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ABSTRACT
Wind energy is one of the cleanest renewable electricity sources
and can help in addressing the challenge of climate change. One
of the drawbacks of wind-generated energy is the large space nec-
essary to install a wind farm; this arises from the fact that placing
wind turbines in a limited area would hinder their productivity
and therefore not be economically convenient. This naturally leads
to an optimisation problem, which has three specific challenges:
(1) multiple conflicting objectives (2) computationally expensive
simulation models and (3) optimisation over design sets instead of
design vectors. The first and second challenges can be addressed
by using multi-objective Bayesian optimisation (BO). However, the
traditional BO cannot be applied as the optimisation function in
the problem relies on design sets instead of design vectors. This
paper extends the applicability of multi-objective BO to set based
optimisation for solving the wind farm layout problem. We use a
set-based kernel in Gaussian process to quantify the correlation
between wind farms (with a different number of turbines). The
results on the given data set of wind energy and direction clearly
show the potential of using set-based multi-objective BO.

CCS CONCEPTS
• Theory of computation → Gaussian processes; Mathemati-
cal optimization; • Mathematics of computing → Bayesian
computation.

KEYWORDS
Surrogate modelling, Gaussian process, Renewable Energy, Uncer-
tainty quantification, Gaussian Process Over sets, Pareto optimality

1 INTRODUCTION
Climate change has become a primary concern that needs to be
promptly addressed. With the desire to implement its commitments
under the Paris Agreement [1], the European Union has proposed
a new set of targets for 2030. One of the renewable energies that
has increased in popularity is wind energy. This is due to the fact
that wind energy is amongst the cleanest source of electricity given
the very low greenhouse gas emission and low water consumption
[7]. One of the drawbacks of wind-generated energy is the large
space necessary to install a wind farm; this arises from the fact that
placing wind turbines in a limited area would hinder their indi-
vidual productivity and therefore not be economically convenient.
Because of this, the optimisation of the layout plays an important
role in energy yield. The complexity of this optimisation problem is
given by the computational power required to reproduce accurate

simulations of the wind across a wind farm. Furthermore, the objec-
tive function evaluations rely on the design sets instead of design
(or decision) vectors. For instance, power is an output of the whole
wind farm and not of one turbine. Therefore, to design an optimal
wind farm, we need to consider the correlations between wind
farms, which can have different number of turbines. In this paper,
we use a set-based kernel in Gaussian process model [8] and embed
it in the multi-objective BO. To the best of our knowledge, set-based
multi-objective BO has never been used to solve a wind farm layout
optimisation problem. To be summarised, the contributions of the
paper are:

(1) Handling computationally expensive multiple conflicting
objectives by using multi-objective BO.

(2) Handling correlations between different wind farms (as
different design sets) by using a set based kernel.

The rest of the article is structured as follows. In Section 2, we
provide an overview of the wake model and define the optimisation
problem. In Section 3, we explain the multi-objective BO using
Gaussian process with set based kernel. In Section 4, we provide
the results and finally we conclude and provide future research
directions in Section 5.

2 WIND FARM LAYOUT OPTIMISATION
2.1 Wake model
The wake effect considers the wind speeds facing different turbines
in a wind farm. The wind speeds for different turbines can be dif-
ferent and depend on the coordinates of turbines and the incoming
wind speed and direction. A simplified well-known wake models is
Jensen model [14], which can be used to estimate the wind speed for
each turbine. This model allows for fast computations of the wake
effect of turbines since it assumes that the wake behind the rotor
expands linearly and that it is only affected by the distance from
the turbine. An example to estimate the wind speed 𝑣1 at a distance
𝐷 from a turbine is shown in Figure 1. In the figure, 𝑣0, 𝑟0 and 𝑟1 are
downstream wind speed, turbine rotor radius and radius of cone,
respectively. The radius of the cone is: 𝑟1 = 𝑟0 + 𝛼𝐷 , where 𝛼 is
the decay constant and determines the expansion of wake with dis-
tance and can be estimated with an analytical formula: 𝛼 = 0.5

log( 𝑧
𝑧0

) ,

where 𝑧 is height of the turbine and 𝑧0 is the surface roughness of
the wind farm. In many cases, the 𝛼 is kept constant. After applying
the conservation of momentum, the reduced wind speed 𝑣1 is given

by: 𝑣1 = 𝑣0
[
1 − 1−

√
1−𝐶𝑇

(1+𝛼 𝐷
𝑟1
)2

]
, where 𝐶𝑇 is the thrust coefficient.
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Figure 1: Visual representation of the wake effect from the
Jensen’s model.

2.2 Objective Functions
One of the main objectives in designing a wind farm is to maximise
the power output. In addition, the cost of installing turbines needs
to be minimised. The power output depends on the distribution
𝑝 (𝑣, 𝜃 ) of wind speed (𝑣) and direction (𝜃 ) and the wind speed at
different turbines. The distribution 𝑝 (𝑣, 𝜃 ) can be modelled with
the historic data of wind speed and direction. In this way, the uncer-
tainty in wind speed and direction can be handled and quantified in
estimating the power output. In this work, we used an open source
data set provide by Engie [6] from 2013-2016.

The input to the wake model is the incoming wind speed, direc-
tion and location of wind turbines in the wind farm and the output
is the wind speed at different turbines. This wind speed is then used
to estimate the power curve using the following equation [9]:

𝑃𝑐𝑢𝑟𝑣𝑒 (𝑣, x) =
{
𝑎 · 1+𝑚 ·exp(−𝑣/𝜏)

1+𝑛 ·exp(−𝑣/𝜏) 𝑖 𝑓 𝑣 ≥ 𝑣𝑐𝑢𝑡_𝑖𝑛
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(1)

where (𝑎,𝑚,𝑛, 𝜏) are the parameters (values are taken from [9]) and
𝑣𝑐𝑢𝑡_𝑖𝑛 is the wind speed at which wind turbine becomes productive.
The x represents the coordinate or location of turbines and is an
input to the wake model. Once the joint distribution of wind speed
and direction and wind speed at different turbines is known, the
power output of wind farm is defined as [10, 11]:

𝑃𝑡𝑜𝑡 (𝑋 ) =
∑︁
𝑥 ∈𝑋

359∑︁
𝜃=0

𝑣𝑚𝑎𝑥∑︁
𝑣=0

𝑃𝑐𝑢𝑟𝑣𝑒 (𝑣, x)𝑝 (𝑣, 𝜃 )

𝑃𝑡𝑜𝑡 (𝑋 ) = Expected power of wind farm X
𝜃 = Wind direction
𝑣 = Wind speed

|𝑋 | = Cardinality of set X
= (or number of turbines in the wind farm)

𝑝 (𝑣, 𝜃 ) = Joint distribution of wind speed and direction

(2)

As can be seen in the equation above, the expected power of the
wind farm depends on the number of turbines. Two wind farms
with different number of turbines may give two different output
energy. Therefore, to model the objective function, we need to
find the correlation between wind farms, which can have different
number of turbines. The second objective is the cost, which can be

Algorithm 1 Multi-objective Bayesian Optimisation

Input: Data Set D = {(𝑋,𝑌 ) |𝑋 ∈ R𝑁×𝑑 𝑌 ∈ R𝑁×𝑤} and
F (x) = (𝑓1 (x), ..., 𝑓𝑤 (x))
Output: Evaluated solutions

1: while Termination criterion is not met do
2: Fit GP𝑖 ∀ 𝑖 ∈ [1, 2, ...,𝑤]
3: Find x′ after maximising the acquisition function 𝛼𝐸𝐻𝑉 𝐼

4: Expensively compute y′ = F (x′)
5: Append x′, y′ to D

computed as non-linear function of number of wind turbines [12]:

cost(𝑋 ) = |𝑋 | ·
(
2
3
+ 1
3
· exp(−0.00174 · |𝑋 |2)

)
(3)

The cost as the objective function depends only on the number of
turbines and does not use computationally expensive wake simula-
tion models.

3 MULTI-OBJECTIVE BO OVER SETS
In Multi-Objective BO, we start with a data set: D = {(𝑋,𝑌 ) |𝑋 ∈
R𝑁×𝑑 , 𝑌 ∈ R𝑁×𝑤}, where 𝑑 is the number of variables, 𝑤 is the
number of objectives and 𝑁 is the number of instances in the data.
With this data, we want to fit a Gaussian Process (GP) model that
helps predict objective functions without direct evaluation. In multi-
objective BO, there are two approaches to build surrogate models.
The first consists of building a GP on a scalarized version of ob-
jective functions [2]. The second consists in building a Gaussian
Process for each objective[4]. This latter option is what will be used
in this paper. Once we have fitted the surrogate models we aim to
use them to search for a new decision vector (x′ ∈ R1×𝑑 ) that max-
imises an acquisition function. In this work, we will be using the
expected hypervolume improvement (EHVI) [5]. We compute an
expensive evaluation (y′ = F (x′)), where F = (𝑓1 (x), ..., 𝑓𝑤 (x))
and y′ ∈ R1×𝑤 and add (x′, y′) to the existing data and repeat
the process. The optimisation finishes when a predefined termina-
tion criterion is reached. An outline of the algorithm is shown in
Algorithm 1.

3.1 Gaussian Processes Over Sets
A GP can be described as a multivariate normal distribution with
mean 𝝁 and covariance matrix 𝐾 [13]: 𝑓 ∼ N(𝝁, 𝐾). The mean 𝝁
and covariance matrix 𝐾 are both dependent on a kernel function
which quantifies the correlation between instances in the data. For
simplicity in calculations, we assume the zero mean. In this work,
we use a RBF (also known as squared exponential or Gaussian
kernel):

𝑘 (x1, x2,𝚯) = 𝜎2 exp
(
− ||x1 − x2 | |2

2𝑙2
)
+ 𝜎2𝑛𝛿x1,x2 ,

where 𝚯 = (𝑙, 𝜎, 𝜎𝑛) is the vector of hyperparameters to be esti-
mated when building themodel, | |x1−x2 | |2 is the squared Euclidean
distance between two decision vectors x1 and x2 and 𝛿x1,x2 is the
Kronecker delta function. The hyperparameters can be estimated
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by maximising the following likelihood function:

𝑝 (y|D,Θ) = 1√︁
|2𝜋𝐾 |

exp(y𝑇𝐾−1y),

Once the optimal parameters are found, we can predict the value
of the objective function of a new instance x′ using the following
posterior predictive distribution:

𝑝 (y′ |x′,D,Θ) = N(k(x′, 𝑋 )𝐾−1y, 𝑘 (x′, x′) − k(x′, 𝑋 )𝐾−1k(x′, 𝑋 )),
where k(x′, 𝑋 ) is the covariance vector between x′ and the training
data𝑋 . To deal with the problem of finding the correlation between
sets, we utilise Gaussian Process Over Sets [8] which is based on
the idea of using a set of decision vectors. In wind farm layout
optimisation, the x-coordinate and y-coordinate are the decision
variables and therefore, 𝑑 = 2 and the number of turbines 𝑛 vary for
different wind farms. The GP Over Sets [3] requires adjustments
to the traditional Gaussian Process algorithm, namely the way that
the correlation between sets is calculated. We compute correlation
between sets as follows:

𝑘𝑠𝑒𝑡 (𝑋1, 𝑋2) =
1

|𝑋1 | |𝑋2 |
∑︁

x𝑖 ∈𝑋1

∑︁
x𝑗 ∈𝑋2

𝑘 (x𝑖 , x𝑗 )

Two important advantages of using the kernel over sets mentioned
above is the resulting covariance matrix is positive-definite and the
order of the decision vectors in the set do not effect the correlations
between sets. The data set for building the model with 𝑁 sets is:

D = {X, 𝑌 |X = [𝑋1, 𝑋2, ...𝑋𝑁 ] with 𝑋𝑖 ∈ R |𝑋𝑖 |×𝑑 , 𝑌 ∈ R𝑁×𝑤}
The posterior predictive distribution becomes:

𝑝 (y′ |𝑋 ′,D,Θ) =N(k𝑠𝑒𝑡 (𝑋 ′,X)𝐾−1y,

𝑘𝑠𝑒𝑡 (𝑋 ′, 𝑋 ′) − k𝑠𝑒𝑡 (𝑋 ′,X)𝐾−1k𝑠𝑒𝑡 (𝑋 ′,X)),
where 𝐾𝑖, 𝑗 = 𝑘𝑠𝑒𝑡 (𝑋𝑖 , 𝑋 𝑗 ) and k𝑠𝑒𝑡 (𝑋 ′,X) is the correlation vector
between the new set 𝑋 ′ and the training data X. This formulation
is compatible with the objective function formulation that is used
in this paper since it allows to compute the correlation of instances
with different lengths, where the length corresponds to the number
of decision vectors in a set.

To have the same number of decision variables in maximising
the acquisition function, we impose an encoding. We represent a
wind farm with a finite number of grid points (where turbines can
be installed). In this layout, the 1𝑠 represent a turbine being present
in a specific grid point, and 0𝑠 represent an empty space in the grid.
Note that, the Gaussian process as the Bayesian model is trained on
two dimensional real coordinates, which are then encoded to 0 and
1 to maximise the acquisition function. An illustration of encoding
representation of a wind farm (with 20 × 20 grid points) is shown
in Figure 2.

4 RESULTS AND DISCUSSION
We applied the multi-objective BO over sets on a wind farm with
maximum of 400 turbines spaced in 20 × 20 grid1. The rest of
experimental settings are mentioned in the supplementary material.
The joint distribution of wind speed and direction estimated with
kernel density estimation is shown in Figure 2.
1We used the EHVI implementation available at https://liacs.leidenuniv.nl/~csmoda/
index.php?page=code

Figure 2: Visual representation of the binary encoding (left).
The 1𝑠 are the location of turbines and 0𝑠 are the empty space.
Probability density function of the joint distribution of wind
speed (m/sec) and wind direction (right).

Figure 3: Approximated Pareto front - Power is to be max-
imised and cost is to minimised.

After running the algorithm for 100 expensive evaluations, we
obtained an approximated Pareto front and is shown in Figure 3
(for the run with median hypervolume value). Each point on the
approximated Pareto front represents a wind farm with a different
number of turbines.

The set based kernel in Gaussian process consider the correlation
between wind farms. In other words, two wind farms with similar
x and y coordinates have a large correlation compared to two wind
farms with different x and y coordinates. For instance, consider
six wind farms (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ) shown in Figure 4. These wind farms
have different number of turbines. Some of the wind farms e.g. (‘a’
and ‘b’), (‘c’ and ‘d’) and (‘e’ and ‘f’) have turbines in the similar
locations. Therefore, we expect to see a higher correlation between
these pairs compared to e.g. (‘a’ and ‘e’) or (‘b’ and ‘d’). We show the
covariance matrix representing the correlation between these wind
farms in the figure. As can been seen, obviously the correlation
values are the largest among diagonal elements. After the diagonal
elements, the correlation values follow the kernel calculations. For
example, the wind farms in the decreasing order of correlation with
wind farm ‘a’ are (‘a’, ‘b’, ‘d’, ‘e’, ‘c’, ‘f’) and with wind farm ‘e’ are
(‘e’, ‘f’, ‘a’, ‘c’, ‘d’, ‘b’).

5 CONCLUSIONS
In this work, we applied Multi-objective BO with expected hyper-
volume improvement (EHVI) as the acquisition function to handle

https://liacs.leidenuniv.nl/~csmoda/index.php?page=code
https://liacs.leidenuniv.nl/~csmoda/index.php?page=code


Tinkle Chugh and Endi Ymeraj

Figure 4: Six wind farms and correlation among them. The
correlation matrix is generated with length scale, 𝑙 = (82 × 3),
amplitude 𝜎2 = 1, and noise variance 𝜎2𝑛 = 1.

the computationally expensive optimisation problem. To handle
the uncertainty in wind direction and wind speed, we modelled the
data with kernel density estimation. As the power output of the
wind farm relied on design sets, we utilised the kernel over sets in
Gaussian process and embedded it into the multi-objective BO. The
method was able to handle and quantify the correlation between
different wind farms with different number of turbines and resulted
in a set of approximated Pareto optimal solutions.

This paper presented the first attempt at trying to solve the wind
farm layout optimisation using Multi-objective BO over sets. We
believe that there are particular aspects of the model that can be fur-
ther investigated and improved. For example, finding correlations
between wind farms could be improved with a different set based
kernel. Moreover, the computational complexity of set based kernel
is𝑂 (𝑁 2 |𝑋 |2𝑑), which is higher than the computational complexity
𝑂 (𝑁 3) of traditional Gaussian process. Further research could pro-
vide ways of reducing the computational cost of the model. In this
work, we built a surrogate model for the cost function which was
not computationally expensive and was a function of the number of
turbines. This modelling of the cost function may not be required

to maximise the EHVI. Working on such heterogeneous objective
functions in Bayesian optimisation is also a future research direc-
tion. Utilising different wake models including computational fluid
dynamic solvers will also be considered as one of the main future re-
search directions. We believe that this work can lead to an increase
interest in set based optimisation especially in Multi-objective BO
which will widen its application to other research areas, especially
where the objective functions rely on a set of solutions.
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