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ABSTRACT
Blood pressure (BP) control is a key target for interventions to reduce cognitive decline. This
cross-sectional study explored associations between objective (24-hour urine excretion) and sub-
jective (food frequency questionnaire [FFQ]) measures of dietary sodium and nitrate intakes with
cognitive function and resting BP in the InCHIANTI cohort. Baseline data from 989 participants
aged >50 years were included. In fully adjusted models, participants with concurrent high nitrate
and low sodium (Odds Ratio (OR)¼0.49, 95%CI 0.32–0.76, p¼ 0.001) and high nitrate and high
sodium (OR ¼ 0.49, 95%CI 0.32–0.77, p¼ 0.002) 24-hour urinary concentrations had lower odds
of high BP than participants with low nitrate and high sodium concentrations. We found no sig-
nificant associations between sodium and nitrate intakes (24-hour urinary concentrations and
FFQ) and poor cognitive performance. Urinary nitrate excretion was associated with lower BP
and results appeared to be independent of sodium intake. Further analyses in longitudinal stud-
ies are required to substantiate these findings.
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Introduction

Blood pressure (BP) control has emerged as a key tar-
get for long-term, effective interventions to reduce
cognitive decline and prevent dementia (Hughes et al.
2020). Hypertension in mid-life has been associated
with increased dementia risk (Livingston et al. 2020),
with a recent clinical trial reporting a lower risk of
mild cognitive impairment among individuals rando-
mised to an intensive BP reduction intervention
(Williamson et al. 2019). However, data on the

association of BP control with cognitive decline are
inconsistent in older individuals.

Dietary sodium (salt) and inorganic nitrate both
influence BP control (Strazzullo et al. 2009; Lundberg
et al. 2011). Epidemiological studies have reported
associations of high sodium diets with impaired BP
control and increased cardiovascular risk (Strazzullo
et al. 2009; Mente et al. 2018); this evidence has been
confirmed in several clinical trials demonstrating the
protective effects of salt reduction on cardiovascular
health (He et al. 2013; He and MacGregor 2018).
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Dietary nitrate is an exogenous source for the
endogenous production of a substrate for, and metab-
olite of, nitric oxide (NO), which is known for its
multiple effects on physiological functions such BP,
neurovascular coupling, neurotransmission and
immunity (Clifford et al. 2019). Recent epidemio-
logical studies and clinical trials have demonstrated
nitrate intake improves BP and metabolic health
(Babateen et al. 2018; Clifford et al. 2019).

While the scientific evidence for the benefits of dietary
sodium reduction and increased dietary nitrate intake on
BP appears robust, relatively little is known about the
association of both sodium and nitrate intake with cogni-
tive decline. To date, a small number of epidemiological
studies among older adults have been conducted and
showed mixed associations between sodium intake and
cognitive performance (Fiocco et al. 2012; Haring et al.
2016; Rush et al. 2017; Nowak et al. 2018). The associ-
ation of dietary nitrate with cognition is largely
unknown. A small number of clinical interventions have
been conducted reporting mixed results however, they
had overall a short duration and limited statistical power
(Stanaway et al. 2017; Clifford et al. 2019).

Nevertheless, with hypertension highlighted as an
important modifiable risk factor for dementia
(Livingston et al. 2020) and the consistent beneficial
effects of low sodium and high dietary nitrate intakes on
BP, it is relevant to investigate their independent and
combined putative associations with cognitive outcomes.
The consumption of a diet low in sodium and high in
nitrate could potentially represent a more effective diet-
ary strategy to achieve greater reductions in BP and pro-
vide greater benefits in cognitive function. To our
knowledge, the interactive effects between dietary nitrate
and sodium intake are yet to be explored in humans.

In addition, the mixed results observed to date on
the associations of dietary nitrate and sodium intake
with health outcomes may be due to differences in
dietary assessment methods across studies. In particu-
lar, results could differ depending upon whether sub-
jective, self-reported data measures of dietary intake
are utilised (e.g. food frequency questionnaire (FFQ)
or diet recall) compared with objective measures such
as 24-hour urinary sodium or nitrate concentrations
(Hill et al. 1996; Wielgosz et al. 2016). Inaccuracies,
inconsistencies, limited and/or poor-quality food com-
position tables to calculate dietary nitrate intake may
result in misreporting of nitrate intake. To our know-
ledge, a cross-validation analysis to evaluate associa-
tions between FFQ and 24-hour urinary
measurements of sodium and nitrate intake has not
been conducted.

The aim of this cross-sectional study was to explore
associations between objective (i.e. 24-hour urine
excretion) and subjective (i.e. self-reported FFQ)
measures of dietary sodium and nitrate intakes with
cognitive function and BP among older adults
(>50 years) from the InCHIANTI cohort. In addition,
this study aimed to conduct a cross-validation to
evaluate the comparability of measures of nitrate and
sodium intake derived from FFQ vs. 24-hour urine
concentrations.

Methods

Study population and setting

The InCHIANTI study is a population-based epi-
demiological investigation among an older adults liv-
ing in the Chianti region in Tuscany, Italy. The details
of the study have been previously reported [18]. The
study was conducted by the Laboratory of Clinical
Epidemiology of the Italian National Institute of
Research and Care on Ageing (INRCA), Florence,
Italy. Ethical approval was granted by The INRCA
Ethical Committee. The InCHIANTI study aimed to
recruit older residents from two towns of the Chianti
area (Greve in Chianti and Bagno a Ripoli, Tuscany,
Italy) plus younger controls, and achieved a 91.6%
response rate at baseline (data collected between 1998
and 2000). 1453 individuals from 20 to 102 years of
age were randomly selected based on city regis-
tries [18].

Participant selection

For this cross-sectional analysis, we used data from
n¼ 1270 participants older than 50 years at the base-
line interview. In addition to age, the following exclu-
sion criteria were applied: (1) total urine volume
<400 or >6000ml; (2) total energy intake >800 and
<4000 kcal/day (Fiocco et al. 2012); (3) poor renal
function (eGFR < 30ml/min). Following application
of exclusion criteria, the number of participants with
complete cognitive assessment data (Mini Mental
State Examination [MMSE]; Trail Making Task [TMT
A and TMT B] respectively) and BP measurements at
baseline varied within the dataset. Flowcharts of study
participants eligible for inclusion for each outcome
are illustrated in Figures 1(A–D) of the online supple-
mentary material.
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Blood pressure

Resting supine BP was measured in both arms using a
mercury sphygmomanometer. The sequence of meas-
urements was right arm first, then a 2-minute pause,
then the left arm. Two further measurements were
subsequently carried out on the higher reading arm.
Systolic and diastolic BP were defined as the mean of
the second and third measurements. All BP measure-
ments were taken from the initial baseline recruitment
examinations.

Cognitive function

Cognition was assessed at baseline using two meas-
ures: (1) an Italian version of the Mini Mental State
Examination (MMSE) (Folstein et al. 1975). MMSE
assesses global cognition including orientation, regis-
tration, attention, calculation, language and recall.
MMSE scores range from 0–30 with higher scores
indicating better cognitive function; (2) Trail Making
Test (TMT) (Reitan 1958). TMT was administered to
measure visuospatial scanning, sequential processing,
motor speed, attention, executive functioning and is
administered in two parts (TMT A and TMT B). In
TMT A, the participant was asked to draw lines to
connect circled numbers in a numerical sequence (i.e.
1-2-3, etc.), and in TMT B, participants were asked to
draw lines to connect numbers and letters in alternat-
ing order. TMT A and B was completed as quickly as
possible, and scores reflected the time needed to com-
plete the task with 300 seconds as the maximum.
Higher scores indicated poorer performance. The

difference between TMT A and TMT B scores was
calculated to account for missing data in the comple-
tion of the TMT B test.

Dietary assessment measures

24-Hour urinary sodium
Sodium intake was estimated using the 24-hour
sodium urinary excretion. On the day of the study
visit, participants were provided with a plastic bottle
containing 1 g of boric acid as preservative, and
instructed to collect all the urine produced in the fol-
lowing 24 hours, making the maximum effort to avoid
dispersing urine during the collection period.

24-Hour urinary nitrate
Urinary nitrate concentration was estimated by the
24-hour nitrate urinary excretion and measured using
the spectrophotometric plate method which has been
described elsewhere (Smallwood et al. 2017). Briefly,
the assay reduces the nitrate in the sample to nitrite
which then forms a coloured chromogen upon reac-
tion with the Griess reagent. Absorbance was read
using a plate reader at 540 nm. Thus, the assay does
not differentiate between nitrite and nitrate. As the
concentration of nitrate is approximately 1,000 times
that of nitrite in urine a ratio that at the very least
persists following nitrate supplementation we have
reported the results as urinary nitrate concentration
(Smallwood et al. 2017).

Dietary intake from FFQ. Usual dietary consumption
in the past year was assessed at baseline using a FFQ

Figure 1. Interactive effects of differences in 24-hour urinary concentrations of nitrate and sodium on mean systolic (A) and dia-
stolic (B) resting blood pressure. Analysis of covariance was conducted to evaluate differences between the groups. Analyses were
adjusted for age, sex, disease count score (stroke, CHF, MI, PD, cancer and diabetes), BMI, physical activity, total energy intake,
smoking, kidney function and medication use (drugs for acid-related disorders; diuretics for CHF or hypertension; ACE inhibitors
(alone and in combination with diuretic); organic nitrates; aldosterone antagonists (diuretics); glucocorticoids for systemic use).
$¼Significant difference from LNLS and LNHS (p< 0.05). ¥ ¼ Significant difference from LNLS and LNHS (p< 0.05). Key: HNLS: high nitrate low sodium;
HNHS: high nitrate high sodium; LNLS: low nitrate low sodium; LNHS: low nitrate high sodium.
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created for the European Prospective Investigation on
Cancer and Nutrition study and validated for the
InCHIANTI study (Pisani et al. 1997; Bartali et al.
2004). Daily sodium intake was calculated in mg/day.
Nitrate data is not included within national food com-
position tables; therefore a published comprehensive
database that includes the nitrate and nitrite concen-
trations in 3498 and 2134 individual food and bever-
ages, respectively, was used to calculate dietary nitrate
intake (mg/day) (McMahon et al. 2017).

Covariates. Factors that were associated with cogni-
tive function and BP in univariate analyses or known
to be associated from previous studies were consid-
ered as covariates in the analyses (Tanaka et al. 2018;
Clark et al. 2020). Sociodemographic covariates
included age (years), sex (male or female), and num-
ber of years of education. Height (m) and weight (kg)
were measured and used to calculate Body Mass
Index (BMI) (kg/m2). Total energy intake was assessed
using FFQ data (kcal/day). Lifestyle factors included
physical activity levels in the 12months prior to par-
ticipants’ baseline visit, assessed through a modified
standard interview-administered questionnaire and
coded into three categories of low activity (inactivity
or light-intensity activity <1 h per week), medium
activity (light-intensity activity 2–4 h per week), and
high physical activity (light-intensity activity at least
5 h per week or moderate activity at least 1–2 h per
week) (Wareham et al. 2002); smoking status was self-
reported and categorised into never smokers, former
smokers or current smokers (smoking within 3 years
of interview); depressive symptoms were measured
using Centre for Epidemiological Studies Depression
(CESD) scores (0–60; higher scores related to greater
depressive symptoms). Use of medications (yes/no)
that may alter metabolism of sodium or nitrate in the
body were controlled for, including drugs for acid-

related disorders; diuretics for Congestive Heart
Failure (CHF) or hypertension; ACE inhibitors (alone
and in combination with diuretic); organic nitrates;
aldosterone antagonists (diuretics); glucocorticoids for
systemic use; antiepileptic; anti-Parkinson drugs; psy-
cho-leptics: typical antipsychotics; psycho-leptics:
atypical antipsychotics; psycho-leptics: anxiolytics; psy-
cho-analeptics: antidepressants; drugs for dementia.
Chronic diseases including, diabetes, ischaemic heart
disease, congestive heart failure, stroke, cancer,
Parkinson’s disease, were defined using standard clin-
ical definitions which have been described previously
(Fabbri et al. 2015). For the analysis, a cumulative
count of the conditions present in each participant
was calculated as an indicator of general health status.
Estimated Glomerular Filtration Rate (eGFR) was esti-
mated using the Cockcroft–Gault equation and used
to classify kidney function (Foundation 2002).

Data analysis. Statistical analyses were conducted
using IBM SPSS version 25.0 (New York, NY, USA).
The threshold for significance was set at p� 0.05.
Descriptive statistics were summarised as mean and
SD or frequency and percentages. Histograms of the
distributions of 24-hour urinary sodium and nitrate
excretions and dietary sodium and nitrate intakes are
presented in Figure 2(A–D) of the online supplemen-
tary material. Scatter plots were produced to evaluate
the associations of measurements of nitrate and
sodium intake with 24-urinary excretion of nitrate
and sodium, respectively.

Multiple linear regression was used to investigate
the association between urinary sodium, urinary
nitrate, dietary sodium, and dietary nitrate with cogni-
tive test scores and BP. Results are presented as esti-
mate and standard error. Models were reported as
adjusted for age, sex, disease count, medication use,
BMI, physical activity, energy intake, smoking,

Figure 2. Scatter-plots showing the associations between 24-urinary sodium and nitrate concentrations with dietary sodium (A)
and nitrate (B) intake assessed by Food Frequency Questionnaire.
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education, depression, kidney function and BP (for
cognition analysis only). Normality of the residuals
distributions was checked to evaluate the fitness of the
regression models.

Logistic regression was used to calculate the odds
ratio (OR) for the association between urinary
sodium, urinary nitrate, dietary sodium and dietary
nitrate with poor cognitive performance and high BP.
Urinary nitrate, dietary nitrate, urinary sodium and
dietary sodium were stratified into tertiles based on
their frequency of distribution in the data set. Poor
MMSE cognitive performance was defined as a score
in the bottom 20th percentile of the population distri-
bution for MMSE (Gross et al. 2019). According to
the time (in seconds) employed to perform each part
of the TMT, poor performance was defined as a score
in the 20th percentile of the population distribution as
higher scores demonstrate poorer performance (more
time taken to complete). BP was categorised according
to the European Society of Cardiology Guidelines
(Williams et al. 2018), with measurements for Systolic
BP (SBP) of �140mmHg and/or Diastolic BP (DBP)
of �90mmHg classed as high BP. Results are
expressed as ORs with 95% confidence intervals (CIs)
for poor cognitive performance/high BP with tertiles 2
and 3 compared with tertile 1 (lowest) of urinary or
dietary nitrate/sodium. Results from unadjusted and
fully adjusted models were reported. Covariates
included in the models were age, sex, disease count
score, medication use, BMI, physical activity, energy
intake, smoking, education, depression, kidney func-
tion and BP (for cognition analysis only). Normality
of the residuals distributions was checked to evaluate
the fitness of the regression models.

The interaction effect of intakes of sodium and
nitrate were assessed via logistic regression. Four
intake groups we created based on median values of
sodium (135mmol/24 hr) and nitrate (667mmol/
24 hr) urinary excretion (High intake¼ above median
value; Low intake¼ below median value), and reclassi-
fied into the following: Group 1, High Nitrate
and Low Sodium (HNLS); Group 2, High Nitrate and
High Sodium (HNHS); Group 3, Low Nitrate and
Low Sodium (LNLS) and Group 4, Low Nitrate
and High Sodium (LNHS) (reference group). The
same analysis process was followed as described previ-
ously to calculate the OR for the intake groups and
poor cognitive performance or high BP. Finally,
ANCOVA analyses were used to determine mean dif-
ferences between the intake groups and, if significant,
post-hoc (Bonferroni) tests were conducted to identify
differences between dietary groups. ANCOVA

analyses were adjusted for age, sex, disease count
score, medication use, BMI, physical activity, energy
intake, smoking, education, depression, kidney func-
tion and BP (for cognition analysis only).

Results

Participant characteristics

Table 1 shows the demographic and health characteristics
of the InCHIANTI participants included in this analysis.
The mean age of the sample was 73.5 years, with a higher
percentage being female (54.3%), married (63.2%) and
non-smokers (57.4%). The majority reported elementary
school as the highest level of education completed
(51.9%), followed by 27.6% who reported no schooling,
with a mean of 5.6 years of school completed across the
sample. On average, participants were overweight
(27.2±4.1 kg/m2) and had a total daily energy intake of
1996±602kcal/day. The majority were moderately phys-
ically active (41.5%) and had relatively low CESD depres-
sion scores (12.8±8.9). Most participants (61.2%) had no
comorbidities (including myocardial infarction, coronary
heart failure, stroke, cancer, Parkinson’s disease, or dia-
betes); 36.9% reported between 1 and 2 comorbidities.
On average, SBP was 145±21mmHg, DBP was
82±9mmHg and eGFR was 67±20mL/min across the
sample. For cognitive function, on average participants
scored 24.5±5.2 on MMSE, 29.9±16.5 seconds on TMT
A (n¼ 889) and 28.9±18.2 seconds on TMT B
(n¼ 721). Urinary excretions of dietary nitrate and
sodium averaged at 862±734mmol/24hr (median:
670.4mmol/24hr, IQR: 650.2mmol/24hr) and
139.5±65.7mmol/24hr (median 134.5mmol/24hr, IQR:
75.2mmol/24hr), respectively. Intakes of dietary nitrate
and sodium as estimated by FFQ averaged at
89.0±73.3mg/day (median: 67.5mg/day, IQR: 67.9mg/
day) and 2358±849mg/day (median: 2266.4mg/day,
IQR: 1014.2mg/day), respectively.

Associations between sodium and nitrate intake
and cognitive function
Urinary sodium and dietary sodium intake were not
associated with any cognitive performance test scores
(MMSE, TMT A or TMT B) in unadjusted and fully
adjusted linear regression models. Similarly, for urin-
ary nitrate and dietary nitrate, there were no associa-
tions with any cognitive function test scores (Table 2).

Associations between sodium and nitrate intake
and BP
Urinary sodium and dietary sodium intake were not
associated with BP (SBP or DBP). Urinary nitrate

INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION 5



was inversely associated with SBP (-0.005 ±
0.001mmHg, p< 0.001) and DBP (-0.001 ±
0.001mmHg, p¼ 0.002) in fully adjusted models. No

significant associations were observed for dietary
nitrate and BP (Table 3).

Associations between sodium and nitrate intake
and impaired cognitive function
No significant associations were observed for tertiles of
urinary sodium and nitrate concentrations and for diet-
ary sodium and nitrate intake with odds of cognitive
impairment (i.e. MMSE, TMT-A, TMT-B and TMT A-
B) (Table 1 of the online supplementary material).

Associations between sodium and nitrate intake
and high BP
Urinary sodium concentrations and dietary sodium
and nitrate intake were not associated with BP. For
24-hour urinary nitrate concentrations, those in tertile
2 (OR ¼ 0.57, 95%CI 0.37–0.88, p¼ 0.01) and tertile
3 (OR ¼ 0.31, 95%CI 0.21–0.48, p< 0.001) had a
lower odds of high BP in comparison to those in ter-
tile 1 (Table 4).

ANCOVA analysis: differences in cognitive function
and BP between groups
There were no statistically significant differences
between groups for cognitive performance (all tasks)
(Table 5 of the online supplementary material).
Statistically significant differences between groups for
both SBP (p< 0.001, Figure 1(A)) and DBP (p¼ 0.041,
Figure 1(B)) were found in fully-adjusted models
(Table 5 of the online supplementary material). The
HNLS had significantly lower mean SBP compared to
LNLS (�6.7mmHg, 95%CI �12.4, �1.0mmHg;
p¼ 0.003) and LNHS (�6.1mmHg, 95%CI �11.8,
�0.4mmHg; p¼ 0.018) groups. Similarly, the HNHS
group showed lower mean SBP compared to LNLS
(�6.7mmHg, 95%CI �11.8, �1.6mmHg; p¼ 0.003)
and LNHS (�5.9mmHg, 95%CI �11.1, �0.6mmHg;
p¼ 0.017) groups (Figure 1(A)).

Association of dietary nitrate and sodium intake with
24-hour urinary nitrate and sodium concentrations
Dietary nitrate and sodium intake assessed by FFQ
were not associated with 24-hour urinary sodium
(r¼ 0.01, p¼ 0.61, Figure 2(A)) and nitrate (r¼ 0.02,
p¼ 0.48, Figure 2(B)) concentrations, respectively.

Discussion

In this cross-sectional analysis, sodium and nitrate
intake, derived from FFQ data and measurement of
24-hour urinary concentrations, was not associated
with cognitive performance in the InCHIANTI study

Table 1. Characteristics of InCHIANTI study participants aged
>50 years at baseline (n¼ 989).

N
Mean (SD)
or n (%)

Age, years 73.5 (8.8)
Sex, men 452 (45.7)
Years of School (n¼ 987) 5.6 (3.5)
Highest educational level completed
Nothing 273 (27.6)
Elementary 513 (51.9)
Secondary 77 (7.8)
High school 50 (5.1)
Professional school 36 (3.6)
University or equivalent 27 (2.7)
Undocumented educational level 13 (1.3)

Smoking status
Never smoked cigarettes 510 (57.4)
Former cigarette smoker 234 (26.4)
Current (within 3 years of interview) 144 (16.2)

Diabetes
Definite 113 (11.4)
Possible 11 (1.1)

Congestive heart failure
Definite 46 (4.7)
Possible 165 (16.7)

Stroke
Definite 50 (5.1)
Possible 3 (0.3)

TIA 14 (1.4)
Parkinson’s disease
Definite 13 (1.3)
Possible 9 (0.9)

Myocardial infarction
Definite 36 (3.6)
Possible 4 (0.4)

Cancer 50 (5.1)
Number of co-morbidities

(MI, CHF, stroke, cancer, PD, diabetes)
0 605 (61.2)
1–2 365 (36.9)
3–4 19 (1.9)

Systolic blood pressure, mmHg 145.2 (21.2)
Diastolic blood pressure, mmHg 82.7 (9.1)
Weight, kg 69.9 (12.9)
BMI, kg/m2 (n¼ 982) 27.2 (4.1)
eGFR, mL/min 67.6 (20.7)
CESD Depression Score (n¼ 884) (0–60) 12.8 (8.9)
Physical activity (n¼ 861)
Low 160 (16.2)
Medium 410 (41.5)
High 356 (36.0)

Energy intake, kcal/day 1996.4 (602.2)
Sodium, mg/day 2357.9 (848.9)
Nitrate, mg/day (i¼ 973) 89.0 (73.3)
Urinary sodium, mmol/24 hr (n¼ 913) 139.5 (65.7)
Urinary nitrate mmol/24 hr (n¼ 895) 862.5 (734.7)
Cognitive function
MMSE score (n¼ 989) 24.5 (5.2)
TMT A score (n¼ 889) 29.9 (16.5)
TMT B score (n¼ 721) 28.9 (18.2)

TMT A–B (n¼ 721) 1.72 (24.1)

Values expressed as estimated mean and standard deviation (SD) or fre-
quency (n) and percentage (%). Where measurements were not obtained in
the full set of 989 participants, the exact number of participants for the
variable is stated in brackets under the variable name. Key: BMI: body mass
Index; CESD: Centre for Epidemiological Studies Depression; eGFR: estimated
glomerular filtration rate; MMSE: Mini Mental State Examination; TIA: transi-
ent ischaemic attack; TMT A: Trail Making Test A; TMT B: Trail Making Test
B; TMT A–B: Difference between TMT A and TMT B test scores.
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population. In addition, no significant association was
found with BP for dietary nitrate intake measured by

FFQ and both measures of sodium intake (24-hour
urine and FFQ). However, higher concentrations of
24-hour urinary nitrate were associated with lower
systolic and diastolic BP values, indicating that object-
ive biomarkers of nitrate intake may be more sensitive
measures of dietary exposure to detect significant
associations with health outcomes. This study also
explored the interactive effects between sodium and
nitrate 24-hour urinary nitrate concentrations on BP
and cognitive performance. While no significant diet-
ary interactions were found with cognitive perform-
ance, there was a significant association of the high
nitrate groups (HNLS and HNHS), independent of
sodium intake, on mean systolic and diastolic BP and
a lower odds of high BP in both groups with higher
24-hour urinary nitrate concentrations.

Recent observational studies have explored the
association between sodium intake and cognitive per-
formance and cardiovascular outcomes to find mixed
results (He and MacGregor 2018; Kendig and Morris
2019; Mohan et al. 2020). A study by Lelli et al, (Lelli
et al. 2018) conducted in the InCHIANTI population
(n¼ 920) found no association between 24-hour urin-
ary sodium excretion and 9-year incidence of cardio-
vascular diseases (adjusted risk ratio 0.96, 95% CI
0.90–1.02). Conversely, a smaller study (n¼ 119)
reported a significant association between higher

Table 2. Multiple linear regression to investigate the association between urinary and dietary meas-
ures of sodium and nitrate intake with cognitive performance.

MMSE TMT A TMT B

Urinary Sodium (mmol/24 hr)
Model 1 0.003 ± 0.002 �0.005 ± 0.009 �0.006 ± 0.011

p¼ 0.120 p¼ 0.566 p¼ 0.554
Model 2 0.001 ± 0.001 �0.007 ±�0.009 �0.009 ± 0.011

p¼ 0.537 p¼ 0.476 p¼ 0.406
Dietary Sodium Intake (mg/day)
Model 1 <0.0001 ± 0.001 0.001 ± 0.001 <0.0001 ± 0.001

p¼ 0.539 p¼ 0.304 p¼ 0.878
Model 2 <0.0001 ± 0.001 <0.001 ± 0.001 <0.0001 ± 0.001

p¼ 0.212 p¼ 0.722 p¼ 0.988
Urinary Nitrate (mmol/24 hr)
Model 1 <0.0001 ± 0.001 0.001 ± 0.001 �0.001 ± 0.001

p¼ 0.750 p¼ 0.503 p¼ 0.508
Model 2 <0.0001 ± 0.001 <0.0001 ± 0.001 �0.001 ± 0.001

p¼ 0.986 p¼ 0.925 p¼ 0.208
Dietary Nitrate Intake (mg/day)
Model 1 0.001 ± 0.001 �0.002 ± 0.008 �0.006 ± 0.009

p¼ 0.608 p¼ 0.782 p¼ 0.488
Model 2 0.001 ± 0.001 �0.004 ± 0.008 �0.006 ± 0.009

p¼ 0.415 p¼ 0.693 p¼ 0.513

Associations were explored via multiple linear regression. Results expressed as estimate and standard error. *p Value
<0.05. Models were unadjusted (model 1) and adjusted for age, sex, disease count score (stroke, CHF, MI, PD, cancer and
diabetes), medication use (drugs for acid-related disorders; diuretics for CHF or hypertension; ACE inhibitors (alone and in
combination with diuretic); organic nitrates; aldosterone antagonists (diuretics); glucocorticoids for systemic use; antiepi-
leptic; anti-Parkinson drugs; psycholeptics: typical antipsychotics; psycholeptics: atypical antipsychotics; psycholeptics: anx-
iolytics; psychoanaleptics: antidepressants; drugs for dementia), BMI, Physical Activity, Total Energy Intake, Smoking,
Education, Depression, Kidney function, Blood pressure (SBP and DBP) (model 2).
Key: ACE: angiotensin-converting-enzyme; BMI: body mass index; CHF: chronic heart failure; DBP: diastolic blood pressure;
MI: myocardial infarction; MMSE: Mini Mental State Examination; PD: Parkinson’s disease; TMT A: Trail Making Test A; TMT
B: Trail Making Test B; SBP: systolic blood pressure.

Table 3. Multiple linear regression of the association sodium
and nitrate intake with blood pressure (BP).

SBP DBP

Urinary sodium (mmol/24 hr)
Model 1 �0.008 ± 0.011 �0.005 ± 0.005

p¼ 0.542 p¼ 0.329
Model 2 �0.010 ± 0.011 �0.005 ± 0.005

p¼ 0.371 p¼ 0.262
Dietary sodium intake (mg/day)
Model 1 �<0.001 ± 0.001 <0.0001 ± 0.001

p¼ 0.631 p¼ 0.968
Model 2 �0.001 ± 0.001 �0.0001 ± 0.001

p¼ 0.638 p¼ 0.894
Urinary nitrate (mmol/24 hr)
Model 1 �0.005 ± 0.001 �0.001 ± 0.001

p¼<0.001 p¼ 0.002
Model 2 �0.005 ± 0.001 �0.001 ± 0.001

p¼<0.001 p¼ 0.002
Dietary nitrate intake (mg/day)
Model 1 �0.003 ± 0.010 0.005 ± 0.004

p¼ 0.741 p¼ 0.188
Model 2 �0.004 ± 0.010 0.005 ± 0.004

p¼ 0.678 p¼ 0.214

Associations were explored via multiple linear regression. Results
expressed as estimate and standard error. Models were unadjusted
(model 1) and adjusted for age, sex, disease count score (stroke, CHF, MI,
PD, cancer and diabetes), BMI, Physical Activity, Total Energy Intake,
Smoking, Kidney function, medication use (drugs for acid-related disor-
ders; diuretics for CHF or hypertension; ACE inhibitors (alone and in com-
bination with diuretic); organic nitrates; aldosterone antagonists
(diuretics); glucocorticoids for systemic use) (model 2).
Key: BMI: body mass index; CHF: chronic heart failure; DBP: diastolic blood
pressure; MI: myocardial infarction; PD: Parkinson’s disease; SBP: systolic
blood pressure
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urinary sodium excretions with lower MMSE scores
(Afsar 2013). Other studies have evaluated associations
between cognitive performance and sodium intake
using data derived from FFQs. For example, a longitu-
dinal study among community dwelling older adults
(Rush et al. 2017) reported a significant association
between lower dietary sodium intake with poorer per-
formance on tests of global (MMSE) and executive
(Trails B) cognitive function after controlling for age,
sex, and education. The NuAGE study (Fiocco et al.
2012) investigated the association of physical activity,
sodium intake and cognitive function and found that
a higher sodium intake was associated with a greater
3-year decline in global cognitive function, but only in
individuals with low physical activity levels. Nowak
et al., (Nowak et al. 2018) evaluated the associations
of dietary sodium, potassium and ratio of sodium:
potassium intake with cognitive decline among com-
munity-dwelling older adults from the Health, Ageing
and Body Composition (ABC) study. The study
showed that higher sodium: potassium intake, but not
sodium or potassium intake alone, was associated
with decline in cognitive function, with no associa-
tions observed with micro- and macro-structural brain
MRI indices. Finally, a prospective follow up study
among 6,426 cognitively normal older women from
the Women’s Health Initiative Memory Study
(WHIMS) (Haring et al. 2016) demonstrated that
sodium intake did not modify the risk for cognitive
decline in women with hypertension or receiving anti-
hypertensive medication.

Recent observational studies have explored the
association of urinary nitrate with cardiovascular out-
comes and cognitive performance. Smallwood et al.,
(Smallwood et al. 2017) showed in the InCHIANTI
study a lower diastolic (-1.9mm Hg) and systolic
(-3.4mm Hg) BP in participants with urinary nitrate
excretion greater than 2mmol. In addition, two inde-
pendent analyses conducted in the NHANES dataset
found that urinary nitrate concentrations in spot sam-
ples were associated with a lower prevalence of hyper-
tension, stroke and congestive heart failure (Mendy
2018; Wu et al. 2020). These findings are consistent
with the results presented here, with significant associ-
ations of 24-hour urinary nitrate with systolic BP but
this was not seen in analyses with self-reported dietary
nitrate derived from the FFQ.

A cross-sectional study among the NHANES cohort
(Pereira et al. 2021) found that urinary nitrate concen-
trations were not associated with cognitive perform-
ance which is consistent with the results reported in
this paper.

Table 4. Logistic regression of the association between
sodium and nitrate intake and risk of high blood pressure.

SBP DBP

Urinary sodium (mmol/24 hr) Model 1
Low (n¼ 279) 1.00 1.00
(0–90.3) (Reference) (Reference)
Medium (n¼ 313) 1.223 (0.87–1.73) 0.919 (0.65–1.29)
(90.3–131.6) p¼ 0.252 p¼ 0.627
High (n¼ 321) 0.981 (0.70–1.37) 0.885 (0.63–1.24)
(131.6 and above) p¼ 0.911 p¼ 0.481

Model 2
Low (n¼ 279) 1.00 1.00
(0–90.3) (Reference) (Reference)
Medium (n¼ 313) 1.15 (0.80–1.66) 0.90 (0.63–1.31)
(90.3–131.6) p¼ 0.458 p¼ 0.597
High (n¼ 321) 0.93 (0.67–1.34) 0.89 (0.62–1.28)
(131.6 and above) p¼ 0.721 p¼ 0.540
Dietary sodium Intake (mg/day) Model 1
Low (n¼ 309) 1.00 1.00
(0–1901.4) (Reference) (Reference)
Medium (n¼ 346) 1.286 (0.93–1.78) 1.076 (0.78–1.49)
(1901.4–2600.5) p¼ 0.132 p¼ 0.659
High (n¼ 334) 1.095 (0.78–1.55) 0.904 (0.65–1.26)
(2600.5 and above) p¼ 0.607 p¼ 0.552

Model 2
Low (n¼ 309) 1.00 1.00
(0–1901.4) (Reference) (Reference)
Medium (n¼ 346) 1.35 (0.93–1.97) 1.01 (0.70–1.46)
(1901.4–2600.5) p¼ 0.115 p¼ 0.958
High (n¼ 334) 1.14 (0.72–1.82) 0.84 (0.53–1.35)
(2600.5 and above) p¼ 0.563 p¼ 0.482
Urinary nitrate (mmol/24 hr) Model 1
Low (n¼ 303) 1.00 1.00
(0–502.3) (Reference) (Reference)
Medium (n¼ 298) 0.656 (0.46–0.94) 0.795 (0.58–1.10)
(502.4–894.8) p¼ 0.021 p¼ 0.166
High (n¼ 294) 0.416 (0.29–0.59) 0.769 (0.56–1.06)
(894.9 and above) p¼<0.0001 p¼ 0.113

Model 2
Low (n¼ 303) 1.00 1.00
(0–502.3) (Reference) (Reference)
Medium (n¼ 298) 0.57 (0.37–0.88) 0.75 (0.52–1.10)
(502.4–894.8) p¼ 0.011 p¼ 0.140
High (n¼ 294) 0.31 (0.21–0.48) 0.68 (0.47–1.01)
(894.9 and above) p¼<0.0001 p¼ 0.054
Dietary nitrate intake (mg/day) Model 1
Low (n¼ 319) 1.00 1.00
(0.00–502.3) (Reference) (Reference)
Medium (n¼ 325) 1.028 (0.73–1.43) 1.057 (0.76–1.47)
(502.4–894.8) p¼ 0.869 p¼ 0.739
High (n¼ 329) 0.951 (0.69–1.32) 0.996 (0.72–1.38)
(894.9 and above) p¼ 0.761 p¼ 0.981

Model 2
Low (n¼ 319) 1.00 1.00
(0.00–502.3) (Reference) (Reference)
Medium (n¼ 325) 1.07 (0.76–1.52) 1.11 (0.79–1.57)
(502.4–894.8) p¼ 0.694 p¼ 0.549
High (n¼ 329) 1.00 (0.71–1.42) 0.97 (0.69–1.38)
(894.9 and above) p¼ 0.979 p¼ 0.886

Associations were explored via logistic regression. *Significantly
(p< 0.05) higher risk of hypertension compared with the lowest tertile
of urinary sodium/dietary sodium/urinary nitrate/dietary nitrate.
Hypertension classified using European Society of Cardiology ESC guide-
lines – normal SBP <¼139mmHg: Hypertension >¼140mmHg; Normal
DBP <¼89mmHg: Hypertension >¼90mmHg). Models were unadjusted
(model 1) and adjusted for age, sex, disease count score (stroke, CHF,
MI, PD, cancer and diabetes), BMI, Physical Activity, Total Energy Intake,
Smoking, Kidney function, medication use (drugs for acid-related disor-
ders; diuretics for CHF or hypertension; ACE inhibitors (alone and in
combination with diuretic); organic nitrates; aldosterone antagonists
(diuretics); glucocorticoids for systemic use) (model 2). Key: BMI: body
mass index; CHF: chronic heart failure; DBP: diastolic blood pressure;
MI: myocardial infarction; PD: Parkinson’s disease; SBP: systolic
blood pressure.
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The interaction between dietary sodium and nitrate
24-hour urinary concentrations produced interesting
but also unexpected results. Both high-nitrate groups
were associated with lower BP values and results were
not modified by sodium concentrations. We also
tested whether significant interactive associations were
observed using dietary sodium and nitrate intake data
from the FFQs but results were not significant
(Supplementary Material).

These findings certainly merit a discussion on the
sensitivity of the dietary assessment methods for both
sodium and nitrate. We have showed in this popula-
tion a lack of association between FFQ measures of
intake for both nitrate and sodium and 24-urinary
concentrations. The association of 24-hour urinary
nitrate concentrations with lower BP readings are
aligned with results found in previous studies, which
seems to indicate a greater sensitivity of objective bio-
markers of nitrate intake to ascertain associations with
relevant health outcomes. The lack of a significant
association of the FFQ method could be partly due to
its ability to capture long-term exposure to dietary
factors, which may not be ideal in cross-sectional
studies to evaluate associations with health outcomes,

especially when both exposures and outcomes may be
characterised by short biological half-lives and prone
to significant variability between measurements (Satija
et al. 2015; Bennett et al. 2017). Furthermore, sodium
intake could be underestimated by FFQ assessments,
as it may not accurately capture when salt is added to
meals, whereas nitrate intake could be overestimated
as individuals tend to misjudge their intake of vegeta-
bles when questioned (Cobb et al. 2014).
Measurements of dietary exposure in 24-hour urinary
samples, if collected alongside the measurements of
the outcome variables, may provide a more accurate
measure of dietary exposure to test associations with
health outcomes. Repeated 24-hour dietary recalls
may provide a superior proxy of dietary intake if col-
lected alongside outcome measurements and collection
of biological samples. However, FFQ may represent a
more sensitive method to investigate associations in
longitudinal analyses as they might be better proxy of
a life-long, typical dietary exposure in an individual
and hence more suitable to investigate associations
over prolonged follow up periods. These important
methodological questions require further investigation
in carefully designed validation studies.

A discussion of the biological mechanisms that
may explain the greater association of dietary nitrate
with BP outcomes compared to sodium intake is rele-
vant. Both sodium and nitrate influence NO produc-
tion and affect endothelial integrity and vascular tone
(Oberleithner et al. 2007; DeMartino et al. 2019).
Their respective roles are however contrasting as an
increase in nitrate intake determines, via a two-step
reduction process, the formation of nitrite first (via
facultative anaerobic bacteria on the dorsal surface of
the tongue) and then conversion into NO (stomach or
peripheral circulation), which increases the dephos-
phorylation of myosin lighter chains and Ca2þ re-
uptake into the sarcoplasmic reticulum leading to
vaso-relaxation (Chen et al. 2008). On the other hand,
the association of sodium intake with BP seems to
have a J-shaped association as both low and high
sodium intakes may have negative effects on media-
tors of vascular resistance and fluid homeostasis (i.e.
autonomic regulation, renin-angiotensinin-aldosterone
system, oxidative stress, extracellular matrix remodel-
ling), which may explain the contrasting associations
between dietary sodium intake and cardiovascular
outcomes found in the literature (Edwards and
Farquhar 2015). While the role of low sodium intake
was not explored in this analysis, it is still unexpected
the lack of association between high sodium intake
and BP and the sodium-independent, protective roles

Table 5. Logistic regression of the association between
sodium and nitrate intake groups and risk of high
blood pressure.

SBP DBP

Model 1
Groups 4: LNHS 1.00 1.00
(n¼ 207) (Reference) (Reference)
Group 1: HNLS 0.49 (0.32–0.75) 0.95 (0.63–1.43)
(n¼ 205) p¼ 0.001� p¼ 0.806
Group 2: HNHS 0.48 (0.32–0.78) 0.93 (0.62–1.40)
(n¼ 205) p¼ 0.001� p¼ 0.725
Group 3: LNLS 0.83 (0.53–1.29) 1.15 (0.77–1.73)
(n¼ 205) p¼ 0.829 p¼ 0.489
Model 2
Groups 4: LNHS 1.00 1.00
(n¼ 207) (Reference) (Reference)
Group 1: HNLS 0.49 (0.32–0.76) 1.05 (0.68–1.64)
(n¼ 205) p¼ 0.001� p¼ 0.814
Group 2: HNHS 0.49 (0.32–0.77) 0.94 (0.61–1.46)
(n¼ 205) p¼ 0.002� p¼ 0.782
Group 3: LNLS 0.85 (0.54–1.35) 1.18 (0.77–1.82)
(n¼ 205) p¼ 0.504 p¼ 0.435

Associations were explored via logistic regression. *Significantly (p< 0.05)
higher risk of hypertension compared with those in groups 2, 3 and 4
(reference). Hypertension classified using European Society of Cardiology
ESC guidelines – Normal SBP <¼139mmHg: Hypertension
>¼140mmHg; Normal DBP <¼89mmHg: Hypertension >¼90mmHg)
Models were unadjusted (model 1) and adjusted for age, sex, disease
count score (stroke, CHF, MI, PD, cancer and diabetes), BMI, Physical
Activity, Total energy Intake, Smoking, Kidney function and medication
use (drugs for acid-related disorders; diuretics for CHF or hypertension;
ACE inhibitors (alone and in combination with diuretic); organic nitrates;
aldosterone antagonists (diuretics); glucocorticoids for systemic use)
(model 2).
Key: BMI: body mass index; CHF: chronic heart failure; DBP: diastolic blood
pressure; HNLS: high nitrate low sodium; HNHS: high nitrate high sodium;
LNLS: low nitrate low sodium; LNHS: low nitrate high sodium; MI: myocar-
dial infarction; PD: Parkinson’s disease; SBP: systolic blood pressure.
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of high dietary nitrate intake in this population. It is
conceivable that the biological effects of the high-
sodium diets may have been influenced by several
factors affecting sodium-handling in individuals,
including salt-sensitivity, genetic polymorphisms and
nutrient-nutrient interactions (i.e. potassium or mag-
nesium) (Morrison and Ness 2011). The physiological
mechanisms involved in the control of vascular
homeostasis during the co-ingestion of nitrate (normal
and high intakes) and sodium (low, normal and high)
need investigation in carefully controlled feed-
ing studies.

Strengths and limitations

This is the first study to investigate the interactive
effects of sodium and nitrate intake, using both bio-
markers and FFQ derived measures of intake, with
cognitive performance and BP. The inclusion of a
large population-based sample with validated and
standardised protocols for 24-hour urine collections,
self-reported dietary assessment, measurement of cog-
nitive performance and BP, combined with a struc-
tured statistical approach to model testing and
adjustment, enhance the robustness of the results.
However, this is an ageing cohort recruited from the
Chianti region of Italy, and generalisability to other
settings needs to be established. The cross-sectional
design is an important limitation of our study, as
causality of the associations cannot be determined.
Some methodological issues to be considered in inter-
preting our findings also include potential measure-
ment error in the self-reported dietary data.
Additionally, we cannot rule out the effects of residual
confounding on the analyses. It is important to con-
sider the limitations surrounding the cognitive data
used in this study. Although global cognition was
measured via MMSE, frontal lobe function evaluation
was limited to TMT-A and TMT-B due to data avail-
ability. It cannot be excluded that subtle deficits might
have been detected with more extensive neuropsycho-
logical testing (Vinciguerra et al. 2020). It is important
to note the limitations surrounding collection of 24-
hour urinary samples at one time-point. Finally, the
contribution of drinking water to the total dietary
nitrate intake was not available in our database.
However, nitrate intake from water accounts for about
5-15% of total nitrate intake (Ward et al. 2018) and
there is no indication of a systematic difference in
water intake between subjects; hence, the lack of
adjustment for nitrate in drinking water is unlikely to
modify our results.

Conclusions

Urinary nitrate excretion was associated with reduced
BP among the InCHIANTI study population and the
results were independent of dietary sodium intake.
However, this result requires further confirmation in
longitudinal studies and carefully controlled physio-
logical investigations. Similarly, the lack of association
of dietary sodium and nitrate intake with cognitive
function and dementia needs further testing in longi-
tudinal analysis with prolonged follow-up time to be
able to detect diet-driven changes in cognitive trajec-
tories. The results confirm the potential role of nitrate
as an important cardiovascular protective component
of the diet, which may account for some of the car-
diovascular benefits associated with adherence to
healthy dietary patterns such as the Mediterranean
Diet or Dietary Approach to Stop Hypertension
(DASH diet).
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