
Efficient and symbolic computation of the H2 norm via the polynomial
Diophantine equation

Gareth H. Willetts and Timothy H. Hughes1

Abstract— The H2 norm is a widely used metric for charac-
terising and optimising system performance for a wide variety
of applications. This article presents an alternative method
for calculating the H2 norm which is more computationally
efficient than existing methods, and delivers greater numerical
precision, while also allowing for the H2 norm to be calculated
numerically or symbolically. A stability test of the system can
be performed at no added computational cost.

I. INTRODUCTION

The H2 norm, defined as the square root of the power
spectral density of a system’s output in response to zero
mean white noise input of unit power spectral density, is
a widely used metric for characterising system performance.
Example applications include optimising renewable energy
systems [1], mechanical systems [2] and the Linear Quadratic
Gaussian (LQG) controller design. These necessitate an ef-
ficient, numerically stable and precise method of calculation
of the H2 norm, due to its range of critical applications.

Current methods focus on solving Lyapunov equations
to compute the observability or controllability Gramian [3,
pp. 365-372], as is the case in MATLAB. However, the
number of unknowns in the Lyapunov equation scale with
the square of the degree of the system’s transfer function,
leading to large matrices that are computationally expensive
to solve. In contrast, this paper presents an alternative method
which calculates the H2 norm using an original algorithm to
calculate the solution to a polynomial Diophantine equation.
It was recognised in [4] that, for single-input single-output
systems, the H2 norm can be obtained by solving a linear
equation involving a Hurwitz matrix. Building on this result,
we exploit the structure of the Hurwitz matrix to produce a
series of recursive polynomial equations to yield an efficient
computation of the H2 norm. This method is both faster
than the inbuilt MATLAB function, shown through testing
in MATLAB r2021b, and more precise. Indeed, it can be
computed using exact arithmetic. Finally, it allows for the H2

norm to be calculated symbolically in terms of parameters of
the system, illustrated here through an example of optimal
design of a passive train suspension system.

We define the following notation, used throughout this
article. If x is a real number, then ⌈x⌉ rounds x up to the
next integer, and ⌊x⌋ rounds x down to the previous integer.
If x and y are integers, x%y denotes the remainder in the
division of x by y. Finally, let LC(q) denote the leading
coefficient of the polynomial q(s).

1Gareth H. Willetts and Timothy H. Hughes are with College of Engineer-
ing, Maths and Physical Sciences, University of Exeter, Penryn, Cornwall,
ghw205@exeter.ac.uk, t.h.hughes@exeter.ac.uk

II. METHOD
Our focus is on single-input, single-output systems char-

acterised by their transfer function G(s), which is a real,
rational function given as the ratio of two polynomials. The
H2 norm of such a system exists if and only if G(s) is
proper (i.e., lims→∞(G(s) = 0)), and stable (i.e., all of the
poles of G(s) are in the open left half plane), and throughout
this article this shall be assumed to be the case. In fact,
the method to be presented allows for a stability test to be
performed with no added computational effort. The transfer
function, G(s), is stated in terms of a numerator polynomial
c(s) and denominator polynomial a(s) as follows:

G(s) =
c(s)

a(s)
=

cn−1s
n−1+cn−2s

n−2+ . . .+c1s+c0
ansn+an−1sn−1+ . . .+a1s+a0

. (1)

Without loss of generality, let an > 0 and assume c(s) and
a(s) have no common roots in the closed right half plane.
All of the poles of G(s) are in the open left half plane; it
then follows that we require a(s) to have its roots in the
open left half plane.

In this article we will consider the case in which n is odd;
indeed, the method works similarly for transfer functions of
even degree, with slight changes to the initial polynomial
definitions. The full details of these differences, and the proof
of the method, will be published in an upcoming journal
paper.

Now, let
ce(s) = c0 + c2s+ . . .+ c2⌊n−1

2 ⌋s
⌊n−1

2 ⌋,

co(s) = c1 + c3s+ . . .+ c2⌈n−3
2 ⌉+1s

⌈n−3
2 ⌉,

z0(s) = (ce(s))2 − s(co(s))2, (2)

p1(s) = a1s+ . . .+ an−2s
⌈n

2 ⌉−1 + ans
⌈n

2 ⌉, (3)

and p2(s) = a0 + . . .+ an−3s
⌈n−1⌉

2 −1 + an−1s
⌈n−1⌉

2 , (4)

whereupon c(s) = ce(s2) + sco(s2).
To calculate the H2 norm, we recursively compute poly-

nomials z1, . . . , zn−1 and p3, . . . , pn+1 as follows. First, we
can compute z1, p3 by

z1(s) = LC(p1)z0(s)− s⌈
n−2
2 ⌉z0,n−1p1(s), (5)

p3(s) = LC(p2)p1(s)− sn%2LC(p1)p2(s) (6)

Next, we can compute z2, p4 by
z2(s) = LC(p2)z1(s)− s⌈

n−3
2 ⌉z1,n−2p2(s), (7)

p4(s) = LC(p3)p2(s)− s(n−1)%2LC(p2)p3(s) (8)

The polynomials p5(s), p6(s), . . . , pn+1(s), z3(s), z4(s),
. . . , zn−1(s) are further obtained by the following recursive
equations:



zi(s) =
LC(pi)

LC(pi−1)
zi−1(s)− s⌈

n−i−1
2 ⌉ zi−1,n−i

LC(pi−1)
pi(s),

(9)

pi+2(s) =
LC(pi+1)

LC(pi−1)
pi(s)− s(n−i+1)%2 LC(pi)

LC(pi−1)
pi+1(s)

(10)
for i = 3, 4, . . . , n− 1

where LC(pk) > 0 for all k = 0, . . . , n + 1 due to
G(s) being stable, and the degrees of the polynomials satisfy
deg(pi+2(s)) = deg(pi(s)) − 1, and zn−1(s), pn+1(s) are
scalar constants.

Having computed this sequence of polynomials, the H2

norm is then obtained as
zn−1

2anpn+1
.

The coefficients of pk+1 for all k ∈ 1, . . . , n will be integers
whenever the coefficients of the originating polynomials
p1, p2 and z0 are integers. In this case, all quantities can be
calculated exactly and efficiently using integer arithmetic.

III. RESULTS

A MATLAB r2021b implementation has been tested
against the in-built function provided by MathWorks. Tests
were performed on an i7-12700k processor and 16GB DDR4
RAM. The method outlined in this article outperforms the
inbuilt MATLAB implementation.

n MATLAB (inbuilt) MATLAB (New Algorithm)
5 0.707 0.00909
7 0.742 0.0146
9 0.784 0.0149

21 1.20 0.0323

Fig. 1. Execution times in ms for the computation of the H2 norm
of the transfer function G(s), averaged over 10000 runs with the first
1000 removed to warm-up the code, where c(s) =

∑n−1
i=0 si, a(s) =∑n−1

i=0

(n
i

)
si, for varying degrees n. Here, Inbuilt corresponds to the

MATLAB function norm, and New corresponds to the algorithm described
in Section II of this article.

Checking pi > 0 ensures that G(s) is stable and has little
effect on computation time; however, MATLAB requires the
isstable command to do this, adding a further 0.205ms.

IV. SYMBOLIC COMPUTATION

Wang et al. considered a train suspension detail, repeated
on each wheelset [5]. The paper explores suspension designs
of the form shown in Fig. 1, where the admittances Q1

and Q2 takes the form Q1(s) =
ks

s + K1(s) and Q2(s) =
kb

s + K2(s), where ks and kb denote stiffness coefficients
of the body and bogie, respectively, and K1(s) and K2(s)
correspond to the suspension admittances (to be designed).
The aim was to optimise passenger comfort, corresponding
to minimising the H2 norm of the transfer function from the
rail track displacement zr to the velocity of the train body
dzs
dt , herein denoted by J1.

The method outlined in this article can be applied sym-
bolically. For example, [5] considered the case in which the
suspension admittances Q1 and Q2 took the form Q1(s) =
ks

s + cs and Q2(s) = kb

s + cb, for some fixed stiffnesses
ks and kb, and where cs > 0 and cb > 0 are chosen to
minimise J1. The method provided in Section II of this
article can be applied to obtain an analytical expression for
J1 in terms of these parameters, where a local minimum is
found. This is supported by computing partial derivatives
with respect to each parameter, and solving the resulting
pair of bivariate polynomial equations to determine the local
stationary points. This can be used to prove that the function
has only one local minimum. Therefore, the unique global
minimum is determined, which agrees with the value for J1
reported in the paper up to the seventh significant figure.
The accuracy for this method exceeds the optimisation used
in the paper as it finds an exact expression for the global
minimum [5].

kw cw

Q2

Q1

zr

zs

mw

mb

ms

Fig. 2. Left: Schematic of a train suspension system. Here, ms denotes
the spring mass, mb the mass of the bogie, mw the mass of the wheel,
kw the tyre stiffness, cw the tyre damping coefficient, and Q1 and Q2

are suspension admittances to be designed. Right: Surface plot of the H2

norm of the transfer function from zr to dzs
dt

as a function of the suspension
damping coefficients cs and cb, for the case in which ms = 3500kg,mb =
250kg,mw = 350kg, kw = 8× 109N/m, cw = 670× 103Ns/m, ks =
141× 103N/m, kb = 1260× 103N/m.

Attempts to replicate the results of [5, pp. 818] have been
difficult; MATLAB r2021b claims the system is unstable
when attempting to calculate the H2 norm J3, when K1(s) =
K3rd

1 (s) and K2(s) = K3rd
2 (s) (here, J3 characterises the

dynamic wheel load).

REFERENCES

[1] Lescher, Fabien & Zhao, Yun & Martinez, André. (2006). Multiobjec-
tive H2/H∞ control of a pitch regulated wind turbine for mechanical
load reduction.

[2] Zhu Y, Qiu J, Tani J, Urushiyama Y, Hontani Y. Simultaneous
Optimization of Structure and Control for Vibration Suppression.
Journal of Vibration and Acoustics. 1999;121(2):237-243.

[3] Zhou K, Doyle J, Glover K. Robust and optimal control. Upper Saddle
River, NJ: Prentice Hall; 1996.

[4] Betser A, Cohen N, Zeheb E. On solving the Lyapunov and Stein
equations for a companion matrix. Systems & Control Letters.
1995;25(3):211-218.

[5] Wang F, Liao M, Liao B, SuW, Chan H. The performance im-
provements of train suspension systems with mechanical networks
employing inerters. Vehicle System Dynamics. 2009;47(7):805-830.

ACKNOWLEDGMENT
This work was fully supported by the UK Engineering

and Physical Sciences Research Council (EPSRC) grant
EP/T518049/1 for the University of Exeter.


