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As an indispensable part of modern critical infrastructures, cameras deployed at strategic places and prime
junctions in an intelligent transportation system (ITS), can help operators in observing traffic flow, identifying
any emergency situation, or making decisions regarding road congestion without arriving on the scene.
However, these cameras are usually equipped with heterogeneous and turbulent networks, making the real-
time smooth playback of traffic monitoring videos with high quality a grand challenge. In this paper, we
propose a light-weight Deep Reinforcement Learning (DRL) based approach, namely sRC-C (smart bitRate
Control with a Continuous action space), to enhance the quality of realtime traffic monitoring by adjusting the
video bitrate adaptively. Distinguished from the existing bitrate adjusting approaches, sRC-C can overcome
the bias incurred by deterministic discretization of candidate bitrates by adjusting the video bitrate with more
fine-grained control from a continuous action space, thus significantly improving the Quality-of-Service (QoS).
With carefully designed state space and neural network model, sRC-C can be implemented on cameras with
scarce resources to support real-time live video streaming with low inference time. Extensive experiments
show that sRC-C can reduce the frame loss counts and hold time by 24% and 15.5%, respectively, even with
comparable bandwidth utilization. Meanwhile, compared to the-state-of-art approaches, sRC-C can improve
the QoS by 30.4%.

CCS Concepts: • Information systems → Multimedia streaming; • Computing methodologies →
Reinforcement learning; • Computer systems organization→ Real-time systems.
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1 INTRODUCTION
With the rapid development of urbanization and the continuous increase of vehicles on roadways,
an increasing number of social problems have emerged. For example, the urban mobility takes up
40% of all CO2 emissions of road transport and up to 70% of other pollutants from transport in
European Union (EU). In addition, traffic congestion from vehicles costs EU nearly 1% of its GDP
per year1. To address this problem, more and more financial supports are provided to build smart
transportation infrastructure and bolster the adoption of intelligent transportation system (ITS),
which can provide consumers an access to a smarter, safer, and faster way to travelling [1–3]. As an
indispensable part of ITS, real-time traffic monitoring system deployed at strategic places and prime
junctions, can help operators in observing traffic flow, identifying any emergency situation or road
congestion without arriving on the scene, where the videos are streamed to control centres for
quick decision making and situation awareness. Furthermore, the videos can be further analyzed
for traffic flow prediction, vehicle identification, and so on.

A typical framework of a traffic monitoring system usually encompasses two critical processes,
that is, the video ingestion process where the camera uploads the live video to the media server,
and the video analysis process where the uploaded videos will be observed by operators for quick
decision making and realtime situation awareness, and analysed by machine for future traffic flow
prediction [4], vehicle classification [5], and so on. However, one of the key limitations faced by the
traffic monitoring system is that the quality of video analysis is fundamentally constrained by the
video ingestion process due to the frequent network fluctuation. Specifically, the Quality-of-Service
(QoS) of video transmission from the traffic cameras to the control centres is of great significance
when operators make a decision based on the real time traffic monitoring videos. Flaws, such as
rebuffering or unsmoothness, may result in a wrong decision in the situations like determination of
liability for traffic accidents. Although many traffic monitoring systems have already been deployed
around the world, how to ensure the realtime smooth playback of traffic monitoring video with
high quality is still a grand challenge due to the heterogeneous and turbulent network. Different
from traditional professional live video services, videos from outdoor cameras are generated with
limited computing resource and uploaded via the unstable access networks, which incurs 17%
rebuffers [6]. On the one hand, network congestion always happens from time to time, especially
when the network path is shared with numerous cameras. On the other hand, the access networks
are always unstable and fragile, especially when some cameras are connected to the Internet with
cellular networks.

To cope with the bottleneck incurred by the turbulent network of the video ingestion, a promising
approach is to adjust the sending bitrate according to the fluctuation of the network bandwidth and
latency. Actually, there exist substantial works on improving the video streaming quality within
dynamic networks [7]. These works can be categorized into two classes. The first class is adaptive
bit rate streaming approaches for VoD (video on demand), which transcode the original video
into chunks with several candidate bitrates while viewers select a specific bitrate for each trunk
adaptively. The selection process takes into consideration of the buffer occupancy, the estimated
bandwidth, or both, based on statistical models [8] or machine learning models [9]. Another type
of works is rate control methods for live video streaming, which controls the sending bitrate by

1https://ec.europa.eu/transport/home_en
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estimating the network available bandwidth, thus making full use of the limited bandwidth of the
uploading path [10]. However, these works select the bit rate from a discrete and small decision
space with sacrificed QoS, thus striking a balance between QoS and the system efficiency when
serving millions of users geographically distributed around the world. Nevertheless, in the video
ingestion process of a traffic monitoring system, the videos are uploaded to a specific media server,
making fine-grained bitrate adjusting from a continuous decision space feasible.
In this paper, we propose a lightweight Deep Reinforcement Learning (DRL) based approach

sRC-C (smart bitRate Control with a Continuous action space) to enhance the quality of the video
ingestion process of a traffic monitoring system by adjusting the video bitrate adaptively in a
realtime manner. sRC-C can learn a control policy from the historical observations without using
any pre-programmed rules or assumptions about the underlay network. Besides, instead of selecting
a value from pre-given candidate bitrates, sRC-C outputs the optimal bitrate for the next segment
from a continuous action space, overcoming the bias incurred by deterministic discretization of
existing bitrate control approaches. Moreover, considering the limited computation capacity and
energy consumption at the cameras, sRC-C adopts simple fully connected neural network model
and carefully designed state space, making it light-weight and feasible on cameras with limited
computing resources.
In detail, sRC-C aims to keep the buffer in the sender at a “safe range" stably, balancing the

transmission latency and the network bandwidth utilization. It runs at the cameras and learns an
optimal bitrate according to the past buffer occupancy and throughput information at both the
decision interval level and frame interval level, combined with the past bitrate decisions and buffer
instantaneous variations. Furthermore, sRC-C adopts the trust region based method PPO [11] to
train the RL-based model with a continuous action space based on both real-world and synthesized
network trace. To the best of our knowledge, our work is the first of its kind to enhance the
video ingestion process by adjusting the video bitrate with more fine-grained control from a
continuous action space, overcoming the bias incurred by deterministic discretization of existing
bitrate adjusting approaches. This is reasonable as the video ingestion is from the camera to a
specific media server, distinguished from the video distribution side where one video is delivered
to hundreds of thousands of users. To verify the superior of sRC-C, we compare it with the state-of-
the-art approaches. Simulation results show that sRC-C can reduce the frame loss occurrence and
hold time by 24% and 15.5%, respectively, and improve QoS by 30.4% with comparable bandwidth
utilization.

The major contributions of the paper are summarized as follow:

• We present sRC-C, a DRL-based approach to enhance the quality of the video ingestion
process in a traffic monitoring system by adjusting the video bitrate adaptively in a realtime
manner. sRC-C can select the optimal bitrate from a continuous action space, overcoming the
bias incurred by deterministic discretization of the existing bitrate adjusting approaches.
• sRC-C adopts the fully connected neural network model and carefully designed state space,
making it light-weight and feasible on cameras with limited available resources.
• We evaluate sRC-C with real network traces and compare it with the state-of-the-art ap-
proaches. The results demonstrate the superiority of our proposed method.

The rest of the paper is organized as follows. Section 2 introduces the background of a traffic
monitoring system and summarizes the related work on improving QoS of the video transmission
under dynamic networks. Section 3 elaborates the design details of sRC-C, while Section 4 evaluates
the performance of sRC-C with real world network traces. Finally, we draw the conclusions in
Section 5.
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Fig. 1. The pipeline of a traffic monitoring system.

2 BACKGROUND AND RELATEDWORK
Traffic monitoring system. Fig. 1 depicts the framework of a typical traffic monitoring system,
which encompasses two critical processes. In the video ingestion process, the scene is captured
into raw data by the cameras deployed at strategic places and prime junctions, which encode
the raw data into a high-quality video. The video is then uploaded via the first mile network
to an media server for further processing. In the video analysis process, the operators can view
the uploaded video for quick decision making and realtime situation awareness, while the media
server can analyze the videos for future traffic flow prediction, vehicle identification, and so on. As
the overall performance of the system depends on the quality of video ingestion, uploading the
videos with high quality and low latency is of paramount significance. However, the heterogeneous
and turbulent networks of the cameras make the realtime video uploading with high quality a
challenging task.

Live video quality enhancement. Vantage [12] takes into account the time-shifted character-
istics of social live video streaming and the relationship between the video quality metrics (SSIM)
and bitrate, leveraging the surplus bandwidth resources during the period of high bandwidth to
re-upload the low-quality frames. LiveNAS [13] utilizes the computation resources at the media
server to apply neural super-resolution on the original stream, thus breaking the strong dependency
between the quality of live video and the ingesting client’s bandwidth. To the best of our knowl-
edge, our work is orthogonal with these approaches and further improvements can be achieved by
integrating them.

Rate control Methods. There are extensive work on realtime rate control [10, 14–16]. GCC [17]
has been proposed for the congestion control task in WebRTC, which controls the sending bitrate
by combining the delay-based controller placed at the receiver and the loss-based controller in the
sender. Rebera [15] decides whether to discard an encoded frame with the prediction of available
bandwidth, with the objective of maximizing the video transmission rate for interactive video calls
between two users. There also exist learning-based approaches to control the bit rate adaptively.
T-Gaming [16] adjusts the rate to network fluctuation based on deep reinforcement learning.
Distinguished with [16], which selects one bitrate from given candidates, our work can make
fine-grained adjusting from a continuous decision space.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: March 2022.
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Adaptive bit rate (ABR) streaming.Many efforts have been devoted to the adaptive bitrate
streaming for VoD [8, 10, 14, 18–21]. BBA [22] decides the bitrate of video chunks based on the buffer
occupancy information while [23] made decisions according to the estimated available bandwidth.
Recently, motivated by the success of deep learning [24–27], there emerge works applying learning-
based algorithms to adaptive bitrate [9, 28]. Pensieve [9] is the most representative one in the works
which combine learning methods with ABR tasks. Nevertheless, Pensieve was implemented for
chunk-based VoD systems which has slack limit on the delay. However, these works always attempt
to select one video bitrate from pre-given candidates, which make the decision less efficient.

3 METHODS
3.1 Overview
The access networks of cameras are always highly dynamic, which hinder the accurate prediction
of the available network bandwidth. Instead of adjusting the bitrate based on predicted network
bandwidth, another significant indicator of whether the current video bitrate is suitable or not is
the buffer occupancy in the streaming device. When the buffer occupancy grows too fast, buffer
overflow is likely to happen, leading to frame loss or even rebuffering events. When the buffer
occupancy decreases rapidly, it means that the bandwidth utilization is poor, resulting in low video
quality. In order to guarantee the liveness of the video streaming, the buffer occupancy should
be kept as low as possible. In other words, a good solution should keep the sending buffer of the
camera stably at a certain “safe range".
Actually, buffer-based adaptive bitrate solutions has already been explored in VoD streaming,

such as the BBA [22]. However, they are not straightforward to be used in rate control for a social
live video streaming. On one hand, they can only select one from pre-given candidate bitrates,
while the camera can have a wide and continuous optional range. On the other hand, they rely on
the proper tunable parameters which are difficult to be optimized and only work under the specific
scenario.
To this end, we propose a DRL-based approach sRC-C with a continuous action space to keep

the buffer stable and within a “safe range". sRC-C maps the historical observations on the buffer,
throughput and bitrates to the sending bitrate. As the cameras are always with limited computation
resources, we try to make our network structures as simple as possible while guaranteeing the
performance. Specifically, sRC-C adopts fully connected neural networks instead of using recurrent
neural networks (RNN) to simplify the DRL model. The agent gets the states from the environment
and takes actions regarding the bitrate decision based on the policy, which is parameterized by a
deep neural network. In order to train the model effectively, we have implemented a simulation
environment in Python at the frame level for the live video streaming in a real time manner.

3.2 Design
Specifically, sRC-C is based on deep reinforcement learning, which is defined by three key elements,
that is, states, actions, and rewards. Specifically, it considers a general setting where an agent
interacts with an environment in an iterative manner. For each time step, the agent observes some
states from the environment, and then determines an action with the objective to maximize the
expected cumulative discounted reward. In what follows, we will describe how we define the state
𝑠𝑡 , the action 𝑎𝑡 , the reward 𝑟𝑡 , and the training approach respectively.

States: The key idea behind the state space design is to strike a good balance between the
performance and the capacity of computation resources and energy on the cameras. Intuitively,
the more information the DRL can obtain, the higher performance it can achieve, but the higher
computation and energy consumption it would cost. In detail, instead of solely considering the

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: March 2022.
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Table 1. The details of the states.

Feature Sampling Interval Description
−→
𝐵𝐿𝑡 Decision Interval Buffer occupancies over past decision moments.
−→
𝐴 𝑡 Decision Interval Past bitrate decisions.
−→
𝑇𝐿𝑡 Decision Interval Average throughputs over the past decision intervals.
−→
Δ𝐵𝑡 Decision Interval Differences between the buffer occupancy at the moment

of decisions and the buffer occupancy at the frame interval
before the decisions

−→
𝐵𝑆𝑡 Frame Interval Buffer occupancies when the past frames were encoded.
−→
𝑇𝑆𝑡 Frame Interval Average throughputs over the past frame intervals.

buffer at the sender, sRC-C takes into account not only the observations of the buffer but also the
throughput to make decisions. Due to the limited capacity of computation resources and energy
on the cameras, the decision interval is set to 1 second to avoid too-frequent bitrate adjusting.
During the decision interval, it’s likely the available bandwidth on the network has already changed.
Therefore, instantaneous information at the frame interval about the throughput and the buffer
occupancy are also considered in sRC-C.

As listed by Table 1, we denote the state as 𝑠𝑡 = {
−→
𝐵𝐿𝑡 ,
−→
𝐴 𝑡 ,
−→
𝑇𝐿𝑡 ,
−→
Δ𝐵𝑡 ,
−→
𝐵𝑆𝑡 ,
−→
𝑇𝑆𝑡 }, which encompasses

historical observations collected at Decision Interval and Frame Interval. The past information
collected at Decision Interval (around 1s) contains patterns from a relatively long time period,
while the information collected at Frame Interval (around 30ms) includes the patterns from a short
time period. Specifically, where

−→
𝐵𝐿𝑡 is the buffer occupancy over past decision moments,

−→
𝐴 𝑡 is the

past bitrate decisions,
−→
𝑇𝐿𝑡 is the average throughput over the past decision intervals,

−→
Δ𝐵𝑡 is the

differences between the buffer occupancy at the moment of decisions and the buffer occupancy at
the frame interval before the decisions,

−→
𝐵𝑆𝑡 is the buffer occupancies when the past frames were

encoded, while
−→
𝑇𝑆𝑡 is average throughputs over the past frame intervals. Formally, if we denote

the frame interval as 𝑡𝑓 , the decision interval as 𝑡𝑑 , and the last 𝑖𝑡ℎ item of the frame-interval-level
buffer occupancy vector at time 𝑡 as 𝐵𝑆𝑡𝑖 , then 𝐵𝑆𝑡𝑖 is computed by:

𝐵𝑆𝑡𝑖 = 𝐵𝑡−𝑖∗𝑡𝑓 (1)

where the 𝐵𝑡 represents the buffer occupancy at time 𝑡 . While the last 𝑖𝑡ℎ item of
−→
Δ𝐵 the at time 𝑡 ,

is computed by:
Δ𝐵𝑡𝑖 = 𝐵𝑡−𝑖∗𝑡𝑑 − 𝐵𝑡−𝑖∗𝑡𝑑−𝑡𝑓 (2)

This can approximate the buffer occupancy gradient which is important to infer the transmission
states when making a bitrate choice.
Action: Current mainstream video delivery platforms, such as Youtube and Netflix, always

provide video services to millions of viewers simultaneously. In general, they often transcode
a video into several typical candidate bitrates, and offer a viewer the opportunity to select one
bitrate from the discretized candidates according to its network condition. This kind of coarse-
grained adaption can enhance the overall system efficiency significantly, but can compromise the
overall video quality. Distinguished from them, the cameras deployed for traffic monitoring are
only responsible for uploading the videos to a specific media server, making fine-grained bitrate
adjusting from a continuous decision space feasible.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: March 2022.
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Specifically, a continuous action space [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] is constructed, which means that the sending
bitrate can be any value between 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 . sRC-C will output the mean 𝜇𝑏𝑡 of the bitrate and
its variance 𝜎𝑏𝑡 , where 𝑅𝑚𝑖𝑛 ≤ 𝜇𝑏𝑡 ≤ 𝑅𝑚𝑎𝑥 , and 0 ≤ 𝜎𝑏𝑡 ≤ 0.1. To improve the ability of exploration,
the bitrate value 𝑎𝑡 is sampled from a normal distribution:

𝑎𝑡 ∼ 𝑁 (𝜇𝑏𝑡 , 𝜎𝑏𝑡 ) (3)

.
To guarantee that 𝑎𝑡 is between 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 , we update it based on

𝑎𝑡 ← 𝑐𝑙𝑖𝑝 (𝑎𝑡 , 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ) (4)

where 𝑐𝑙𝑖𝑝 (𝑥,𝑚𝑖𝑛,𝑚𝑎𝑥) denotes restricting the variable 𝑥 in range [𝑚𝑖𝑛,𝑚𝑎𝑥]:

𝑐𝑙𝑖𝑝 (𝑥,𝑚𝑖𝑛,𝑚𝑎𝑥) =


𝑚𝑖𝑛 𝑥 < 𝑚𝑖𝑛

𝑥 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥

𝑚𝑎𝑥 𝑥 > 𝑚𝑎𝑥.

(5)

Reward: sRC-C aims at keeping the buffer within a relative low range [𝐵𝑑 , 𝐵𝑢]. For the reward
function, we mainly consider the rationality of the actions and the buffer occupancy and the QoS,
represented as “action score” 𝑟𝐴𝑡 , “buffer score" 𝑟𝐵𝑡 and "QoS score" 𝑟𝑄𝑡 , respectively. And the reward
function 𝑟𝑡 is denoted as:

𝑟𝑡 = 𝜆1𝑟
𝐴
𝑡 + 𝜆2𝑟𝐵𝑡 + 𝜆3𝑟

𝑄
𝑡 (6)

where 𝜆1, 𝜆2, 𝜆3 is the weight for the three scores respectively.
For the “action score” 𝑟𝐴𝑡 , the action will be preferred which holds the bitrate stable when the

buffer is under the model’s control for the sake of smoothness and the codec’s efficiency. Moreover,
actions against the “intelligent choices” will be penalized such as increasing the bitrate when buffer
is out of control. 𝑟𝐴𝑡 is computed based on the buffer capacity, bitrate changes and the gradient of
the sending data size:

𝑟𝐴𝑡 =



0 𝐵𝑑 ≤ 𝐵𝑡 ≤ 𝐵𝑢,

| (𝑅𝑡 − 𝑅𝑡−𝑡𝑑 )/𝑅𝑡−𝑡𝑑 | < 𝜀

−2.0 𝐵𝑡 < 𝐵𝑑 | |𝐵𝑡 > 𝐵𝑢,

𝐷𝑡 − 𝐷𝑡−𝑡𝑑 < 0, 𝑅𝑡 > 𝑅𝑡−𝑡𝑑
−2.0 𝐵𝑡 > 𝐵𝑢, 𝑅𝑡 > 𝑅𝑡−𝑡𝑑
−2.0 𝐵𝑡 < 𝐵𝑑 , 𝑅𝑡 < 𝑅𝑡−𝑡𝑑
−1.0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7)

where 𝐷𝑡 represents the data size sent at time 𝑡 while 𝜀 weights the acceptable bitrate change ratio.
Note that we do not punish wrong buffer occupancy. Instead, we exhaust all the possible buffer
occupancy and punish wrong actions in each buffer occupancy circumstance.

For the “buffer score” 𝑟𝐵𝑡 , we penalize the action of the agent which makes the buffer occupancy
out of the ideal range [𝐵𝑑 , 𝐵𝑢],

𝑟𝐵𝑡 =

{
0 𝐵𝑑 ≤ 𝐵𝑡 ≤ 𝐵𝑢
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(8)

If the buffer occupancy 𝐵𝑡 is within the ideal range [𝐵𝑑 , 𝐵𝑢], the buffer score 𝑟𝐵𝑡 will be set to be 0,
otherwise -1. In this way, sRC-C aims at keeping the buffer occupancy lower than 𝐵𝑡ℎ to reduce the
transmission latency.
For the "QoS score" 𝑟𝑄𝑡 , we consider the standard quality metrics in industry referring to [29],

which encompasses 4 aspects: the latency, the buffer overflow frequency2, the buffer overflow
2The ratio between the total number of overflow events and the trace duration.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: March 2022.
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ratio3 and the average bitrate. As for the latency metric, we approximate it by the median of the
buffer occupancy in practice. Note that our buffer is in the streaming device so we focus on the
buffer overflow instead of buffering events in the receiver. Last but not the least, we leverage the
bandwidth utilization to replace the average bitrate metrics. In conclusion, 𝑟𝑄𝑡 is denoted as the
weighted sum of the four metrics similar to [30]:

𝑟
𝑄
𝑡 = − 𝛼 ∗ 𝑏𝑢𝑓 𝑂𝑐𝑐𝑢 − 𝛽 ∗ 𝑜𝑣𝑒𝑟𝐹𝑟𝑒𝑞 − 𝜁 ∗ 𝑜𝑣𝑒𝑟𝑅𝑎𝑡𝑖𝑜
− 𝜔 ∗ (1 − 𝑏𝑤𝑈𝑡𝑖𝑙)

(9)

where 𝑏𝑢𝑓 𝑂𝑐𝑐𝑢, 𝑜𝑣𝑒𝑟𝐹𝑟𝑒𝑞, 𝑜𝑣𝑒𝑟𝑅𝑎𝑡𝑖𝑜 and 𝑏𝑤𝑈𝑡𝑖𝑙 denote the Q3 (Third quartile) value of the buffer
occupancy, the overflow frequency, the overflow ratio and the bandwidth utilization respectively.

Training Approach: sRC-C adopts the trust region based method PPO [11] to train the RL-based
model with a continuous action space reinforcement learning, which is the advanced version of
TRPO [31]. Different from the policy gradient method, PPO formulates the learning process as an
optimization problem:

max
𝜃
E𝑡 [𝑚𝑖𝑛(𝑟𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )] (10)

where 𝜃𝑜𝑙𝑑 denotes the network parameter before it’s one-step updating, 𝑟𝑡 (𝜃 ) is given by 𝑟𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
, and the advantage function 𝐴𝑡 (same as 𝐴(𝑎𝑡 |𝑠𝑡 )) can be estimated according to Equa-

tion (11) leveraging a critic network. It represent how better the certain action 𝑎𝑡 is than taking a
arbitrary actions sampled from the policy to optimize given state 𝑠𝑡 , can be approximated by:

𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾𝑉 𝜋𝜃 (𝑠𝑡+1;𝜃𝑣) −𝑉 𝜋𝜃 (𝑠𝑡 ;𝜃𝑣) (11)

where the𝑉 𝜋𝜃 (𝑠𝑡 ;𝜃𝑣) is the value function of state 𝑠𝑡 , which means the expectation of the cumulative
discount reward from state 𝑠𝑡 following the policy 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ).

4 EVALUATION
4.1 Experiment Setup
We implement the model with Tensorflow’s Python API. In order to train the model more effectively
and flexibly, we first implement a simulation environment according to video ingestion process of a
live video streaming. In this way, we can train several agents simultaneously with the parallel-actor
based reinforcement learning methods, and make each of them experience different network traces
and different video traces (because we use arbitrary video frame sizes), which makes the model
easier to converge.

Simulation environment. The simulation environment takes the available bandwidth traces as
input, and approximates the uploading pipeline from the encoding process to the sending of bits.
The buffer in the streaming device is set to with the capacity of 5 seconds and is carried out at the
frame level for convenience. Current codecs can not guarantee the output bitrate of a single frame
is exactly a given value. For instance, if we want to output the video streaming at an average speed
of 1 Mbps, the streaming what we actually obtain may be with the instantaneous speed of 0.9 Mbps.
This is because that the contents and motions in the video are unpredictable. So we sample it from
a uniform distribution 𝑆𝑅

𝑓
∼ 𝑈 (𝑆𝑅𝑎𝑣𝑔 ∗ 0.8, 𝑆𝑅𝑎𝑣𝑔 ∗ 1.2) to get a frame size 𝑆𝑅

𝑓
based on the average

frame data size 𝑆𝑅𝑎𝑣𝑔 at a certain bitrate 𝑅 instead of using a series of video size traces. In this way,
the model will perform more robust for different videos when applying it to real systems. What’s
more, we assume that the size of an I-frame is 3 to 5 times of a P-frame in average with the IPPP
structure.
3The fraction of the cumulative hold time of overflow events over the trace duration.
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Network Traces. To make our model more robust to various network conditions, we collect the
training bandwidth traces from available public datasets: broadband upload traces from Federal
Communications Commission (FCC) [32], the 4G wireless bandwidth traces collected on mobile
devices from Ghent [33], and the 3G HSDPA-bandwidth logs from mobile HTTP steaming scenar-
ios [34]. What’s more, we synthesize some traces in the sine waves and rectangular waves styles for
the sake of intuitive analysis. We use the network traces from [35] for the performance evaluation,
which contains the bandwidth logs from three major ISPs: AT&T, TMobile and Verizon.

Evaluation Setup. When evaluating the performance of our model, we choose the network
traces from the Mahimahi dataset [35]. The trace set consists of 11 traces totally, where 8 traces
from Mahimahi dataset, 1 trace from Norway 3G cellular networks and 2 synthesize traces in
sine wave and rectangular wave styles, respectively. All these traces cover more than 100 minutes
totally. As for the network traces from Mahimahi, 3 of them have an average available bandwidth
higher than 5 Mbps, which is set to be the upper limit of the bitrates. We set the decision interval
as 1 second which is the highest bitrate switch frequency acceptable for the codec. The videos are
configured with 15 FPS and GOP length of 45 frames, that is, 3 seconds for 1 GOP. And we set the
ideal buffer range [𝐵𝑑 , 𝐵𝑢] as [0.2s, 1s] and the acceptable bitrate change ratio 𝜀 is set to be 0.1.
Moreover, to make the four sub-metrics have approximately equal contributions to the QoS, we set
𝛼 = 1, 𝛽 = 50, 𝜁 = 20, 𝜔 = 10 to evaluate the buffer occupancy, the overflow frequency, the overflow
ratio and the bandwidth utilization to 𝑄𝑜𝑆 , respectively.

Our models are trained on a machine with Intel(R) Core (TM) i7-7700K CPU@ 4.20GHz processor,
using the CPU mode of tensorflow 1.13.1. The training of the model takes tens of minutes and 104
episodes, each of which covers a period of 100s monitoring video with 8 parallel agents.

Alternative Approaches. To verify the performance of our proposed method, we also implement
a similar RL-based approach with discrete action space (referred as to DRL) [16], which selects
the next bitrate from a discrete action space and trains the neural network with the actor-critic
algorithm A3C. Besides, we replace the fully connected neural network model in DRL with LSTM-
based approach (referred as to LSTM-D) [27]. Specifically, sRC-C and DRL exploit a fully connected
network with one single hidden layer of 256 neurons while the LSTM-D model encompasses a LSTM
cell with 128 hidden states and the time length of 6. In addition, we migrate the representative buffer-
based ABR approach BBA-0 [22] to the social live streaming scenario, as an alternative approach.
Note that BBA-0 is used for video trunk downloading for the VoD service with a large buffer in
the receiver. We just leverage the idea to use a linear function mapping the buffer occupancy
to the target bitrate for the next video chunk and modify the algorithm proper for the video
monitoring settings. Besides, we implement an ideal bandwidth estimation methods using a sliding
window with the length of the decision interval applying to the real bandwidth traces (denoted as
BWE). With this methods, we just decide the target bitrate according to the real average available
bandwidth from last decision to current time with a factor of 0.95, in case the available bandwidth
suddenly decrease.

4.2 Experiment Results
Fig. 2 shows the comparison between the performance of sRC-C and that of four alternatives. We
mainly focus on the buffer overflow counts and buffer overflow hold time, which represent the
frequency and duration of frame loss respectively. What’s more, the bitrate hold time can reflect
the video smoothness and the extra overhead caused by switching bitrate for the codec. As depicted
in the figure, sRC-C outperforms its rivals in terms of reducing the frame loss (i.e., the buffer
overflow counts and duration) but switching the codec bitrate more frequently. Compared with
the state-of-the-art approach DRL, sRC-C can reduce the frame loss frequency and its duration
by 24% and 15.5%, respectively. Furthermore, sRC-C outperforms BWE, which decides the bitrate
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(a) Bandwidth Utilization (b) Overflow Count

(c) Overflow Hold Time (d) Total Switch Count

(e) Average Bitrate Hold Time (f) QoS

Fig. 2. The performance overview of the five methods.

based on the real bandwidth, and can reduce the frame loss frequency and its duration by 45.2%
and 21.1%, respectively. And we can find that LSTM-D and DRL can achieve similar performance in
our experiments, as they only differ from each other in terms of the policy network architecture.
Bandwidth utilization. To guarantee the smoothness and liveness of the video monitoring,

the bandwidth utilization ratio achieved by sRC-C is slightly lower than BWE. This is because that
BWE is based on the real bandwidth between the streaming device and the media server, which
can hardly be achieved in practice. However, sRC-C has the highest bandwidth utilization ratio
than the other three alternatives, followed by DRL and BBA-0.
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(a) Trace1 (b) Trace2

Fig. 3. The box-plot of buffer occupancy for two network traces. Trace1 is a network trace from ATT-LTE, and
Trace2 is a network trace from TMobile.

Quality-of-Service. As shown in Fig. 2(f), sRC-C can achieve the highest QoS compared with its
rivals, followed by BWE and DRL, while BBA-0 performs the worst. Specifically, sRC-C can improve
the QoS by 23.4% compared toBWE and 30.4% compared to DRL.
Buffer occupancy. It is crucial for the device of a live streamer to keep the buffer occupancy

at a low level to achieve as high liveness as possible. Fig. 3 shows the overall buffer occupancy
box-plots of two network traces. We can see that sRC-C can keep the buffer occupancy mostly stay
under 3 seconds while the BBA-0 can’t control the buffer effectively because of the small buffer
capacity. This means our model can guarantee much lower latency caused by the sending buffer.
On the other hand, low buffer occupancy would have stronger ability to adapt the dramatically
fluctuant bandwidth.

Total Switch Count. As shown in Fig. 2(d), sRC-C has the highest count. This is because sRC-C
can adjust the bitrate in a fine-grained manner by selecting bitrates from a continuous action
space, thus achieving better performance. However, a higher switch count will incur higher energy
consumption. In the wild, operators can strike a balance between the performance and energy
consumption at the camera by controlling the decision interval.

4.3 Computational Overhead
Note that sRC-C is suitable for video ingestion from the camera to a single specific media server.
However, when applying it to more-general live-streaming, where the video is delivered to hundreds
of thousands of users, it will incur high computation costs on the streaming server. In this scenario,
the streaming server should compute which bitrate to send to each user, which brings so high
overhead that the system cost will be intolerable. To evaluate the computational overhead of sRC-C,
we deploy sRC-C on an android device with Tensorflow Lite API to simulate the camera with
limited resources. The android device carries one Qualcomm Snapdragon 835 @ 2.45GHz processor
with 6 GB RAM. And we compare sRC-C with the other two learning-based approach DRL and
LSTM-D, where the LSTM-D model encompasses a LSTM cell with 128 hidden states and the time
length of 6. And we leverage the inference time to weigh the computational overhead needed by
the AI models. Experiments shows that the average one-step inference time of sRC-C, and LSTM-D
is 220.4 and 589.8 microseconds respectively. Compared with LSTM-D, sRC-C can save 62.63% time
consumption without performance degradation.
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5 CONCLUSION
In this paper, we propose sRC-C, a light-weight DRL-based approach with a continuous action
space to make the best codec bitrate choice in cameras, enhancing the quality of live video ingestion
by adjusting the video bitrate adaptively in a realtime manner. sRC-C can learn a control policy
from the historical observations without using any pre-programmed rules or assumptions about
the underlay network, trading off the transmission latency and network bandwidth unitization by
keeping the buffer of the sender at a low level stably. Moreover, considering the limited computation
capacity on cameras, sRC-C adopts a fully connected neural network model and carefully designed
state space, making it light-weight and feasible in the wild. Compared to the-state-of-art approaches,
simulations shows that sRC-C can reduce the frame loss occurrence and hold time by 24% and
15.5% respectively, and improve QoS by 30.4% with comparable bandwidth utilization.
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