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Abstract: A linear dynamic vehicle-bridge interaction method is proposed in this paper. 

This VBI system can be easily simulated by a step-by-step solution technique based on 

precise time-integration method following discretization of the bridge and modal 

analysis of the finite element model. By selecting the target structural mode with high 

modal participation in finite element modal analysis, the huge computational overhead 

caused by the multi-degrees of freedom of large structures in the dynamic response 

analysis can be effectively reduced. In this integration process, the characteristics of 

precise time-integration method can be used to ensure the stability and accuracy of the 

iterative calculation when selecting a relatively large time integration step. This 

provides the possibility to investigate the VBI problem in large-scale bridges. In this 

work, a half-vehicle model case and an experiment on full-vehicle model are used to 

verify the application of the algorithm. Then the dynamic sensitivity of a beam is 

analyzed based on the dynamic amplification factor. 
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1. Introduction 

Vehicle-induced vibration is one of the primary concerns in bridge design and 

assessment, in which the dynamic amplification factor (DAF)[1], which is generally 

based on the maximum dynamic and static responses, is an important evaluation 

parameter. However, the evaluation of DAF is a rather complicated issue because of the 

sophisticated mechanism of the vehicle-bridge interaction (VBI)[2].  

To solve the VBI problem, monitoring of the real bridge[3-5] can directly obtain the 

dynamic response data of a real bridge. But it requires significant capital investment 

and requires appropriate denoising methods[6,7] to filter the useful data. The damage 
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state of bridges can also be detected by some economy ways[8,9]. However, the dynamic 

performance of highway bridges cannot be monitored by those real-time methods under 

complex traffic conditions. The research on numerical analysis methods[10,11] of bridge 

vibration response has been continuously developed due to its economic efficiency. 

In early VBI numerical dynamic studies, analytical methodologies were proposed 

to analyze behavior of the idealized simply-supported beam (SSB) in the presence of 

dynamic loads, such as a moving mass or force[12]. The application of finite element 

modeling (FEM) extended the range of candidates for numerical analysis from SSB 

structures to realistic bridges in VBI dynamic studies[13,14]. However, simulation of 

dynamic response of realistic bridge structures by FEM may involve a huge 

computational overhead. 

In such dynamic analysis, integration schemes, such as Newmark-β and Wilson-θ 

methods[15,16], can be made unconditionally stable by proper selection of the integration 

parameters. Choice of integration time step in implicit integration is problematic since 

high frequency components in vibration will be distorted when taking a large time step 

value[17], while choosing a small value will require greater computational effort. 

To avoid such difficulties, a linear VBI dynamic analysis system based on modal 

decomposition and precise time step integration theory is proposed. In this system, the 

bridge is replaced by selected modal components, according to evaluation of modal 

participation factor. And the implicit integration of dynamic analysis can maintain the 

accuracy while taking a relatively larger time interval, due to the 2N algorithm within 

the time step size[17]. Then the dynamic sensitive area of structure can be evaluated 

based on the dynamic response obtained by this optimized VBI system. 

The outline of the paper is as follows: Section 2 presents the theory of dynamic 

VBI based on FEM bridge structure modeling. In section 3, a half-vehicle dynamic case 

and a full-vehicle model dynamic experiment is presented to verify the VBI system. 

Finally, section 4 presents the dynamic sensitive area analysis of the beam through the 

proposed VBI system. 

2. Moving Mass on Bridge Linear Dynamic Analysis 

2.1 Modalized Bridge Model 

Modal superposition in FEM is an effective means to reduce the computation in 

linear dynamic analysis of complex structures. This section presents the approach for 

modal masses corresponding to unity-scaled mode shapes i.e. where mode shape 

translation ordinates for translation are set to absolute value 1.0[18]. 

For vertical harmonic displacement at node i for mode r, the ‘unity scaled’ modal 

mass is obtained from the maximum amplitude of a mass normalized mode shape 

element (DMXr) 
[19]. 
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where [Mb] is the bridge structural matrices of mass. ,i r  is rth unity scaling mode 

shape of the bridge at node i.  

The structural stiffness matrix [Kb] is equal to 2[ ]r bM , and the damping matrix 

[Cb] is assumed to be equal to [ ] [ ]b bM K +  , where   and   are the Rayleigh 

damping coefficients. The single degree of freedom dynamic equations for the bridge 

FEM are: 
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where  b , b , b are the bridge normal coordinates[20] corresponding acceleration, 

velocity and displacement vector,  bF is forces vector of the bridge. 

2.2 VBI System and Vehicle Model 

The VBI system and vehicle model are presented in Fig. 1. The vehicle motion 

equation is shown as follows: [21-23]: 

               v v v v v v G v bM d C d K d F F − +  +  = − +            (3) 

where  vM , vC , vK  are the mass matrices, damping matrices and stiffness matrices 

of vehicle, respectively,      , ,v v vd d d are the vertical acceleration, velocity and 

displacement vector of vehicle, {FG} is the gravity load of vehicle, and {Fv-b} is the 

interaction force between the bridge and vehicle.                                                                                             

A 7- degree of freedoms (7-DOFs) vehicle model was taken as an example (as 

shown in Fig. 1). 7-DOFs involve vehicle body bounce, pitch, roll and 4-wheel 

vertical motions. Kj and Cj are the stiffness and damping of vehicle body suspension; 

Kwj and Cwj are the wheel stiffness and damping; mv and mi are the mass of vehicle 

body and wheels, respectively. (j=1,2,3,4). a1 and a2 are the distance of rear and front 

wheels to barycenter of vehicle. a3 and a4 are the distance between wheels and 

vehicle barycenter. 

When a vehicle is present on the bridge, the interaction force between jth wheel 

and bridge is shown as follows: 

( 1,2,3...)j j
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_ _( ), ( )j wj b contactj j j wj b contactj jd d r x d d r x = − −  = − −          (5) 

where j and j are, respectively, the relative vertical displacement and velocity 

between the jth wheels and bridge, rj(x) road surface roughness under jth wheels. 

Based on the FEM theory, db_contact can be obtained by using the bridge shape 

function equation at jth vehicle wheels, and node displacement of the bridge {db}. 

 _

j

b contactj b bd N d =                         (6) 



 

Fig. 1 vehicle model with 7-DOFs and bridge-vehicle interaction 

2.3 Modal Selection Based on Modal Correlation Factor 

The steady state dynamic response analysis of real-world multi-DOF structures is 

always computationally very costly. This study employs linear modes of the structure 

to reduce the amount of calculation. In order to select the appropriate number of 

modes for dynamic analysis, the modal correlation ratio[24,25], which represents the 

contribution to the structure dynamic response, is introduced. The representative 

values for the modal response are defined as the modal participation in structural 

deflection (MPS) and modal participation in node deflection (MPN), which can 

quantitatively represent the contribution of a particular vertical mode to structural 

dynamic response. They are calculated as follows: 
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where 
i

rz  is the vertical modal displacement at structural node i for mode r. nt is 

total number of time-steps, nm is the number of selected modes, nd is number of 

structural nodes. k is the time step. nlb and nle are node number of a selected part in the 

structure. 



2.4 Multi-DOFs Structure Dynamic Solution: Precise Integration Method (PIM) 

The set of ordinary differential equations Eq. (2) can be transformed to state 

space as[17] 
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Based on the algorithm of PIM[26-28], the inhomogeneous Eq. (9) can be solved 

by the superposition principle as 
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3. Validation of the VBI Method 

3.1 VBI Solution under Half-vehicle Model 

Half-vehicle model is a classic loading model applied in the analysis of VBI. To 

validate this VBI method in the application of half-vehicle model loading, a simply-

supported beam (SSB) dynamic response analysis, which has been applied in 

reference[22,29], is performed as shown in Error! Reference source not found.. 

Dividing the structure into 20 beam4 elements for modal analysis in ANSYS. In VBI 

analysis, the gravity acceleration is 9.8m/s2, and the other parameters of SSB and 

vehicle are shown in Tab.1. The beam dynamic VBI solutions under the loading state 

of 6 different vehicle velocities are shown in Error! Reference source not found.. 

Tab. 1 parameters of SSB and half-vehicle [29] 

Beam parameters  Vehicle parameters 

L = 1.1938 m Mv = 4.4025 kg 

ρ = 2.9602×103 kg/m3 Iθ = 0.56825 kg m2/rad 

A = 0.51×10-2 m2 K1 = 2.164×10-2 N/m 

I = 0.9448×10-5 m4 K2 = 1.803×10-2 N/m 

E=10.48×1010 N/m2 C1 = C2 =0 

(Modal damping ratio)ζ1 = ζ2 = 0 a1 = 0.348 m, a2 = 0.371 m  

The dynamic response of the beam and vehicle body obtained by VBI method 

agree well with the validated analysis in reference[22,29], which further confirms the 

reliability and accuracy of proposed method in the dynamic analysis of half-vehicle 

model and beam interaction. For example, Error! Reference source not found. 



shows the central dynamic deflection of SSB loaded by half-vehicle at different 

speeds. They are agreed well with the dynamic deflection curves obtained from 

reference[22,29]. 
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Fig. 2 Half-vehicle analysis system[29] Fig. 3 The central dynamic deflection of SSB 

When considering the influence of damping (the damping parameters are shown 

in Tab.2), the dynamic amplification factor (DAF) of this beam at different velocities 

are shown in Tab.3.  

Tab.2 the damping parameters of the simply-supported beam and vehicle model 

 Case 1 Case 2 

Simply-supported beam ζ1=0 ζ2 = 0 ζ1=0.02 ζ2 = 0.05 

Vehicle model c1 = 0 c2 = 0 c1 = 88.68 N s/m c2 = 78.41 N s/m 

Tab. 3 DAF of the simply-supported beam  

 Case 1 Case 2 

v(m/s) VBI system Reference[29] VBI system Reference[29] 

103.8 1.246 1.246 1.154 1.173 

334.8 1.378 1.381 1.305 1.342 

502.2 1.583 1.582 1.490 1.535 

669.6 1.667 1.665 1.567 1.616 

837.1 1.646 1.651 1.545 1.601 

1004.5 1.585 1.590 1.495 1.550 

As shown in Tab.3, the DAFs agree well with those found in reference[29]. There 

is a significant correlation between beam’s dynamic response and vehicle velocity. 

Within a certain velocity range, the vehicle velocity is proportional to dynamic response 

of beam. When the velocity exceeds the limit value, vehicle velocity is in inverse ratio 

to dynamic response of beam. The damping of structure and vehicle can also weaken 

the dynamic effect of the structure. The damping effect changes with the vehicle 

velocity. 

3.2 Experimental Procedure for Full-vehicle Model Loading 

   Many direct or indirect experimental techniques can be used to identify the dynamic 

behavior of bridge and vehicle[3-5], however, the test result of field work often 

accompanied by the environmental noise. To avoid this, the dynamic response of a SSB 



and vehicle were identified by the inertial measurement units (IMUs) in the laboratory. 

The OPALTM IMUs (Error! Reference source not found.), which are typically used 

in human biomechanics research[30,31] are used in this research. They were securely 

fixed to the vehicle and at the 1/2 and 1/4 spans of SSB to obtain the acceleration of 

vehicle and beam, respectively. 

During the loading process, the continuous shape of deflection of the bridge was 

recorded by a 4K and 60 frame per second video camera, with the displacement time 

history of the beam obtained through image processing. 

As shown in Error! Reference source not found., the vehicle is powered by two 

AA batteries. The full-vehicle model with 3-DOF is shown in Fig. , and the influence 

of vehicle damping was ignored in this case. Ignoring the acceleration and deceleration 

stage of the vehicle due to the beam deflection, the measured average speed of the 

vehicle was 0.5m/s, The parameter of this moving mass is shown in Tab. . 

Tab. 4 The vehicle Parameter 

First 3 natural frequencies of vehicle  Measured (Hz) Simplified model (Hz) 

f1 8.75 8.65 

f2 21.87 21.90 

f3 30.62 29.87 

Empty vehicle quality 0.288 kg 

Quality of counterweight 0.1016 kg×4 

Jθ 0.0002 kg·m2 

Jα 0.0001 kg·m2 

Kw 550.48 N/m 

 

  

     Fig. 4 OPALTM IMUs          Fig. 5 The vehicle with weight and OPAL 

 
Fig. 6 Full-vehicle model with 3-DOFs (m) 

To examine the VBI system, analysis of a SSB and moving mass dynamic system 

was performed. The steel beam dimensions are 2.16m length, 0.2m width, 0.006m 



height (Fig. ) and both ends were fully fixed (bolted). The material properties and 

element selection of this FEM beam are shown in the Tab. . 

Tab. 5 material properties and element selection of FEM beam 

Elastic Modulus Poisson’s Ratio Mass Density Element 

2.06*1011N/m2 0.28 7800kg/m3 SHELL63 

 
Fig. 7 Beam (left) and its FEM (right) 

3.3 Model Information and Modal Selection of the Beam 

Based on modal selection in section 2, the first 50 modes of the beam are studied 

to identify effective modal, i.e. the nm in Eq. (7) and Eq. (8) can be set to 50. The MPS 

and MPN in different effective modes are: 

1

en

i

i

MPS MPN
=

=                           (11)                       

where ne is the number of effective modes. 

In this selection, we choose a 7N vertical external moving load based on the mass 

of the vehicle in the test. As the result, the beam structure is mainly affected by the first 

three vertical bending modes. For symmetric loading and eccentric loading, the 

contributions of the 1st bending mode are 86.5% and 84.1% respectively. The torsional 

modes, such as the 4th and 7th mode, have negligible contribution under symmetric 

loading. As the total contributions of the first 11 modes in these two loading conditions 

exceed 99.5%, the influence of the higher order modes (beyond 11th) is ignored to 

simplify the calculation. 

The first eleven modal responses obtained in the two loading modes are substituted 

into Eq. (8), and the MPNi of different loading positions are shown in the Fig. . 

As shown in the Fig. , the torsional modes, such as the 4th torsional mode, show 

the higher modal correlation in eccentric loading, but have no effect in symmetric 

loading. The response differences among nodes on the same cross section can be 

ignored during symmetric loading, while the response is mainly controlled by 1st 

vertical bending mode and affected by 1st torsion mode during asymmetric loading. 

Based on the performance of MPS and MPNi, this study will consider the first 

eleven vibration modes in the SSB dynamic response analysis. 

 



 
Fig. 8 MPNi of symmetric loading (left) and eccentric loading (right) 

3.4 Laboratory and Numerical Simulations for Full-vehicle Model 

The natural frequencies of the 3-DOF full-vehicle model are 8.75Hz, 21.87Hz and 

30.62Hz respectively, i.e. all are less than 32 Hz. Furthermore, the 32Hz frequency band 

contains the first three modes of test beam. According to the modal selection result, the 

TMCR of first three modes is 98.46% by symmetrical loading. To reduce the influence 

of measurement error, a lowpass filter with a 32Hz cutoff was used to process the 

collected signals. The signals were collected by OPAL with 128 Hz sampling frequency.  

The experimental and simulated values of first 3 beam natural frequencies are 

shown in the Tab. . 

Tab. 6 Experimental and simulated values of first 3 beam natural frequencies 

Order Simulation (Hz) Experiment (Hz) 

1 4.33 4.58 

2 13.67 13.99 

3 29.36 31.86 

The experiment and VBI simulation results for mid-span acceleration in time and 

frequency domains are shown in Fig.  and Fig. .  

In the test, initial velocity of the vehicle was 0. As the reason of beam deflection 

due to self-weight, vehicle movement can be divided into three stages: acceleration, 

moving at a relatively constant speed and deceleration. For direct comparison with the 

simulation results, the second stage (considering the acceleration, uniform motion and 

deceleration phases) in the whole process (in Fig. ) is used.  

The acceleration amplitudes are in good agreement while in frequency domain by 

FFT (as shown in Fig. ). Ignoring the errors caused by measurement and acceleration 

stage selection, the vibration frequency of the beam is mainly composed by the 

fundamental frequency of the beam (4.15 Hz) and the exciting frequency of the vehicle 

(8.35 Hz). They are numerically consistent with the natural frequency of the beam and 

the excitation frequency of the vehicle. Error! Reference source not found. presents 

the central node displacement of test beam for different loads. The vibration trend of 

beam displacement roughly agrees.  



  
Fig. 9 The mid-span node acceleration time history 

curve comparison between VBI system and test 
Fig. 10 PSD of acceleration time history 

 
Fig. 11 The mid-span node displacement of test steel beam subjected to different loads 

4. Structure Dynamic Sensitivity Analysis 

Although there are several definitions of DAF[2], it is generally based on maximum 

dynamic and static responses as follows: 

  1
dyn sta

sta

R R
DAF

R

−
= +                         (12) 

where Rdyn and Rsta are the maximum dynamic and static response, respectively.  

Based on the dynamic and static beam deflection obtained by VBI system, the 

vertical DAF of the beam is shown in the Fig.12. 

 
Fig.12 The DAF of the experimental beam 

As shown in Fig.12, since the flexibility in the longitudinal direction of the beam 



is larger than transverse, nodes on a cross-section of the beam have a similar dynamic 

amplification characteristic. Due to the relatively small value of static displacement (in 

Tab.7), the small dynamic amplification increments near the support of the beam lead 

to a relatively large DAF. In spite of the largest dynamic displacement increment at 1/2-

span of the beam, DAF value is a minimum because of its large static displacement. 

Therefore, the DAF cannot clearly present the dynamic sensitive areas distribution of 

the beam. 

Tab.7 The maximum dynamic and static displacement in longitudinal direction (mm) 

 Dynamic displacement Static displacement 

1/8-span 0.3603 0.3223 

1/4-span 0.7275 0.6601 

3/8-span 0.9866 0.9110 

1/2-span 1.0890 1.0038 

In implementing modal superposition to solve for dynamic response to harmonic 

loading[20], displacement amplitude coefficient (DAC) is used to fix the dynamic 

sensitive characteristics of DAF. The vehicle load is assumed as a superposition of 

multiple harmonic loads and is applied to each mode of the structure. Then 

displacement amplitude of each structure node can be obtained as follows: 

2 2
1 1

v mn n

r

v r r r v

MPN
DA

M  = =

=
 −

                      (13) 

where Mr and r are the rth modal mass and modal frequency of the beam, 

respectively. v  is the vth modal frequency of the vehicle. MPNr is the modal 

participation in each node deflection, which is mentioned in section 2. 

Under static loading, the maximum displacement amplitude occurs at the mid-

span node of the beam. To regard the mid-span node as the reference point and scaling 

its DA to 1.0, the DAC of ith node can be obtained as follows: 

1
i i

mid span

DAC DA
DA −

=                        (14) 

With the DAC correction, vertical DAF of the beam (Fig.13) shows an obvious 

beam dynamic performance between 1/4-span to 3/4 span, where the DAF value 

fluctuates between 1.08 and 1.1. The maximum DAF appears near the 5/8-span of the 

beam mainly because the amplitude of the first-order antisymmetric vertical bending 

mode of the beam in the mid-span is 0, and the maximum static displacement at this 

area is relatively low, because the rear wheels of the vehicle model carry more weight. 

Therefore, for a moving vehicle load having fundamental frequency is 8.65Hz, the 

dynamic sensitive area of the SSB is between 1/4 span and 3/4 span. The max DAF is 

1.095, which is near the 3/4 span. 

Under this vehicle excitation, the peak point of beam DAF agrees with the first 

two vibration mode shapes of the beam, which are the first symmetric vertical 

bending (4.33Hz) and first antisymmetric vertical bending (13.67Hz). The dynamic 

sensitive area of structure is influenced by the structural mode shapes whose 

frequencies are close to the frequency of dynamic excitation. 



 
Fig.13 Corrected DAF of the beam 

5. Conclusion 

A new dynamic method for vehicle-bridge interaction analysis has been proposed. 

Satisfactory dynamic response can be obtained in the vehicle-bridge interaction 

analysis of the half-vehicle model and the full-vehicle model. This method optimizes 

the multi-DOFs structure through modal decomposition, and simultaneously optimizes 

the integration process by precise time-integration method. Thus, it can be applied to 

the vehicle-bridge interaction analysis of large-scale bridges after considering road 

surface roughness. 

Based on the displacement amplitude coefficient (DAC) at different part of the 

bridge, the dynamic amplification factor is corrected, which can show the dynamic 

sensitive area of the bridge more clearly. It is influenced by the mode shape of the 

structure whose frequency is close to the excitation frequency. For example, the 

dynamically more sensitive area of the SSB simulated in this paper can be located 

between 1/4-span to 3/4 span. The first symmetric vertical bending mode and the first 

antisymmetric vertical bending mode have high influence on the dynamic sensitive area. 
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