reached it can be seen in Figure 18 that the interpo-
lation parameter is reduced, preventing the rotors from exceed-
ing their limits.

A further set of results in Figures 19–21 demonstrates the
schemes effectiveness in the presence of the same uncer-
tainty/disturbances considered previously with the addition of
rotor faults. Specifically the effectiveness matrix W (t ) is fixed
at W = diag(1, 0.8, 0.3, 1, 1, 0.3, 0.5, 1) from time t = 0 and the
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FIGURE 19 Optimised (𝜆(t ) = 𝜆∗) with uncertainty/disturbances and
faults—controlled outputs

FIGURE 20 Optimised (𝜆(t ) = 𝜆∗) with uncertainty/disturbances and
faults - commanded rotor velocities (rads−1)

FIGURE 21 Interpolation parameter 𝜆(t ) - uncertainty/disturbances and
faults

components of the uncertainty matrix Δ(t ) associated with the
faulty rotors were set as the summation of 3 sinusoids with ran-
dom amplitudes (between 0.05 and 0.1), random frequencies
(between 0.5 Hz and 3 Hz) and random phases.

Figure 19 shows that the system remains stable however there
is some degradation in the performance. Most notably there is

an offset in both the pitch angle tracking as well as some over-
shoot in the height tracking at approximately 23 s. However,
overall, the position tracking remains reasonable.

From Figure 20, it can be seen that rotors Ω4, Ω5 and Ω8
spend most of the simulation within 100 rads−1 of their max-
imum limits, even when just maintaining a hover. This greatly
reduces the amount of control effort available to the scheme. In
Figure 21 the interpolation parameter is shown to reduce much
more aggressively than in Figures 13 and 18 in order to keep
rotors within saturation limits, accounting for the greater loss
in performance.

8 CONCLUSION

This paper has proposed a quasi-linear parameter varying sliding
mode control allocation law which was used to track an on-line
optimised reference model. The resulting scheme was shown
in simulation to maintain a non-linear octorotor model within
its saturation limits during a severe rotor failure scenario. The
simulation results with saturation showed minimal performance
degradation in the presence of faults/failures and in the pres-
ence of uncertainty/disturbances. In the event that the reference
model was deliberately prevented from adapting, some control
signals saturated and the closed-loop system became unstable in
both cases.
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