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ABSTRACT
Optimisation problems often have multiple conflicting objectives
that can be computationally and/or financially expensive. Mono-
surrogate Bayesian optimisation (BO) is a popular model-based
approach for optimising such black-box functions. It combines
objective values via scalarisation and builds a Gaussian process
(GP) surrogate of the scalarised values. The location which max-
imises a cheap-to-query acquisition function is chosen as the next
location to expensively evaluate. While BO is an effective strat-
egy, the use of GPs is limiting. Their performance decreases as the
problem input dimensionality increases, and their computational
complexity scales cubically with the amount of data. To address
these limitations, we extend previous work on BO by density-ratio
estimation (BORE) to the multi-objective setting. BORE links the
computation of the probability of improvement acquisition func-
tion to that of probabilistic classification. This enables the use of
state-of-the-art classifiers in a BO-like framework. In this work we
present MBORE: multi-objective Bayesian optimisation by density-
ratio estimation, and compare it to BO across a range of synthetic
and real-world benchmarks. We find that MBORE performs as well
as or better than BO on a wide variety of problems, and that it
outperforms BO on high-dimensional and real-world problems.

CCS CONCEPTS
• Computing methodologies→Modeling methodologies; •
Theory of computation→Gaussian processes; •Applied com-
puting→Multi-criterion optimization and decision-making.
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1 INTRODUCTION
Optimisation problems, particularly those in real-world settings,
often have conflicting objectives that can be computationally and/or
financially expensive to evaluate. For example, it is often desirable to
maximise a robot’s speed andminimise its energy consumption [50],
or to maximise crop yield while minimising the environmental
impacts the required agricultural development [40]. These tend to
be black-box problems, i.e. they have no closed-form or derivative
information available. In order to optimise these expensive black-
box functions, a common strategy is to create surrogate models for
each of the objective functions and perform optimisation on these
instead, choosing where to evaluate the expensive functions next
based on locations that are predicted to yield high-quality solutions.

A plethora of multi-objective surrogate-based approaches have
been proposed in recent years [2, 13, 57, 75, 78, 86]. These are usu-
ally inspired by, or directly use, the framework of single-objective
Bayesian optimisation (BO). In BO, given an initial set of expensively
evaluated solutions, a surrogate model, often a probabilistic model
such as a Gaussian process (GP), is created for either each objective
function (amulti-surrogate approach), or a scalarised representation
of the multiple objectives (a mono-surrogate approach). In these ap-
proaches, an acquisition function, also known as an infill criterion,
is optimised to suggest the next location to expensively evaluate.
These attempt to balance the exploration of locations with high
amounts of prediction uncertainty with the exploitation of loca-
tions that have good predicted values. They are also cheap-to-query
and, therefore, transform the expensive optimisation problem into
a sequence of cheaper ones followed by an expensive evaluation.
Once a new candidate solution has been selected and evaluated,
the surrogate models are retrained with the new solution and the
process is repeated ad libitum.

Mono-surrogate approaches are known to be considerably faster
than multi-surrogate approaches [12]. Using only one surrogate
model offers large computational savings because the model of
choice, GPs, scale cubically in the number of solutions the model is
trained on [58], leading to large amounts of computation needed for
larger numbers of solutions. Acquisition functions that have been
designed for BO [e.g. 16, 42, 72, 80], can be used without alteration.
Single-objective acquisition functions are usually cheap to evaluate,
unlike those used in multi-surrogate approaches. These often need
to carry out expensive multidimensional integrations, such as when
calculating the expected hypervolume improvement criterion [19].

Despite the success of mono-surrogate approaches, they are
not without limitations. The aforementioned cubic scaling of GPs
leads to model training times increasing as the number of solutions
grows. Similarly, GPs are known to suffer greatly from the curse of
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dimensionality. Specifically, the modelling ability of nonparamet-
ric regression depends exponentially on the problem dimensional-
ity [28]. Approaches to address these fundamental problems with
GPs usually involve either reducing the number solutions included
in the GP models via inducing point methods [62, 66, 68, 79, 83], or
making assumptions about the underlying structure of the function
of interest to simplify the inference, such as assuming that it resides
on a low-dimensional manifold [23, 43, 47, 60, 81, 82]. However,
these necessarily lead to poorer modelling of target function [47].

An alternative approach to improving the modelling in BO is
to use a different surrogate model, such as a random forest [35] or
neural network [70]. However, these models do not usually come
with principled ways to compute prediction uncertainty, limiting
their applicability to Bayesian optimisation. Recently, Tiao et al.
[78] proposed to carry out BO via density-ratio estimation (BORE),
a generalisation of the classical tree-structured Parzen estimator [3].
They claimed that maximising the expected improvement over the
best-seen function value in a probabilistic regression model, the
most popular formulation of BO, is equivalent to maximising the
class-posterior probability of classifier trained with a proper scoring
rule [26]. Unfortunately, this claim is only partially correct [71]. Gar-
nett [25] demonstrates that, in fact, maximising the class-posterior
probability is equivalent to maximising the probability of improve-
ment. Nevertheless, the result is important because it still facilitates
the use of most state-of-the-art classifiers, such as neural networks
or gradient boosted trees [10]. Naturally, this leads to a vast reduc-
tion in computational complexity as well as an increase inmodelling
capability of surrogate models available for use in BO. Therefore,
this allows for higher-dimensional problems to be tackled by using
more suitable models, e.g. neural networks, which are well-known
for having universal function approximation guarantees [33].

In this work, we extend BORE to the multi-objective setting
via the use of scalarising functions [12, 36], a mono-surrogate
approach. Specifically, we compare MBORE, our proposed multi-
objective version of BORE, using two different classification models:
a fully-connected neural network and gradient boosted machines
(XGBoost [10]) with the standard BO approach using a GP. We
compare their performance when using three existing scalarisation
approaches, augmented Tchebycheff [44], hypervolume improve-
ment [57] and dominance ranking [57], as well as Pareto hyper-
volume contribution (PHC), a novel scalarisation method proposed
in this work. Multi-objective BO and MBORE are evaluated on
two synthetic benchmark suites, DTLZ [18] and WFG [34], across
a range of problem dimensionalities and numbers of objectives,
as well as a recently proposed real-world set of benchmark prob-
lems [76]. Additionally, we also investigate the performance of
BO and MBORE on high-dimensional problems using the WFG
benchmark, and empirically compare their computational costs.

Our main contributions can be summarised as follows:

(1) We present MBORE, a novel mono-surrogate multi-objective
classification-based BO approach using scalarisation.

(2) We also present PHC, a new scalariser that directly uses the
hypervolume contribution of a solution to its Pareto shell.

(3) We compare MBORE and BO, using two probabilistic clas-
sifiers and several popular scalarisation methods, across a
range of synthetic and real-world test problems.

(4) Empirically, we show that MBORE is equal to or better than
BO on a wide range of problems, particularly when using
PHC, and that MBORE is considerably better than BO on
the evaluated real-world and high-dimensional problems, all
while using a fraction of the computational resources.

We begin in Section 2 by providing an overview of both single-
and multi-objective BO, including a review of GPs, acquisition
functions and scalarisation methods. Section 3 introduces BO by
density-ratio estimation and, in Section 4, we extend it to the multi-
objective setting. An extensive experimental evaluation of BO and
MBORE is carried out in Section 5, along with a discussion of the
results. We finish with concluding remarks in Section 6.

2 BAYESIAN OPTIMISATION FRAMEWORK
In this section we first describe single-objective Bayesian optimi-
sation, including its two main components, the Gaussian process
surrogate model and acquisition function. We then go on to show
how BO can be extended to the multi-objective setting via scalari-
sation, giving examples of the scalarisation methods used in this
work, along with the proposal of a new scalariser.

2.1 Bayesian Optimisation
Bayesian optimisation (BO) was first proposed for single-objective
problems by Kushner [46], and later improved by Močkus et al. [55]
and Jones et al. [42]. Interested readers should refer to [65] and [22]
for recent and comprehensive surveys on the topic. BO is a global
search strategy that sequentially samples design space at locations
that are likely to contain the global optimum, while taking into
account the prediction of a surrogate model and its associated
uncertainty [42]. The single-objective optimisation problem can be
defined as finding a minimum of an unknown objective function
𝑓 : X ↦→ R, defined on a compact domain X ⊂ R𝑑 :

min
x∈X

𝑓 (x). (1)

BO starts by using a space-filling algorithm, such as Latin hyper-
cube sampling [53], to generate an initial set of solutions {x𝑖 }𝑡𝑖=1,
and then expensively evaluates them with the objective function.
These observations form the dataset D = {(x𝑖 , 𝑓𝑖 ≜ 𝑓 (x𝑖 ))}𝑡𝑖=1
that the initial surrogate model is trained with. Following model
training, and at each subsequent iteration, the next location to ex-
pensively evaluate is chosen as the location x′ that maximises an
acquisition function 𝛼 (x), i.e. x′ = argmaxx∈X 𝛼 (x). The dataset is
then augmented with {x′, 𝑓 (x′)} and the process is repeated until
budget exhaustion. The global minimum of 𝑓 is then estimated to
be the best-observed value thus far, 𝑓 ★ = min{𝑓𝑖 }.

2.1.1 Gaussian Processes. Gaussian processes (GP) are a common
choice of surrogate model due to their strengths in uncertainty
quantification and function approximation [58]. They define a prior
distribution over functions, such that any finite number of drawn
function values are jointly Gaussian, with mean𝑚(x) and covari-
ance 𝜅 (x, x′ | 𝜽 ), with hyperparameters 𝜽 . Without loss of gener-
ality, we use a zero-mean prior 𝑚(x) = 0∀x ∈ X; see [17] for
alternatives. Conditioning the GP prior distribution on data con-
sisting of 𝑡 sampled locations D = {(x𝑖 , 𝑓𝑖 ≜ 𝑓 (x𝑖 ))}𝑡𝑖=1 leads to a
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posterior distribution that is also a GP:

𝑝 (𝑓 (x) | x,D, 𝜽 ) = N(𝜇 (x), 𝜎2 (x)) (2)

with mean and variance

𝜇 (x | D, 𝜽 ) = 𝜿 (x,X)K−1y (3)

𝜎2 (x | D, 𝜽 ) = 𝜅 (x, x) − 𝜿 (x,X)⊤K−1𝜿 (X, x) . (4)

Here, X ∈ R𝑡×𝑑 is a matrix of input locations in each row and y =
(𝑓1, 𝑓2, . . . , 𝑓𝑡 )⊤ is the corresponding vector of expensive function
evaluations. The kernel matrix K ∈ R𝑡×𝑡 is K𝑖 𝑗 = 𝜅 (x𝑖 , x𝑗 | 𝜽 ) and
𝜿 (x,X) ∈ R𝑡 is given by [𝜿 (x,X)]𝑖 = 𝜅 (x, x𝑖 | 𝜽 ). In this work we
use a Matérn 5/2 kernel, as recommended for modelling realistic
functions [69, 73]. The kernel’s hyperparameters 𝜽 are learnt via
maximising the log marginal likelihood [15, 58].

2.1.2 Acquisition Functions. Acquisition functions𝛼 : X ↦→ Rmea-
sure the expected utility of expensively evaluating 𝑓 at any location
x. Its maximiser is chosen as the next location to expensively eval-
uate. This strategy allows for an estimate of the global optimum
to be generated cheaply via the surrogate model, rather than by
repeatedly querying the expensive objective function. The proba-
bility of improvement (PI) [46] is one of the earliest infill criteria.
It is the probability that the predicted value at a location x is less
than a threshold 𝜏 , which, if the posterior distribution is Gaussian,
can be expressed in closed form as

𝛼pi (x, 𝜏) = 𝑝 (𝑓 (x) < 𝜏 | D, 𝜽 ) = Φ(𝑠) . (5)

Here, 𝜏 is usually set to the best solution seen thus far, 𝑠 = (𝜏 −
𝜇 (x))/𝜎 (x) is the predicted improvement normalised by its un-
certainty, and Φ(·) is the standard Gaussian cumulative density
function. Its successor, the expected improvement (EI) [42, 55], is
one of the most common acquisition functions and measures the
expected positive predicted improvement over a threshold 𝜏 . It is
expressible in closed-form under the same assumptions [42]:

𝛼ei (x, 𝜏) = 𝜎 (x) [𝑠Φ (𝑠) + 𝜙 (𝑠)] , (6)

where 𝜙 (·) is the standard Gaussian probability density function.
In practice, EI is often preferred because PI tends to be overly-

exploitative [16, 42]. However, many other acquisition functions
have been proposed, including optimistic strategies such as upper
confidence bound [72], information-theoretic approaches [30, 31,
61, 63, 80], and 𝜖-greedy strategies [8, 16].

2.2 Multi-objective Bayesian Optimisation
Real-world optimisation problems often have multiple conflicting
objectives, all of which must be minimised at the same time [14].
The multi-objective optimisation problem can be defined as simul-
taneously minimising𝑀 ≥ 2 unknown objective functions

min
x∈X

F(x) = (𝑓 1 (x), . . . , 𝑓𝑀 (x)), (7)

where 𝑓 𝑖 is the 𝑖-th objective value and F : X ↦→ R𝑀 . Assuming
that problem contains conflicting objectives, then there will not
be a one unique solution. Instead, possibly infinitely many solu-
tions may exist that trade off between the different objectives. The

trade-off between solutions is often characterised by a dominance
relationship: x is said to dominate x′, denoted x ≺ x′, iff:

∀𝑖 ∈ {1, 2, . . . 𝑀}
(
𝑓 𝑖 (x) ≤ 𝑓 𝑖 (x′)

)
∧ ∃𝑖

(
𝑓 𝑖 (x) < 𝑓 𝑖 (x′)

)
. (8)

The set containing solutions that optimally trades off between the
objectives is referred to as the Pareto set:

P = {x | x′⊀ x ∧ x, x′ ∈ X}, (9)
where x′⊀ x indicates that x′ does not dominate x. Computation
of P is infeasible, due to its potentially infinite size. Thankfully, an
approximation is often sufficient, leading to the goal of generating
a good approximation P̃ to the Pareto set P.

Knowles [44] presented the first mono-surrogate approach for
multi-objective BO. They proposed to scalarise the objective func-
tion values (𝑓 1, 𝑓 2, . . . , 𝑓𝑀 ), i.e. mapping them to a single value,
via the use of a scalarising function. It uses the randomly-weighted
normalised objective values in an augmented Tchebycheff function,
drawing weightings from a set of predefined weights to scalarise
the sets of objective values. These can then be used in lieu of the
objective values, directly within the BO framework (Section 2.1).
The location that maximises the expected improvement over the
best-seen scalarisation is then chosen to be expensively evaluated.

2.2.1 Scalarisation functions. The augmented Tchebycheff scalar-
isation was the de facto choice for multi-objective BO. However,
Rahat et al. [57] recently proposed several scalarisation that out-
perform it. Subsequentially, Chugh [12] conducted an exhaustive
study of scalarisation methods for multi-objective BO, comparing
those in [57] to several outside the BO literature. They show that
the choosing the best scalarisation method is far from trivial and
is, in fact, problem dependent. It is also noted that the ease with
which a GP may model a landscape produced by a scalarisation is
problem dependent, i.e. the same scalarisation may produce easier
or harder landscapes for a GP to model, relative to other methods.

The main properties required for a scalarisation to be used in
the BO framework is that it should preserve dominance relation-
ships and allow for every Pareto optimal solution to be reached
[36]. In doing so, the maximisation of a dominance-preserving
scalarisation should lead to an improvement in the Pareto set [91].
Althoughmanymethods have been proposed, we focus on the popu-
lar augmented Tchebycheffmethod [44], two of the best-performing
in [57], and a novel scalarisation proposed in this work.

Augmented Tchebycheff (AT). First presented for BO by Knowles
[44], the augmented Tchebycheff method combines the Tchebycheff
function with a weighted sum, scaled by a small positive value 𝜌 :

𝑔at (x, 𝑋 ) = max
𝑖

[
𝑤𝑖 𝑓 𝑖

]
+ 𝜌

𝑀∑︁
𝑖=1

𝑤𝑖 𝑓 𝑖 , (10)

where 𝑓 𝑖 ∈ [0, 1] are the normalised versions of the observed objec-
tive values. At each BO iteration, theweightsw = (𝑤1,𝑤2, . . . ,𝑤𝑀 ),
where |w| = 1, are sampled uniformly from a fixed set of evenly
distributed weight vectors on the𝑀-dimensional unit simplex.

Hypervolume Improvement (HypI). The hypervolume indicator
𝐻 (𝑋, r) measures the volume of space dominated by a set of solu-
tions 𝑋 = {x1, x2, . . . , x𝑡 } relative to a reference vector r [90]. It is
a popular choice for comparing two sets of solutions in because
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maximising it is equivalent to locating the optimal Pareto set [20].
In order to turn the hypervolume indicator into a scalariser, it is
natural to consider the contribution of each set member, i.e. the
amount of hypervolume gained by including a set member. How-
ever, only solutions that reside within the Pareto set of 𝑋 will have
a non-zero contribution, even if solutions dominated by the Pareto
set dominate other solutions, they will all be assigned a value of
zero. This would hinder the progress of BO because it would create
a plateau that lacks spatial information about solution quality.

Rahat et al. [57] proposed a solution to the inherent problems
of solely using the hypervolume contribution that they named the
hypervolume improvement (HYPI). The members of 𝑋 are first
ranked according to Pareto shells in which they reside. Let the first
Pareto shell P1 be the Pareto set of𝑋 , i.e. P1 = nondom(𝑋 ), where
nondom(𝑋 ) returns the non-dominated members of𝑋 . Subsequent
Pareto shells P𝜆 , with (𝜆 > 1), can then be defined as

P𝜆 = nondom
(
𝑋 \

𝜆−1⋃
𝑖=1
P𝑖

)
. (11)

Once the members of 𝑋 have been ranked, the HYPI of a solution
x is defined to be the hypervolume of the union of x and the first
Pareto shell P† that contains no solutions that dominate it:

𝑔hypi (x, 𝑋 ) = 𝐻
(
{x} ∪ P†, r

)
. (12)

Therefore, each solution has a non-zero, dominance-preserving
scalarisation, with values that provide a gradient towards non-
dominated space.

Dominance Ranking (DomRank). An alternative way to compare
multi-objective solutions is to count the number of solutions that
dominate them, with the idea being that we should prefer solutions
that are dominated less [21]. Rahat et al. [57] use this idea to form
the DomRank scalarisation:

𝑔domrank (x, 𝑋 ) = 1 − |dom(x, 𝑋 ) ||𝑋 | − 1 , (13)

where dom(x, 𝑋 ) returns the set of solutions in 𝑋 that dominate
x. The authors found that DomRank was performed similarly to
other scalarisations, even though, in the degenerate setting, it is
possible for all members of 𝑋 to be non-dominated with respect to
one another, resulting in equal scalarisations for all 𝑋 . However,
this should be expected to happen more frequently as the number
of objectives 𝑀 increases because the likelihood of one solution
dominating another is inversely proportional to𝑀 [48].

Pareto Hypervolume Contribution (PHC). Inspired by the success
of HYPI, we present an alternative scalariser that can directly use
the hypervolume contribution of each solution: PHC. Let 𝑣 (x,P𝜆)
be a function that calculates the hypervolume contribution of a
solution x to the shell P𝜆 it resides in:

𝑣 (x,P𝜆) = 𝐻 (P𝜆, r) − 𝐻 (P𝜆 \ {x}, r) . (14)

The PHC of a solution x can be then be calculated by taking its
hypervolume contribution and adding the largest contribution from
each subsequent shell:

𝑔phc (x, 𝑋 ) = 𝑣 (x,P𝜆) +
𝑁∑︁

𝑖=𝜆+1
max{𝑣 (x′,P𝑖 ) | x′ ∈ P𝑖 }, (15)

where 𝑁 is the total number of Pareto shells. If x dominates x′, then
x′ will be in a subsequent shell to x and, by definition, 𝑔phc (x, 𝑋 ) >
𝑔phc (x′, 𝑋 ). Therefore, it preserves dominance relationships be-
tween members of 𝑋 and ensures monotonicity between shells.

3 BORE: BAYESIAN OPTIMISATION BY
DENSITY-RATIO ESTIMATION

BO is a popular and successful strategy for both single- and multi-
objective optimisation of expensive black-box problems. However,
GPs, the surrogate models of choice in BO, present some notable
limitations. Specifically, its O(𝑛3) computational complexity in the
number 𝑛 of solutions the GP is trained with, as well as additional
assumptions which, often, do not apply to the functions that they
are trying to model. GPs almost exclusively use stationary kernels,
i.e. they only depend on the distance between solutions. This means
that they are incapable of modelling different length-scales of data
in different regions of X.

Motivated by these shortcomings, Bergstra et al. [3] presented
a reformulation of BO by estimating the probability of improve-
ment (5) acquisition function by density-ratio estimation. We note
that the authors claimed that the expected improvement was being
estimated, but this has since been proven to be incorrect [25, 71].
We start, following the exposition of [25], by considering two den-
sities that depend on a threshold 𝜏 = Φ−1 (𝛾) that is the 𝛾-th quan-
tile of the observed objective values 𝑓 , where 0 < 𝛾 ≤ 1 and
𝛾 = Φ(𝜏) = 𝑝 (𝑓 ≤ 𝜏):

𝑏 (x) = 𝑝 (x | 𝑓 < 𝜏) (16)
ℓ (x) = 𝑝 (x | 𝑓 ≥ 𝜏) . (17)

Here, 𝑏 is the probability density of observed values being less than
the threshold 𝜏 , and ℓ of observations not being less than 𝜏 . Using
Bayes rule, ℓ and 𝑏 can be expressed as being proportional to PI:

𝑏 (x) ∝ 𝑝 (𝑓 < 𝜏)𝑝 (x) = 𝛼pi (x, 𝜏)𝑝 (x) (18)
ℓ (x) ∝ 𝑝 (𝑓 ≥ 𝜏)𝑝 (x) = (1 − 𝛼pi (x, 𝜏)) 𝑝 (x), (19)

where 𝑝 (x) is a prior density overX. Bergstra et al. [3] use the ratio
of these densities as an acquisition function that monotonically
increases with 𝛼pi (x, 𝜏):

𝛼tpe (x, 𝜏) =
𝑏 (x)
ℓ (x) ∝

𝛼pi (x, 𝜏)
1 − 𝛼pi (x, 𝜏)

, (20)

where the prior density 𝑝 (x) cancels under the assumption that
it has support over all of X. Therefore, maximising 𝛼tpe (x, 𝜏) is
equivalent to maximising 𝛼pi (x, 𝜏).

This transforms the problem training aGPmodel andmaximising
PI (5), to one of estimating two densities and maximising their ra-
tio (20). Using tree-based kernel density estimators [67] to estimate
ℓ and 𝑏, results in the tree-structured Parzen estimator (TPE) [3],
and reduces the computational cost to O(𝑛).

Tiao et al. [78] provide a full discussion on theweaknesses of TPE.
Here, we highlight themost important. Density estimation in higher
dimensions is notoriously difficult [74], and even the estimating
the kernel’s bandwidth and choosing the correct kernel, is far from
trivial [77]. We also note that even with correct density estimation,
the optimisation of (20) is often numerically unstable [85].

Instead of trying to first estimate the densities and then their
ratio, one can directly estimate their ratio by exploiting results in



MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation GECCO ’22, July 9–13, 2022, Boston, MA, USA

class-probability estimation [4, 11, 54, 74]. It can be shown [78] that
the 𝛾-relative density-ratio of (16) and (17),

𝑟𝛾 (x) =
ℓ (x)

𝛾ℓ (x) + (1 − 𝛾)𝑏 (x) , (21)

is proportional to the probability of improvement (5):

𝛼pi (x,Φ−1 (𝛾)) ∝ 𝑟𝛾 (x) . (22)

We note that the TPE acquisition function (20) is a special case of
(21), i.e. 𝛼tpe (x, 𝜏) ≡ 𝑟0 (x).

Next, we introduce a binary class label 𝑧 such that

𝑧 =

{
1 if 𝑓 < 𝜏

0 if 𝑓 ≥ 𝜏 .
(23)

If the class-posterior probability of 𝑓 < 𝜏 given an observation x is
defined to be 𝜋 (x) = 𝑝 (𝑧 = 1 | x), and noting that ℓ (x) = 𝑝 (x | 𝑧 = 1)
and 𝑏 (x) = 𝑝 (x | 𝑧 = 0), it can also be shown [78] that

𝑟𝛾 (x) ≡ 𝛾−1𝜋 (x). (24)

A probabilistic classifier, e.g. a neural network, can be used to
estimate 𝜋 (x) by learning a function 𝜋𝝃 : X ↦→ [0, 1] with parame-
ters 𝝃 . Provided that the classifier is trained with a proper scoring
rule [26], such as the binary cross entropy (log loss), the relative
density-ratio is approximated by

𝜋𝝃 (x) ≈ 𝛾𝑟𝛾 (x). (25)

This result links PI (5) to density-ratio estimation and onto class-
probablity estimation, leading to the BO by density-ratio (BORE)
framework. It transforms the problem from training a GP and max-
imising an acquisition function, into one of training a probabilistic
classifier and maximising 𝜋𝝃 (x). To carry out BORE, a proportion 𝛾
is first chosen, and the best 𝛾-th proportion of solutions are labelled
as class 1, with the remaining labelled as class 0. A classifier 𝜋𝝃 is
then trained on the two sets of solutions, and x′ = argmaxx 𝜋𝝃 (x)
is chosen as the next location to be expensively evaluated.

The two main hyperparameters of BORE are the proportion 𝛾
of solutions to include in class 1 and the choice of 𝜋𝝃 . Increasing 𝛾
encourages exploration because it will result in a worse threshold
𝜏 from which to (effectively) calculate PI with, i.e. the likelihood
of a solution exceeding a worse threshold will be higher. In the
original BORE formulation Tiao et al. [78], 𝛾 is fixed throughout
optimisation. Although it is fixed, exploitation increases as more
solutions are evaluated because the class threshold will be more bi-
ased towards the better solutions collected during optimisation. The
choice of 𝜋𝝃 controls the types of functions that can be modelled
during optimisation. Multi-layer perceptrons (MLPs) are a natural
choice due to their function approximation guarantees [33], their
ability to scale to arbitrary problem dimensions, and for being end-
to-end differentiable. This latter point means that quasi-newton
based methods, such as L-BFGS-B [9], can be used to optimise
𝜋𝝃 (x). Ensemble-based methods are an attractive alternative to
MLPs because they also scale well. They are not, however, end-to-
end differentiable meaning that non-gradient-based optimisation
methods must be used such as, e.g. CMA-ES [29]. In this work we
use MLPs and an ensemble method, gradient-boosted trees (XG-
Boost), because they can be both trained using a proper scoring
rule, thereby ensuring a good approximation to (25).

Algorithm 1 Multi-objective BO by Density-Ratio Estimation
Inputs: Number of initial samples 𝑆 , total budget𝑇 , scalarising
function 𝑔(·), probabilistic classifier 𝜋𝝃 (·), proportion 𝛾 .
Steps:

1: 𝑋 ← SpaceFillingSampling(X, 𝑆) ⊲ Generate initial samples
2: f𝑖 ← F(x𝑖 ) for 𝑖 ∈ {1, . . . , 𝑆 } ⊲ Expensively evaluate samples
3: for 𝑡 = 𝑆 + 1→ 𝑇 do
4: 𝑔𝑖 ← 𝑔 (f𝑖 ) for 𝑖 ∈ {1, . . . , 𝑡 } ⊲ Scalarise objective values
5: 𝜏 ← Φ−1 (𝛾 ) ⊲ Calculate 𝛾 -th quantile of {𝑔𝑖 }𝑡𝑖=1
6: 𝑧𝑖 ← I[𝑔𝑖 < 𝜏 ] for 𝑖 ∈ {1, . . . , 𝑡 } ⊲ Assign class labels
7: 𝝃★ ← TrainClassifier(𝜋𝝃 , {(x𝑖 , 𝑧𝑖 ) }𝑡𝑖=1)
8: x𝑡+1 ← argmaxx∈X 𝜋𝝃★ (x) ⊲ Maximise class-posterior probability
9: f𝑡+1 ← F(x𝑡+1) ⊲ Expensively evaluate new solution

4 MBORE: MULTI-OBJECTIVE BORE
In this section, we introduce Multi-objective BO by Density-Ratio
Estimation (MBORE). It extends BORE to the multi-objective set-
ting by scalarising the previously-evaluated solutions and separat-
ing them into two classes via thresholding the scalarised values,
thereby enabling a probabilistic classifier to be trained. In doing
so, to the best of our knowledge, we present the first classification-
based multi-objective method using scalarisation for BO. Before
discussingMBORE further, we first give an overview of relatedwork
in the field of classification-based multi-objective optimisation.

Classification-based multi-objective optimisation methods us-
ing surrogate models often focus on predicting the quality of an
evolved population of solutions. Two main schemes are proposed,
either predicting which Pareto shell a candidate solution would
belong to, or whether the current population (set of previously-
evaluated solutions) dominates it. Rank-based support vector ma-
chines (SVM) [41, 49], for example, have been proposed [51, 64] to
predict the shell a candidate solution belongs to. However, domi-
nance prediction is a much more common strategy. Early works in-
clude using a one-class SVM tomodels whether solutions were dom-
inated [52], and using a naive Bayes classifier to predict whether
one solution dominates another [27]. More recently, the direction of
research has moved towards learning to predict whether candidate
solutions are dominated by an existing set of solutions, for example,
by using k-nearest neighbours [89] or MLP classifiers [56, 87].

The classification-based approach we present in this paper, i.e.
separating solutions into two classes based on their scalarisation, is
conceptually similar to previous work on, e.g., classification based
on dominance. However, there are some important differences and
benefits from using scalarisation. Most importantly is that using
scalarisation and the subsequent thresholding into classes, allows
for PI (5) to be calculated via the BORE framework. This provides
a much-needed theoretical motivation as to why a classification-
based approach is suitable for multi-objective optimisation. The
size of the proportion 𝛾 gives control over how many solutions
are placed into each class. Contrastingly, if a set of solutions were
completely non-dominated with respect to one another, using a
domination-based approach would result in an empty class.

Motivated by the success of BORE in the single-objective setting,
we present MBORE. Algorithm 1 outlines its general structure. It
starts (line 1), identically to BO, with a space-filling design such
as Latin hypercube sampling [53]. These samples 𝑋 = {x𝑖 }𝑆𝑖=1 are
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then expensively evaluated with the objective functions, i.e. f𝑖 =
F(x𝑖 ). At each subsequent iteration of the algorithm, the objective
values are scalarised (line 4) and the 𝛾-th quantile 𝜏 of the scalarised
objective values is calculated (line 5). The solutions are then split
into two classes (line 6), with solutions that have a scalarisation of
less 𝜏 labelled as class 1, and the remaining labelled as class 0. Next,
a probabilistic classifier is trained (line 7), and the location that
maximises its prediction is chosen as the next location to evaluate
(lines 8 and 9). This process is then repeated until budget depletion.

Given the clear link to PI, and the strengths ofMLPs and XGBoost
in function approximation, one might expect MBORE to perform
similarly to the traditional mono-surrogate approach (BO) on low-
dimensional problems (e.g. 𝑑 ≤ 10) and to improve upon BO on
problems that have a larger dimensionality. In the following section
we investigate this by comparing BO to MBORE on a wide variety
of low- and high-dimensional synthetic and real-world problems.

5 EXPERIMENTAL EVALUATION
The performance of MBORE is investigated using two probabilistic
classifiers, XGBoost [10] (XGB) and a multi-layer perception (MLP).
We compare it to the standard mono-surrogate BO approach [44],
often referred to as ParEGO [44], using a GP (2) surrogate model and
the EI (6) acquisition function. Themethods are compared using two
popular synthetic benchmarks, DTLZ [18] and WFG [34], along
with a set of real-world problems [76]. Experiments are carried
out using the typical number of problem dimensions, e.g. 𝑑 ≤ 10,
with varying numbers of objectives 𝑀 . A high-dimensional, e.g.
𝑑 ∈ {20, 50, 100}, version of the WFG benchmark is also evaluated
to assess optimisation performance in more challenging scenarios.
Experiments are repeated for the scalarisation methods discussed
in Section 2.2.1: augmented Tchebycheff (AT) [44], hypervolume
improvement (HYPI) [57], dominance ranking (DomRank) [57], and
our novel scalariser, Pareto hypervolume contribution (PHC) (15).

The two versions of MBORE (XGB and MLP) were created and
trained using the same configurations as BORE [78, Appendix J]. A
zero-mean GP with an ARD Matérn 5/2 kernel was used for BO. At
each iteration, before new locations were selected, the hyperparam-
eters of the GPwere optimised bymaximising the log likelihood [58]
using L-BFGS-B [9] with a multi-restart strategy [84], and choos-
ing the best set of hyperparameters from 10 restarts for the model.
The weight vectors for the AT scalarisation were calculated via the
Riesz’ s-Energy method [7]; see the supplement for more details.

Input variables were normalised to reside in [0, 1]𝑑 before they
were used to train both MBORE and BO. Objective values simi-
larly normalised on a per-objective basis. The models were initially
trained on 𝑆 = 2𝑑 observations generated by maximin Latin hyper-
cube sampling [53] and then optimisation was carried out for a fur-
ther 300 function evaluations. Each optimisation run was repeated
21 times from a different set of Latin hypercube samples. Initial sets
of locations were common across all methods to enable statistical
comparison. The next location to evaluate, i.e. x′ = argmaxx 𝜋𝝃 (x),
was selected for the MLP as in [78], and for XGB using bi-pop
CMA-ES [29] with 10 restarts. EI (6) in BO was optimised with a
multi-restart strategy of first sampling 𝐵 = 1024𝑑 randomly-chosen
locations and then optimising the best 10 of these with L-BFGS-B.
The budget for optimising 𝜋𝝃 for both the MLP and XGB classifiers

Name IDs Problem configurations (𝑑 ,𝑀)
DTLZ 1–7 (2,2), (5,2), (5,3), (5,5), (10,2), (10,3), (10,5), (10,10)
WFG 1–9 (6,2), (6,3), (8,2), (8,3), (10,2), (10,3), (10,5)
Table 1: Benchmarks, problem IDs and configurations.

XGB MLP GP

H
YP

I DTLZ 36 4 29
WFG 37 0 36

D
R DTLZ 21 11 37

WFG 36 0 45

PH
C DTLZ 36 12 22

WFG 39 0 36

AT

DTLZ 13 8 43
WFG 1 0 63

Table 2: Performance summary of MBORE (MLP and XGB)
and BO (GP) for a given scalariser on the benchmarks. Table
values correspond to the number of times each model was
the best or statistically equivalent to the best model.

was also set to 𝐵 to ensure fair comparison. Like Tiao et al. [78], we
fix 𝛾 = 1/3 for all experiments.

Performance is reported in terms of the hypervolume (HV) [91]
of the estimated Pareto set; IGD+ [37] is also reported in the sup-
plement. The BO optimisation pipeline was constructed using GPy-
Torch [24] and BoTorch [1]. MBORE uses pagmo [5] for carrying
out fast dominated sorting and hypervolume calculation, as well as
pymoo [6] for the IGD+ calculation. Code for all methods, as well
as the initial starting solutions, reference vectors and the estimated
Pareto sets for HV and IGD+ is available online1.

5.1 Synthetic Benchmarks
The popular DTLZ [18] and WFG [34] benchmark problem suites
were selected to compare MBORE and BO. The benchmarks were
chosen because both the problem dimensionality 𝑑 and the number
of objectives𝑀 are configurable, allowing for a large range of prob-
lems to be generated. Table 1 outlines the benchmark problems used,
including the specific problem numbers (IDs) and combinations
of (𝑑 ,𝑀) used from each suite, resulting in 56 and 63 distinct test
problems from DTLZ and WFG respectively. Following standard
practice [6, 12], the WFG position and scale parameters (𝑘, 𝑙) were
set to (4, 𝑑 − 4) for𝑀 = 2, and (2𝑀 − 1, 𝑑 − (2𝑀 − 1)) for𝑀 > 2.

We start by comparing the performance of MBORE using the
XGB and MLP classification models to mono-surrogate BO with a
GP surrogate model. Table 2 shows the number of times a model
(XGB, MLP, and GP) is best on each benchmark for a given scalar-
isation method. Specifically, a model is counted as being the best
if it has the largest median hypervolume over the 21 optimisation
runs, or it is statistically indistinguishable from the best method,
according to a one-sided, paired Wilcoxon signed-rank test [45]
with Holm-Bonerroni correction [32]. Models that are the best the

1http://www.github.com/georgedeath/mbore

http://www.github.com/georgedeath/mbore
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Figure 1: Hypervolume (HV) performance summary for the
DTLZ and WFG benchmarks. Bar heights correspond to the
proportion of times that a model and scalariser combination
is best or statistically equivalent to the best method.

highest number of times on each benchmark for a given scalariser
(table rows) are highlighted in grey. Interestingly, either XGB or
GP is the best for each scalarisation method, with results relatively
close for HYPI, DomRank (DR) and PHC. This highlights the effi-
cacy of MBORE for general-purpose use in multi-objective BO, and
suggests that it should be preferred over BO when using the HYPI
and PHC scalarisation methods. Note that MBORE is outperforming
BO even though it is approximating PI, an acquisition strategy that
is generally regarded as being inferior to EI [16, 25]. We suspect
that this is because the increased modelling capacity of XGB is
outweighing the marginally worse performance of PI.

Given that Table 2 only compares performance between models
for a given scalarisation, we now evaluate which combination of
scalarisation and model performs the best on both the DTLZ and
WFG benchmarks. Figure 1 summarises the performance for all
combinations of model and scalariser. Bar heights correspond to
the proportion of times each model and scalarisation combination
was the best on each test problem. As can be seen from the figure,
MBORE with XGB and our novel PHC scalariser (15) has the best
overall performance for both benchmarks. Surprisingly, MBORE
with the MLP classification method performs worse than the best
performing method on all the 63 WFG test problems. However, this
reflects the results presented in [78] that also show that XGB tends
outperform MLP. We note that relative rankings of methods remain
the same when using IGD+; see the supplement for details.

Next, we investigate the performance of the models with respect
to a problem’s dimensionality 𝑑 and number of objectives𝑀 . Since
PHC was the best-performing method, we limit this discussion to
its results. Results for all scalarisers are available in the supple-
ment. Figure 2 summarises the performance of each combination of
model and scalariser for the two benchmarks in terms of 𝑑 and𝑀 .
The DTLZ results show that BO’s performance deteriorates as 𝑑
increases, a trend mirrored for the other scalarisations. Conversely,

2 5 10
Problem dimensionality

0.0

0.5

1.0
DTLZ: PHC

XGB MLP GP

6 8 10
Problem dimensionality

WFG: PHC

2 3 5 10
Number of objectives

0.0

0.5

1.0
DTLZ: PHC

2 3 5
Number of objectives

WFG: PHC

Figure 2: Hypervolume performance summary for the PHC
scalariser on the DTLZ (left) and WFG (right) benchmarks
given the problem’s dimensionality (upper) and number of
objectives (lower).
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HV Performance Summary: Real-world

XGB MLP GP

Figure 3: Hypervolume (HV) performance summary for the
real-world benchmark problems. Bar heights correspond to
the proportion of times that a model and scalariser combina-
tion is best or statistically equivalent to the best method.

there is no clear pattern regarding𝑀 for DLTZ. In the WFG bench-
mark the reverse is true, changing 𝑑 does not result in a consistent
trend, but the performance of BO decreases and XGB increases
as 𝑀 increases across the majority of scalarisation methods. We
conjecture that this is related to the increased complexity of the
WFG problems [34], compared to DTLZ. Therefore, increasing𝑀
leads to an increase in the scalarisation landscape’s complexity,
resulting in features that GPs model poorly, such as discontinuities.

5.2 Real-world Benchmark
Hand-crafted benchmarks, such as DTLZ and WFG, are known
to have properties that are unlikely to appear in real-world ap-
plications [38, 88]. Therefore, to investigate the performance of
MBORE in more realistic settings, we turn to the real-world bench-
mark of Tanabe and Ishibuchi [76]. It has 11 continuous-valued
test problems taken from real-world problems, such as car side
impact design [39] and water resource planning [59]; see [76] for
detailed descriptions. The problem RE3-4-3 was not included due
to numerical instabilities; we focus on the remaining 10 problems.

Figure 3 summarises the performance of each combination of
model and scalariser on the real-world problem benchmark. As
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Figure 4: Hypervolume (HV) performance summary for the
high-dimensional WFG benchmark. Bar heights correspond
to the proportion of times that a model and scalariser combi-
nation is best or statistically equivalent to the best method.

can be seen from the figure, MBORE with XGB and using the PHC
scalarisation is by far the best method for optimising the real-world
problems based on hypervolume. Interestingly, for DomRank and
AT, using BO (GP) was more effective than MBORE, with HYPI and
PHC roughly equal between the two methods; see the supplement
for full details. These results again show that using MBORE is
suitable for multi-objective optimisation and outperforms BO when
using more effective scalarisation methods.

5.3 High-dimensional Benchmark
BO often struggles on high-dimensional problems due to the surro-
gate models of choice, GPs, decreasing in modelling accuracy as the
problem dimensionality increases [28]. Consequentially, compar-
isons of multi-objective methods often focus on lower numbers of
both objectives𝑀 and 𝑑 . In contrast to this, and in order to evaluate
MBORE in more realistic settings where both 𝑑 and𝑀 are compar-
atively large, we investigate optimisation performance on the WFG
benchmark [34] with a large dimensionality 𝑑 ∈ {20, 50, 100}. Due
to the computational costs of training GPs in high dimensions, we
limit the number of objectives to one configuration (𝑀 = 10); see
the following section for a comparison of the computational costs.

Figure 4 summarises the performance on these problems. The
efficacy of MBORE is repeated for the high-dimesional versions of
the WFG problems, with the combination of MBORE, XGB and the
PHC scalariser being the best on roughly two thirds of the prob-
lems. This is somewhat expected because, in the high-dimensional
(𝑑 ≥ 20) setting due to the aforementioned difficulties GPs can
have with larger problem dimensions. Intriguingly, as shown in the
supplement, the comparative performance for MLP-based MBORE
increases with 𝑑 for all four scalarisations.

5.4 Computational Timing
We also investigate the computational performance of the three
methods, MBORE with XGB and MLP, and BO with a GP surro-
gate model. The cost of performing one iteration of each method
was recorded for all scalarisers on the WFG benchmark with 𝑑 ∈
{10, 20, 50, 100}. To ensure a fair comparison, each optimisation run
was carried out on one core of an Intel Xeon E5-2640 v4 CPU. Fig-
ure 5 shows the timing results. The median computation time across
all scalarisations for each iteration is shown, with shaded regions
corresponding to the interquartile range. As theory necessarily
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Figure 5: Computational time taken per iteration on theWFG
benchmark for 𝑑 ∈ {10, 20, 50, 100}. The median computation
time over all scalarisations is shown as the solid lines, with
the corresponding interquartile ranges shaded.

dictates [58], the GP’s computation time increases with the number
of solutions. Conversely, the computation time of XGB and MLP
are roughly constant for all iterations for a given dimensionality.

6 CONCLUSIONS
In this work, we presented MBORE: a novel multi-objective al-
gorithm for expensive optimisation problems by scalarisation. It
replaces the traditional mono-surrogate BO pipeline by training
a probabilistic classifier on previously-evaluated solutions that
were thresholded into two classes based on their objective value’s
scalarised form. The classifier’s predictions can then be shown to
approximate the probability of improving over the given thresh-
old. In addition to MBORE, we also introduce PHC, a dominance-
preserving scalarisation method that uses a modified form of each
solution’s hypervolume contribution to its Pareto shell.

As demonstrated throughout, MBORE provides a strong alter-
native to mono-surrogate BO using GPs. This is particularly true
for more difficult problems, such as the WFG and real-world bench-
marks, as well as for problems with higher dimensionalities. Addi-
tionally, the computational costs of MBORE remain approximately
constant as the number of solutions included in the model increases.
We note that, we are not able to recommend MBORE over BO (or
vice versa) for an arbitrary scalarisation, as shown by BO being
consistently better with the AT scalarisation and MBORE with PHC.
However, PHC consistently outperformed all other scalarisation
methods. Therefore, we recommend the use of MBORE with XGB
using the PHC scalarisation method as the new de facto choice for
mono-surrogate-based multi-objective optimisation.

Future work includes extending MBORE to non-continuous
spaces by using random forests. These are able to naturally adapt
to discrete and categorical data without the need for, e.g. one-hot
encoding. Additionally, we also seek to extend MBORE to the multi-
surrogate setting by replacing its multiple GP models with one or
more probabilistic classifiers, thereby substantially reducing com-
putational complexity.
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