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Abstract

Let K be a number field, and let K be a separable closure of K, which is

unique up to isomorphism. One may define the absolute Galois group of K as

GK = G(K/K). The cohomology of the absolute Galois group can be stud-

ied using class field theory, which Neukirch used to show that some information

about the primes of K is encoded in GK , and is preserved by topological iso-

morphism of absolute Galois groups. Neukirch’s construction allowed Uchida to

show that a topological isomorphism between absolute Galois groups determines

a unique isomorphism of separable closures, a result now known as the birational

anabelian Isom-Form. Uchida also obtained some partial results on a variation of

the Isom-Form where isomorphisms are replaced with homomorphisms, known as

the birational anabelian Hom-Form. More recently, Säıdi and Tamagawa obtained

results on the encoding of primes in the maximal m-step solvable quotient Gm
K of

GK , and they used this result on the encoding of primes to obtain an “m-step”

version of the Isom-Form.

In this thesis, we build on some ideas used by Uchida to prove his partial results

for the birational anabelian Hom-Form, combining them with the work of Säıdi

and Tamagawa to determine a condition for which a continuous homomorphism

σm betweenm-step solvably closed Galois groups determines some correspondence

between primes. We then prove that under some conditions it is possible to recover

an injection of fields from σm. We also prove that we are able to find conditions

for which the injection we recover is uniquely determined, and use this result and

the previous one to construct an m-step birational anabelian Hom-Form. Finally,

we show that when one of the number fields in our homomorphism is Q, we can

define the Hom-Form using our previous result by requiring weaker conditions.
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Notations and Definitions

� For a Galois extension L/K, we will denote by G(L/K) its Galois group.

� For a field k, and a subgroup G of Aut(k), we will denote by kG the subfield

of k of all the elements fixed under the action of G.

� For a field k, we will denote by k̄ a separable closure of k, and by Gk =

G(k̄/k) its absolute Galois group.

� For a field k, we will denote its characteristic by char(k).

� We will call a field complete with respect to a discrete valuation with finite

residue field a local field. If the valuation is not archimedean we will say the

local field is non-archimedean.

� A number field is a finite algebraic field extension of the rational numbers

Q.

� We say that a field K is global if it is either a number field or the function

field of a curve over a finite field.

� We will say a number field K is totally real if the image of all its embeddings

in C is contained in R. If no embedding K ↪→ C has image contained in R,
we will say K is totally imaginary.

� For an algebraic extension K of Q (not necessarily finite), we will say that a

prime p of K is non-archimedean if it induces a non-archimedean valuation.

We will denote the set of all non-archimedean primes of K by PrimesnaK .

� For an extension of number fields K/k we will say that the prime P of K is

above the prime p of k (or, vice versa, that p is below P) if P ∩ k = p.

� For a Galois extension K/k and a prime P of K, we will denote by DP the

decomposition group of P in G(K/k), we denote the maximal unramified

quotient of DP by Dur
P , and the maximal tame quotient by Dtame

P . We also

denote by IP its inertia subgroup, which corresponds to the kernel of the

quotient DP → Dur
P , and by Itame

P the kernel of the quotient Dtame
P → Dur

P .
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� For a number fieldK, a prime p ∈ PrimesnaK we will denote by κ(p) its residue

field, and we will say that p = char(κ(p)) is the residue characteristic of p.

� For a prime number l, we will denote by Primes
na,(l′)
K the set of all non-

archimedean primes of K with residue characteristic different from l.

� For a number field K and a prime p of K, we denote by Kp the localization

of K at p. We will denote by dp the degree of the finite extension [Kp : Qp]

also known as local degree. We will also denote by ep the ramification index

of Kp/Qp, and by fp the inertia degree [κ(p) : Fp]. We will also denote by

N(p) the norm of the prime p, given by N(p) = pfp .

� For an abelian profinite group A, we will denote by Ator its torsion subgroup,

by Ator the closure of its torsion subgroup and write A/tor for its torsion-

free quotient group. For a profinite group G we will denote by Gab/tor the

torsion-free quotient of the abelianization of G, that is (Gab)/tor.

� For a global field K, a prime P in the separable closure k̄, and its decom-

position group DP in the extension K/K,

� For a global field K and a subset S of PrimesnaK we define the Dirichlet

density of the set S as

δ(S) = lim
s→1+

∑
p∈S N(p)−s∑

p∈PrimesnaK
N(p)−s

.

� For a number field K and a prime number p, consider the splitting

pZ =
r∏
i=1

pie
pi .

We may then consider the inertia degrees fpi for all pi above p, and order the

pi so that for 1 ≤ i ≤ j ≤ r we have fpi ≤ fpj . We define then the splitting

type of p in K as the monotone non-decreasing sequence (fp1 , ..., fpr)

� For a profinite group G and a prime number p, we will denote by cdp(G) its

cohomological p-dimension, and by cd(G) its cohomological dimension.

� For a profinite group G and a prime number p, we will denote by G(p′) its

prime-to-p quotient.

� For a profinite group G, we will denote by Gab its maximal abelian quo-

tient G/[G,G]. If K is a number field and GK is its absolute Galois group

G(K/K), the abelianization corresponds to the maximal abelian extension

of K contained in K, which we will denote by Kab.
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� For the number field K and for the maximal integer s such that Gab
K has a

quotient isomorphic to Zsp, we will say that K has Zp-rank s.

� For a profinite group G and two subgroups H and H ′ of G we will say that

H and H ′ are commensurable if H ∩H ′ is open in both H and H ′.

� For a profinite group G, a subgroup H of G and a prime number l, we will

say H is l-open in G if an l-Sylow subgroup of H is an open subgroup of an

l-Sylow subgroup of G.

� For a profinite group G, we will denote by Gl an l-Sylow subgroup of G,

which is determined uniquely up to conjugation.

� For a profinite group G, two subgroups H and H ′ of G, and a prime number

l we will say that H and H ′ are l-commensurable if H ∩H ′ is l-open in both

H and H ′.

� For an isomorphism σ : G(K ′/K)
∼−→ G(L′/L) of Galois groups, and for

subextensionsK ′′ ofK ′/K and L′′ of L′/L, we will sayK ′′ and L′′ correspond

to each other by σ if σ(G(K ′/K ′′)) = G(L′/L′′).

� For a continuous homomorphism σ : G(K ′/K) → G(L′/L) of Galois groups,

for a subextension L′′ of L′/L, we will say L′′ corresponds to K ′′ by σ if

σ−1(G(L′/L′′)) = G(K ′/K ′′).

� All homomorphism of profinite groups are assumed to be continuous with

respect to the profinite topology.
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Introduction

For a field K and a separable closure K of K we may define the absolute Galois

group GK = G(K/K). It is known that any two separable closures of K are

isomorphic, and this isomorphism of fields induces an isomorphism between the

respective absolute Galois groups. Furthermore, this isomorphism of groups is

also continuous with respect to the profinite topology. Naturally, we may then

ask if the inverse is also true, explicitly if a topological isomorphism between ab-

solute Galois groups determines an isomorphism between separable closures.

Neukirch showed that starting from a continuous isomorphism σ between two ab-

solute Galois groups G(K/K) and G(L/L) for two number fields K and L, it is

possible to induce a bijection between the sets of primes of K and L by proving

that σ must map a decomposition group in K isomorphically to a decomposition

group in L. Furthermore, Neukirch also showed this bijection preserves the ram-

ification index and inertia degree of a prime.

These result, known as Neukirch’s Local Theory, were used by Uchida [Uch2]

to obtain what is now known as Neukirch-Uchida’s theorem.

Neukirch-Uchida’s Theorem. Let σ : GK → GL be an isomorphism of profinite

groups. Then, there exists a unique isomorphism of fields τ : K → L such that

for all g ∈ GK,

σ(g) = τ ◦ g ◦ τ−1.

We may also look at Neukirch-Uchida’s theorem as a result that can be placed

in the wider picture of Grothendieck’s anabelian conjectures. In the for-

mulation of these conjectures, Grothendieck ([Gro1] and [Gro2]) claimed that it

is possible to recover properties about certain “anabelian” varieties from their

fundamental groups. We are interested in looking at two of these conjectures,

which in their complete form are stated using finitely generated infinite fields and

their absolute Galois groups, the birational anabelian Isom-Form, and the

birational anabelian Hom-Form

Birational Anabelian Isom-Form. Given two finitely generated infinite fields

K and L, and a topological isomorphism between their absolute Galois groups

σ : GK → GL, there exists a unique isomorphism of fields τ : K → L such that
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for all g ∈ GK,

σ(g) = τ ◦ g ◦ τ−1.

Birational Anabelian Hom-Form. Given two finitely generated infinite fields

K and L, and a continuous homomorphism between their absolute Galois groups

σ : GK → GL such that σ(GK) is open in GL, there exists a unique injection of

fields τ : L ↪→ K such that for all g ∈ GK,

g ◦ τ = τ ◦ σ(g).

We may notice that Neukirch-Uchida’s theorem is a solution for the Isom-

Form in the case where K and L are number fields. Uchida also proved [Uch1]

the Isom-Form for function fields of curves over finite fields, and the proof of the

Isom-Form was later completed by Pop [Pop].

Whereas the Isom-Form has been proven, there is currently no complete solution

for the Hom-Form, however a few partial results have been given. In the case

of number fields Uchida [Uch3] proved that the Hom-Form holds unconditionally

when K = Q by showing that in this case the homomorphism of profinite groups

is really an isomorphism.

In this paper, he also proved that uniqueness in the Hom-Form also holds un-

conditionally, and that if we can place certain conditions on a continuous homo-

morphism of absolute Galois groups σ regarding the image of the decomposition

groups of K, we are then able to construct a homomorphism of fields τ as in the

statement of the Hom-Form.

More recently, Säıdi and Tamagawa [S-T] proved that replacing GK and GL with

the maximal m-step solvable quotients Gm
K and Gm

L , and considering a con-

tinuous isomorphism σm : Gm
K → Gm

L , it is possible to obtain an m-step solvable

version of Neukirch’s Local Theory. Säıdi and Tamagawa then used this result

to show an m-step solvably closed version of Neukirch-Uchida’s theorem, where

the isomorphism we obtain is between the subfields of K and L corresponding to

these m-step quotients, which are respectively denoted Km and Lm,.

m-step solvable Isom-Form for Number Fields. Let K and L be number

fields, let m ≥ 0 be an integer and let σm+3 : Gm+3
K → Gm+3

L be an isomorphism

of profinite groups. Consider the isomorphism of profinite groups σm : Gm
K → Gm

L

induced by σm+3.

Then, there exists a field isomorphism τm : Km
∼−→ Lm such that

σm(g) = τmgτ
−1
m

for every g ∈ Gm
K, which induces an isomorphism τ : K

∼−→ L.

An essential part in Säıdi and Tamagawa’s work is the investigation of particu-
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lar subgroups of the m-step solvably closed Galois group Gm
K , which are identified

as the subgroups satisfying a group theoretic property they denote by (⋆l).

Säıdi and Tamagawa show that the subgroups of Gm
K satisfying property (⋆l) are

strongly connected to the decomposition groups of the primes of K, and precisely

they can be used to recover in a purely group theoretic way the decomposition

groups in Gm
K by starting from Gm+2

K and “losing” two abelian steps. This con-

nection is then used to formulate their m-step solvable Local Theory, and a τm as

in the statement is constructed by using a proof similar to Uchida’s construction

of τ in the Isom-Form.

In this work, we are interested in observing how the Local Theory established by

Säıdi and Tamagawa can be applied to a continuous homomorphism of m-step

solvable groups with open image, and our goal is to obtain an m-step solvable

analogue of Uchida’s results on the Hom-Form.

In Chapter 1, we will be giving a brief overview of Neukirch’s Local Theory and

Uchida’s proof of Neukirch-Uchida’s theorem, together with a few necessary clas-

sical results from Class Field Theory.

Then, in Chapter 2, we will be giving the definition of (⋆l)-subgroups, and the

statement and proof of a few fundamental results on (⋆l)-subgroups obtained by

Säıdi and Tamagawa which they used to establish their m-step solvable Local

Theory.

In Chapter 3 we will start looking at a homomorphism σm : Gm
K → Gm

L with open

image, and how we may use (⋆l)-subgroups to piece together a mapping between

some primes of K and some primes of L, giving an idea for a foundation for a

Local Theory. Then, we will show that if we put certain conditions involving

(⋆l)-subgroups on σm, we are then able to construct a mapping between the sets

of primes with finite residue field of K and L (denoted respectively PrimesnaK and

PrimesnaL ) using decomposition groups, and this will allow us to give a Local The-

ory as desired. We will then use this Local Theory to obtain the following result,

which can be found at Theorem 3.2.7 in this thesis:

Theorem A. Let m ≥ 1 be a positive integer, and let σm+4 : Gm+4
K → Gm+4

L

be a homomorphism of profinite groups such that the homomorphism of profinite

groups σm+3 : G
m+3
K → Gm+3

L induced naturally from σm+4 restricts to an injection

on every subgroups of Gm+3
K satisfying condition (⋆l) for some prime number l.

Consider the homomorphism of profinite groups σm : Gm
K → Gm

L induced by σm+4.

Then, there exists an embedding of fields τm : Lm → Km that induces σm by

τmσm(g) = gτm

for all g ∈ Gm
K.

We will then prove some results on uniqueness, showing that the homomor-
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phism we constructed in Theorem A is unique whenever some conditions on the

solvability of K with respect to Q or, alternatively on the image of σm are sat-

isfied. The following will be the main result of this chapter, the proof for which

can be found at Theorem 3.3.9 in this thesis.

Theorem B. Let K and L be number fields, let m ≥ 1 be an integer and assume

K contained in the m − 1-step solvably closed extension Qm−1 ⊆ Km of Q. Let

σm+4 : Gm+4
K → Gm+4

L be a homomorphism of profinite groups with open image

such that the induced homomorphism of profinite groups σm+3 : Gm+3
K → Gm+3

L

restricts to an injection on every subgroup of Gm+3
K satisfying property (⋆l) for

some prime number l.

Then, there exists a unique homomorphism of fields τm : Lm → Km such that

τmσm(g) = gτm for all g ∈ Gm
K.

In Chapter 4, we use these result from Chapter 3 to show that we can weaken

the conditions we require to construct an m-step Hom-Form in Theorem A are

whenK = Q, and our criteria for uniqueness is also satisfied. We will in particular

be able to obtain the following result, the proof of which can be seen in Theorem

4.5 in this thesis:

Theorem C. Let m ≥ 0 and let σm+4 : Gm+4
K → Gm+4

L be a homomorphism

of profinite groups with open image, assume K = Q and that the image by the

homomorphism σm+2 : Gm+2
K → Gm+2

L induced by σm+4 of any subgroup of Gm+2
K

satisfying property (⋆l) contains no torsion elements. Then L = Q, and the in-

duced homomorphism σm+1 : Gm+1
K → Gm+1

L is an isomorphism. Furthermore,

if m ≥ 2 there exists a unique isomorphism of fields τm : Km → Lm such that

σm(g) = τmgτ
−1
m for all g ∈ Gm

K.
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Chapter 1

Neukirch-Uchida’s Theorem

In this chapter, we introduce a few classical results from class field theory, and

their role in determining Neukirch’s local theory. Once the local theory has been

established, we look at Uchida’s proof for the Neukirch-Uchida theorem

1.1 Preliminary results on Class Field Theory

In this section, we will be introducing a few classical results in Class Field Theory

and in the cohomology of number fields. All the results will only be given for

number fields, but similar results also can be stated for function fields of curves

over finite fields. The results in this section, together with their function field

counterpart, can be found in [NSW].

Let k be a field, k̄ a separable closure of k and Gk the absolute Galois group,

which we endow with the profinite topology. We can define the Brauer group

of the field k, denoted Br(k), as the cohomology group H2(Gk, k̄
×). If K/k is a

Galois extension, we may also define the Brauer group of the extension K/k as

Br(K/k) = H2(G(K/k), K×).

If k is a non-archimedean local field, there is a canonical isomorphism between

the Brauer group Br(k) and Q/Z, which is usually denoted

invk : Br(k)
∼−→ Q/Z (1.1.1)

known as the invariant map.

Let l ∈ N be prime to the characteristic of the field k, and denote by µl the group

of l-th roots of unity. Also, let k̄× denote the multiplicative group of k̄. If we

consider the map ϕ : k̄× → k̄× given by ϕ(x) = xl, we have an exact sequence of

group, known as the Kummer exact sequence

0 → µl → k̄×
ϕ−→ k̄× → 0. (1.1.2)
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The proofs for the following well known results can be found in [NSW], Proposi-

tions 7.1.8

Proposition 1.1.3. Let k be a non-archimedean local field, and let l be a number

prime to char(k). Then, we have H2(Gk, µl) ∼= Z/lZ.

Proposition 1.1.4. Let k be a non-archimedean local field. For a prime number

p, we have cdp(Gk) = 1 when p = char(k), else we have cdp(Gk) = 2.

Recall that for a profinite group G, the abelianization Gab is defined as the

quotient G/[G,G], where [G,G] is the closure of the commutator subgroup of

G. Studying the cohomology of the local field k, we obtain the following result

([NSW], Theorem 7.2.11)

Proposition 1.1.5. Let k be a local field. Then there is an exact sequence

0 → k× → Gab
k → Ẑ/Z → 0

where Ẑ is the profinite completion of Z and the map k× → Gab
k is the norm

residue symbol (·, k).

These results on the cohomology of a local field can also be used to give a

description of the cohomology of a number field. Let us now consider a number

field K instead, and for a prime p of K, denote by Kp its completion with respect

to p. We may define the idèle group of K as the restricted product IK =
∏′

pK
×
p

taken over all primes of K (including any archimedean prime).

As we have a natural inclusion K× ↪→ K×
p for all p, there is a diagonal injection

K× → IK . Taking the quotient with respect to this diagonal injection, we may

define the idèle class group as CK = IK/K
×.

The idèle class group IK is interesting as studying its cohomology we obtain the

following result, known as the Hasse principle for Brauer Groups, which allows us

to study the Brauer group of the number field K from the Brauer groups of its

localizations.

Theorem 1.1.6 (Hasse principle for Brauer Groups). Let K be a number field.

There is an exact sequence

0 → Br(K) → ⊕p Br(Kp)
invK→ Q/Z → 0

where the invariant map invK is obtained by taking the sum of all the maps invKp :

Kp → Q/Z defined as in (1.1.1) for all non-archimedean primes p of K.

Proposition 1.1.7. Let S be a finite set of non-archimedean primes of a number

field K. Then, there is a natural surjection

Br(K) →
⊕
p∈S

Br(Kp).
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Proof. For every non-archimedean prime p we have, as defined in (1.1.1), an iso-

morphism invKp : Br(Kp)
∼−→ Q/Z. Then by taking the sum of all the maps

invKp , we may define an invariant map invS :
⊕

S Br(Kp) → Q/Z, similarly to

the definition of invK in Theorem 1.1.6. Let p′ be a prime not in S. Since invKp′

is an isomorphism between Br(Kp′)
∼−→ Q/Z, for every element x ∈

⊕
S Br(Kp),

we may take an element y ∈ Br(Kp′) so that invS(x) + invp′(y) = 0. However,

x+ y ∈ ⊕p Br(Kp), and as it is in the kernel of the map invK from Theorem 1.1.6

the exactness of the sequence gives us x + y is in the image of Br(K). However,

this also means that x is in the image of the natural map Br(K) →
⊕

p∈S Br(Kp),

and so this map is surjective.

In the same way we extended the invariant map from a local field to a number

field, we may also extend the norm residue symbol. (cf. [NSW], Proposition

8.1.24)

Proposition 1.1.8. Let K be a number field, and let CK be its idèle class group.

There is a homomorphism

rec : CK → Gab
K ,

called the reciprocity homomorphism, which has dense image and is given by

rec(a) =
∏
p

(a,Kp),

where the (·, Kp) are the norm residue symbols for the localizations Kp.

Furthermore, if we consider the canonical map IK → CK, we may also define the

map rec : IK → Gab
K by composition.

We will also need the following result ([Ser], Chapter 4.4, Proposition 13)

Proposition 1.1.9. Let K be a number field. If p ̸= 2 or if K is totally imaginary,

cdp(GK) = 2.

We will now introduce a few classical theorems, which will be used to give a

proof of Neukirch-Uchida’s theorem.

The first of these result we will need is Krasner’s lemma ([NSW], 8.1.6)

Theorem 1.1.10 (Krasner’s Lemma). Let k be a non-archimedean local field, let

k̄ be a separable closure of k and v the extension of the discrete valuation of k to

k̄. Let α1 ∈ k̄ be any element, and let α1, α2, ..., αn be all the conjugates of α1 in

k̄/k. If for an element β ∈ k̄ and i = 2, ...n we have

v(α1 − β) < v(α1 − αi)

then k(α) ⊆ k(β).
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The following theorem can be stated for global fields in general, but we will

be only needing it for number fields (cf. [Neu], Theorem 13.4).

Theorem 1.1.11 (Chebotarev’s Density Theorem). Let K be a number field,

L/K a finite Galois extension, and let g be an element of G(L/K). Consider

the set S of all non-archimedean primes p of K unramified in the extension L/K

such there exists a prime P of L above p and g coincides with the Frobenius

automorphism of P over K.

Then, the set S has Dirichlet density δ(S) = #⟨σ⟩/#G(L/K)

Chebotarev’s theorem has the following corollary (cf. [Neu], Corollary 13.6).

Corollary 1.1.12. Let K be a number field, let L/K be a field extension, and

let S ⊆ PrimesnaK be the subset of all non-archimedean primes of K that split

completely in L/K. Then, δ(S) = 1
[L:K]

⇐⇒ L/K is a Galois extension.

We may prove the following theorem by using Chebotarev’s theorem (cf. [Neu]

Proposition 13.9, [NSW] Theorem 12.2.5).

Theorem 1.1.13 (Bauer’s theorem). Fix a separable closure Ω of Q, let K/Q
be a finite Galois extension, and L/Q a finite extension, and assume that both K

and L are contained in Ω. Then if all but finitely many prime numbers that have

a factor of local degree 1 in L split completely in K, L ⊇ K.

Proof. Consider the composite Galois extension LK/L in Ω. Then, all but finitely

many primes of L of local degree 1 split completely in LK/L. Then, the set of

primes splitting completely in LK/L has Dirichlet density 1 and by Corollary

1.1.12 we get LK = L, and so L ⊇ K.

We also need to state the following theorem, as it has an application that will

play a key part in the proof of the Neukirch-Uchida theorem (cf. [NSW], Theorem

9.2.7).

Theorem 1.1.14 (Grunwald-Wang). Let K be a number field, let S be a finite

set of non-archimedean primes of K, and ∀ p ∈ S fix an abelian extension K ′
p of

Kp.

Let A be a finite abelian group such that for all p ∈ S we may define an embedding

G(K ′
p/Kp) ↪→ A. Then there exists an abelian extension of number fields K ′/K

with Galois group A such that the completion of K ′ with respect to each p ∈ S is

isomorphic to the K ′
p that has been fixed.

Before stating an application of this theorem, we need to define what an em-

bedding problem is. Let K ′/K be a Galois extension of K, and consider the

canonical surjection ϕ : GK → G(K ′/K). An embedding problem for the Galois

group GK is a diagram
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GK

1 N E G(K ′/K) 1

ϕ

ψ

where the bottom row is an exact sequence of profinite groups. The embedding

problem is said to have a proper solution if there exists a surjective homomorphism

ϕ′ : GK → E and such that ϕ = ψ ◦ ϕ′. In particular, for some Galois extension

L/K, we have that E ∼= G(L/K) and so N ∼= G(L/K ′). An application of

Grunwald-Wang’s theorem then gives us the following result ([NSW], Proposition

9.2.9):

Proposition 1.1.15. Let K ′/K be a finite Galois extension of number fields with

Galois group G. Let n ∈ N and let p be a prime number. Denote by Fp[G]n the

additive group given by n copies of Fp[G] and equipped with the action of G given

by left multiplication. Then, the embedding problem

GK

1 Fp[G]n E G 1

ϕ

ψ

given by the corresponding split exact sequence is properly solvable. That is, there

exists a Galois extension L of K ′ such that Fp[G]n ∼= G(L/K ′) and E = Fp[G]n⋊
G.

Let us also recall Leopoldt’s conjecture (see [NSW], Conjecture 10.3.5), origi-

nally formulated by Leopoldt in [Leo], which claims that for every prime number

p, the rank of the p-adic regulator of a number field K is equal to r1+r2−1, where

r1 is the number of real places of K and 2r2 is the number of complex places (that

is, r2 is the number of pairs of complex places). If the Leopoldt conjecture holds

true in K for p, it has been shown ([Gras], Chapter III, Conjecture 1.6.4), that,

if we denote by s the Zp-rank of K, we have s = r2 + 1. The Leopoldt conjecture

has been proven to hold in a few cases by Brumer [Bru]:

Theorem 1.1.16. Assume K is an abelian extension of Q or of an imaginary

quadratic field. Then, the Leopoldt conjecture holds for K and any prime number

p.

1.2 Local Theory

In this section, the main result is Neukirch’s Local Theory, and we will also be

giving some results required to establish it. The following result can be found in

[NSW], Proposition 12.1.1, where it is proven for the more general case of global

fields
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Proposition 1.2.1. Let k be a field, complete with respect to a valuation v, and

let f1 =
∑d

i=0 aiX
i and f2 =

∑d
i=0 biX

i be two separable polynomials in k[X],

both of degree d. Then if v(f1 − f2) = maxi{v(ai − bi)} is smaller than a positive

constant determined by the roots of the polynomials, f2 has the same splitting field

as f1.

Proof. Assume first that v is an archimedean valuation. By Ostrowski’s theorem,

either k ∼= R or k ∼= C. Let us assume k = R. Then f1 either has d zeroes in

R, and so has splitting field R, or it has a complex zero and splitting field C.
All separable polynomials whose coefficients are close enough to f1 have all their

zeroes in R and or have a complex zero respectively. The case where k = C is

trivial as C is algebraically closed.

Assume now v is non-archimedean. Let αi ∈ k̄ for i = 1, .., d be the roots of f1,

and βj ∈ k̄ for j = 1, .., d be the roots of f2. Then,

v(f2(αi)) = v((f1 − f2)(αi)) = v(
∑
l

(al − bl)α
l
i) ≤ max

l
{v(f1 − f2)α

l
i},

which means that if we take a positive ϵ > v(f1 − f2), the value v(f2(αi)) will be

< cϵ where c is a multiplicative constant determined as the maximum of v(αli).

We may also rewrite f2(αi) as a product bd
∏

j(αi− βj), and so we get that for at

least one j, the value v(αi − βj) must be smaller than cϵ and set βj(i) = βj.

Assume that ϵ is small enough so that v(αi − βj(i)) < cϵ < v(αi − αl) whenever

l ̸= i, Krasner’s Lemma (see Theorem 1.1.10) gives us αi ∈ k(βj), and repeating

this argument for all the roots of f1 we get that the splitting field of f1 must be

contained in the splitting field of f2.

We may also reverse the argument, and assume we can choose ϵ small enough so

that v(αi−βj(i)) < c′ϵ < v(βl−αj(i)) where βl varies over every root of f2 distinct

from βj(i) and c
′ is a constant determined as the maximum of v(βlj(i)). Then, this

gives us the choice of βj(i) is unique for every i, and as the αi are different (as

f1 is separable), it follows that if we can choose an ϵ small enough we obtain a

bijection between the sets of roots of f1 and f2 by setting αi → βj(i). We can then

apply Krasner’s lemma again, and we get the other inclusion.

Let C be the minimum of all the c and c′ as determined before. The argument

above gives us that if we can choose an ϵ small enough such that for all 1 ≤ i ≤ d

we have v(αi−βj(i)) < Cϵ we can indeed say that f1 and f2 have the same splitting

field by t.

The following result is taken from [NSW], Proposition 12.1.2, and like the

previous result it is proven for all global fields.

Proposition 1.2.2. Let k be a number field, k̄ a separable closure, and let K be

a proper subfield of k̄. Then, there is at most a unique prime p of K such that p
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does not decompose in the extension k̄/K.

Proof. Let K be a subextension of k̄/k, and assume there are two distinct primes

p1 and p2 of K that do not split in k̄. We want to show that necessarily k = K.

Let f1 and f2 be two separable non-constant polynomials of the same degree d

over K.

By the approximation theorem, for every ϵ > 0, we can say there exists a polyno-

mial f ∈ K[X] such that |f − f1|p1 < ϵ and |f − f2|p2 < ϵ.

By the previous result, for an ϵ small enough we have that f and f1 have the same

splitting field over Kp1 . However, since p1 does not decompose in the extension

k̄/K, so f and f1 have the same splitting field over K. We may repeat the same

argument for f and f2 over Kp2 , and so we get the splitting fields over K of f1

and f2 must also coincide.

We may now take x1, ..., xd to be distinct elements in K, and take the polynomial

f1 =
∏d

i=1(X − xi) which has splitting field K. We may also take the polynomial

f2 so that it is separable over K and irreducible of degree d. Now, since the split-

ting field of f2 must be the same as that of f1, that is K, and f2 is irreducible

over K it follows that K must in fact be k̄.

If there exists a prime p of K that does not decompose in k̄/K, which would be

unique by the above proposition, we will say that K is k̄-Henselian with respect

to p. Proposition 1.2.2 has the following corollary ([NSW], Proposition 12.1.3)

Corollary 1.2.3. Let k be a number field, and k̄ a separable closure of k. If P1

and P2 are distinct primes of k̄, and DP1 and DP2 are their decomposition groups

in Gk respectively. Then, DP1 ∩DP2 = 1

Proof. Assume that H = DP1∩DP2 is non-trivial. Then, the fixed field K = k̄H is

a proper subfield of k̄ and is also extension of the fixed field of both decomposition

groups. Thus, we have that both P1 ∩K and P2 ∩K do not split in k̄, and by

Proposition 1.2.2 we may conclude that K = k̄ and get a contradiction.

An immediate application of this corollary is the following ([NSW], Corollary

12.1.6):

Lemma 1.2.4. Let k be a number field. Then Gk has trivial center.

Proof. Let g ∈ Gk be an element of the center. Then for any primeP of k̄, we have

DgP = gDPg
−1 = DP, and by Corollary 1.2.3 we have that necessarily gP = P,

that is g ∈ DP. However, if we consider any prime P′ ̸= P, we have by the same

reasoning that g ∈ DP′ , and so g is in the intersection of the decomposition groups

of two different primes, which means that by Corollary 1.2.3 we have g = 1.

We also have the following lemma ([Uch1], Lemma 2):
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Lemma 1.2.5. Let k be an algebraic extension of Q (not necessarily finite) and let

k̄ be a separable closure of k. If there exists a prime number l such that Br(k̄/K)(l)

is of rank 1 for every finite subextension K of k̄/k, we have that k is k̄-Henselian

with respect to some prime p of K.

Proof. By Theorem 1.1.6, for all finite subextensions k′ of K/Q, we have the map

Br(k′) →
∏

p′ Br(k
′
p′), where p′ ranges over the primes of k′, is injective. As the

Br(k̄′) define a projective system, we may pass to the projective limit and get an

injective map Br(k̄/K) →
∏

P Br(KP) where P ranges over the primes of K. It

follows then that there exists a unique prime P of K such that Br(KP)(l) ̸= 0.

Let p = P ∩ k. The l-part of the Brauer group of every extension of p is non-

trivial, and so we have that p has a unique extension P to K. It follows then k is

k̄-henselian with respect to p as desired, since p does not decompose in any finite

extension of k.

Finally, this lemma will allow us to give the proof of Neukirch’s Local Theory

([NSW], Lemma 12.1.10)

Lemma 1.2.6. Let k be a number field, k̄ a separable closure of k, P a prime of

k̄ and DP ⊂ Gk its decomposition group. If H ⊆ Gk is an infinite closed subgroup

such that H and DP are commensurable, then H ⊆ DP.

Proof. Let K = k̄H be the fixed field of H, and let U be any open subgroup of

H ∩DP such that U is a normal subgroup H, and let L = k̄U .

Since U is open in H, [L : K] is finite, and since U ⊆ DP, the prime p = L ∩P

does not decompose in the extension k̄/L, so we have L is Henselian with respect

to p.

If we consider the prime p ∩ K, we may observe that since all its extensions to

L are conjugate to p, then L is also Henselian with respect to these extensions.

However, by Proposition 1.2.2, such a prime must be unique, and so p∩K extends

uniquely to p, which in turn extends uniquely to P, and so H ⊆ DP.

We have now everything we need to present the final result of Neukirch’s Local

Theory. We will adapt the formulation and the proof used by Uchida in ([Uch1],

Lemma 3)

Theorem 1.2.7 (Neukirch). Let k1 and k2 be number fields, and fix k̄1 and k̄2

separable closures of k1 and k2 respectively. We may then take the absolute Galois

groups Gk1 and Gk2, and let σ : Gk1 → Gk2 be an isomorphism of profinite groups.

Let p1 be a prime of k1 and P1 be a prime of k̄1 above p1. Let D1 be the decompo-

sition group of P1 in Gk1, and let D2 = σ(D1). Then, there exists a unique prime

p2 of k2 and a prime P2 of k̄2 above p2 such that D2 is the decomposition group

of P2 in Gk2.
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Furthermore, we may define a bijective map ϕ : Primesnak̄1 → Primesnak̄2 by mapping

ϕ(P1) = P2 which is Galois equivariant with respect to σ.

Proof. Let E1 and E2 be the subfields of k̄1 and k̄2 corresponding to D1 and D2

respectively. Since E1 is the decomposition field of P1, we have [E1,P1 : k1,p1 ] = 1.

Then, for any finite subextension F1 of k̄1/E1, it follows the extension F1,P1/k1,p1 is

also finite. For a fixed extension F1, denote by F2 the subfield of L corresponding

to F1 by σ.

Let l be a prime number and let µl be the group of l-th roots of unity. By Lemma

1.2.6 we may assume that both F1 and F2 contain µl up to replacing them with

open subgroups.

Applying cohomology to the exact sequence 1 → µl → k̄×2 → k̄×2 → 1, we know

that by Proposition 1.1.9 we have cdlG(k̄2/F2) = 2 and using the Hasse-Brauer

exact Sequence (Theorem 1.1.6) we get an exact sequence

0 → H2(G(k̄2/F2), µl) → Br(F2)
l→ Br(F2) → 0

where the kernel of the surjective map is the l-torsion of Br(F2).

Now, σ induces an isomorphism H2(G(k̄1/F1), µl)
∼−→ H2(G(k̄2/F2), µl), so they

have the same order. The exact sequence then gives that Br(F2)(l) has rank 1,

and the same holds true for any extension of F2, and so by Lemma 1.2.5, we get

that F2 is k̄2-Henselian with respect to some prime P2 of k̄2.

Consider the restriction of P2 to E2, which we will denote P̃2, and let q1, ..., qn

be all the extensions of P̃2 to F2 (including P2). Since the extension F2/E2 is

finite, it follows that Br(F2,qi)(l) ̸= 0 for all the qi, but by Proposition 1.1.7 we

have the map Br(F2) →
∏

i Br(F2,qi) is surjective. However, this can only be true

if there is only one extension of P̃2 to F2. In particular, this means that E2 is

k̄2-Henselian with respect to the prime P2. This also means that D2 is contained

in the decomposition group of P2.

Repeating the same argument with σ−1, we get that D2 is actually the entire

decomposition group of P2. Furthermore, replacing P1 with a different prime

conjugate to it over p1 (and P2 with a different prime conjugate to it over p2)

is equivalent to replacing D1 (resp. D2) with a conjugate subgroup in GK (resp.

GL).

We may conclude then that p2 is determined uniquely, and we may define a

bijection ϕ : Primesnak̄1 → Primesnak̄2 as desired by ϕ(P1) = P2.

The first part of the proof for the following theorem repeats the same argument

as the previous proposition. This result is analogous to the previous one ([NSW],

Theorem 12.1.9.)
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Theorem 1.2.8. Let k be a number field, κ a non-archimedean local field, and

assume that there exists a closed subgroup H ≤ Gk such that H ∼= Gκ. Then there

exists a unique prime p in k, and a unique prime q above p in K such that H is

open in Dq.

Proof. By Lemma 1.2.6, we may assume that k contains µp for some odd prime

number p. By Proposition 1.1.3 we have H2(U, µp) ∼= Z/pZ for all open subgroups

U of H.

Let K be the subfield of k̄ corresponding to H. Consider the injective map

H2(GK , µp) →
∏
H2(GKP

, µp) from Theorem 1.1.6. The injectivity of this map

implies that one of the H2(GKP
, µp) must be non-trivial, and so fix a prime P such

that H2(GKP
, µp) is non-trivial. Since we chose p odd, P is non-archimedean.

Let L be an arbitrary separable extension ofK, corresponding to an open subgroup

U of H. By Proposition 1.1.7 there is a surjection H2(GL, µp) →
∏

PH
2(GLP

, µp),

where the product is indexed over all primes of L above P. Let P′ be a prime

of L above P. We have that GL′
P
is an open subgroup of GKP

, and so we have

an isomorphism H2(GLP
, µp) ∼= Z/pZ. The surjectivity of the map then implies

by a counting argument that there can only be one such P′, and since L was

chosen arbitrarily then P does not decompose in any extension of K, and so it

does not decompose in k̄/K. The unique prime above P in k̄ is then the q we

were looking for. Such a q is unique as by Corollary 1.2.3 for all other primes q′

of K, H ∩Gq′ = 1.

1.3 Neukirch-Uchida’s theorem

Now that the local theory has been stated and proven, we can proceed to state

and prove Neukirch-Uchida’s theorem, which is going to be the main theorem in

this section. The results here are taken from [Uch2], where Uchida proves the

same results in the slightly more general case of solvably closed Galois extensions.

Let K and L be number fields, and let K and L be respectively a separable

closure forK and for L. The fieldsK and L are said to be arithmetically equivalent

if they have the same Dedekind ζ function. A result by Perlis [Per] gives us that

K and L are arithmetically equivalent if and only if every prime number l has the

same splitting type in K and L. Arithmetic equivalence was shown by Gassmann

[Gas] to be equivalent to the following: let us consider the Galois extension M/Q
given by the composite of the normal closures of K and L, the Galois group

G(M/K) and G(M/L) have the same number of elements in every conjugacy

class of G(M/Q). This condition is also known as Gassmann equivalence.

Theorem 1.2.7, together with Local Class Field Theory, shows that if we have an

isomorphism of profinite groups σ : GK → GL, then corresponding primes of K
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and L have the same residue characteristic, inertia degree and ramification index

as we can recover them from their decomposition group. In particular, K and

L are arithmetically equivalent, and this statement also holds when replacing K

and L with finite separable extensions K ′ and L′. The following result is taken

from ([Uch2], Lemma 1).

Lemma 1.3.1. Let K, L be number fields, and let N/Q be a Galois extension.

Then, if K and L are arithmetically equivalent, the composites NK and NL are

also arithmetically equivalent.

Proof. LetM/Q be a Galois extension containing K, L and N . Let E = G(M/N)

be the corresponding Galois group, which is a normal subgroup of G = G(M/Q),

and let G1 = G(M/K) and G2 = G(M/L).

M

NK NL

K N L

Q

G1

E

G

G2

As K and L are arithmetically equivalent, two conjugacy classes of G1 and G2 in

G have the same size. Furthermore, since E is normal in G, the subgroups G1∩E
andG2∩E, which correspond to the compositesKN and LN respectively, will also

have the same number of elements in every conjugate class of G. It now follows

by the discussion above that KN and LN are arithmetically equivalent.

We may now state and prove the celebrated Neukirch-Uchida Theorem. We

will be adapting the proof given by Uchida in [Uch2].

Theorem 1.3.2 (Neukirch-Uchida’s theorem). Let σ : GK → GL be an iso-

morphism of profinite groups. Then, there exists a unique isomorphism of fields

τ : K → L such that for all g ∈ GK

σ(g) = τ ◦ g ◦ τ−1.

Proof. Let K ′/K be a finite Galois extension of K contained in K, let U1 be the

open normal subgroup of GK corresponding to K ′, and let L′ be the subfield of

L corresponding to U2 = σ(U1). Since the isomorphism gives that U2 is an open

normal subgroup of GL, we also have that L′/L is a Galois extension. Let us

denote by H1 = G(K ′/K) and H2 = G(L′/L) the respective Galois groups. Then,

the isomorphism σ induces an isomorphism of finite groups H1 → H2 by quotients

which, by abuse of notation, we will also denote σ.
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Let AK′ be the set of isomorphisms τ : K ′ → L′ such that σ(g) = τ ◦ g ◦ τ−1 for

all g ∈ H1. The collection of sets AK′ indexed over all the finite Galois extension

K ′/K contained in K defines a projective system. Furthermore, since all the

AK′ are finite (compact) and non-empty, their inverse limit over K ′ is non-empty

as well ([RZ], Proposition 1.1.4), and it corresponds to the set of isomorphisms

τ : K → L satisfying the conditions of the theorem’s statement. Thus, if we can

show that for an arbitrary choice of an extension K ′ finite and Galois over K, the

set AK′ is non-empty and finite, the existence of τ in the statement is proven.

The diagram below is a visualization of the constructions in the following part of

the proof.

K Ω L

M

N
∏
M1,i Mi N

∏
M2,i

∏
M1,i NM1,i NM2,i

∏
M2,i

M1,i M2,i

N

K ′ L′

N1,i N2,i

K L

Q

Fp[H]m+1

B1,i B2,i

Fp[H]ui

T1

S1,i

S1

T2

S2,i

S2

HH1 H2

Fix then a Galois extensionK ′/K and let L′ be the Galois extension of L contained

in L corresponding to K ′ by σ. For a fixed separable closure Ω of Q, we have

embeddings of K ′ and L′ in Ω. Let us fix two such embeddings, and let us also

denote the images of these embeddings in Ω by K ′ and L′. Then, let N be a

finite Galois subextension of Ω/Q containing K ′ and L′. Let H = G(N/Q),

S1 = G(N/K), S2 = G(N/L), T1 = G(N/K ′) and T2 = G(N/L′). Since H1 is

finite, we may take a set {h1,1, ..., h1,m} of generators for H1, and for i = 1, ..,m,

we set h2,i = σ(h1,i).
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Furthermore, since S1/T1 ∼= H1 and S2/T2 ∼= H2, for all 1 ≤ i ≤ m we define

s1,i ∈ S1 and s2,i ∈ S2 to be elements mapped to h1,i and h2,i by the quotients

respectively. We may take a prime number p such that p ≡ 1 (mod |H|) and

we may also take p > |H|2, and applying Proposition 1.1.15 we get a split exact

sequence

1 → Fp[H]m+1 → E → H → 1

where, for some Galois extension M/Q containing N , we have E = G(M/Q) and

Fp[H]m+1 ∼= G(M/N). Since p does not divide |H|, we can find elements u0, ..., um

in the group Fp[H]m+1 so that we may write Fp[H]m+1 = ⊕m
i=0Fp[H]ui. Denote

by Mi be the subfield of M fixed by the subgroup of Fp[H]m+1 generated by

u0, .., ûi, .., um. This gives us that the Galois group G(Mi/Q) is a split extension

of H by Fp[H]ui.

For 1 ≤ i ≤ m, let S1,i be the subgroup of S1 generated by s1,i and T1, and

similarly let S2,i be the subgroup of S2 generated by s2,i and T2. Let N1,i be the

subfield of N contained in K ′ corresponding to S1,i and N2,i be the subfield of N

contained in L′ corresponding to S2,i respectively. By construction, we have that

σ(S1,i) = S2,i and so N1,i corresponds to N2,i by σ. Let us also define S1,0 = T1

and S2,0 = T2.

Let χi be a character S1,i/T1 → Fp of order |S1,i/T1| (observe that if i = 0, this

quotient is trivial and so is the character). We may take a fieldM1,i so thatM1,i/K
′

is the maximal abelian p-extension of K ′ contained in Mi where the operation of

S1,i/T1 on the Galois group G(M1,i/K
′) is given by scalar multiplication by the

values of χi. Observe also that since T1 contains no elements of order p (as we

have chosen p ≡ 1 (mod |H|) and T1 is a subgroup of H), M1,i and N are disjoint

as extensions of K ′.

Since M1,i is an abelian extension of K ′, it can be identified with a subextension

of K, and so for each M1,i there exists a field M2,i contained in L, which we can

identify with a subfield of Ω, corresponding to it by σ. Since M2,i corresponds to

M1,i by σ, they are arithmetically equivalent. Since by definition of arithmetical

equivalence they have the same Galois closure, and Mi is a Galois extension of

M1,i, it follows that Mi/M2,i is a Galois extension as well and in particular M2,i

is contained in Mi.

We have that χi also induces a character χiσ
−1 of S2,i/T2, which we can by abuse

of notation also denote χi. Since N1,i corresponds to N2,i by σ, it follows σ

induces an isomorphism between G(M1,i/N1,i) and G(M2,i/N2,i), and it follows by

construction that M2,i is also the maximal abelian p-extension of L′ contained in

Mi so that the operation of S2,i/T2 on the Galois group G(M2,i/L
′) is given by

scalar multiplication by the values of χi, and M2,i and N are disjoint.

From the construction it also follows that the field
∏

iM1,i can also be identified
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with an extension of K ′ contained in K, and this extensions corresponds by σ

to an extension of L′ contained in L which can be identified with
∏

iM2,i, which

also means
∏

iM1,i and
∏

iM2,i are arithmetically equivalent. Furthermore as N ,

M1,i and M2,i are all subfields of M , by Lemma 1.3.1 we also have N
∏

iM1,i is

arithmetically equivalent to N
∏

iM2,i.

Let B1,i be the subgroup of G(M/Q) corresponding to NM1,i. Since B1,i ⊆ Mi,

we may also see it as a subgroup of Fp[H]ui.

Since

G(M1,i/K
′) ∼= G(NM1,i/N) ∼= G(Mi/N)/G(Mi/NM1,i) ∼= Fp[H]ui/B1,i,

they are isomorphic as S1,i/T1-modules, then for any element s ∈ S1,i, we have

that (s− χi(s))Fp[H]ui is contained in B1,i, which means the subgroup

C1,i =
∑
s∈S1,i

(s− χi(s))Fp[H]ui

is also contained in B1,i as the classes of s− χi(s) are trivial in G(M1,i/K
′) as by

definition the action of S1,i/T1,i on G(M1,i/K
′) coincides with multiplication by

the values of χi.

We may also consider the quotient Fp[H]ui/C1,i, and observe that by construction

T1 acts trivially on it. Thus, the extension of K ′ corresponding to C1,i corresponds

to an abelian p-extension of K ′ on which S1,i/T1 acts via χi, but by maximality

this means that this is a subextension of M1,i/K
′, that is C1,i ⊇ B1,i. Since by

construction C1,i ⊆ B1,i we have C1,i = B1,i. We obtain then that N
∏

iM1,i

corresponds to the subgroup generated by all the (s−χi(s))Fp[H]ui as s varies in

S1,i which we will denote A1. Notice that

A1 =
m∑
i=1

B1,i.

We may repeat this procedure replacing M1,i with M2,i, K
′ with L′, construct

groups B2,i for all i analogous to B1,i, and we may finally obtain a subgroup

A2 =
∑

iB2,i corresponding to N
∏

iM2,i, and analogous to A1.

We have shown above that N
∏
M1,i and N

∏
M2,i are arithmetically equivalent,

so by the definition it follows that every element of A1 is conjugate to an element of

A2 by some element of E, and by the split exact sequence the action by conjugation

of E of Fp[H] corresponds to the action by left multiplication of some element

h ∈ H on Fp[H]. That is, ∀ a ∈ A1, there exists an element h ∈ H (depending on

a) such that ha ∈ A2.
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Fix now the element

a =
∑
t1∈T1

(t1 − 1)u0 +
m∑
i=1

s1,i − χi(s1,i)ui

in A1. Then, there exists h ∈ H such that ha ∈ A2 and in particular it follows

that h
∑

t1∈T1(t1 − 1)u0 is an element of B2,0, and for all 1 ≤ i ≤ m we also have

h(s1,i − χi(s1,i))ui is an element of B2,i. Expanding the first we get

h
∑
t1∈T1

(t1 − 1) ∈
∑
t2∈T2

(t2 − 1)Fp[H]u0

which, using the fact that∑
t2∈T2

t2
∑
t2∈T2

(t2 − 1) = 0 ∈ Fp[H]

we can rewrite as ∑
t2∈T2

t2h
∑
t1∈T1

(t1 − 1) = 0 ∈ Fp[H]u0.

Fix an element t′1 ∈ T1. The coefficient of ht′1 ∈ H in the sum must be a multiple

of p to have zero in Fp[H]. Observe that the number of elements in the sum of

the form t′′2ht
′′
1 (also elements of H) is |H|2 which is less than p, and therefore the

number of elements t′′2ht
′′
1 = ht′1 is also less than p. We then get that ht′1 must

cancel out with a term of the form −t′2h for some t′2 ∈ T2, that is t
′
2h = ht′1, and

so we get h−1T2h ⊆ T1, but since T1 and T2 have the same order this is really an

equality hT1h
−1 = T2, therefore h induces an isomorphism between K ′ and L′.

Now, we can expand h(s1,i − χi(s1,i))ui ∈ B2,i and for each i = 1, ..,m we get

h(s1,i − χi(s1,i)) ∈
∑
s∈S2,i

(s− χi(s))Fp[H]ui

which can be rewritten as∑
s∈S2,i

sχi(s)
−1h(s1,i − χi(s1,i)) = 0 ∈ Fp[H].

By a similar idea to the one used above for ht1, the coefficient of hs1,i must be

0 and we must have that for some s′ ∈ S2,i we have hs1,i = s′χi(s
′−1)hχi(s1,i),

and so hs1,i = s′h and χi(s
′) = χi(s1,i). By the definition of χi, it follows h2,i =

s′T2 = s2,iT2. Since s′ = hs1,ih
−1, and we then get h2,i and hh1,ih

−1 define the

same action on L′. In particular, repeating this for all 1 ≤ i ≤ m, we get that

the action of h1,i conjugated by h coincides with the action of h2,i for all the

generators h1,i of H1. Together with the fact h induces an isomorphism K ′ ∼−→ L′
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we obtained above, this gives h is an element of AK′ . Observe that since with

this construction h must be an element of H and H is finite, we only have AK′ is

finite. Taking the projective limit of these sets AK′ as intended, we get that as

all of them are non-empty and compact, the projective limit is non-empty ([RZ],

Proposition 1.1.4) and the isomorphism τ from the statement does indeed exist.

It remains now to prove that τ is unique. Assume there is another isomorphism ρ.

Then, the composition τ ◦ρ−1 is an automorphism of K which by the construction

seen in this proof must map any extension of K to itself, and so must be in the

center of GK . However, by Lemma 1.2.4 the center of GK is trivial, and so we

have that τ ◦ ρ−1 is the identity, that is τ = ρ.

As a closing remark to this chapter, while this was not initially set as a con-

dition of the theorem, the isomorphism τ we obtain automatically restricts to an

isomorphism between K and L, as by the condition σ(g) = τgτ−1 the subfield of

K fixed by all elements of GK (that is, K) is mapped by τ to the subfield of L

fixed by all elements of GL (that is, L).
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Chapter 2

The m-step Isom-Form

In this chapter, we will be looking at Grothendieck’s birational anabelian conjec-

tures, and we will also look at a result by Säıdi and Tamagawa [S-T] that proves

an m-step formulation of the Isom-Form for number fields. We will then follow

this by looking at the characterization given by Säıdi and Tamagawa of particular

subgroups of the maximal m-step solvably closed quotient Gm
K of GK that has

been used to obtain this m-step Isom-Form.

2.1 The Isom-Form and the Hom-Form

Neukirch-Uchida’s theorem inserts in the greater field of Grothendieck’s birational

anabelian conjectures. These conjectures follow roughly the idea that a finitely

generated infinite field K can be recovered group theoretically from its absolute

Galois GK . We are interested in looking at two of them, the Isom-Form and the

Hom-Form.

Theorem 2.1.1 (Birational Anabelian Isom-Form). Let K and L be two finitely

generated infinite fields, and let GK and GL be their absolute Galois groups. If one

has a continuous isomorphism σ : GK → GL, there is a unique field isomorphism

τ : K → L such that

τgτ−1 = σ(g)

for all g ∈ GK, and we have the following commutative diagram

K L

K L

τ
∼

g σ(g)

τ
∼

Neukirch-Uchida’s theorem proves that this statement holds in the case where

K and L are number fields. Further results by Uchida [Uch1] for function fields

of curves over finite fields and Pop [Pop] for finitely generated fields of higher

transcendence degree complete the proof of the Isom-Form.
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The second conjecture, the Hom-Form, is closely related to the first one. In the

Hom-Form, the isomorphism of the absolute Galois groups is replaced with an

open continuous homomorphism, and the isomorphism of fields is replaced with

an embedding L ↪→ K. In the case of number fields the Hom-Form conjecture

reads as follows:

Conjecture 2.1.2 (Hom-Form for Number fields). Let K and L be number fields,

and let σ : GK → GL be a continuous homomorphism of profinite groups such

that σ(GK) is open in GL. Then, there exists a unique homomorphism of fields

τ : L→ K such that ∀g ∈ GK we have

gτ = τσ(g)

that is, the following diagram is commutative

L K

L K

τ

σ(g) g

τ

Unlike the Isom-Form, this is currently still an open conjecture. There are,

however, some partial results. In particular there are a few results by Uchida

([Uch3]):

Theorem 2.1.3 (Uchida, Uniqueness in the Hom-Form). If there exists a τ as in

2.1.2, then it is unique.

Theorem 2.1.4 (Uchida’s Theorem 1). Assume that in the statement of Conjec-

ture 2.1.2 K = Q. Then, the conjecture holds true. Furthermore, we have that

L = Q, and σ is an isomorphism.

The following theorem proves a conditional version of the Hom-Form

Theorem 2.1.5 (Uchida’s Theorem 2). Let σ : GK → GL be a continuous homo-

morphism of profinite groups such that for every prime p ∈ Primesna
K

there exists

a prime q ∈ Primesna
L

such that σ(Dp) ⊆ Dq, and σ(Dp) is open in Dq. Then,

σ(GK) is open in GL and there exists a unique homomorphism of fields τ : L→ K

such that

τσ(g) = gτ

for all g ∈ GK.

To prove Theorem 2.1.5 (see [Uch3]), Uchida first puts the local conditions

on decomposition groups, and after proving that the conditions he’s asking for

are enough to establish a local correspondence between the primes of K and the

primes of L, he proceeds to construct the homomorphism following roughly the
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same idea as the proof of Theorem 1.3.2, showing successfully that τ exists.

It is also interesting to observe that in Neukirch-Uchida’s theorem, an analogous

result can be obtained by replacing the absolute Galois groups GK and GL with

their maximal pro-solvable quotients without altering the proof given in Theorem

1.3.2 (see [Uch2]).

In a recent article, Säıdi and Tamagawa [S-T] looked at replacing the full abso-

lute Galois groups GK and GL with their maximal m-step solvable quotients Gm
K

and Gm
L (see Section 2.2 for notation), and consequently replacing the separa-

ble closures K and L with the maximal m-step abelian extensions Km and Lm,

they obtain a result analogous to Neukirch-Uchida for maximal m-step solvable

quotients:

Theorem 2.1.6 (Säıdi-Tamagawa). Let K and L be number fields, let m ≥ 0 be

an integer and let σm+3 : Gm+3
K → Gm+3

L be an isomorphism of profinite groups.

Consider the induced isomorphism of profinite groups σm : Gm
K → Gm

L .

Then, there exists a field isomorphism τm : Km → Lm such that

σm(g) = τmgτ
−1
m

for all g ∈ Gm
K. That is, ∀g ∈ G we have a commutative diagram

Km Lm

Km Lm

τ
∼

g σm(g)

τ
∼

Furthermore if m ≥ 2 (resp. m = 1), the above isomorphism τm : Km → Lm

(resp. τ : K → L induced by τ1 : K1 → L1) is uniquely determined by the

condition σm(g) = τmgτ
−1
m .

In particular, τm : Km → Lm always restricts to a unique isomorphism K
∼−→ L.

The proof by Säıdi and Tamagawa works by establishing a local theory for m-

step solvable quotients, showing that this local theory induces a correspondence

between primes. Then, once the Local Theory has been established, they show

the isomorphism τm;Km → Lm can be constructed following a similar idea to the

one used by Uchida in the proof of Neukirch-Uchida’s theorem given in Theorem

1.3.2.

2.2 m-step Local Theory

In this section, we aim to give a few results by Säıdi and Tamagawa on the nature of

special subgroups of the maximal m-step solvable quotient of an absolute Galois

group necessary to construct a local theory. We will also include some of the
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proofs given by Säıdi and Tamagawa for these results, as they are helpful in

understanding the structure of decomposition groups in Gm
K and how the main

object introduced in this section, (⋆l)-subgroups, work.

Let G be a profinite group and let G[1] = [G,G] be the closed subgroup of G

generated by the commutator subgroup. We may define the derived series

G = G[0] ⊇ G[1] ⊇ G[2] ⊇ G[3] ⊇ ...

by setting G[i + 1] = [G[i], G[i]], and we may also define the maximal i-step

solvable quotient of G as Gi = G/G[i]. We can then define the canonical quotients

G ↠ Gi, whose kernel is G[i]. We may also observe that if j ≥ i ≥ 0, we have

G[j] = (G[i])[j − i] and so we also have canonical quotients Gj ↠ Gi with kernel

G[i]j−i = Gj[i]

If G is the absolute Galois group GK = G(K/K) of a number field K, then,

the maximal abelian quotient Gab
K is the Galois group of the maximal abelian

extension Kab/K contained in K, and similarly we define the maximal m-step

abelian extension Km/K as the subextension of K determined by the subgroup

GK [m] of GK , and the quotient Gm
K is the Galois group G(Km/K).

If we let p̄ be a prime of K, and P be a prime of K above it, we can then find the

unique prime p in Km below P. Let DP ⊂ GK be the decomposition group of P,

and let Dp ⊆ Gm
K be the decomposition group of p. Then, the quotient GK ↠ Gm

K

induces a natural surjective homomorphism DP → Dp.

We know that Dp is m-step solvable as it is a subgroup of Gm
K which is m-step

solvable itself, then it follows immediately that this surjective homomorphism

must factor through Dm
P , the maximal m-step solvable quotient of DP. The first

result by Säıdi and Tamagawa (see [S-T], Proposition 1.1 for the proof) gives us

a few results on the structure of Dp in relation to Dm
P .

Proposition 2.2.1. Let m ≥ 0 be an integer, let P be a prime of K, let p be

the prime of Km below it and let p̄ be their image in K. Let p be their common

residue characteristic. Then:

(i) The natural surjective map Dm
P → Dp is an isomorphism.

(ii) If m ≥ 1, then logp |D
ab / tor
p /pD

ab/tor
p | ≥ 2, p is the unique prime number for

which this is true, and dp = logp |D
ab / tor
p /pD

ab / tor
p | − 1.

(iii) If m ≥ 1, then fp̄ = logp(1 + |(Dab
p )

(p′)
tor |) and N(p̄) = pfp̄

(iv) If m ≥ 1 the map DP → Dur
P factors through Dp.

(v) If m ≥ 2 the map DP → Dtame
P factors through Dp and ker(Dp ↠ Dtame

P ) is

the maximal pro-p subgroup of Dp
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(vi) For all integers i such that m ≥ i ≥ 2 the kernel of Dp → Di
p is pro-p

(vii) For all integers i such that m− 1 ≥ i ≥ 0 the kernel of Dp → Di
p is infinite

(viii) If m ≥ 2, Dp is centre free and torsion free

We have seen in Neukirch’s local theory (Corollary 1.2.3) that two distinct

decomposition group in GK have trivial intersection, that is in a way they are

completely separated from each other. In Gm
K , this separatedness property is not

true in general, however we have the following result ([S-T], Proposition 1.3).

Proposition 2.2.2. Let m ≥ 1 be an integer, and let p, p′ ∈ PrimesnaKm
, and

consider the decomposition groups Dp, D
′
p ⊂ Gm

K. Furthermore, let p̄, p̄′ be their

images in Km−1. Then, Dp ∩Dp′ ̸= 1 ⇐⇒ p̄ = p̄′

Proof. Assume first p̄ = p̄′. Then, p and p′ are conjugate primes above p̄ and it

follows that their decomposition groups are also conjugate in the Galois group of

the extension Km/Km−1. However, G(Km/Km−1) = Gm
K [m − 1] = GK [m − 1]ab

is abelian, therefore it follows Dp ∩Gm
K [m− 1] = Dp′ ∩Gm

K [m− 1]. Furthermore,

by Proposition 2.2.1.(vii), the kernels of the projections Dp → Dp̄ and Dp′ → Dp̄

are infinite, and since these kernels are subgroups of Gm
K [m−1] it follows that the

intersections Dp∩Gm
K [m−1] = Dp′∩Gm

K [m−1] are non-trivial and so Dp∩Dp′ ̸= 1.

We now need to show that the converse is also true. First, let us assume m = 1.

In this case, an application of ([Gras], Corollary 4.16.7, Chapter III) gives us that

since Dp ∩Dp′ is non-trivial, p and p′ are conjugate in the extension Kab/K, that

is they are above the same prime p̄ of K.

Let us now assume m ≥ 2, and let F = Dp ∩Dp′ . Observe that Dp and Dp′ are

torsion-free by Proposition 2.2.1.(viii) and so F is also torsion-free, and since it is

non-trivial by assumption it is infinite. LetM be a finite subextension ofKm−1/K,

which corresponds to an open subgroup H of Gm
K containing Gm

K [m− 1],. By ([S-

T], Lemma 1.2) we may take an open subgroup H ′ of H such that H ′ ⊇ Gm
K [m−1]

and F ∩H ′ has a non-trivial image in H ′ ab. We may then take an subextension

M ′ of Km/K corresponding to H ′, which must be contained in Km−1, and the

subextensionM ′
1 of Km/K corresponding to H ′[1], the kernel of H ′ → H ′ ab. Since

M ′ ⊂ Km−1, the field M ′
1 is in fact the maximal abelian extension M ′ ab of M ′,

contained in Km. The following diagram shows graphically the construction in

this proof:
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Km

M ′ ab

Km−1

M ′

M

K

H′[1]

H′ Gm
K [m−1]

H

Gm
K

H′ ab

Let q and q′ be the images of p and p′ respectively in M ′ ab, and consider their

decomposition groups Dq, Dq′ ⊂ H ′ ab. We now have Dq ∩Dq′ contains the image

of F ∩ H ′ in H ′ ab, which is non-trivial, and applying this same proposition for

m = 1, which was proven earlier, we get the images of q and q′ in M ′ are the

same prime q̄ of M ′, and so their images in M must also coincide. Since M was

chosen as an arbitrary finite subextension of Km−1/K, it now follows immediately

that this also holds for Km−1, otherwise we would have a finite subextension of

Km−1/K where this does not hold, and so p̄ = p̄′.

Another consequence of Corollary 1.2.3 is that the naturally defined map as-

sociating to a prime of K its decomposition group in GK is invertible, that is

we have a bijection Primesna
K

∼−→ Dec(K/K). A result analogous to this for the

m-step case was also given by Säıdi and Tamagawa ([S-T], Proposition 1.9). This

result is given without proof in the following proposition.

Proposition 2.2.3. Let K be a number field, K̃ an infinite extension of K

such that K̃ ⊇ Qab and consider its maximal abelian extension K̃ab/K̃. Let

p, p ∈ Primesna
K̃ab and consider the decomposition groups Dp and Dp′ ⊂ G(K̃ab/K).

Then, Dp = Dp′ ⇐⇒ p = p′, and the natural map Primesna
K̃ab → Dec(K̃ab/K) is

bijective.

This result has the following corollaries, which expand the description of the

separatedness of decomposition groups in Gm
K given by Proposition 2.2.2

Corollary 2.2.4. Let m ≥ 2 and let p, p′ be primes of Km, and consider the

decomposition groups Dp, Dp′ ⊂ Gm
K. Then, Dp = Dp′ ⇐⇒ p = p′.

Proof. This follows immediately by taking K̃ = Km−1 in the statement of 2.2.3.
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Corollary 2.2.5. Let K̃ be an infinite Galois extension of K such that K̃ contains

Qab. Then, the centraliser of G(K̃ab/K) in Aut(K̃ab) is trivial, and G(K̃ab/K) is

centre free. In particular, for m ≥ 2, the centraliser of Gm
K in Aut(Km) is trivial,

and Gm
K is centre free.

Proof. By definition, the centraliser of G(K̃ab/K) in Aut(K̃ab) must act trivially

on every decomposition group in G(K̃ab/K). Then, the bijection in Proposition

2.2.3 gives us that the action of the centraliser on the primes of K̃ab is trivial. As

there is a natural injective map Aut(K̃ab) → Aut(Primesna
K̃ab) (cf. [S-T], Lemma

1.8), it follows that since its action is trivial, the centraliser it must be trivial

itself, and the first part of the statement follows.

The second part also follows immediately by taking K̃ = Km−1.

Now that we have an idea for the separatedness of primes in maximal m-step

solvable extensions, we require the following definitions, which are fundamental

in Säıdi and Tamagawa’s construction of a local theory for the m-step case.

Definition 2.2.6. Let m ≥ 2 be an integer, F ⊆ Gm
K a closed subgroup, l a prime

number and let F̃ be the inverse image of F in Gm+1
K . Then, we say that F has

property (⋆l) if it satisfies the following:

� There exists an exact sequence 1 → Zl → F → Zl → 1.

� The inflation map infF,l : H
2(F,Fl) → H2(F̃ ,Fl) has non-trivial image.

We will denote the image of the map infF,l by H2(F,Fl). We also denote the set

of all subgroups of Gm
K satisfying property (⋆l) by D̃m,l,K (or just D̃m,l if there is

no need to distinguish between two different fields).

Observe that if p is a prime of Km, and we consider its decomposition group

Dp in Gm
K , we may take an l-Sylow subgroup Dp,l. We may also consider the

inertia subgroup Ip ⊆ Dp, and the group Ip,l = Ip ∩Dp,l, which isomorphic to Zl.
We then have a natural exact sequence

1 → Ip,l → Dp,l → Zl → 1.

Definition 2.2.7. Let F, F ′ be subgroups of Gm
K satisfying condition (⋆l). We

define an equivalence relation ≈ on D̃m,l,K by setting that F ≈ F ′ if and only

if for any open subgroup H ⊆ Gm
K such that H ⊇ Gm

K [m − 1] we have that the

images of F ∩H and F ′ ∩H in Hab are commensurable. We will denote the set

of equivalence classes for this relation by Dm,l,K (or Dm,l if there is no need to

distinguish between two different fields).
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These definitions are purely group-theoretic, and allow us to recover the set

Dm,l,K of all subgroups of Gm
K satisfying property (⋆l) starting from Gm+1

K . Fur-

thermore, the following propositions (Proposition 1.22 and Proposition 1.23 in

[S-T]) give us a strong connection between (⋆l)-subgroups and the decomposition

groups in Gm
K .

Proposition 2.2.8. Let m ≥ 2, F ⊆ Gm
K a closed subgroup and let l be a prime

number. Let p be a non-archimedean prime of Km with residue characteristic

p ̸= l, and let Dp ⊆ Gm
K be its decomposition group. Consider an l-Sylow subgroup

Dp,l of Dp. Then, if F is an open subgroup of Dp,l, we have F satisfies condition

(⋆l).

Vice versa, if F satisfies condition (⋆l) there exists a (not necessarily unique)

non-archimedean prime p (with the same properties as above) such that F is an

open subgroup of Dp,l. Furthermore, the prime p̄ of Km−1 below p, is uniquely

determined by F .

Proof. Let p be a prime of Km, let Dp its decomposition group in Km/K, and let

l be a prime number different from the residue characteristic of p. Let us take an

open subgroup F of Dp,l. By Proposition 2.2.1.(v), for any P in K above p, F is

mapped isomorphically to its image F ′ in Dtame
P as the kernel of Dp → Dtame

P is

pro-p. It also follows that the l-group F ′ is open in some l-Sylow of Dtame
P , as by

definition of Itame
P there is an exact sequence

0 → Itame
P → Dtame

P → Dur
P → 0

with Itame
P

∼= Ẑ(p′) and Dur
P

∼= Ẑ. As F ′ is open in Dtame
P , and the open subgroups

of Zl are isomorphic to Zl itself, F ′ fits in an exact sequence

0 → Zl → F ′ → Zl → 0

given by the exact sequence above, which means F also does as F ∼= F ′.

Let then F0 be a closed subgroup of DP mapped isomorphically to F by the sur-

jection DP → Dp, which exists by 2.2.1.(v), and let F̂ be the inverse of F with

respect to the surjection GK ↠ Gm
K .

The isomorphism F0
∼−→ F naturally induces an isomorphism between coho-

mology groups H2(F,Fl)
∼−→ H2(F0,Fl). Furthermore, since we have a natu-

ral injection F0 ↪→ F̂ , we can factor this isomorphism between the cohomology

groups through the inflation map H2(F,Fl) → H2(F̂ ,Fl), and the restriction

map H2(F̂ ,Fl) → H2(F0,Fl). As H2(F,Fl) is non-trivial, then the isomorphism

H2(F,Fl)
∼−→ H2(F0,Fl) has non-trivial image. Then, it follows the inflation map

H2(F,Fl) → H2(F̂ ,Fl) must also have non-trivial image.

Furthermore, this inflation map must factor through H2(F̃ ,Fl) where F̃ is the
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inverse image of F by the quotient Gm+1
K ↠ Gm

K . It then follows that the infla-

tion map infF,l : H
2(F,Fl) → H2(F̃ ,Fl) has non-trivial image, as desired, and F

satisfies property (⋆l).

We now want to prove the converse statement, so assume F satisfies condition (⋆l),

and let K ′ be the subextension of Km/K corresponding to F , and let F̂ be defined

as above. First, we can show K ′ is totally imaginary. Assume by contradiction

there exists a real embedding K ′ ↪→ R, which must extend to an embedding

Km → C. These embeddings determine a homomorphism G(C/R) → Gm
K , which

is injective as K(
√
−1)/K is an abelian extension of K (possibly trivial), and so

Km ⊇ Q(
√
−1). However, this implies F contains torsion elements, which contra-

dicts the definition of property (⋆l) (Definition 2.2.6).

It now follows by ([S-T], Proposition 1.17) that

H2(F,Fl) ↪→
∏
p̃

H2(F̂p̃,Fl),

where p̃ ranges over all non-archimedean primes of K ′, is injective (see Definition

2.2.6 for the definition ofH2(F,Fl)). Since by definition of property (⋆l), the group

H2(F,Fl) is non-trivial and the map is injective, at least one of the H2(F̂p̃,Fl) will
also be non-trivial. Fix then p̃ for which H2(F̂p̃,Fl) is non-trivial.
Now, the image Fp̃ of F̂p̃ in G

m
K is the closed subgroup of F corresponding to the

decomposition group of p̃ in G(Km/K
′), and the image of the restriction map

H2(F,Fl) → H2(Fp̃,Fl) is non-trivial. We may use ([S-T], Lemma 1.19) to show

that Fp̃ = F .

Furthermore, since H2(F̂p̃,Fl) is non-trivial, by ([S-T], Corollary 1.15) F̂p̃ is l-open

in the decomposition group of p = char(p̃) in GQ. Let p be the prime of K below

p̃. It now follows that the image of F̂p̃ in Gm
K is l-open in Dp ⊂ Gm

K . However we

know this image is Fp̃ = F .

Assume now F is contained in more than a decomposition group in Gm
K . By

Proposition 2.2.2, the intersection of these decomposition groups is non-trivial, as

it contains F , and so there is a unique prime p̄ in Km−1 below all the primes of

Km whose decomposition group contains F . This shows F determines the prime

p̄ uniquely.

It only remains to show l ̸= char(p). Let H ′ be an open subgroup of Dp containing

Dp[1]. Then, H ′ corresponds to a finite abelian extension L of Kp such that the

extension L/Qp is non-trivial, and F ∩H ′ is l-open in H ′. The natural map

F ∩H ′ ab ⊗Zl
Ql → H ′ ab ⊗Ẑ Ql

then needs to be surjective, and using again ([S-T], Lemma 1.19) there is an exact

sequence 1 → Zl → F ∩H ′ → Zl → 1, which means F ∩H ′ ab ⊗Zl
Ql.
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By local class field theory, cd(H ′ ab⊗ẐQl) = 1 when l ̸= p, and since [L : Qp] > 1,

we get a contradiction when l = p as [L : Qp] + 1 > 2 ≥ F ∩H ′ ab ⊗Zp Qp, and so

may conclude l ̸= char(p).

In particular, the above result gives us that l-Sylow subgroups of decomposition

groups satisfy property (⋆l).

Proposition 2.2.9. Let K be a number field, and Gm+1
K its maximal (m+1)-step

solvable Galois group. Then, starting from Gm+1
K we can recover the following:

(i) There is a natural injective map ϕm,l : Dm,l ↪→ PrimesnaKm−1

(ii) ϕm,l restricts to a bijective map Dm,l
∼−→ Primes

na,(l′)
Km−1

(iii) The map ϕm,l is G
m
K-equivariant with respect to the actions of Gm

K on Dm,l

and PrimesnaKm−1
. In particular, the action of Gm

K on Dm,l factors through

Gm−1
K . Furthermore, if we let a ∈ Dm,l and p̄ = ϕm,l(a), the stabiliser of a

in Gm−1
K is the decomposition group Dp̄.

Proof. By 2.2.8, we can construct a surjective map ϕ̃m,l : D̃m,l ↠ Primes
na,(l′)
Km−1

by

mapping a subgroup F ⊂ Gm
K satisfying property (⋆l) to the unique prime p̄ it

determines inKm−1. The first thing we want to show is that this map is compatible

with the equivalence relation ≈, and so we may factor the map through Dm,l.

Let F and F ′ be subgroups of Gm
K satisfying property (⋆l), and let p and p′ be

primes of Km such that F is an open subgroup of Dp,l and F
′ is an open subgroup

of Dp′,l. Also, let H be an open subgroup of Gm
K that contains Gm

K [m − 1]. Let

then K ′ be the subextension of Km/K corresponding to H and finally let let p̄

and p̄′ be the primes of Km−1 below p and p′ respectively. Observe that since

by definition H contains Gm
K [m − 1], K ′ is a subfield of Km−1, and therefore the

maximal abelian extension K ′ ab of K ′ in K is contained in Km.

First, we want to show that if F ′ also satisfies (⋆l) and F ≈ F ′ as in Definition

2.2.7, then the image of F ′ by ϕ̃m,l is p̄. By definition of ≈, the images of F ∩H
and F ′ ∩ H in Hab are commensurable. Furthermore, since K ′ is contained in

Km−1, its maximal abelian extension K ′ ab is contained in Km and so we have

Hab ∼= Gab
K′ .

In particular if we let p̃ and p̃′ be the primes of K ′ below p and p′, and consider the

decomposition groupsDp̃ andDp̃′ in G
ab
K′ , they are l-commensurable, and therefore

their intersection is infinite. It now follows by Corollary 2.2.4 that p̃ = p̃′, and

since K ′ was an arbitrary finite subextension of Km−1/K, we may extend this to

Km−1 and get p̄ = p̄′. It then follows that ϕ̃m,l factors through Dm,l.

Now, we want to show injectivity. With the same notation as before, assume that

ϕ̃m,l(F ) = ϕ̃m,l(F
′), and denote by p̄ ∈ PrimesnaKm−1

their image by ϕ̃m,l. We then

want to show F ≈ F ′.
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Let p̃ be the image of p̄ in K ′. The images of F ∩ H and F ′ ∩ H in Hab = Gab
K′

are both open subgroups of the l-Sylow subgroup Dp̃,l of the decomposition group

Dp̃ ⊂ Gab
K′ , and so their intersection must be open in both of them, that is they

are commensurable and F ≈ F ′, and this proves the first assertion.

We may now take for any prime q̄ of Km−1 with residue characteristic different

from l, a prime q of Km above it, its decomposition group Dq ⊂ Gm
K , and an

l-Sylow of Dq, which satisfies property (⋆l). Then, by definition, the image of the

l-Sylow subgroup by ϕ̃ must be q̄, and ,together with the injectivity that follows

from the first assertion, we obtain the second assertion.

Furthermore, we have that Gm
K acts by conjugation on D̃m,l, and the map ϕ̃m,l is

Gm
K-equivariant, and since the action of Gm

K on PrimesnaKm−1
factors through Gm−1

K ,

the action on D̃m,l, so the action on Dm,l also does, and the last assertion in the

proposition follows immediately.

We are now able to give a characterisation for the decomposition groups in

Gm
K by “losing” 2 abelian steps of information as follows:

Corollary 2.2.10. Let m ≥ 2. For each prime p of Km, starting from Gm+2
K

we can recover Dp ⊂ Gm
K group theoretically. In particular, we can recover from

Gm+2
K the set Dec(Km/K) of all decomposition groups in the extension Km/K.

Proof. By Definition 2.2.6, starting from Gm+2
K , we can recover the (⋆l) groups in

Gm+1
K . Then, combining Proposition 2.2.8 and Proposition 2.2.9 we can recover

the set Dec(Km/K) of all decomposition group in Gm
K .

Finally, Säıdi and Tamagawa obtain the following local correspondence ([S-T],

Corollary 1.27)

Proposition 2.2.11. Let m ≥ 2 be an integer, let K and L be number fields and

let σm+2 : Gm+2
K

∼−→ Gm+2
L be an isomorphism of profinite groups. Consider the

induced isomorphism of profinite groups σm : Gm
K

∼−→ Gm
L . Then, there exists a

unique bijection ϕm : PrimesnaKm
→ PrimesnaLm

such that the following diagram,

where the vertical arrows are the natural bijections given by Corollary 2.2.4 and

for any decomposition group D ⊆ Gm
K, σ̄m(D) = σm(D), is commutative and is

Galois equivariant.

Dec(Km/K) Dec(Lm/L)

PrimesnaKm
PrimesnaLm

σ̄m

ϕm

Furthermore, ϕm induces a bijection ϕ : PrimesnaK → PrimesnaL fitting in a com-

mutative diagram
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PrimesnaK PrimesnaL

PrimesnaQ

ϕ

where the maps from PrimesnaK and PrimesnaL to PrimesnaQ are given by taking the

residue characteristic of a prime.

With this last result, the proof of Theorem 2.1.6 can be obtained by following

the same idea of proof as in Theorem 1.3.2, where the field isomorphism is con-

structed at Km starting from Gm+3
K as losing an extra step is required to define

the extensions M1,i and M2,i as in the proof presented in Theorem 1.3.2.
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Chapter 3

The m-step birational anabelian

Hom-Form

In this chapter, we will be proving conditional result for the Hom-Form in the

m-step solvable case. First, we aim to establish a local correspondence, then we

will be showing that under some conditions, we have existence and uniqueness

in an m-step solvably closed variation of the Grothendieck anabelian Hom-Form

conjecture for number fields.

3.1 Local correspondence in the m-step homo-

morphism of birational anabelian geometry

In the previous chapter we have given the method determined by Säıdi and Tama-

gawa to recover decomposition groups in m-step solvable extension, and observed

how they were able to use it to establish a local theory and a local correspondence

in the m-step version of the Isom-Form. In this section we will observe how we

can define a partial local correspondence between the primes of two number fields

K and L starting from a homomorphism of profinite groups σm : Gm
K → Gm

L such

that the image of σm(G
m
K) is an open subgroup of Gm

L .

Let us first fix some notation. For a homomorphism σm : Gm
K → Gm

L (not

necessarily with open image) we will denote the extension of L corresponding to

σm(G
m
K) by L̃, and the subfield of Km corresponding to ker(σm) by Λ. We can

immediately observe that σm induces an isomorphism G(Λ/K) ∼= G(Lm/L̃). We

then have the following factorization for σm.

Gm
K Gm

L

G(Λ/K) G(Lm/L̃)

σm

∼
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The following proposition gives us that the homomorphism σm naturally induces

a homomorphism σm−1 : G
m−1
K → Gm−1

L .

Proposition 3.1.1. Let m,n ≥ 1 be integers such that m > n, and let σ : Gm
K →

Gn
L be a homomorphism of profinite groups Then, there is a naturally induced

homomorphism σn : Gn
K → Gn

L such that σ factors through σn, as in the following

diagram, where the vertical arrows is the canonical quotient

Gm
K

Gn
K Gn

L

σ

σn

In particular, if we have n = m − 1, a homomorphism of profinite groups σm :

Gm
K → Gm

L and consider its composition with the canonical quotient Gm
L → Gm−1

L ,

we have there exists a naturally induced homomorphism σm−1 : Gm−1
K → Gm−1

L

such that the following diagram commutes

Gm
K Gm

L

Gm−1
K Gm−1

L

σm

σm−1

Furthermore, if σ(Gm
K) is open in Gm

L , σm−1(G
m−1
K ) is also open in Gm−1

L .

Proof. The kernel of the projection Gm
K ↠ Gn

K is by definition the subgroup

Gm
K [n] ⊆ Gm

K . It follows naturally that σ(Gm
K [n]) ⊆ Gn

L[n], which is trivial. This

gives us the kernel of the quotient Gm
K ↠ Gn

K is contained in the kernel of σ. We

are then able to induce the map σn canonically as desired.

The second assertion follows from the first, together with the observation that

σm(G
m
K [m−1]) ⊆ Gm

L [m−1] and so the kernel of the left vertical arrow is mapped

to the kernel of the right vertical arrow.

The last assertion in the statement follows as the projection Gm
L ↠ Gm−1

L maps

the subgroup G(Lm/L̃) of G
m
L to the subgroup G(Lm−1/(Lm−1 ∩ L̃) of Gm−1

L , and

Lm−1∩ L̃ is necessarily a finite degree extension of L. Therefore by commutativity

of the diagram if the image of σm is open in Gm
L the image of σm−1 is also open

in Gm−1
L .

If we start with m < n, and a map σ : Gm
K → Gn

L, we can take the composition

of σ with the canonical projection Gn
L → Gm

L to obtain a map σm : Gm
K → Gm

L . It

also follows like in the proof of Proposition 3.1.1 that Gm
K [m− 1] is mapped into

Gn
L[m − 1] and we can induce starting from σ a homomorphism σm−1 : Gm−1

K →
Gm−1
L .

40



Proposition 3.1.2. Let n > 1 be an integer. Then, there is no homomorphism

of profinite groups σ : Gab
K → Gn

L with open image.

Proof. Assume such a σ exists. Then, a composition of σ with the canonical

quotient Gn
L → G2

L, gives us a homomorphism of profinite groups Gab
K → G2

L,

which has open image as the quotient map is an open map. We may then restrict

ourselves to studying the case where n = 2.

The subgroup of G2
L corresponding to the image of σ is also given as the Galois

group G′ = G(L2/L̃), which must be abelian as Gab
K is. Up to replacing it with its

normal closure, we may assume G′ is a normal subgroup of G2
L. We may then take

the quotient H = G(L̃/L) = Gm
L /G

′, and consider its maximal abelian quotient

Hab. Since the kernel of G2
L ↠ H is the abelian group G(L2/L̃), and the kernel

H[1] of H ↠ Hab is finite as H is finite, the kernel of the composite G2
L ↠ Hab

will be an extension of H[1] by a finite group F0, and we will denote this kernel

by F . Furthermore, since Hab is the maximal abelian quotient, G2
L ↠ Hab must

factor through Gab
L . As we can obtain G2

L an extension of Gab
L by G2

L[1]. We then

get a commutative diagram

0 G2
L[1] G2

L Gab
L 0

0 F G2
L Hab 0

where the rows are short exact sequences, and G2
L[1] must map injectively to F .

Let l be a prime number. Since L̃ is a finite extension of Q, its maximal abelian

extension has finite Zl-rank (cf. [NSW], Proposition 10.3.20), and since F is

abelian, it corresponds to a quotient of Gab
L̃
. It follows then F also has finite

Zl-rank.
However, for every finite subextension L′ of Lab/L, the maximal abelian extension

of L′ in L is a subextension of L2/L
ab. Let us observe that the Zl-rank s of

L′ ab/L′ increases with the degree of L′, and in particular s increases with the

degree [L′ : Q].

We may then see the group G2
L[1] = G(L2/L

ab) as the inverse limit of all the

G(L′ ab/L′), and by the above argument G2
L[1] has infinite Zl-rank. Since H[1]

is finite and F has finite Zl-rank, we get a contradiction as we can not have the

required injective map G2
L[1] ↪→ F .

We may then conclude as desired that there is no homomorphism of profinite

groups Gab
K → G2

L with open image.

Corollary 3.1.3. A homomorphism of profinite groups σ : G2
K → G2

L with open

image does not factor through Gab
K .

Proof. The statement follows immediately from the statement of Proposition 3.1.2
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Corollary 3.1.4. Let m and n be positive integers, and let σ : Gm
K → Gn

L be a

homomorphism of profinite groups with open image. Then, there exists a positive

integer m′ ≤ min(m,n) such that a homomorphism σm′ : Gm′
K → Gm′

L can be

induced from σ, and σm′ does not factor through Gm′−1
K .

Proof. If m = 1, then necessarily σ : Gab
K → Gn

L can not factor through the trivial

group as it has open image, and composing with the quotient Gn
L ↠ Gab

L we get

a homomorphism σ1 : G
ab
K → Gab

L . In this case, m′ = 1.

If n = 1, we can induce a homomorphism σ1 : Gab
K → Gab

L from σ which like in

the previous case does not factor through the trivial group.In this case, m′ = 1

If m,n ≥ 2, then we can take the induced morphism σ2 : G2
K → G2

L and by

Corollary 3.1.3 this will not factor through Gab
K . In this case, m′ = 2 (it is

possible that for some m′ > 2 the statement also holds).

We are now interested in constructing a map between sets of primes starting

from σm : Gm
K → Gm

L (not necessarily open) as Säıdi and Tamagawa do in Proposi-

tion 2.2.11. Our goal is to define a map θm from a subset of PrimesnaKm
to a subset

of PrimesnaLm
starting from σm and (⋆l)-subgroups at some level m. A priori, we

do not know if this map will be defined for every prime p of Km, so we will denote

by Pm the subset of PrimesnaKm
of all the primes for which θm is defined, and we

get

θm : Pm → PrimesnaLm

. It is useful to recall the possible continuous images of subgroups satisfying

property (⋆l), which we use as following:

Proposition 3.1.5. Let m ≥ 2 be an integer. Consider the profinite group Gm
K,

let G be a profinite group, and let σ : Gm
K → G be a homomorphism of profinite

groups. Let F be a subgroup of Gm
K satisfying property (⋆l). Recall that we have

an exact sequence

1 → Zl → F → Zl → 1,

and let us denote by U1
∼= Zl the subgroup of F appearing on the left in the exact

sequence, and by U2 the quotient F/U1.

Then, exactly one of the following is true:

(i) cd(σ(F ) = 2, and σ restricts to an injection on F .

(ii) cd(σ(F )) ≤ 1. In this case either

(a) F ⊆ ker(σ) and σ(F ) is trivial

(b) σ(F ) ∼= Zl and F ∩ ker(σ) = Ul.

(iii) σ(F ) contains an l-torsion element. In this case either:
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(a) σ(F ) is a finite non-trivial quotient of Zl.

(b) σ(F ) fits in an exact sequence 1 → F1 → σ(F ) → Zl → 1, where F1 is

a finite non-trivial quotient of Zl given by the image of U1.

(c) σ(F ) fits in an exact sequence 1 → F1 → σ(F ) → F2 → 1 where F1

and F2 are finite (non-trivial) quotients of Zl. In particular σ(F ) is

metabelian.

Proof. Let us denote by V the normal closed subgroup of F which is the kernel

of the map F → σ(F ). Observe that by ([S-T], Lemma 1.19, (iv) ⇐⇒ (viii))

any non-trivial closed subgroup of F is either open in F (and of cohomological

dimension 2) or of cohomological dimension 1. Furthermore, all normal subgroups

of F which are isomorphic to Zl are open subgroups of U1, and it then follows that

if V is non-trivial, then V ′ = V ∩U1 must also be non-trivial and must contain an

open subgroup of U1. Observe that, furthermore, this gives that U2 is the maximal

abelian quotient of F .

From the above discussion, it also follows that if V ′ is trivial, then V is trivial

and σ restricts to an injection on F , and so we get case (i).

If V = F , we naturally have σ(F ) is trivial, and so we are in case (ii)a.

Assume now V is proper and non-trivial. Then, by the above discussion, it follows

that V ′ is also non-trivial. Let us assume first that V ′ = U1. Then, the restriction

of σ to F factors through the quotient F ↠ U2, that is σ(F ) is a quotient of

Zl, which must be either Zl itself, and we are in case (ii)b, or a finite non-trivial

quotient of Zl, and so we are in case (iii)a.

It remains to study what happens when V ′ is proper and open in U1. Trivially,

σ(F ) contains σ(U1) ∼= Zl/V ′, which is a torsion group and so we are in case (iii).

Observe now that if cd(V ) = 1, then V ′ = V , which gives us (iii)b as σ(F ) fits

in the exact sequence 1 → Zl/V ′ → σ(F ) → Zl → 1. If, instead, cd(V ) = 2 and

so V is open in F . Then, the quotient F/V is finite, and σ(F ) contains the finite

group σ(U1). In particular, we have an exact sequence 1 → σ(U1) → F → F2,

which we obtain pushing 1 → U1 → F → U2 → 1 by σ. Observe that F2 can not

be trivial, otherwise σ(F ) would be abelian, that is σ|F factors through F ↠ U2,

and V ′ = U1, which is a contradiction. This finally gives us we get case (iii)c.

Corollary 3.1.6. Let m ≥ 2, and consider the canonical quotient Gm+1
K ↠ Gm

K.

Consider a subgroup F ⊂ Gm+1
K satisfying property (⋆l), and its image F in Gm

K.

Then, F also satisfies property (⋆l) and the quotient induces an isomorphism be-

tween F and F .

Proof. By Proposition 2.2.8, there exists a prime p in Km+1 with decomposition

group Dp ⊆ Gm+1
K (such a prime p is not necessarily unique) such that F is an

open subgroup of an l-Sylow subgroup Dp,l of Dp. Let p̄ be the unique prime of
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Km below p, with decomposition group Dp ⊂ Gm
K , and observe that the quotient

Gm+1
K ↠ Gm

K naturally induces a surjective map Dp ↠ Dp̄. Then, the l-Sylow

subgroup Dp,l is mapped surjectively onto an l-Sylow subgroup of Dp̄, which we

will denote Dp̄,l.

Since Dp,l and Dp̄,l both satisfy property (⋆l), it follows the quotient induces an

isomorphism Dp,l
∼−→ Dp̄,l. It then follows that F ⊂ Dp,l the image of F by the

quotient Gm+1
K → Gm

K , which we will denote F as in the statement, will then be

an open subgroup of Dp̄,l. It then follows that F also satisfies property (⋆l) by

Proposition 2.2.8, and the quotient Gm+1
K ↠ Gm

K restricts to an isomorphism on

F .

We are interested in looking further at what happens in the first case in Propo-

sition 3.1.5.

Lemma 3.1.7. Let m > 2 be an integer, and let σm+1 : Gm+1
K → Gm+1

L be a

homomorphism of profinite groups, let l be a prime number and let F be a subgroup

of Gm
K satisfying property (⋆l). Assume that the induced morphism σm : Gm

K → Gm
L

restricts to an injection on F . Then, σm(F ) ⊂ Gm
L also satisfies property (⋆l).

Proof. Let us denote σm(F ) by F
′. As σm is injective on F , then it restricts to an

isomorphism between F and F ′, therefore we know that we can fit F ′ in an exact

sequence

1 → Zl → F ′ → Zl → 1.

Denote by F̃ the inverse image of F in Gm+1
K with respect to the canonical quotient

and, similarly, let F̃ ′ be the inverse of image of F ′ in Gm+1
L . By commutativity

of the diagram in Proposition 3.1.1, it follows that F̃ ′ = σm+1(F̃ ). Then, we can

induce a commutative diagram of cohomology groups

H2(F̃ ′,Fl) H2(F̃ ,Fl)

H2(F ′,Fl) H2(F,Fl)∼

infF ′ infF

where the vertical arrows are the inflation maps and the horizontal arrows are

induced by σm+1 and σm. Since σm is an isomorphism between F and F ′, the

induced arrow H2(F ′,Fl) → H2(F,Fl) is also an isomorphism.

Since F satisfies property (⋆l) the inflation map infF : H2(F,Fl) → H2(F̃ ,Fl) has
non-trivial image, and it follows the composition H2(F ′,Fl) → H2(F̃ ,Fl) will also
have non-trivial image. By commutativity of the diagram we then conclude that

the inflation map infF ′ : H2(F ′,Fl) → H2(F̃ ′,Fl) also needs to have non-trivial

image, and so the subgroup F ′ of Gm
L also satisfies property (⋆l).

Definition 3.1.8. Let l be a prime number and m ≥ 2 be a positive integer. Let

σm : Gm
K → Gm

L be a homomorphism of profinite groups. We will say that a sub-
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group F of Gm
K satisfies condition (†l) if F satisfies condition (⋆l) and σm restricts

to an injection on F .

We will denote by C̃σm,l the subset of D̃m,l,K (see Definition 2.2.6) of all the sub-

groups of Gm
K satisfying property (†l).

The following result is just a statement of Lemma 3.1.7 using the notation

introduced above.

Corollary 3.1.9. In the same setting as Lemma 3.1.7, a map

ψ̃m,l : C̃σm,l → D̃m,l,L

is naturally induced from σm.

The equivalence relation ≈ on D̃m,l,K in Definition 2.2.7 induces naturally an

equivalence relation on the subset C̃σm,l. We may define the set of equivalence

classes Cσm,l = C̃σm,l/ ≈. Since the equivalence relation on C̃σm,l is a restriction

of the one on D̃m,l,K , there is a natural injective map Cσm,l ↪→ Dm,l,K . We will

show in Proposition 3.1.13 that ψ̃m,l also factors through Cσm,l. Finally, let P
(l′)
m−1

denote the image of Cσm,l by the map ϕm,l,K defined as in 2.2.9. Observe that

by construction every prime in P
(l′)
m−1 has residue characteristic different from l.

Finally let

Pm−1 =
⋃
l

P
(l′)
m−1.

We have then the following natural diagram:

C̃σm,l D̃m,l,K

Cσm,l Dm,l,K

P
(l′)
m−1 Primes

na,(l′)
Km−1

Pm−1 PrimesnaKm−1

ϕm,l,K∼ ϕm,l,K∼

Observe that an equivalence class of elements C̃σm,l does not necessarily contain

by construction all the elements of an equivalence class in D̃m,l,K . However, the

following result gives us this statement is true.

Proposition 3.1.10. Let m ≥ 2 be an integer, and let σm+1 : Gm+1
K → Gm+1

L

be a homomorphism of profinite groups, and let F be a subgroup of Gm
K satisfying

property (†l). Let p be a prime of Km such that F is l-open in the decomposition

group Dp ⊂ Gm
K (see Proposition 2.2.8). Then, for any prime p′ conjugate to p in
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Km/K, any subgroup F ′ which is l-open in Dp′ also satisfies property (†l).
In particular, if F ′′ is a subgroup of Gm

K satisfying property (⋆l) such that F ≈ F ′′,

F ′′ also satisfies property (†l).

Proof. Let F and F ′ be as in the statement. By Proposition 2.2.8, we know that

for some prime p of Km with decomposition group Dp ⊆ Gm
K , F is contained in

an l-Sylow subgroup Dp,l of Dp.

First, we want to show σm restricts to an injection on Dp,l. By assumption, σm

restricts to an injection on F and, if we consider the inertia part Ip,l = Ip ∩Dp,l,

we know that the kernel of σm must contain either an open subgroup of Ip,l, or be

trivial (cf. Proposition 3.1.5). Then, it must contain the image of the intersection

Ip,l ∩ F , which is a non-trivial open subgroup of Ip,l (which must be isomorphic

to Zl), where σ restricts to an injection.

It follows that the image of Ip,l contains a subgroup isomorphic to Zl, but since
Ip,l ∼= Zl, this implies that σm restricts to an injection on Ip,l and by Proposition

3.1.5 it also follows σm also restricts to an injection on Dp,l. It then immediately

also follows that σm restricts to an injection on any open subgroup of Dp,l. Fur-

thermore, since any other l-Sylow of Dp is conjugate to Dp,l, their images by σm

are also conjugate, and so they also have cohomological dimension 2.

Let now p′ be any prime conjugate to p in Km/K. Then, there exists h ∈ Gm
K such

that hp = p′ and hDph
−1 = Dp′ , and their images by σm will also be conjugate

and, in particular, isomorphic. It then follows σm also restricts to an isomorphism

on the l-Sylows of Dp′ .

Since conjugation necessarily maps any l-Sylow of Dp to an l-Sylow of Dp′ , it

follows that for any subgroup F ′ which is l-open in Dp′ , we obtain cd(σ(F ′)) = 2,

and so F ′ satisfies property (†l).
Let us now take a subgroup F ′′ of Gm

K satisfying property (⋆l) such that F ≈
F ′′. By Proposition 2.2.9 F ′′ is an open subgroup of the decomposition group

Dp′′ ⊂ Gm
K of a prime p′′ of Km such that p and p′′ have the same restriction in

Km−1. It follows that p and p′′ are conjugate in Km/K and by the above argument

we obtain that σm restricts to an injection on F ′′, and so F ′′ satisfies property

(†l).

The above result also shows that, for a prime p̄ of K, it is sufficient to check if

a single prime p of Km−1 satisfies condition (†l) to find if all the primes of Km−1

above p satisfy condition (†l) or not.

Proposition 3.1.11. Let m ≥ 2 be an integer, and let σm+1 : Gm+1
K → Gm+1

L

be a homomorphism of profinite groups. Consider the induced homomorphism

of profinite groups σ : Gm
K → Gm

L , consider the map ψ̃m,l induced by σm (as in

Corollary 3.1.9) and let F1, F2 ∈ C̃σm,l such that F1 ≈ F2 under the equivalence

relation ≈ of Definition 2.2.7. Let F ′
1 = ψ̃m,l(F1) and F ′

2 = ψ̃m,l(F2) be their
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images in D̃m,l,L. Then, F
′
1 ≈ F ′

2.

In particular, the map ψ̃m,l induces a map ψm,l : Cσm,l → Dm,l,L.

Proof. Let H ′ be an open subgroup of Gm
L containing GL[m,m− 1], and let H be

its inverse image by σm. Since σm(GK [m,m − 1]) is contained in GL[m,m − 1]

then H ⊇ GK [m,m− 1] and is open, since H ′ is. Let F̃1 and F̃2 be the images of

F1 ∩H and F2 ∩H in Hab. By definition of ≈, we have F̃1 ∩ F̃2 is open in both

F̃1 and F̃2, that is F̃1 and F̃2 are commensurable.

Let F̃ ′
1 and F̃ ′

2 be the images of F ′
1 ∩H ′ and F ′

2 ∩H ′ in H ′ ab. Since F ′
1 = σm(F1)

and H ′ ⊇ σm(H), we can see that F ′
1∩H ′ ⊇ σm(F1∩H) and similarly we can also

get F ′
2 ∩ H ′ ⊇ σm(F2 ∩ H). Furthermore, since σm restricts to an isomorphism

between F1 and F ′
1 (resp. F2 and F ′

2), we can also see that F1 ∩H is isomorphic

to its image by σm (resp. the image of F2 ∩H is isomorphic to its image by σm).

However, since σm(H) ⊆ H ′ and σm is an isomorphism between F1 and F ′
1 and

between F2 and F ′
2, it now follows that F1 ∩H ∼= F ′

1 ∩H ′ and F2 ∩H ∼= F ′
2 ∩H ′,

and the isomorphisms are given by σm.

From this, we get that the induced homomorphism σ1 also induces an isomorphism

between F̃1 and F̃ ′
1 and, likewise, between F̃2 and F̃ ′

2. However, this also means

that F̃ ′
1 ∩ F̃ ′

2
∼= F̃1 ∩ F̃2. Thus, we get that F̃

′
1 ∩ F̃ ′

2 is an open subgroup of both F̃ ′
1

and F̃ ′
2, which are then commensurable. Since this does not depend on the choice

of H ′, we have proven F ′
1 ≈ F ′

2.

We can now conclude by defining a map Cσm,l → Dm,l,L by mapping the class in

Dm,l,K of an element F of C̃σm,l to the congruence class of σm(F ) in Dm,l,L, and

the above argument gives us this map is well-defined with respect to equivalence

classes.

After this proposition we may construct the following diagram:

C̃σm,l D̃m,l,L

Cσm,l Dm,l,L

P
(l′)
m−1 Primes

na,(l′)
Km−1

ψ̃m,l

ψm,l

ϕm,l,K∼ ϕm,l,L∼

Since the bottom vertical arrows are bijections, we can construct naturally a

map P
(l′)
m−1 → Primes

na,(l′)
Km−1

and get the following corollary:

Corollary 3.1.12. ψm,l induces a map θm−1,l : P
(l′)
m−1 → Primes

na,(l′)
Lm−1

We now have maps θm−1,l for all the prime numbers l, and we want to see

if they are compatible and in which way, so that they can be glued together to

obtain a map θm′ : Pm′ → PrimesnaLm′ for some integer m′ ≤ m.
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Proposition 3.1.13. Let m ≥ 3 be an integer, and let σm+1 : G
m+1
K → Gm+1

L be a

homomorphism of profinite groups. Consider the homomorphism σm : Gm
K → Gm

L

induced by σm+1.

Let p be a prime of Km, l1, l2 two distinct prime numbers, and let F1 and F2 be

subgroups of the decomposition group Dp ⊂ Gm
K satisfying conditions (†l1) and (†l2)

respectively. Then, σm(F1) and σm(F2) are contained in decomposition groups in

Gm
L that define the same prime in Lm−2.

In particular, a mapping θm−2 : Pm−2 → PrimesnaLm−2
is defined by taking the

prime ¯̄p of Km−2 below p and mapping it to the unique prime ¯̄q of Lm−2 such that

σm−2(D¯̄p) ⊆ D¯̄q.

Proof. First, observe that the stabilisers of the equivalence classes of F1 and F2

in Dm,l,K with respect to the action of Gm+1
K (see Proposition 2.2.9) coincide, and

correspond to the decomposition group Dp̄ ⊂ Gm−1
K where p̄ is the prime of Km−1

below p by Proposition 2.2.9

Also, by Proposition 2.2.8 we have that F ′
1 and F ′

2 are open subgroups of Sylows

subgroups for some primes, so let q1 and q2 be primes (not necessarily uniquely

determined) of Lm such that F ′
1 is l1-open in Dq1 and F ′

2 is l2-open in Dq2 . Then,

the stabilisers of the classes of F ′
1 and F ′

2 are the decomposition groups in Gm−1
L

of the primes q̄1 and q̄2 of Lm−1, below q1 and q2 respectively.

We then get that both Dq̄1 and Dq̄2 need to contain σm−1(Dp̄). Observe that the

image F 1 of F1 by the quotient Gm
K ↠ Gm−1

K satisfies property (⋆l) by Proposition

3.1.6 and similarly the image F ′
1 in Gm−1

L of F ′
1 also satisfies property (⋆l). By

commutativity in Proposition 3.1.1 F 1 is mapped surjectively by σm−1 to F
′
1 and

this map must be an isomorphism by Proposition 3.1.5. However, since F1 ⊂
Dp, we obtain F 1 ⊂ Dp̄, which means σm−1(Dp̄) is non-trivial and in particular

Dq̄1 ∩Dq̄2 ̸= 1.

It then follows q̄1 and q̄2 must be above the same prime ¯̄q of Lm−2 by Proposition

2.2.2, and the images of Dq̄1 and Dq̄2 in Gm−2
K by the canonical quotient coincide

with D¯̄q.

If we denote by ¯̄p the prime of Km−2 below p̄ we may now able to say that

the decomposition group D¯̄p ⊂ Gm−2
K is mapped to a non-trivial subgroup of

the decomposition group D¯̄q ⊆ Gm−2
L , and the prime ¯̄q is uniquely determined.

We are then able to define the mapping θm−2 : Pm−2 → PrimesnaLm−2
by setting

θm−2(¯̄p) = ¯̄q.

With this result, we have now obtained that starting from (⋆l)-subgroups that

are mapped injectively gives us a map between sets of primes as desired. Specifi-

cally, we have the following diagram:
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D̃m,l,K ⊇ C̃σm,l D̃m,l,L

Dm,l,K ⊇ Cσm,l Dm,l,L

PrimesnaKm−1
⊇ Pm−1 PrimesnaLm−1

PrimesnaKm−2
⊇ Pm−2 PrimesnaLm−2

ψ̃m,l

ψm,l

ϕm,l,K ϕm,l,L

θm−2

In this situation, we will say that the homomorphism of profinite groups σm−2 :

Gm−2
K → Gm−2

L induces the map θm−2 : Pm−2 → PrimesnaLm−2
.

The two following results show us that subgroups satisfying property (†l) in Gm−1
K

can in some way be lifted to Gm
K .

Proposition 3.1.14. Let m ≥ 3 be an integer, let σm+1 : Gm+1
K → Gm+1

L be

a homomorphism of profinite groups, let l be a prime number and consider the

induced homomorphism of profinite groups σm−1 : G
m−1
K → Gm−1

L . Then, let F̄ be

a subgroup of Gm−1
K satisfying property (†l).

Then, for any subgroup F of Gm
K satisfying property (⋆l) such that F is mapped

surjectively onto F̄ by the canonical quotient we have F satisfies condition (†l).

Proof. As σm−1(F̄ ) is the image of F̄ by σm−1 by the commutativity in Proposition

3.1.1, then σm(F ) must map surjectively onto σm−1(F̄ ), which has cohomological

l-dimension ≥ 2. However, by Proposition 3.1.5, this means that the composition

of σm and the canonical quotient Gm
L ↠ Gm−1

L restricts to an injective map on F ,

which also implies σm restricts to an injection on F , and so F satisfies condition

(†l).

Corollary 3.1.15. Let m ≥ 3 be a positive integer and let σm+1 : G
m+1
K → Gm+1

L

be a homomorphism of profinite groups with open image, and consider the induced

homomorphisms σm : Gm
K → Gm

L and σm−1 : G
m−1
K → Gm−1

L .

Let p̄ be a prime of Km−1 and consider the decomposition group Dp̄ ⊂ Gm−1
K ,

and let l ̸= char(p) be a prime number. Assume that there exists a prime

q̄ ∈ PrimesnaLm−1
with decomposition group Dq̄ ⊆ Gm−1

L (not necessarily uniquely

determined) such that σm−1(Dp̄) is l-open in Dq̄. Then, there exists a subgroup

F of Gm
K satisfying condition (†l) such that the image of F by the canonical map

D̃m,l,K → PrimesnaKm−1
is p̄.

Proof. Since σm−1(Dp̄) is l-open in Dq̄, by definition of l-open the image of an

l-Sylow subgroup Dp̄,l of Dp̄ by σm−1 is open in an l-Sylow Dq̄,l of Dq̄, and so

satisfies condition (⋆l), which implies by Proposition 3.1.5 that Dp̄,l is isomorphic

to its image, and it satisfies condition (†l). It follows immediately that any open
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subgroup of Dp̄,l also satisfies (†l).
Let p be any prime of Km above p̄, and let F be an open subgroup of an l-Sylow

subgroup Dp,l of Dp ⊂ Gm
K . Then, the image of F in Gm−1

K by the canonical

quotient is an open subgroup of an l-Sylow subgroup Dp̄,l satisfying (⋆l) which we

will denote F̄ , which we have shown needs then to satisfy (†l). It now follows by

Proposition 3.1.14 that F also satisfies (†l).

The following proposition is the last result for this section, and shows that the

definition of the map θm−2 in Proposition 3.1.13 induces a mapping between the

primes of the base fields K and L.

Proposition 3.1.16. Let m ≥ 1 be a positive integer, σm+3 : Gm+3
K → Gm+3

L a

homomorphism of profinite groups, and consider the map θm : Pm → PrimesnaLm

induced from σm : Gm
K → Gm

L as in Proposition 3.1.13.

Then, considering the natural actions of Gm
K on Pm and of Gm

L on PrimesnaLm
, we

have θm(gp) = σm(g)θm(p) for all in g ∈ Gm
K and p ∈ Pm (i.e. the map θm is

equivariant with respect to the natural actions of Gm
K on Pm and σm(G

m
K) ⊆ Gm

L

on PrimesnaLm
).

It follows that for all 0 ≤ i ≤ m− 1, if we let Pi be the subset of all primes of Ki

which are below some prime of Pm, there is a map θi : Pi → PrimesnaLi
naturally

induced from θm.

In particular, we may induce a well-defined map θ : P → PrimesnaL , where P is

the set of all primes of K below a prime of Pm. We will then say that σm induces

θ.

Proof. Let p ∈ Pm, and let Dp ⊂ Gm
K be its decomposition group. By defini-

tion, for all g ∈ Gm
K , we have gDpg

−1 = Dgp (observe that by Proposition 3.1.10

gp ∈ Pm), and let q = θm(p).

Let p̃ be a prime of Km+1 above p. Recall that, by the definition of θm in Proposi-

tion 3.1.13 for some prime number l, the (⋆l)-subgroups contained in the decom-

position group Dp̃ ⊆ Gm+1
K are mapped by σm to a subgroup of a decomposition

group Dq̃ for some (not necessarily unique) prime q̃ of Lm+1 above q. Then,

for any lift g̃ ∈ Gm+1
K of g, the (⋆l)-subgroups contained in the decomposition

group Dg̃p are mapped by σm+1 (injectively, by Proposition 3.1.14) to subgroups

of σm+1(g̃)Dq̃σm+1(g̃)
−1, which coincides with Dσm+1(g̃)q.

As σm+1(g̃)Dq̃σm+1(g̃)
−1 is mapped by the natural quotient Gm+1

L ↠ Gm
L sur-

jectively to σm(g)Dqσm(g)
−1 = Dσm(g)q, it then follows that indeed θm(gp) =

σm(g)θm(p), as desired.

For 0 ≤ i ≤ m−1, we may now take primes p1, p2 ∈ Pm conjugate in the extension

Km/Ki. Then, there exists g′ ∈ Gm
K [i] such that g′p1 = p2. Then, if we let q1

and q2 be primes of Lm such that q1 = θm(p1) and q2 = θm(p2), it follows that

σm(g
′)q1 = q2. However (cf. the proof of Proposition 3.1.1) σm(g

′) ∈ Gm
L [i], and
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so q1 and q2 are conjugate in the extension Lm/Li. It then follows we have a map

θi : Pi → PrimesnaLi
induced naturally from θm.

The last assertion also follows from the above argument, as it gives us that if p1

and p2 are conjugate in Km/K, then q1 and q2 are conjugate in Lm/L, and so we

also have the map θ : P → PrimesnaL as desired.

3.2 Conditional Existence in the Hom-Form

In this section we are interested in showing that, if some particular conditions on

(⋆l)-subgroups and the mapping of primes θm we defined in the previous section

hold, we can construct an injection of fields inducing our homomorphism of profi-

nite groups as in the Hom-Form, which will be our main result for this section.

We have seen in Proposition 3.1.13 that if a subgroup satisfying property (⋆l)

in Gm
K is mapped injectively to a subgroup satisfying property (⋆l) in Gm

L , then

the prime it determines in Km−2 is mapped to a unique prime of Lm−2.

Proposition 3.2.1. Let m ≥ 2 be an integer, and let σm : Gm
K → Gm

L be a ho-

momorphism of profinite groups induced by a homomorphism of profinite groups

σm+1 : G
m+1
K → Gm+1

L .

Assume that for every prime number l, σm restricts to an injection on every closed

subgroup F of Gm
K satisfying property (⋆l) (that is for every F ⊂ Gm

K, F satisfies

(⋆l) if and only if F satisfies (†l)).
Then the mapping of primes θm−2 : Pm−2 → PrimesnaLm−2

(obtained as in Proposi-

tion 3.1.13) is defined for every finite prime of Km−2, that is Pm−2 = PrimesnaKm−2
.

Proof. This follows immediately from as starting with Gm+1
K by Proposition 2.2.10

we can recover all the decomposition groups in Gm−2
K from the subgroups satisfying

(⋆l) in G
m
K , and by 3.1.13 since all the (⋆l)-subgroups in G

m
K satisfy condition (†l),

the prime they determine in Km−2 is mapped to a unique prime in Lm−2.

In the above proposition, we are not requiring a priori that σm has open image,

however we will show that if the condition of Proposition 3.2.1 is satisfied, the

image will automatically be an open subgroup of Gm
K .

Definition 3.2.2. Let m ≥ 1, and σm+3 : G
m+3
K → Gm+3

L be a homomorphism of

profinite groups such that the homomorphism σm+2 : G
m
K → Gm

L induced by σm+3

restricts to an injection on every element of D̃m+2,l,K, so that the homomorphism

of profinite groups σm : Gm
K → Gm

L induced by σm+3 induces a mapping between

primes θm : PrimesnaKm
→ PrimesnaLm

according to Propositions 3.1.13 and 3.2.1.

We will say that σm+3 satisfies condition (†).
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An immediate consequence of θm being defined at every prime of Km (that

is Pm = PrimesnaKm
) gives us (cf. Proposition 3.1.16) Pm−1 = PrimesnaKm−1

and

P = PrimesnaK . In particular, the induced maps θm−1 and θ are also defined at

every prime of Km and K respectively.

We now want to study the induced mapping θ : PrimesnaK → PrimesnaL between

the primes of the number fields.

Proposition 3.2.3. Let m ≥ 1 be an integer and σm+3 : Gm+3
K → Gm+3

L be a

homomorphism of profinite groups satisfying condition (†). Let σm : Gm
K → Gm

L

be the homomorphism of profinite groups induced by σm+3

Let θ : PrimesnaK → PrimesnaL be the map of primes induced by σm (see Proposition

3.1.16). Let p̄ be a prime of K, and let q̄ = θ(p̄). Then, p̄ and q̄ have the same

residue characteristic p, fp̄ ≥ fq̄ and N p̄ ≥ N q̄.

Furthermore, the same inequalities replacing q̄ with a prime q̃ above it in a finite

subextension L′ of L̃/L, where L̃ denotes the subfield of Lm corresponding to the

image of σm.

Proof. By the definition of θ (Proposition 3.1.16) we have that there exists a prime

p of Km above p̄ which is mapped by θm to a prime q of Lm above q̄.

We then get that for every prime number l different from p = char(p), σm maps

an l-Sylow subgroup of Dp isomorphically to a subgroup of Dq satisfying condition

(⋆l). It follows that l is different from char(q), and repeating this argument for all

prime numbers l ̸= char(p) = p, we get that q and q̄ must also necessarily have

residue characteristic p.

Consider the decomposition group Dp ⊆ Gm
K , and recall that by proposition

2.2.1.(iii), we can recover the inertia degree fp̄ and the norm N p̄ from the prime-

to-p torsion of Dab
p .

Furthermore, since σm(Dp) is contained in Dq ⊂ Gm
L , it is an m-step solvable

group, but this does not necessarily mean σm(Dp) = Dq. However, we may con-

sider an extension q′ of q in some separable closure L̄ of L containing Lm such

that σm(Dp) is a quotient of the m-step solvably closed quotient Dm
q′ of the de-

composition group Dq′ ⊂ GL of q′.

Let l be a prime number different from p, and consider the l-Sylow subgroup Dm
q′,l

of Dm
q′ , which has cohomological l-dimension 2. The image of Dq′,l in H with

respect to the quotient must then be an l-Sylow subgroup Hl of H, which by

Proposition 3.1.5 has cohomological dimension ≤ 2.

However, since σm maps Dp surjectively to H, every l-Sylow of Dp is mapped sur-

jectively to an l-Sylow subgroup of H. Furthermore, since every l-Sylow subgroup

of Dp satisfies condition (†l), it maps isomorphically to its image in H, and so it

follows cdl(H) = 2.

By 3.1.5 it now follows that there is an isomorphism Dm
q′,l

∼−→ Hl. It now follows
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the l-part of the kernel of the quotient Dm
q′ ↠ H is trivial. We may repeat this for

all the primes l ̸= p, so we get that the kernel of this quotient is a pro-p subgroup

V of Dm
q′ . We then get the following diagram

1 V Dm
q′ H 1

1 V ab Dab
q′ Hab 1

1 D
ab,(p′)
q′ Hab,(p′) 1

where the vertical arrows are given by passing to the abelianization and to the

prime-to-p quotient respectively. In particular, we get the prime-to-p torsion of

H is isomorphic to the prime-to-p torsion of Dab
q′ . However, we also know that

since Dab
p ↠ Hab, the prime-to-p torsion of Hab is determined by the image of the

prime-to-p torsion of Dab
p .

If we denote by q̄′ the restriction of q′ to L, from the above argument we then get

fp̄ ≥ fq̄′ and N p̄ ≥ N q̄′. However, since q′ was an extension of q, it follows q̄′ = q̄,

and this also gives us fp̄ ≥ fq̄ and N p̄ ≥ N q̄ as desired.

Let L′ be as in the statement, and let q̃ be a prime in L′ above q̄, which we

may assume below the prime q of Lm as defined above without loss of generality.

Then, we may observe that q̃ and q̄ have the same residue characteristic. Since

H ⊆ G(Lm/L
′) and the decomposition group of q (over q̃) in G(Lm/L

′) is the

quotient of the decomposition group Dq̃′ ⊂ GL of an extension q̃′ of q̃ in L̄, and

we may repeat the same argument above and obtain the inequalities fp̄ ≥ fq̃ and

N p̄ ≥ N q̃ as desired.

Let us recall that for a homomorphism of profinite groups σm : Gm
K → Gm

L , we

say that a subextension L′ of Lm/L corresponds to a subextension K ′ of Km/K if

σ−1
m (G(Lm/L

′)) = G(Km/K
′). Observe that ker(σm) is contained in G(Km/K

′),

and if L′/L is Galois, then K ′/K also is. Furthermore, if we let L̃ be the subfield

of Lm corresponding to the image of σm and consider the composite L̃L′ we have

the following diagram:

G(Km/K
′) G(Lm/L̃L

′)

Gm
K Gm

L

G(K ′/K) G(L̃L′/L)

σm

σm

and we will say that the injective map G(K ′/K) ↪→ G(L̃L′/L) is induced by

σm by quotients. We may also observe that since the image of Gm
K by σm is
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G(L/L̃), then the image of the injective map in the diagram is the subgroup

corresponding to G(L̃L′/L̃) of G(L̃L′/L). Then, we will say that an isomorphism

G(K ′/K)
∼−→ G(L̃L′/L̃) is also induced by σm by taking quotients.

Proposition 3.2.4. Let m ≥ 1 be a positive integer, and σm+3 : Gm+3
K → Gm+3

L

be a homomorphism of profinite groups satisfying condition (†), consider the in-

duced homomorphism of profinite groups σm : Gm
K → Gm

L and let θ : PrimesnaK →
PrimesnaL be the map of primes induced by σm. Then, there are only finitely many

primes of L that are not image of a prime of K by θ.

Furthermore, if L̃ is the subextension of Lm/L corresponding to σm(G
m
K), we have

L̃/L is finite, and [K : Q] ≥ [L̃ : Q] ≥ [L : Q]. In particular, σm has open image.

Proof. Assume by contradiction there are infinitely many primes of L that are not

in the image of θ. Since L has a finite number of ideal classes, there must be an

ideal class of L containing infinitely many of these primes, so let us denote them

by q0, q1, q2, .... Furthermore, for all i ≥ 1 the ideal q0/qi is principal, and so is

generated by some element αi.

Consider the infinite extension L′ = L(
√
α1,

√
α2, ...) of L contained in Lab (and

so also contained in Lm). Also, consider the extension K ′ of K corresponding to

L′ by σm.

The only primes of L that may ramify in L′/L are primes with residue charac-

teristic 2 or the qi, and since all primes of K have an image in L, a prime of K

can only be ramified in K ′/K if its image in L ramifies in L′/L. Furthermore,

by Proposition 3.2.3 every prime of K has the same residue characteristic as its

image in L, and as we know that the qi are not in the image of θ, the only primes

that may ramify in K ′/K are primes with residue characteristic 2.

It follows that since by construction G(K ′/K)
∼−→ G(L′L̃/L̃), K ′/K is abelian, and

by Class Field Theory as the abelian extension K ′/K is only ramified over the

prime number 2 it must be finite. This then gives us that the composite extension

L′L̃/L̃ is finite as well. However, since L′L̃ is an infinite extensions of L this implies

L̃ is also an infinite extension of L. Furthermore, since G(L′L̃/L̃) ∼= G(L′/L̃∩L′)

we get L′′ = L′∩ L̃ corresponds to a finite subgroup of G(L′/L), and we may then

consider the abelian extension L′′/L, which will then also be infinite over L.

Let p be a prime of K with odd residue characteristic and of degree 1. Then, its

image q = θ(p) must be unramified in L′/L, and by Proposition 3.2.3 it follows

p = Np = Nq. Furthermore, by Proposition 3.2.3 we may also replace L with

a finite abelian extension L0/L contained in L′′ ⊆ L̃, and for any extension q′ of

q to L0 we get Np = Nq′, and as q does not ramify in L0/L, this gives us q′ is

of degree 1 over L, that is it splits completely in L0. As this holds for any finite

extension of L contained in L′′, we get that q splits completely in L′′/L.

Now, the set A of the primes of K of degree 1 and of odd residue characteristic
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has positive Dirichlet density which is given by

δK(A) = lim
s→1+

∑
p∈ANp−s

log(1/(s− 1))
≥ 1

[K : Q]
.

Consider now the image θ(A) of A in L, and recall again that p = Np = Nq when

q = θ(p). Observe that there are only up to [K : Q] primes of K with residue

characteristic p, and as only primes with the same residue characteristic may map

to the same prime q of L, we get that

δL(θ(A)) = lim
s→1+

∑
q∈θ(A)Nq−s

log(1/(s− 1))
≥ δK(A)

[K : Q]
.

By the above argument all the primes of L contained in θ(A) split completely in

the infinite extension L′′/L. If we take a finite Galois subextension L1 of L′′/L,

the primes of θ(A) will also split completely in L1/L. Let us take then an L1

such that [L1 : L]
−1 < δL(θ(A)). Then, we obtain a contradiction of Chebotarev’s

density theorem (Corollary 1.1.12) as the set of primes of L that splits completely

in L1 has density ≥ δL(θ(A)) > [L1 : L]
−1. It then follows that L′′ may not be an

infinite extension of L, which gives us our initial assumption that infinitely many

primes are not in the image of θ is a contradiction.

We want now to show L̃/L is finite. Since only finitely many primes of θ are not

in the image, we may take a prime number p unramified in L/Q so that all primes

q1, ..., qn of L above p are in the image of θ. Then, we may take some primes

p1, ..., pn of K such that qi = θ(pi). Then, by Proposition 3.2.3 all the pi are also

above p, and it follows fpi ≥ fqi , for all i = 1, ..., n and since by construction

eqi = 1 we get

[L : Q] =
n∑
i=1

fqieqi ≤
n∑
i=1

fpiepi ≤ [K : Q].

Observe that if we replace L with a finite extension L̂ contained in L̃, the above

inequality still holds by Proposition 3.2.3 and it follows that [L̃ : Q] ≤ [K : Q].

With this result, if a homomorphism of profinite groups σm+3 : G
m+3
K → Gm+3

L

satisfying condition (†) gives us a correspondence between inertia degrees of primes

of L and K, and we may now start working towards the construction of the

injective homomorphism of fields τ .

Proposition 3.2.5. Let m ≥ 1 be a positive integer, and σm+3 : Gm+3
K → Gm+3

L

be a homomorphism of profinite groups satisfying condition (†), consider the ho-

momorphism of profinite groups σm : Gm
K → Gm

L induced by σm+3 and let θ :

PrimesnaK → PrimesnaL be the map of primes induced by σm.

Let M be a Galois extension of Q containing both K and L. Let H = G(M/Q),
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and consider the subgroups H1 = G(M/K) and H2 = G(M/L) of H. Then, every

element of H1 is conjugate to an element of H2 in H.

Proof. An element h ∈ H1 defines a Frobenius automorphism for a prime P in

M above a prime number p unramified in K/Q. It then follows that the prime

p below P in K is of degree 1, and its image q = θ(p) in L is also of degree 1

by 3.2.3. We may then take a prime Q above q in M . Since Q must also have

residue characteristic p, it follows that P and Q are conjugate primes, so let t be

an element of H such that Q = tPt−1. It follows then that tht−1 ∈ H2 , and so

every element of H1 is conjugate to an element of H2 as desired.

Proposition 3.2.6. Assume that the number fields L and K are contained in the

same separable closure Ω of Q, and consider their m-step solvably closed Galois

extension Lm+3/L and Km+3/K contained in Ω.

Let m ≥ 1 be a positive integer, and let σm+3 : G
m+3
K → Gm+3

L be a homomorphism

of profinite groups satisfying condition (†), consider the induced homomorphism

of profinite groups σm : Gm
K → Gm

L .

Let L′ be a finite Galois extension of L contained in Lm and let K ′ be the finite

Galois extension of K contained in Km corresponding to L′ by σm. Let M ⊆ Ω be

a finite Galois extension of Q containing L′ and K. Then M also contains K ′.

Proof. By Proposition 3.1.16, we have a map θ : PrimesnaK → PrimesnaL induced

by σm. Let p be a prime number that splits completely in M , Then, the primes

of L′ above p are of degree 1 over Q, and are in particular of degree 1 over L.

Assume then that the map θ restricts to a surjection over the primes of L of

residue characteristic p, and observe that by Proposition 3.2.4 this condition is

satisfied by all but finitely many prime numbers p as only finitely many primes of

L are not in the image of θ.

Then, since every prime of L above p is in the image of θ, we can take the inverse

with respect to θ and σm and get that any prime of K ′ above p has degree 1 over

K. However since p splits completely in M , any prime above p in K has degree 1

over Q, and taking the composite of the degrees this shows that the primes above

p in K ′ have degree 1.

Now, since p splits completely in M , every prime of K above p also splits com-

pletely in M . Since, we know that every prime of K that splits completely in M

also splits completely in K ′, except for the finite number of prime number where

θ does not induce a surjection, it follows that by Bauer’s Theorem (see Theorem

1.1.13) M ⊇ K ′.

We are now able to apply Uchida’s method for the proof of Neukirch-Uchida’s

Theorem (see 1.3.2) to our situation, and obtain an injective homomorphism of

fields. This is the main result in this section.

56



Theorem 3.2.7. Let m ≥ 1 be a positive integer, and let σm+4 : Gm+4
K → Gm+4

L

be a homomorphism of profinite groups satisfying condition (†), consider the ho-

momorphism of profinite groups σm : Gm
K → Gm

L induced by σm+4.

Then, there exists an injection of fields τm : Lm → Km that induces σm by

τmσm(g) = gτm

for all g ∈ Gm
K.

Furthermore, if m ≥ 1 the restriction of τm to Lm−1 gives an injective homomor-

phism τm−1 : Lm−1 ↪→ Km−1 inducing the homomorphism σm−1 : Gm−1
K → Gm−1

L

induced by σm+3 by

τm−1σm−1(g
′) = g′τm−1

for all g′ ∈ Gm−1
K .

In particular, an injective homomorphism τ : L ↪→ K is defined.

Proof. The below diagram gives a visualization of the construction in the following

part of the proof. This can be compared with the diagram in the proof of Theorem

1.3.2

Km+1 M Lm+1

N
∏
M1,i Mi N

∏
M2,i

∏
M1,i NM1,i NM2,i

∏
M2,i

M1,i M2,i

N

K ′ L′

N1,i N2,i

K L

Q

Fp[H]m+1

B1,i B2,i

Fp[H]ui

T1

S1,i

S1

T2

S2,i

S2

HH1 H2

Consider a finite Galois subextension L′/L of Lm, and let K ′ be the finite Galois

extension of K corresponding to it by σm. Let H1 = G(K ′/K) and H2 = G(L′/L).

Since by definition G(Km/K
′) = σ−1

m [G(Lm/L
′)], the kernel of σm is contained in
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G(Km/K
′), and so the map σ : H1 ↪→ H2 induced from σm by quotients is

injective.

Let N be a finite Galois extension of Q contained in some separable closure Ω of

Q such that we have embeddings K ′ ↪→ N and L′ ↪→ N , and let us consider the

images of these embeddings canonically identified with K ′ and L′.

Let us then define the Galois groups H = G(N/Q), S1 = G(N/K), S2 = G(N/L),

T1 = G(N/K ′) and T2 = G(N/L′). Consider a set of generators h1,1, ..., h1,n for

H1, and set h2,i = σ(h1,i). Since H1 = S1/T1, for all i = 1, ..., n we may define an

element s1,i ∈ S1 such that s1,iT1 = h1,i, and similarly we may define an element

s2,i ∈ S2 such that s2,iT2 = h2,i. For each s1,i we also define a subgroup S1,i

generated by s1,i and T1, and similarly we define S2,i as the subgroup generated

by s2,i and T2. Let us also set S1,0 = T1 and S2,0 = T2.

We may take a subfield N1,i of N corresponding to S1,i and a subfield N2,i of

N corresponding to S2,i. By these definitions, S1,i/T1 ∼= G(K ′/N1,i) is a cyclic

subgroup of H1 generated by h1,i, and S2,i/T2 is a cyclic subgroup of H2 generated

by h2,i = σ(h1,i). Then, we have that σ restricts to a surjective homomorphism

S1,i/T1 ↠ S2,i/T2. However, since σ is injective, this is an isomorphism, and

furthermore N2,i must correspond to N1,i by σm.

We may now take a prime number p such that p ≡ 1 (mod |H|) and p > |H|2,
and consider the split group extension

1 → Fp[H]n+1 → E → H → 1.

Then, by Proposition 1.1.15 there exists a Galois extension M of Q containing N

such that G(M/N) = Fp[H]n+1 and G(M/Q) = E. We may also take a set of

elements u0, ..., un of Fp[H]n+1 so that we may write

Fp[H]n+1 =
n⊕
i=0

Fp[H]ui

and for every i = 0, ..., n, we may consider the subfieldMi ofM determined by the

subgroup ⊕j ̸=iFp[H]uj of Fp[H]n+1. Then, taking the quotient of Fp[H]n+1 with

respect to this subgroup (which is a normal subgroup as Fp[H]n+1 is abelian) we

get that Mi is a Galois extension of Q and G(Mi/Q) is determined by the split

group extension

1 → Fp[H]ui → G(Mi/Q) → H → 1.

Let χi be a character of S1,i/Ti of order |S1,i/Ti| (observe that when i = 0, S1,0/T1

is trivial and so is χ0), which we may consider as valued in Fp. Since σ induces

an isomorphism S1,i/T1 ∼= S2,i/T2, we may induce by χiσ
−1 a character of S2,i/T2,

which we will denote χ′
i.
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We may then consider a p-extension M2,i/L
′, which is the maximal subfield of Mi

where the operation of S2,i/T2 on G(M2,i/L
′) coincides with the scalar multipli-

cation of the values of χ′
i.

Observe that since this is an abelian extension of L′ ⊂ Lm, this may be identified

with a subfield of Lm+1. Thus, we may consider it as a subfield of Lm+1, and

consider the subextension of Km+1/K corresponding to M2,i by σm+1, which we

will denote by M1,i. Since M2,i is an extension of L′, it follows that M1,i is an

extension of K ′. We are then able to obtain by Proposition 3.2.6 that as Mi con-

tains M2,i and K
′, it also contains M1,i.

Furthermore, the map σ induced by σm+1 by quotients on the Galois group

G(M1,i/N1,i) is injective by definition, and we also have σ(G(M1,i/N1,i)) is con-

tained in G(M2,i/N2,i). But since N2,i corresponds to N1,i by σm, this is an isomor-

phism. Then the operation of S1,i/T1 on G(M1,i/N1,i) must coincide with scalar

multiplication by the values of χi.

We may then consider the composite NM1,i, contained in Mi and corresponding

to a subgroup B1,i of Fp[H]ui = G(Mi/N). Similarly, we define the subgroup B2,i

corresponding to NM2,i.

By the construction, we get G(M1,i/K
′) and G(NM1,i/N) = Fp[H]ui/B1,i are

isomorphic as S1,i/T1-modules and therefore if we take an element b1,i ∈ B1,i, we

can construct a subgroup (b1,i − χi(b1,i))Fp[H]ui contained in B1,i. We are then

able to construct a subgroup C1,i generated by all the (b1,i − χi(b1,i))Fp[H]ui as

b1,i varies in B1,i. Furthermore, we may repeat the same construction over L′ to

construct a subgroup C2,i.

The action of T2 on Fp[H]ui/C2,i is trivial, so C2,i must correspond to a subfield of

Mi containing NM2,i, which must be also an abelian p-extension of L′ where the

operation of S2,i/T2 coincides with the multiplication by the values of χ′
i. However,

M2,i is by definition the maximal abelian p-extension of L′ where this happens,

thus B2,i = C2,i.

Let us then take the composite
∏
M1,i of all the M1,i, which is still a subfield of

Km+1, and likewise
∏
M2,i, which is a subfield of Lm+1. We can see that by the

definition these two fields correspond to each other as composites of corresponding

fields, and by Proposition 3.2.5 any element of the Galois group G(M/
∏
M1,i)

is conjugate to an element of G(M/
∏
M2,i) by an element of E. Furthermore,

we know that Fp[H]n+1 is a normal subgroup of E, therefore if we consider the

subgroups A1 and A2 of Fp[H]n+1 corresponding to fields N
∏
M1,i and N

∏
M2,i

respectively, we also get that any element of A1 is conjugate to an element of

A2 by an element of E. Finally, since C2,i corresponds to NM2,i, we know that

A2 =
∑

iC2,i, and by the correspondence A1 ⊇
∑

iC1,i. Furthermore, by the split

exact sequence, this conjugation corresponds to the action on Fp[H]n+1 given by
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left multiplication by an element of H . Therefore, fix an element

a =
∑
t1∈T1

(t1 − 1)u0 +
m∑
i=1

(s1,i − χi(s1,i))ui

in A. Then, for some h ∈ H, we get ha ∈ A2 which we may rewrite as

h
∑
t1∈T1

(t1 − 1)u0 ∈ B2,0

and

h(s1,i − χi(s1,i))ui ∈ B2,i.

Now, expanding the first one, we get

h
∑
t1∈T1

(t1 − 1) ∈
∑
t2∈T2

(t2 − 1)Fp[H]u0

and since ∑
t2∈T2

t2
∑
t2∈T2

(t2 − 1) = 0 ∈ Fp[H],

we can rewrite this as ∑
t2∈T2

t2h
∑
t1∈T1

(t1 − 1) = 0 ∈ Fp[H]u0.

We then fix an element t′1 ∈ T1. The coefficient of ht′1 ∈ H in the left side of the

sum must be a multiple of p so that the sum is zero in Fp[H]u0. Observe that the

number of elements in the sum which are of the form t′′2ht
′′
1 for some t′′1 ∈ T1 and

t′′2 ∈ T2 is less than |H|2 which is itself less than p as we have taken p > |H|2.
Therefore the number of elements of the form t′′2ht

′′
1 = ht′1 (which are all elements

of H) is also less than p.

We then get that ht′1 must cancel out with a term of the form −t′2h for some

t′2 ∈ T2, that is t
′
2h = ht′1, and so we get h−1T2h ⊆ T1, therefore h

−1 induces an

injective homomorphism L′ → K ′.

By the same idea as above, we then observe h(s1,i − χi(s1,i))ui ∈ B2,i can be

rewritten as ∑
s∈S2,i

sχ′
i(s)

−1h(s1,i − χi(s1,i)) = 0 ∈ Fp[H]ui.

Then, using the same argument used before for ht′1, we then have the coefficient

of hs1,i in the sum must be 0, and so for some s′ ∈ S2,i we must have hs1,i = s′h

and χ′
i(s

′) = χi(s1,i). Then, h2,i = s2,iT2 = s′T2 by definition of χ′
i. Also, as

h−1s′ = s1,jh
−1 the actions defined by h−1σ(h1,j) and h1,jh

−1 on L′ coincide.

Since the h1,i generate H1, it follows that h−1 determines an injection L′ → K ′
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which induces σ. Since L′ was a Galois subextension of Lm/L chosen arbitrarily,

we may construct the set AL′ of all the injections L′ ↪→ K ′ constructed with the

above method for every finite Galois extension L′ of L contained in Lm, and since

it is non-empty and finite (as h ∈ H, and H is finite).

We can observe that the AL′ define a projective system of non-empty finite sets (as

do the AK′ in the proof of Theorem 1.3.2), so we may take their inverse limit over

L′ and obtain that the set of injections τm : Lm ↪→ Km inducing σm is non-empty,

as desired.

For the last statement, observe that we may take the projective limit over all

finite Galois extensions of L contained in Lm−1 and construct an injective homo-

morphism τm−1 : Lm−1 ↪→ Km−1 coinciding with the restriction of τm to Lm−1.

We may also observe that τ(Lm−1) is fixed by all g′ ∈ GK [m,m − 1], and as

σm(g
′) also fixes Lm−1, and therefore we may pass to the quotient ḡ of g in Gm−1

K

in τmσm(g) = gτm, thus we get τm−1σm−1(ḡ) = ḡτm−1 for all ḡ ∈ Gm−1
K as de-

sired.

We see that this proof requires us to lose an additional abelian step from where

we can define the mapping of primes θm before as we need to construct M1,i and

M2,i and have them correspond by σm while being able to apply Proposition 3.2.6.

3.3 Uniqueness

In the previous section, we showed that if certain conditions hold then, up to losing

one step, we can construct an injection of fields that induces the homomorphism

of profinite groups we were starting with. The main results in this section are

conditions for which this injection of fields is unique.

We start this section by adapting a few results of Uchida [Uch3], which he uses

to prove uniqueness for the absolute Galois group to the m-step case.

Proposition 3.3.1. Let K and L be number fields and assume that K and L

are contained in the same separable closure Ω of Q. Let m ≥ 1 be an integer,

and consider their m-step solvably closed extensions Km and Lm contained in Ω.

Then, we have that if Km−1 is not contained in Lm, the composite KmLm is an

infinite extension of Lm.

Proof. Assume Km−1 is not contained in Lm. Then, there must be a finite exten-

sion K ′ of K contained in Km−1 such that K ′ is not contained in Lm. We may

take a finite Galois extension M/Q such that M contains both K ′ and L, and let

us denote H = G(M/Q) and H1 = G(M/K ′). By Proposition 1.1.15, if we let p

be a prime number such that p does not divide |H|, and consider the split group

extension

1 → Fp[H] → E → H → 1
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there exists a Galois extensionM ′ of Q such that G(M ′/Q) ∼= E and G(M ′/M) ∼=
Fp[H].

Let N be the maximal abelian p-extension of K contained in M ′, and observe

N and M are linearly disjoint extension of K ′ as p does not divide |H|. Then,

consider the composite MN ⊆ M ′. Then, the composite MN is the maximal

abelian p-extension of M contained in M ′ (and so, a quotient of Fp[H]) such that

the action of H1 = G(M/K) on G(MN/M) is trivial. We may observe that MN

corresponds to the subgroup A of Fp[H] determined by all the elements where the

action of H1 is not trivial, that is G(M ′/MN) = A =
∑

h1∈H1
(h1 − 1)Fp[H].

Ω

Km M ′ Lm

MN

Km−1 N M

K ′ L′

K L

Q

Fp[H]

E

A

H1 H2

H

Let us then consider the field L′ = K ′L ∩ Lm. Since K ′ is not contained in Lm,

it follows that it is also not contained in L′. If we consider the subgroup H2 of H

corresponding to L′, it is not contained in H1, and if we construct the subgroup

A′ =
∑

h2∈H2
(h2−1)Fp[H] we have that A′ is not contained in A and so the action

of H2 on Fp[H]/A is not trivial, and so there is no abelian extension N ′ of L′ such

that N ′M = NM .

Consider the Galois group G(K ′Lm/K
′L), which is canonically isomorphic to

G(Lm/L
′). Since N is an abelian extension of K ′ ⊆ Km−1, we have N ⊆ Km,

and immediately we have NLm is an extension of Lm contained in KmLm. If

we assume that NLm is contained in K ′Lm, then NL is a subfield of NLm, and

since N/K ′ is abelian the extension NL/K ′L is also abelian. Therefore, by the

isomorphism of Galois groups above we can find an abelian extension N ′ of L′

such that NL = N ′K ′. However, this means that MN coincides with MN ′,

which is a composition of N ′, an abelian extension of L′, and M . We then get a

62



contradiction, and so NLm is a non-trivial abelian p-extension of K ′Lm contained

in KmLm.

It now follows that KmLm contains an extension of Lm whose degree is a multiple

of p, and repeating this argument for the infinitely many primes p not dividing

|H| we get that KmLm must necessarily be an infinite extension of Lm.

Corollary 3.3.2. Let m ≥ 1 be a positive integer, and let K and L be number

fields contained in a same separable closure Ω of Q, and consider their maximal

m-step solvable extension Km and Lm contained in Ω. Assume that there exists

a number field M such that MKm = MLm. Then, Km−1 is contained in Lm. In

particular, K ⊆ Lm.

Proof. Since MKm =MLm ⊇ Km, we get that KmLm is contained in MLm, and

is therefore a finite extension of Lm. By 3.3.1, we get that this must necessarily

mean Km−1 is contained in Lm.

The second assertion follows immediately as K ⊆ Km−1

We now want to find conditions for which an injective homomorphism τ :

Lm ↪→ Km inducing a homomorphism of profinite groups σm : Gm
K → Gm

L (as in

Theorem 3.2.7) is unique.

Proposition 3.3.3. Let m ≥ 1 be a positive integer, and let σm : Gm
K → Gm

L be a

homomorphism of profinite groups with open image and let τ and ρ be homomor-

phisms of fields τ, ρ : Lm ↪→ Km such that τσm(g) = gτ and ρσm(g) = gρ for all

g ∈ Gm
K. Let L̃ be the field corresponding to the image of σm. Then:

(i) ∀1 ≤ i ≤ m, we have τ(Li−1) ⊂ ρ(Li). In particular τ(L) ⊂ ρ(Lab) and

τ(Lm−1) ⊂ ρ(Lm)

(ii) τ(L) ⊆ ρ(L̃)

(iii) ∀1 ≤ i < j ≤ m we have ρ(Lj) is a Galois extension of τ(Li).

Proof. Let Λ denote be the subfield of Km corresponding to the kernel of σm,

and observe that since ρ(Lm) and τ(Lm) are contained in Km we may apply

Proposition 3.3.1 and Corollary 3.3.2. Furthermore, for every 1 ≤ i ≤ m we may

consider the homomorphism σi : G
i
K → Gi

L induced from σm, and we will denote

by Λ(i) the kernel of of σi, not to be confused with the maximal i-step solvable

extension of Λ.

(i) By construction, we have that Kτ(Li) = Λ(i) = Kρ(Li). Then, by Corollary

3.3.2, we get τ(Li−1) ⊆ ρ(Li).

(ii) From the definition, it follows that we have ρ(L̃) = ρ(Lm) ∩ K. As a

consequence of (i) we get τ(L) is contained in ρ(Lm). Furthermore, by
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construction τ(L) ⊆ K, as it is fixed by every element of Gm
K . It then

follows ρ(L̃) = ρ(Lm) ∩K ⊇ τ(L) as desired.

(iii) By (i), we get ρ(L) ⊂ τ(Li) ⊂ ρ(Lj). The assertion now follows immediately

as rho(Lj)/rho(L) is a Galois extension, as it is isomorphic to Lj/L.

We will use these properties to show some conditions for uniqueness as follows:

Corollary 3.3.4. Let m ≥ 1 be a positive integer, and let σm : Gm
K → Gm

L be a

homomorphism of profinite groups with open image, and let L̃ be the subfield of

Lm corresponding to the image of σm.

Assume that L̃ ⊆ Lm−1. Then, if τ and ρ are homomorphisms τ, ρ : Lm ↪→ Km

such that τσm(g) = gτ and ρσm(g) = gρ, we have τ(L̃) = ρ(L̃).

Proof. Observe that since L̃ ⊆ Lm−1, we have τ(Lm−1)∩K = τ(L̃). Furthermore,

since ρ(Lm) ∩K = ρ(L̃) and by Proposition 3.3.3.(i) we have τ(Lm−1) ⊆ ρ(Lm),

we get ρ(L̃) ⊇ τ(L̃). However, since ρ and τ restrict to an isomorphism of fields

to their image, ρ(L̃) and τ(L̃) must have the same degree over Q. It then follows

τ(L̃) = ρ(L̃).

We then may apply this to

Proposition 3.3.5. Let m ≥ 2 be a positive integer, and let σm : Gm
K → Gm

L be

a homomorphism of profinite groups with open image, and let L̃ be the subfield of

Lm corresponding to the image of σm.

Assume that L̃ ⊆ Lm−1 and that there exists an injective homomorphism of fields

τ : Lm → Km inducing σm by gτ = τσm(g) for all g ∈ Gm
K. Then, τ is uniquely

determined by this property.

Proof. Let ρ : Lm ↪→ Km an injective homomorphism such that gρ = ρσm(g) for

all g ∈ Gm
K . Then, we may apply Corollary 3.3.4 and show τ(L̃) = ρ(L̃).

By construction the fields Kρ(Lm−1) and Kτ(Lm−1) must both coincide with the

subfield Λ′ corresponding to the kernel of σm−1. Also, since K ∩ ρ(Lm) = τ(L̃),

of ρ(L̃), then ρ(Lm−1) is an extension of ρ(L̃) linearly disjoint with K, and from

the isomorphism G(Λ/K) ∼= G(ρ(Lm)/ρ(L̃)), it follows that Kρ(Lm−1)∩ρ(Lm) =
ρ(Lm−1).

Observe that since Kρ(Lm−1) = Kτ(Lm−1), as both fields need to correspond to

the kernel Λ of

sigmam, we also get that Kρ(Lm−1) ⊇ τ(Lm−1). Thus, since from Proposition

3.3.3 τ(Lm−1) is also contained in ρ(Lm), it follows τ(Lm−1) ⊆ Kρ(Lm−1) ∩
ρ(Lm) = ρ(Lm−1). Reversing the argument gives us ρ(Lm−1) = τ(Lm−1), and

since ρ(Lm) and τ(Lm) are maximal abelian extensions of the same field τ(Lm−1)
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contained in the same field Km they coincide as well.

By definition, we now get that τ ◦ ρ−1 is an automorphism of Λ, and if for all

g ∈ Gm
K we consider the induced action on G(Λ/K) ∼= G(τ(Lm)/τ(L̃)) we get

τρ−1g = τσm(g)ρ
−1 = gτρ−1, and so τρ−1 centralises G(τ(Lm)/τ(L̃)). We are

now able to conclude by using Proposition 2.2.5, where we set K = τ(widetildeL),

K̃ = τ(Lm−1) and K̃ab = τ(Lm), that as the centraliser of G(τ(Lm)/τ(L̃)) in

Aut(τ(Lm)) must be trivial, τρ−1 is the identity and so ρ = τ , as desired.

Observe that the condition in the above proposition is satisfied whenever σm

is surjective. The condition gτ = τσm(g) gives us that τ(L̃) ⊆ K. We then have

the following corollary:

Corollary 3.3.6. Let m ≥ 1 be a positive integer, and let σm : Gm
K → Gm

L be a

homomorphism of profinite groups with open image, and assume that there exists

an injective homomorphism τ : Lm → Km inducing σm by gτ = τσm(g), and

assume that τ(Lm−1) contains K. Then, τ is the unique morphism inducing σm.

Proof. By construction τ(L̃) is contained in K. It then follows immediately that

since τ(L̃) is contained in τ(Lm−1) and τ is an isomorphism, we get L̃ is contained

in Lm−1. Proposition 3.3.5 then gives us the uniqueness of τ .

We now give a way to have this condition on K be independent of L and τ . In

the following, we will denote by Qm the maximal m-step solvably closed extension

of Q contained in Km. Note that m is in general not a prime, and so this should

not be confused with the m-adic completion of Q.

Corollary 3.3.7. Let m ≥ 1 be a positive integer and let σm : Gm
K → Gm

L be a

homomorphism of profinite groups with open image, and assume that K ⊆ Qm−1

contained in Km. Then, if there exists a homomorphism τ : Lm → Km inducing

σm by τσm(g) = gτ for all g ∈ Gm
K, it is uniquely determined.

Proof. Since τ(L)m−1 = τ(Lm−1), we have Qm−1 is contained in τ(Lm−1) necessar-

ily, as the composite extension Qm−1τ(L)/τ(L) is anm−1-step solvable extension.

Therefore, K is contained τ(Lm−1) and we may conclude by Corollary 3.3.6.

Combining Theorem 3.2.7 with the conditions on uniqueness we described

above, we get the two following statements, which are the main results in this

section and this chapter:

Theorem 3.3.8. Let K and L be number fields, let m ≥ 1 be an integer and let

σm+4 : Gm+4
K → Gm+4

L be a homomorphism of profinite groups with open image

such that the induced homomorphism of profinite groups σm+3 : Gm+3
K → Gm+3

L

restricts to an injection on every subgroup of Gm+3
K satisfying property (⋆l) for

some prime number l. Furthermore, assume that the field corresponding to the
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image of σm+4 is contained in Lm−1.

Then, there exists a unique injective homomorphism of fields τm : Lm → Km such

that τmσm(g) = gτm for all g ∈ Gm
K.

Proof. Observe that we are in the conditions of Theorem 3.2.7, that is σm+4

satisfies condition (†) (Definition 3.2.2) and therefore we have an injective homo-

morphism of fields τ : Lm → Km inducing σm exists.

Let L̃ be the field corresponding to the image of σm+4. Observe that since

τ(L̃) = τ(Lm+4) ∩ K = τ(Lm−1) ∩ K, the field L̃ corresponds to the image of

all of the homomorphism σm+3, σm+2, σm+1, σm induced by σm+4 as well.

Uniqueness of τ now follows by Theorem 3.3.5, as the field corresponding to the

image of σm is L̃ which is contained in Lm−1.

As with Corollary 3.3.7, we are able to say that ifK contained in them−1-step

solvably closed extension Qm−1 of Q, the condition on L̃ must be automatically

satisfied when τ exists so we obtain the following:

Theorem 3.3.9. Let K and L be number fields, let m ≥ 1 be an integer and

assume K contained in the (m−1)-step solvably closed extension Qm−1 ⊆ Km of Q.

Let σm+4 : G
m+4
K → Gm+4

L be a homomorphism of profinite groups with open image

such that the induced homomorphism of profinite groups σm+3 : Gm+3
K → Gm+3

L

restricts to an injection on every subgroup of Gm+3
K satisfying property (⋆l) for

some prime number l.

Then, there exists a unique injective homomorphism of fields τm : Lm → Km such

that τmσm(g) = gτm for all g ∈ Gm
K.

Proof. We are in the conditions of Theorem 3.2.7, namely σm+4 satisfies condition

(†). Then, there exists an injective homomorphism τm : Lm ↪→ Km inducing σm

as desired. The uniqueness now follows immediately from Corollary 3.3.7.

This concludes the construction of conditional results for an m-step solvably

closed Hom-Form.
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Chapter 4

The m-step Hom-Form over Q

In the previous chapter, we obtained conditional result on existence and unique-

ness. In this chapter we will be investigating what happens if we are working with

a homomorphism of m-step solvably closed Galois groups Gm
K → Gm

L with open

image when K = Q, and show that we are able to obtain a conditional version of

the m-step solvable Hom-Form, where the conditions we ask for are weaker than

the conditions required in Theorem 3.3.5.

Proposition 4.1. Let K = Q, m ≥ 0 be an integer, and let σm+2 : G
m+2
K → Gm+2

L

be a homomorphism of profinite groups such that σ(Gm+2
K ) is open in Gm+2

L .

Then, the induced homomorphism σm : Gm
K → Gm

L is surjective and L = Q.

Proof. By 3.1.1, we have that since σm+2 has open image then the induced mor-

phism σm also has open image. Then, let L̃ ⊆ Lm be the finite extension of L

corresponding to σm(G
m
K). Let E ′ be a totally imaginary quadratic extension of

L̃. Since E ′ is an abelian extension of a subextension of Lm, E
′ is contained in

Lm+1 and so we have a subgroup of Gm+1
L corresponding to it. By taking the

inverse image of this subgroup with respect to σm+1, we obtain a corresponding

extension E of K, which must also be a quadratic extension of K.

Let s be a positive integer. For any prime number p, as Zsp is an abelian group

any Zsp-extension of E (resp. of E ′) must be abelian, and since E is a subfield

of Km+1 (resp. E ′ is a subfield of Lm+1) this Zsp-extension must be a subfield of

Km+2 (resp. Lm+2).

Furthermore, since G(Lm+2/E
′) has to be the homomorphic image of G(Km+2/E),

the Zp-rank of E is ≥ than the Zp-rank of E ′ and as we set that E ′/L̃ is totally

imaginary, the Zp-rank of E ′ will be ≥ than [L̃ : Q] + 1.

However, since K = Q, E is a quadratic field and so the Zp rank of E will be ≤ 2,

so from the inequalities above we get 2 ≥ [L̃ : Q] + 1, that is [L̃ : Q] = 1, which

gives σm is surjective and L̃ = L = Q

We are then able to reduce our investigation to studying the surjective homo-

morphism of profinite groups σm : Gm
Q → Gm

Q . Since the two separable closures
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of Q we are considering do not necessarily coincide, we will still refer to them as

K and L, and accordingly we will refer to the copies of Q corresponding to each

closure as K and L.

While the above result holds in general, we will now assume that the image of any

subgroup of Gm
K satisfying property (⋆l) contains no torsion elements, that is case

(iii) in Proposition 3.1.5 does not happen. Under this assumption, if the inertia

part of a decomposition group in Gm
K is mapped non-trivially by σm, then we are

necessarily in case (i) of 3.1.5.

Recall again that for a homomorphism of profinite groups σm : Gm
K → Gm

L , we

say that a subextension L′ of Lm/L corresponds to a subextension K ′ of Km/K

if σ−1
m (G(Lm/L

′)) = G(Km/K
′).

If K = Q and σm is surjective, as is the case in the proposition above, let L′

be a Galois subextension of Lm/L. Then K ′/K is Galois as well, and by taking

quotients from σm we obtain an isomorphism G(K ′/K) ∼= G(L′/L).

The following statements are a transposition of results by Uchida (cf. Lemma 1

in [Uch3]) where we set conditions to be able to use them in the m-step solvably

closed case, as the original proof still works after a few minor changes.

Proposition 4.2. Let m ≥ 2, and let σm : Gm
K ↠ Gm

L be a surjective homo-

morphism of profinite groups induced by a homomorphism of profinite groups

σm+2 : Gm+2
K → Gm+2

L with open image, where K = L = Q. Assume that the

image by σm of any subgroup of Gm
K satisfying property (⋆l) contains no torsion

elements. Then:

� Let M be the unique Z2-extension of Q. Then, M corresponds to itself by

σm (that is, σm(G(Km/M)) = G(Lm/M)).

� Let n ≥ 3 and let ζ2n denote a primitive 2n-th roots of unity of Q. Then,

the field L(ζ2n) corresponds to K(ζ2n) by σm.

� For n ≥ 3, let s be the Zp-rank of L(ζ2n). Then the unique Zsp-extension of

L(ζ2n) (which is contained in Lm) corresponds to the unique Zsp-extension of

K(ζ2n) by σm.

Proof. All the extensions of K and L we will be considering in this proof are

contained in either K2 or L2, and therefore are contained in Km and Lm.

� Consider the subgroup H ′ ⊆ Gm
L corresponding to G(Lm/M). Then, if

let M ′ be the subfield of Km determined by σ−1
m (H ′), if follows from the

discussion above G(M ′/K) must be isomorphic to G(M/L) ∼= Z2. It then

follows that M ′ =M .

� Consider the abelian extension L(
√
−1,

√
2) = L(ζ23)/L, which has Galois

group Z/2Z×Z/2Z, and observe that the only prime number that ramifies
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in L(ζ23)/L is 2. Let N be the extension of K corresponding to L(η23) by

σm, and observe that σm induces an isomorphism G(N/K) ∼= G(L(ζ23)/L)

by quotients. Since the Z2-extension of L corresponds to the Z2-extension of

K by σm, it follows that L(
√
−1) (which is contained in L(ζ23) corresponds

to K(
√
−1) by σ, and therefore the prime 2 is ramified in N/K.

Assume then any odd prime p ramifies in N/K, let p be any prime of Km

above p, Dp ⊂ Gm
K its decomposition group, and let Ip be the inertia sub-

group. Then, the image of Ip in G(N/K) is non-trivial. Since σm induces an

isomorphism G(N/K)
∼−→ G(L(η23)/L), this means that a 2-Sylow Ip,2 has

non-trivial image by σm. By Proposition 3.1.5 and Lemma 3.1.7, this means

a 2-Sylow subgroup of Dp is mapped injectively to a 2-Sylow subgroup of

some prime q of Lm with residue characteristic ̸= 2, which ramifies in the

extension L(ζ23)/L, where we have already seen only 2 ramifies. We then

get a contradiction and the only prime that ramifies in N/K is 2, which

means N = K(
√
−1,

√
2) = K(ζ23).

Furthermore, it now follows immediately that for every n ≥ 3, we can apply

the same idea of proof to L(ζ2n), as it is only ramified at 2, and show that

the extension corresponding to it by σm is also only ramified at 2, which by

equality of degrees over Q means L(ζ2n) corresponds to K(ζ2n) by σm.

� From the above point, we know L(ζ2n) corresponds to K(ζ2n) by σm, which

as σm is surjective by 4.1 means σm induces a surjective homomorphism

G(Km/K(ζ23)) → G(Lm/L(ζ23)).

Let us then consider the unique Zsp-extension of L(ζ2n), which we will denote

by L′. Let us also denote by K ′ the extension of K that corresponds to

L′ by σm. By taking quotients, this means σm induces an isomorphism

G(K ′/K(ζ2n))
∼−→ G(L′/L(ζ2n)) and K

′ is a Zsp-extension of K(ζ23).

We may now conclude by observing that K(ζ23) = L(ζ23), they have the

same Zp-rank s, which gives us K ′ is uniquely determined.

Our goal is now to recover the local conditions for our σ, as Uchida does.

Proposition 4.3. Assume m ≥ 2, and let σm : Gm
K ↠ Gm

L be a surjective ho-

momorphism of profinite groups induced by a homomorphism of profinite groups

σm+2 : Gm+2
K → Gm+2

L with open image such that K = L = Q. Assume that the

image by σm of any subgroup of Gm
K satisfying property (⋆l) contains no torsion

elements.

Let P the set of odd prime numbers. Then, a mapping of primes θ : P → PrimesnaL

(obtained as in 3.1.16) is defined, and for p ∈ P we have θ(p) = p.

Furthermore, if we let Pm−1 be the set of all primes of Km−1 with odd residue
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characteristic, a mapping of primes θm−1 : Pm−1 → PrimesnaLm−1
is also defined,

and this map preserves the residue characteristic (that is, it is compatible with θ).

Proof. Let q be an odd prime, and consider the field L(
√
q), where q ramifies. As

this is an abelian extension of L it is contained in L1. By Proposition 4.2 since

L(
√
q) is not contained in L(η23) the field K ′ corresponding to L(

√
q) by σm is

not a subfield of K(ζ23) as well. Then, it follows that there must be an odd prime

number p ramifying in K ′.

Let then p be a prime of Km above p, and consider a 2-Sylow subgroupDp,2 of the

decomposition subgroup Dp ⊂ Gm
K . Since p is odd char(p) ̸= 2, which means Dp,2

satisfies property (⋆l). Since p ramifies in the quadratic extension K ′/K, we also

have that the image of the inertia group Ip,2 ⊆ Dp,2 in the Galois group G(K ′/K)

is non-trivial, and since G(L(
√
2)/L) ∼= G(K ′/K), we have that σ(Ip,2) must be

non-trivial as well. By Proposition 3.1.5 it now follows that σm restricts to an

isomorphism on Dp,2, which then satisfies property (†2).
Since Dp,2 satisfies property (†2) (and so it satisfies (⋆2)), it follows by Proposition

3.1.14 there is a subgroup of Gm+1
K satisfying property (†2) which is mapped to

Dp,2 by the quotient, and in particular we get that the image of Dp in Gm−1
K

is mapped by σm−1 to a subgroup of the decomposition group Dq̄ ⊆ Gm−1
L of a

uniquely determined prime q̄ of Lm−1 by Proposition 3.1.13. We can then define

θm−1 at the image p̄ ∈ PrimesnaKm−1
of p.

We may also define the induced map θ at p, and let us denote r = θ(p). It

now follows that r must necessarily be ramified in the extension L(
√
q)/L, which

implies r = q. Since our starting assumption was that q was an odd prime number,

it follows every odd prime is in the image of θ.

Now, we want to show q = p. We may choose an integer n large enough so that

p does not split completely in K(ζ2n), and let s be the Zp-rank of K(ζ2n). Since

p does not split completely, we get that there are at most [K(ζ2n) : K]/2 primes

in K(ζ2n) dividing p. Furthermore, since it is an abelian extension of K = Q,

the Leopoldt conjecture holds in K(ζ2n), and so it follows s is greater than the

number of prime divisors of p.

Let us denote by E the Zsp-extension of K(ζ2n). If the inertia subgroup associated

to a prime divisor of p in E is of rank 1, then there is a quotient of rank at least

1 of the decomposition group Dq where the inertia subgroup maps trivially, it

follows that K(ζ2n) has an unramified Zp-extension, which is impossible.

Then, at least one of these inertia groups needs to contain a subgroup isomorphic

to Z2
p, and let us fix a prime p′ of K(ζ2n) above p such that this is true for the

inertia subgroup Ip′ of p
′.

Then, considering its image σm(Ip′), we may observe that the inertia group of some

prime q′ above q in the Zsp-extension of L(η2n) will contain a subgroup isomorphic

to Z2
p, but since q′ was above q this implies q = p. It then follows that θ, which
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we had already shown has every odd prime number in its image, is defined for all

odd prime numbers of K = Q and coincides with the identity.

From all these results, we get that if we start with a homomorphism σm+3 :

Gm+3
Q → Gm+3

L with open image, L = Q, the induced homomorphism σm+1 :

Gm+1
Q → Gm+1

Q is surjective and induces a map of primes θm : Pm → PrimesnaLm

where Pm is the set of all primes of Km with odd residue characteristic p, and this

map preserves the residue characteristic.

Proposition 4.4. Let m ≥ 1 be an integer, K = Q, and let σm+3 : G
m+3
K → Gm+3

L

be a homomorphism of profinite groups with open image. Assume that the image

by the homomorphism σm+1 : Gm+1
K → Gm+1

L of any subgroup of Gm+1
K satisfying

property (⋆l) contains no torsion elements. Then the induced map σm : Gm
K → Gm

L

is an isomorphism.

Proof. By Proposition 4.1, it follows that L = Q, the induced maps σm+1 :

Gm+1
K → Gm+1

L and σm : Gm
K → Gm

L are surjective. Furthermore, we also have the

map θ as defined in Proposition 4.3.

Let Λ be the subfield of Km corresponding to the kernel of σm. Let L′ be an

arbitrary finite Galois extension of Q, and let K ′ be the finite Galois extension of

Q corresponding to it by σm.

Since σm induces an isomorphism σ : G(Λ/Q) ∼= G(Lm/Q), we may take K ′ as a

subfield of Λ, and we have an induced homomorphism σ′ : G(K ′/Q)
∼−→ G(L′/Q).

Let p be an odd prime number splitting completely in L′/L, and observe that by

Proposition 4.3 θ(p) = p. Let p be a prime of L′ above p. Then, the decomposi-

tion group Dp′ ⊂ G(K ′/K) is mapped (isomorphically) by σ′ to a decomposition

group of a prime q′ of L′ above p. Then, it follows from this isomorphism that p

also splits completely in K ′/K. An application of Theorem 1.1.13 then gives us

an embedding of K ′ in Lm is contained in L′, but since they have the same degree

over Q this is an isomorphism K ′ ∼−→ L′.

Now, we may take the projective limit over the L′ contained in Lm of the sets of

isomorphisms K ′ → L′, which are finite and non-empty, and we obtain that there

exists an isomorphism τ : Λ
∼−→ Lm by ([RZ], Proposition 1.1.4).

Assume there exists a Λ′ be a non-trivial finite extension of Λ Galois over Q con-

tained in Km. Then, we can by τ construct an extension L′′ of Lm such that

G(L′′/Lm) ∼= G(Λ′/Λ). However, since Λ′ ⊆ Km, then G(Λ′/Q) is m-step solv-

able, and so must be G(L′′/Q) but this contradicts the maximality of Lm, and so

Λ = Km, which in turn implies he kernel of σm is trivial and σm is an isomor-

phism.

Under the assumptions of Proposition 4.4, when m ≥ 3 we are now able to

prove immediately that the induced isomorphism σm−3 has a unique field isomor-

phism τm−3 inducing it using Säıdi and Tamagawa’s result (see Theorem 2.1.6).
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However, since we have shown σm is an isomorphism, the map θm is naturally

defined at every prime of Km, as every subgroup of Gm
K is mapped isomorphically

by σm to its image, and we obtain the map of primes θm is defined for every

non-archimedean prime of Km, similarly to Corollary 2.2.11. We may then use

the construction of Theorem 3.2.7 we can get the following, which requires us to

lose fewer steps:

Theorem 4.5. Let m ≥ 0 and let σm+4 : Gm+4
K → Gm+4

L be a homomorphism

of profinite groups with open image and assume K = Q and the image by the

homomorphism σm+2 : Gm+2
K → Gm+2

L induced by σm+4 of any subgroup of Gm+2
K

satisfying property (⋆l) contains no torsion elements. Then L = Q, and the in-

duced homomorphism σm+1 : Gm+1
K → Gm+1

L is an isomorphism. Furthermore,

if m ≥ 2 there exists a unique isomorphism of fields τm : Km → Lm such that

σm(g) = τmgτ
−1
m for all g ∈ Gm

K.

Proof. We have that L = Q and σm+1 is an isomorphism from Proposition 4.1

and Proposition 4.4.

Assume then m ≥ 2. Proposition 4.3 gives us that the mapping of primes θm+1 :

Pm+1 → PrimesnaLm+1
is defined at the set of all primes ofKm+1 above an odd prime

number. However, since σm+1 is an isomorphism, it follows that for any odd prime

number l, any l-Sylow subgroup of the decomposition group of a prime of Km+1

above 2 is mapped injectively by the isomorphism σm+1, that is Pm = PrimesnaKm

and we are in the conditions of Proposition 3.2.1.

We are then able to use Theorem 3.2.7 to get the existence of our τm, and since

Q = L̃ is contained in Lm−1, and the uniqueness also follows from Theorem

3.3.5
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