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Calibration of expensive computer models using emulators for high-dimensional output fields can become increasingly

intractable with the size of the field(s) being compared to observational data. In these settings, dimension reduction

is attractive, reducing the number of emulators required to mimic the field(s) by orders of magnitude. By comparing

to popular independent emulation approaches that fit univariate emulators to each grid cell in the output field, we

demonstrate that using a basis structure for emulation, aside from the clear computational benefits, is essential for

obtaining coherent draws that can be compared with data or used in prediction. We show that calibrating on the

subspace spanned by the basis is not generally equivalent to calibrating on the full field (the latter being generally

infeasible owing to the large number of matrix inversions required for calibration and the size of the matrices on the

full field). We then present a projection that allows accurate calibration on the field for exactly the cost of calibrating in

the subspace, by projecting in the norm induced by our uncertainties in observations and model discrepancy and given

a one-off inversion of a large matrix. We illustrate the benefits of our approach and compare with standard univariate

approaches for emulating and calibrating the high dimensional ice sheet model Glimmer.
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1. INTRODUCTION1

A computer model, f(·), is a representation of a real-world process, given by a set of equations and parametrisations,2

that takes a vector of inputs x, and returns an output. This output may be a single value, a spatial field, a time series,3

or a combination of these across multiple different fields (e.g. climate models [1]). Computer models often represent4

complex processes, and may require long running times on expensive supercomputers. It is therefore only possible to5

evaluate the model at a small sample of values from the input space, hence statistical models (‘emulators’) are often6

used as a proxy, giving predictions and uncertainty for the output at values of x for which the outputs are unseen [2,3].7

Using an emulator of f(·), observations of the real-world process can be used to calibrate the inputs, x, of the8

computer model. This can be done either probabilistically, with a distribution given for the best setting of the input9

parameters (‘Bayesian calibration’, [4]), or via history matching [5–7]. History matching (HM) uses a Bayes Linear10

approach, with only expectations and variances required, and instead of returning a distribution, rules out regions11

of the input parameter space that are inconsistent with the observations, based on an implausibility measure and a12

threshold for removing runs. Alternative approaches have been developed with the aim of overcoming identifiability13

problems between model parameters and model discrepancy, in both a frequentist (as in [8,9]) and Bayesian (e.g.,14

[10,11] setting. In this article, our focus is on HM, although there are parallels with probabilistic calibration as in [4],15

with the HM implausibility similar to the negative log likelihood.16

High-dimensional computer model output has several different forms, requiring different approaches in order to17

emulate the output. For example, time series output often lends itself to an autoregressive approach [12,13], whilst18

spatial fields are often projected onto a low-dimensional basis given by the principal components of the output [3,19

14], or some other optimally-selected basis for calibration [15]. In these cases, emulators are then fitted for the20

coefficients in the reduced space. This reduced basis approach may be used for temporal (e.g. [16]) or spatio-temporal21

(e.g. [3]) output with few or no adjustments required. The low-dimensional basis method is attractive because it22

reduces the computation required, particularly when the field dimension is very large, whilst retaining the output23

correlation structure through the basis vectors. Such an emulation approach has been used in a number of different24

fields, including a multitude of climate model applications [15,17,18], ice sheet modelling [19], electro-physiology25

[20], and experiments imploding steel cylinders [3].26

Alternatively, every grid box or time point can be emulated individually [21–24]. As the number of emulators27

to be built scales with the size of the output, Gu & Berger set common regressors for the mean function, and fix28

the correlation parameters, across all grid boxes [23]. Validating emulators for thousands of grid boxes may be a29

challenge, and only an automated approach to this is generally feasible.30
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Given a set of emulators for the model output, how best to overcome the problem of high-dimensionality when1

calibrating these fields to data is not clear, owing to the requirement of inverting an (`× `)-dimensional matrix, for `2

the dimension of the observed field. One approach is to use emulated coefficients to reconstruct the original field, and3

compare this to the observations themselves [3,17,20], although for high ` and non-diagonal variance matrices, this4

becomes increasingly intractable. This is also an issue with the ‘emulate every output’ approach, where a summary5

of the full output is often used for calibration for the same computational reasons [24]. Instead, all quantities defined6

over the field can be projected onto a low-dimensional basis, with the representation of the observations compared to7

emulated output on the basis [14,18,19], with fast calculations in this reduced subspace.8

In this paper, we compare ‘every grid box’ and basis methods for emulation and their subsequent use in calibra-9

tion, demonstrating computational savings in terms of evaluating predictions and history matching, and explore other10

desirable properties of the basis emulators such as the physical coherency of posterior draws, which can be beneficial11

even when ` is small enough for other approaches to be tractable. Given emulators with a basis structure, we provide12

an efficient way to calculate the implausibility over the original field, so that history matching high-dimensional fields13

is tractable, only requiring repeated evaluations of the inexpensive subspace implausibility, without losing any infor-14

mation from the field implausibility, and allowing all quantities to be specified on the physically-interpretable field15

level. We demonstrate the importance of projection in the ‘correct’ norm, with the best input and general ordering16

according to the distance metric sensitive to the projection method. Due to the relationship between the implausibility17

and the likelihood, this result also has implications for probabilistic calibration if directly performed in a subspace.18

Overall, the main contributions here are methodology of how to generally perform history matching for large19

observational fields (where past studies only provided a framework, but not an approach that would work for general,20

non-diagonal variance matrices), and a method for deriving a suitable threshold for ruling out implausible regions21

of parameter space in such cases. Additionally, the existing literature tends to pick either an ‘emulate all’ or ‘basis22

decomposition’ approach at the start of an emulation study. We compare the two options here, and offer advice for23

practitioners in the field as to the benefits and drawbacks of each.24

Section 2 outlines emulation and history matching for high-dimensional fields. Section 3 compares general prop-25

erties of basis and univariate emulators. Section 4 considers history matching in the projected space, and provides a26

fast method for calculating the full implausibility given a basis structure, and guidance on setting a pragmatic bound.27

Section 5 emulates and history matches an output of the Glimmer ice sheet model, with discussion in Section 6.28
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2. SPATIO-TEMPORAL HISTORY MATCHING1

2.1 Emulation2

Emulators are used in place of the computer model when it is costly or time-consuming to run, with Gaussian pro-3

cesses a popular choice [2,25,26]. Emulation depends on running the true model, f(·), at n settings x ∈ X , giving4

ensemble F = (f(x1), . . . , f(xn)) ∈ R`×n, with f(xi) ∈ R`.5

2.1.1 Univariate emulators6

In this setting, each of the ` outputs of f(·), denoted by subscript i, is emulated as a Gaussian process, with:7

fi(x) ∼ GP(mi(x), Ri(x, x′)), i = 1, . . . , `, (1)

for mean function mi(·) and covariance Ri(·, ·). These functions may be fitted individually for all ` outputs, allowing8

different terms in the mean function, and different correlation lengths [22,24,27], or, for computational convenience,9

a fixed set of regressors may be imposed across all ` outputs, with a single set of correlation lengths estimated [23].10

The former approach offers greater flexibility, although is more time consuming.11

The number of emulated outputs in the above applications is varied. In [27], the output is global cloud conden-12

sation nuclei, with a spatial grid of 8192 cells repeated for 12 months, requiring a total of ` = 98304 emulators. [22]13

and [23] both emulate aspects of the spatial output of a simulator of volcanic pyroclastic flows, with the former using14

‘102 − 104’ emulators, and the latter emulating ` = 23040 coordinates.15

2.1.2 Basis emulation16

For validation and computational purposes, low-dimensional representations of the output are commonly used, re-17

quiring significantly fewer emulators than a univariate approach. The high-dimensional data is projected onto a basis,18

often given by the principal components across the model runs (the Singular Value Decomposition (SVD) basis), and19

the coefficients on this basis are emulated [3,17–20].20

To find the principal component (PC) basis, the ensemble mean, µ, given by averaging across the rows of F,21

is subtracted from each column of F, to give the centred ensemble, Fµ. The basis, Γ, is found via singular value22

decomposition as (and throughout Γ refers to this SVD basis):23

FT
µ = UDΓT . (2)
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The basis is truncated after the first q vectors γi ∈ R`, such that this set is sufficient to explain a high percentage of1

the variability in Fµ (commonly, 90% or 95%, but problem dependent), resulting in basis Γq = (γ1, . . . ,γq) ∈ R`×q.2

Projection of an output field, f(x), onto basis Γq is given by:3

c(xi) = (ΓT
q W−1Γq)

−1ΓT
q W−1(f(xi)− µ), (3)

for a positive definite weight matrix W that defines the norm of the space in which we perform the projection, with4

‖v‖W = vT W−1v the norm of vector v. For applications with the SVD/PC basis, this may be W = I` (L2 projection),5

or based on the observation error and discrepancy variances (see Section 2.2) as in [3] and [15]. A set of coefficients6

is mapped back to the original field for prediction or calibration purposes via:7

f(xi) = µ+ Γqc(xi) + ε, (4)

for error vector ε. If q = n, then ε = 0 for xi ∈ X = (x1, . . . , xn). Emulators are built for the coefficients on the first8

q basis vectors,9

ci(x) ∼ GP(mi(x), Ri(x, x′)), i = 1, . . . , q, (5)

with E[c(x)] = (E[c1(x)], . . . ,E[cq(x)])T , the emulator expectation for each of the q basis vectors, and Var[c(x)] =10

diag(Var[c1(x)], . . . ,Var[cq(x)]) the associated q× q variance matrix. We retrieve the `-dimensional expectation and11

variance of f(x) via:12

E[f(x)] = µ+ ΓqE[c(x)], Var[f(x)] = ΓqVar[c(x)]ΓT
q + Var[ε], (6)

where Var[ε] contains the variance due to the discarded basis vectors, Γ−q [17]. As truncation occurs after the majority13

of ensemble variability is explained, these removed directions generally have Var[ε] << ΓqVar[c(x)]ΓT
q and are often14

ignored.15

An alternative to the common approach above, the ‘Generalized probabilistic PCA (GPPCA)’, is given in [28],16

for settings where the data is correlated, allowing the vectors to be correlated, which may be a more appropriate17

assumption in some applications. Instead of simply calculating the PCA basis across the data, the GPPCA basis is18

given by the maximum marginal likelihood estimate, after the Gaussian process prior on the basis coefficients ci(x)19

has been marginalised out.20
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2.1.3 Basis selection1

The space of possible reconstructions, Γqc(·), is a q-dimensional surface in `-dimensional space, restricted by the2

basis. We therefore need to ensure that the chosen basis has certain desirable properties: firstly, that q << `; secondly,3

that emulation is possible when the model output is projected onto the basis, i.e. that the coefficients are not dominated4

by noise and vary smoothly in the inputs, (so we cannot just use arbitrary patterns); and finally that the observations of5

the real field that we wish to calibrate to, z ∈ R`, lie within its span (up to some error), so that we avoid guaranteeing6

that we rule out their basis representation. The truncated SVD basis satisfies the first two by its variance-maximising7

property, with the q leading basis vectors containing signal from the model output F that usually allows emulation8

of the coefficients. However, it does not use knowledge about z, and as our setting is often one with small n, high9

`, and a large, mostly unexplored parameter space X , we won’t generally by chance have output that is similar to10

observations.11

To assess the quality of a basis chosen for calibration, for a given ` × ` positive definite matrix W, [15] define12

the ‘reconstruction error’ of a basis Γq as:13

RW(Γq, z) = ‖z− Γq(Γ
T
q W−1Γq)

−1ΓT
q W−1z‖W. (7)

This quantity represents the difference between z and its reconstruction on the calibration basis Γq (i.e. we project14

z onto Γq and then map back to the original `-dimensional space), with respect to the weighting matrix W for15

‖a‖W = aT W−1a. This metric essentially describes how well the basis Γq represents z, and is analogous to the16

history matching implausibility defined in the next section.17

2.2 History matching18

Given an emulator(s) for a computer model, it is often of interest to calibrate the input parameters (that have unknown19

values, and are not observed in field experiments) using observations of the real-world system represented by the20

model. History matching rules out settings of the input parameters, x ∈ X , that lead to computer model output, f(x)21

(a vector of length `), that are not consistent with observations, z, given an error specification [5,7,29,30]. History22

matching uses a statistical model that links the true value of the system, y, with the computer model, generally given23

by [4]:24

z = f(x∗)⊕ η⊕ e, (8)
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where η (the discrepancy between the output given at the ‘best’ setting, x∗, of f(·), and reality, y) and e (the ob-1

servation error) are uncorrelated (indicated by ⊕) mean-zero terms, with positive definite variance matrices Ση and2

Σe respectively, i.e. given suitable error matrices, the observations can be represented as the sum of a deterministic3

function representing reality, and a noise vector. Rather than requiring full distributions on η and e, history matching4

only uses expectations and variances. When f(·) is expensive to run, it is replaced by an emulator (Section 2.1).5

The implausibility, I(x), for a parameter setting x is defined as the Mahalanobis distance between z and the6

predictive expectation from an emulator for the computer model:7

I(x) = (z− E[f(x)])T (Var(z− E[f(x)]))−1(z− E[f(x)]), (9)

where, under the model assumptions in (8), we have `× ` variance matrix:8

Var(z− E[f(x)]) = Var[f(x)] +Σe +Ση. (10)

Large values of this distance indicate that it is implausible that x = x∗. Using I(x) and an emulator for f(x) that9

gives some E[f(x)],Var[f(x)], ‘Not Ruled Out Yet’ (NROY) space contains all not implausible x, defined as [31,32]:10

XNROY = {x ∈ X |I(x) < T}, (11)

for bound T . If z−E[f(x)] is Normal, then I(x) ∼ χ2
`, for ` the rank of (10), and bound T may be set using a quantile11

of this distribution (e.g. T = χ2
`,0.995, so that P (I(x) < T ) = 0.995).12

Given an NROY space, there are a number of possible next steps. History matching is often an iterative procedure,13

with new batches of expensive model runs performed for a new design within the current NROY space, emulators14

refined, and a new NROY defined, with the aim of zooming in on the appropriate region of parameter space [32–34].15

Multiple iterations are often carried out, and performing Bayesian calibration within the resulting space may give16

more accurate results as the emulators should be improved (in terms of expectation and reduced variance) in the17

regions of space that are most consistent with the observations [26]. Additional metrics to match to can be introduced18

at later stages, e.g. we could initially identify the region of X that is consistent with some metric, then given this19

search for those consistent with other metrics. In [35], a model for temperature is history matched, with the resulting20

NROY space sampled from to provide a boundary condition for an ice sheet model, exploring both model parameter21

and boundary condition uncertainty.22
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By setting W = Σe +Ση in (7),RW(Γq, z) is equivalent to I (equation (9)) if the emulator variance Var[f(x)] =1

0, and hence we have that ifRW(Γq, z) > T , then the representation of z on the basis would be ruled out, regardless2

of whether the computer model can represent z (termed the ‘terminal case’). [15] alleviates this problem by rotating3

the full basis, combining important (in terms of explaining z) low order patterns with the leading vectors (to allow4

the construction of informative emulators), though any method that satisfies the described criteria can be used to find5

a suitable low-dimensional representation for emulation and calibration. The selection used by [15] has the following6

steps:7

1. Calculate the SVD basis, Γ, and truncate after q vectors such that ‘enough’ ensemble variability, given by some8

proportion v, is explained by Γq.9

2. IfRW(Γq, z) < T , then the truncated basis Γq is suitable.10

3. If RW(Γ, z) ≥ T , then there is not enough information in the ensemble to adequately represent z under error11

specification W, and hence more model runs are required, or a change in our tolerance to error.12

4. IfRW(Γq, z) > T andRW(Γ, z) ≤ T , find rotation matrix Λ∗ ∈ Rn×n where:

Λ∗ = arg minΛRW((ΓΛ)q∗, z)

such that (ΓΛ)q∗ explains at least proportion v of ensemble variability, and subject to ensuring leading vectors13

explain above some threshold (to aid emulation).14

5. Replace Γq with (ΓΛ∗)q∗ in subsequent emulation and calibration.15

In practice, the optimisation in step 4 can be performed iteratively to reduce the complexity of the problem.16

3. PROPERTIES OF BASIS EMULATION17

In this section, we compare the ‘emulate every grid box’ approach to a general basis emulation method, in terms of the18

theoretical improvement in efficiency and sampling, before applying both methods to a real application of emulating19

ice sheet thickness in Section 5. For the theoretical comparison, we assume that a suitable calibration basis Γq has20

been found, e.g. one that satisfies the requirements highlighted in Section 2.1.3, which may not always be a straight-21

forward task. The focus of [15] was how to select such a basis, hence we refer readers to that paper for guidance on22

how one might approach this. The advantages described here are inherent in any basis coefficient emulation approach,23

so are present in e.g. [3,19,20] and others referenced earlier, even if not explicitly addressed in each article.24
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3.1 Efficiency1

The computational advantages of having a basis structure in emulation manifest in several ways, including in emulator2

fitting, prediction and validation (and finally in calibration exercises, see Section 4).3

A clear benefit is in requiring only q emulators instead of `, even in the age of faster GPUs and greater paral-4

lelisation (any increase in computational power applies to both methods). The saving in time fitting emulators often5

allows a less automatic approach to be used, with an expert able to use their knowledge to fit better individual emu-6

lators. Additionally, it may be possible to more rigorously validate emulators when there are only q to consider. An7

automatic approach to validation, say with flags for when cross-validation or prediction from a validation set results8

in a large number of the true values lying outside a prediction interval, will catch a lot of the more obvious errors, but9

it can be difficult to diagnose all potential errors in such a way [36].10

For example, consider the validation plot in the left of Figure 1, which shows predictions made at 100 validation11

points, for a particular emulated output (either one of thousands, or for a basis coefficient). Note that the form of the12

data and emulator are not important here, and this is only meant to be illustrative of a potential method of failure,13

and that there are many ways that one could find such a situation. Here, 5 of the 100 true values lie outside the 95%14

emulator predictions (shown by the red points), and so we might say that this validates well based on this statistic,15

however there is clearly an issue with underestimating the truth when x is low. It is feasible to check q plots (e.g.16

for cross-validation, prediction on a validation set, predictions against individual parameters) by hand, and hence it17

is much easier to diagnose problems such as non-stationarity (e.g. [37]) and to apply more time and effort to emulate18

such outputs more accurately.19

A final benefit in terms of efficiency is when making predictions. We may wish to sample the input space and20

propagate uncertainty through the emulator (uncertainty analysis) for prediction of the field for its own sake or as a21

driving variable to another model for a large number of x ∈ X . This is substantially faster for q emulators compared22

to `. When performing a multi-wave history match, a similarly large number of emulator evaluations are required and23

such computational savings become even greater as the number of waves increases. Similarly, if we wish to consider24

multiple high-dimensional fields (e.g. temperature, precipitation, sea level pressure etc. in a climate model), emulating25

each with a basis representation provides further savings.26

Following the method of Gu & Berger, with a common set of terms in the mean function, the expectation can be27

calculated extremely efficiently for any choice of x [23]. However, the variance is more expensive (scales with `) and28

is required at each x for calibration and uncertainty analysis, hence if we wish to perform such tasks there is still a29

large computational cost associated with finding the variance for the ` emulators, before the frequent `× ` inversions.30
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3.2 Physical coherence of samples1

When derived from a set of model output, the PC/SVD basis will encode correlations and smoothness from the output,2

and the patterns extracted may have physical meaning. Predictions from the basis emulator will then generally look3

like plausible, physically-coherent model output, with samples from the emulator posterior retaining this property.4

Although the expectation of the independent emulators may look extremely similar to that of the basis emulator5

(and in fact adding spatial dependence between outputs to the independent emulators does not affect the mean given6

the formulation in [23] (see Theorem 6.1)), any dependence across outputs has been ignored so that if we draw a7

realisation of the field at x from the emulator posterior, the resulting field may not be smooth, and is not a realistic8

representation of the model (unless the emulator variance is small compared to the magnitude of variability in the9

output). For example, if we are performing uncertainty analysis on a chain of models, where the output of one model10

(or an emulator of this output) is used as the input to the next, it is important to be able to run subsequent models with11

plausible outputs of the previous models, with samples rather than just the expectation required in order to properly12

propagate uncertainty through the chain.13

More concretely, (6) gives the expectation and variance of f(x) given emulators for the coefficients, and if we14

instead draw a sample sq from the coefficient emulator, and obtain a sampled `-dimensional field by mapping this as15

in (6):16

sq(x) ∼ Nq(E[c(x)],Var[c(x)]), s`(x) = µ+ Γqsq, (12)

we see that all posterior samples are linear combinations of Γq, encoding correlations and patterns from this whilst17

accounting for the emulator variance.18

As a simple illustration of potential consequences here, consider a Monte Carlo estimate of the risk of exceeding19

a threshold in multiple locations. For example, an ‘inundation event’ might involve multiple co-located grid cells20

exceeding a threshold for a natural hazard model, and insurance companies might define such events in their policies21

or as part of regulatory compliance. To make the illustration as simple as possible, assume that we have two outputs,22

f = (f1, f2), and represent them in two different ways: i) as independent N(0, 1) distributions (the every grid box23

method), and ii) as a bivariate Normal (the correlated emulator method) with covariance 0.9. We incur some loss if24

both outputs are greater than 1.5 (our ‘inundation event’). Figure 1 (right) shows the distribution of min(f1, f2) for25

the UV (blue) and multivariate (orange) approaches. The shaded areas highlight the exceedance probabilities (0.43%26

and 4.95% respectively - an order of magnitude difference).27

This is an extreme example, and if we emulated such correlated outputs independently we would usually have28
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FIG. 1: Left: an example validation plot, with the true points coloured green if they lie within 95% prediction intervals, and red
otherwise. Right: The distribution of the minimum across the two grid boxes, for the uncorrelated (blue) and correlated (orange)
samples, with the red line at 1.5 indicating the threshold to be crossed.

similarly correlated expectations. However, this is not structurally encoded, and if we are considering interactions1

between many different outputs, then it is much more difficult to assess whether the correlation matters or not,2

particularly for uncertainty analysis. We revisit this idea for the ice sheet application in Section 5.2.3

3.3 Ensemble assessment4

It is trivial to identify the terminal case with a basis (Section 2.1.3), with this problem fixable by either selecting a5

better basis (rotation or similar), reassessing the observation error and model discrepancy in W, or by obtaining more6

model runs (seeing better runs or patterns). Theoretically, the univariate approach has full degrees of freedom, and7

can produce z perfectly due to the independence of the emulators. In practice, this will not be the case if z lies outside8

of the span of the ensemble, with extrapolation likely to be required in multiple locations to find z, hence we can only9

reassess our tolerance to error via Σe and Ση after performing the expensive task of building and sampling from `10

independent emulators.11

4. EFFICIENT HISTORY MATCHING12

Given an emulator, a common next step is to search for inputs leading to output consistent with the real world.13

We wish to calibrate using all available information, incorporating any knowledge about correlations from Σe,14
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Ση, and the model output into the resulting analysis. As ` increases, calculating I(x) (equation (9)), which does1

include all information about the `-dimensional field, becomes more expensive, due to the necessary inversion of2

an ` × ` variance matrix that varies with x (up to O(`3) complexity). To history match, the implausibility must be3

evaluated thousands or millions of times, particularly if either several waves are performed, or if the resulting NROY4

space is small, so that it is difficult to sample from [33,38]. The implausibility is equivalent to the negative log5

likelihood (without the log determinant), and probabilistic calibration requires repeated evaluations of the likelihood6

within an MCMC sampler, resulting in the same computational problem.7

For large `, as with emulation it is attractive to apply a low-dimensional basis approach to calibration. Given8

a basis, Γq, and emulators for the coefficients on these q basis vectors, we can history match in the subspace de-9

fined by Γq, as has been performed extensively for probabilistic calibration [3,14,18,19]. We define the ‘coefficient10

implausibility’, analogous to (9) in the subspace, as:11

ĨW(x) = (c(z)− E[c(x)])T (Var[c(x)] + Var[c(e)] + Var[c(η)])−1(c(z)− E[c(x)]), (13)

where subscript W indicates that projection of `-dimensional quantities is performed with respect to positive definite

matrix W, i.e. z, Σe and Ση are projected onto basis Γq as follows (see [15] for proof that projection PW is optimal):

PW = (ΓT
q W−1Γq)

−1ΓT
q W−1, c(z) = PWz,

Var[c(e)] = PWΣePT
W, Var[c(η)] = PWΣηPT

W.

The distance metric in (13) only requires inversions of q × q matrices for q << `, hence is significantly faster than12

evaluating I(x) in general. The covariance matrices are assumed to be fixed, and the resulting implausibility will be13

sensitive to their choice of structure. The discrepancy Ση is often the harder one to specify, however if an NROY14

space is empty then this may suggest that it has been misspecified (see [39] for treating discrepancy as tolerance to15

error).16

4.1 Efficiently calculating implausibility17

If the emulator for f(x) has a basis structure, and we have equality between the W in the projection norm and the18

fixed variance matrices of the field implausibility, we can write the full implausibility I(x) such that only a single19

` × ` matrix inversion is required. All of the variability due to x is evaluated within a q × q inversion, and NROY20
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space can then be defined with repeated evaluations of the fast ĨW(x).1

Theorem 1. For basis Γq, and W = Σe +Ση, we have:2

I(x) = RW(Γq, z) + ĨW(x), (14)

and hence can write3

XNROY = {x ∈ X |ĨW(x) < T −RW(Γq, z)}, (15)

with T = χ2
`,0.995.4

That is, if all quantities are projected with W = Σe+Ση, then we can exactly evaluate I(x), as the sum ofRW(Γq, z),5

the reconstruction error of z on basis Γq (given in (7)), and ĨW(x), the W-projected subspace implausibility at x. The6

reconstruction error is fixed for all x ∈ X , requiring a one-off calculation, whilst ĨW(x) involves only q-dimensional7

multiplications, for small q. The proof (given in the Appendix) relies on the well-known Woodbury formula [40,41],8

also used for efficient calculations by [3] (for inverting the high-dimensional matrix in the calibration likelihood) and9

[42] (outer product emulation).10

From this result, we see that it is critical to ensure that the chosen basis, Γq, does not result in the terminal case:11

if RW(Γq, z) > T , then the bound for ĨW(x) is negative, and so all x ∈ X are ruled out and XNROY is empty. If12

the observations can be represented perfectly by the basis (RW(Γq, z) = 0), then I(x) = ĨW(x), suggesting that the13

chi-squared bound with ` degrees of freedom is also appropriate in the q-dimensional subspace (depending on the14

rank of the variance matrix when the emulator variance matrix, which is of rank q, is included).15

Projecting the relevant objects in ĨW(x) using e.g., L2 projection instead of with the W norm will break the16

equality in (14). Although calculating the coefficient implausibility with L2 projection can give similar results to W17

projection (as for some choices in Section 5.5), and hence will also have a strong correlation to the true I(x) in these18

cases, in general the correlation decreases as more structure is added to Σe and Ση. In general, to ensure that no19

information is lost from the full field implausibility, it is important to project using W, as in (14).20

Given that we have a method for calculating the `-dimensional I(x) efficiently if we make the assumption of21

emulation via a basis representation, this gives strong motivation for using such a basis when we wish to calibrate,22

matching to the whole output field without great expense and without needing to form the ` × ` emulator variance23

matrices, whilst taking advantage of the other benefits of basis emulation discussed in Section 3.24
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4.2 History matching bound1

When faced with a complex, high-dimensional output field, and a small number of runs, at the start of a history2

matching exercise the emulator variance may be large relative to the other sources of uncertainty, so that ĨW(x) < T−3

RW(Γq, z) for all x, and nothing is ruled out. In such a situation, using χ2
q as the bound instead could be appropriate4

(there are q directions in the dominant emulator variance). However, lowering the bound from T −RW(Γq, z) risks5

ruling out runs that we should not. Suppose that for some x̃ ∈ X we have:6

Var[f(x̃)] = 0, χ2
q,0.995 < ĨW(x̃) < T −RW(Γq, z), (16)

so that we have no emulator variance at x̃, and the implausibility at this point lies below the bound and x̃ should not7

be ruled out. If the emulator variance is higher for other inputs in X , we may have:8

ĨW(x) < T −RW(Γq, z) ∀x ∈ X , (17)

so that no space is ruled out with the usual bound. However, we should not use χ2
q,0.995 instead as this will incorrectly9

rule out x̃.10

A possible strategy for estimating a suitable bound T̃ is as follows: let Vmin = minx∈X Var[c(x)] be the minimum

emulator variance, and let C∗ be the set containing all coefficients that are considered close enough to z in the subspace

when there is zero emulator variance, i.e. coefficients that lie in the true NROY space, and set:

C∗ = {c : (c(z)− c)T (PWWPT
W)−1(c(z)− c) < T −RW(Γq, z)},

T̃ = max{max
c∈C∗

(c(z)− c)T (PWWPT
W + Vmin)

−1(c(z)− c), χ2
q,0.995}, (18)

XNROY = {x ∈ X |ĨW(x) < T̃}.

Calculating the distance metric for c ∈ C∗ with Vmin gives a lower bound for the actual ĨW (increasing the emulator11

variance decreases ĨW), hence T̃ ensures that we do not incorrectly rule out good model output.12

As Vmin → 0 (either because there is no nugget in the emulator, or because we have a more accurate emulator13

at a later wave), then T̃ → T −RW(Γq, z). Therefore, this estimate is consistent with the theoretical result, with an14

adjustment using Var[c(x)] for practicality.15

For the x̃ example above, this method would result in no change to the bound as Vmin = 0, so we would still be16
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unable to rule out any of X , which may suggest that the tolerance to error is too large. In most cases, (18) will allow1

a larger percentage of parameter space to be ruled out in an accurate manner, without resorting to the q-dimensional2

assumption which can have negative consequences if there is a large degree of variability in the emulator variance.3

4.3 Calibration efficiency for univariate emulators4

With independent emulators for each grid box, there is no basis structure to emulator predictions, and the result from5

Theorem 1 does not apply. Although the ` × ` emulator variance Var[f(x)] is diagonal due to the independence as-6

sumption, Σe and Ση will generally not be, hence there is an expensive inversion that varies with x. If we assume that7

W = Σe + Ση is diagonal, then I can be calculated reasonably quickly, involving multiplication of `-dimensional8

vectors at each x. Given the fixed costs required for Theorem 1 (W−1, projections of z,Σe,Ση), at x we only have9

q-dimensional quantities, and as q << ` this method will still generally be faster, despite the matrix inversion. Re-10

gardless, an uncorrelated error structure will not generally be a reasonable assumption, hence the flexibility afforded11

by the structure in Theorem 1 is beneficial.12

Given emulators for every grid box, for efficiency we could instead use the univariate implausibility for each13

output individually, ignoring any correlations in the variance matrices, or match to global summaries or particular14

aspects of the output, as is commonly done for climate model output. For example, [24] history match to 9 regional15

summaries, and [43] use individual locations chosen to be representative of the full output. For correlated, smooth16

output these strategies should be successful, though using summaries can lose some of the original information and17

fail to rule out poor model runs, e.g. due to competing biases cancelling out, which should not be an issue with the18

basis structure and appropriate projection from Theorem 1. With such computer models generally being expensive,19

exploiting the information as much as possible at each wave can be important.20

5. CASE STUDY: GLIMMER ICE SHEET MODEL21

In this section, we apply independent and basis emulation methods to an ice sheet model. Section 5.1 compares22

the accuracy of the emulators for various metrics. Section 5.2 evaluates qualities of posterior samples. Section 5.323

compares the computational time required for emulating and calibrating with each method, Section 5.4 compares24

results for history matching and Section 5.5 considers sensitivity to the chosen projection method.25

Glimmer is an ice sheet model that simulates the growth and retreat of ice sheets over North America [44]. The26

output here is spatio-temporal fields of ice thickness over a 194× 150 spatial grid every 100 years from 21,000-6,00027

years ago, covering the retreat of the North American ice sheet from the last glacial maximum to the end of the last ice28
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FIG. 2: Left: proxy observations. Centre: mean of the training data. Right: difference between the observations and the mean, all
in 1000s of metres. The data is plotted on a projected grid (Lambert Azimuthal Equal Area projection centred at (45,-95)).

age. In this study, we consider only the ice thickness at 21,000 years ago, and use an ensemble F = (f(x1), . . . , f(xn))1

of n = 500 model runs from [35], where there are a total of 11 input parameters that may be active at the start of the2

deglaciation: 7 parameters controlling the physics of the ice sheet itself, and 4 parameters controlling the boundary3

condition temperature.4

A high proportion of the 29,100 grid boxes always have zero ice thickness as they lie beyond the maximum ice5

sheet extent at 21,000 years ago. We filter out grid boxes, generally around the edges of the ice sheet, where there6

is commonly (for at least 20% of runs) no ice, resulting in an output field with dimension ` = 8922. We remove7

ensemble members that contain different ice patterns, such as patches of zeros within the boundary of the ice sheet,8

and construct an n = 250-member ensemble where the ice extent is relatively consistent. In the vast majority of9

locations, thickness is significantly different from zero, so that negative predictions are not an issue and our emulator10

assumptions are valid, and this dataset is appropriate for comparing the two emulation methodologies. We split the11

filtered ensemble into training (100 runs, roughly 10 × number of parameters, following [45]) and validation (15012

runs) sets.13

There are no geological observations of ice sheet thickness thousands of years in the past, only estimates of the14

extent of the ice sheet and its volume at various times. For modern ice sheets, maps of ice thickness exist (e.g. [46] for15

Greenland). So that we have a map of ice thickness to calibrate to, we select some x∗ from the validation set, and take16

this known f(x∗) to be proxy observations z. Figure 2 compares our proxy observations and the mean of the training17

data, showing that there is generally thicker ice at x∗ than in the ensemble in general (red in the 3rd plot).18

To calibrate, we require an error specification as in (8). We set Ση = 0 as by construction we know that there19

exists x∗ such that z can be produced by the model, up to e, and define Σe using a squared exponential kernel based20
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on the distance between spatial locations (given by si = (si1, si2)), with (i, j)th entry:1

Σij
e = σ2exp{−

2∑
k=1

|sik − sjk|2/δk}, (19)

with correlation lengths δ = (0.05, 0.05) and variance σ2 = 0.01. This choice of δ ensures that there is some2

correlation between errors at close spatial locations, which is a reasonable assumption for physical fields, whilst the3

variance has been chosen such that only a small region of the input space leads to output that is consistent with z4

(here, 1.2% of the 250 model runs lie in the true NROY space). We often find this to be the case for complicated5

computer models of physical systems (e.g. climate model output in [15]).6

Overall, the approach to emulation and history matching (for the basis method) is summarised as:7

• Calculate PC basis across training ensemble F = (f(x1), . . . , f(xn)) ∈ R`×n (as in (2));8

• Apply basis selection algorithm if required, returning Γq where the 1st few vectors explain the majority of9

variability in F (Section 2.2);10

• Project model runs f(xi) onto chosen basis (as in (3));11

• Emulate coefficients via Gaussian processes (as in (5));12

• Calculate implausibility I(x) (using (14)), given z,Σe,Ση, emulators.13

5.1 Emulation14

We emulate the model output using the 100 training runs, both by building emulators for every grid box (UV), and15

using a basis choice (BAS). For the basis Γq we consider both the PC basis and a rotated basis [15] (so that z is16

represented as well as possible given Σe and the 100 training runs, as described in Section 2.2). These bases have17

q = 4 and q = 5 basis vectors respectively, both explaining greater than 90% of the variability in the training data18

(requiring 95% to be explained would require a further 9-10 basis vectors, and attempting to emulate these resulted19

in poor predictive ability. If this loss of information results in poor performance compared to UV, then the basis and20

emulation choices may need to be revisited).21

Figure 3 compares the difference between z and its representation on the truncated PC basis (left) and the trun-22

cated rotated basis (right), with this anomaly reduced by the latter. There remain errors towards the edges of the ice23

sheet, but the smooth patterns in the centre of z, that the truncated PC basis could not capture, are represented more24

Volume x, Issue x, 2021



18 J.M. Salter & D.B. Williamson

FIG. 3: The difference between the observations and their reconstruction in 1000s of metres, with the truncated PC basis (left)
and the truncated rotated basis (right).

Type: UV UV+ BAS BAS+ PC
Number of emulators ` = 8922 ` = 8922 q = 5 q = 5 q = 4
RMSE, validation set 0.1510 0.1489 0.1616 0.1592 0.1628

RMSE, x∗ 0.1574 0.1554 0.1076 0.1187 0.1207
W error, validation set 0.9979 1.0735 0.9223 0.8701 0.8934

W error, x∗ 1.0153 1.2293 0.3816 0.4377 0.4450

TABLE 1: Validation summaries for different sets of emulators, for chosen best input x∗. For the validation set, the
reported RMSE and W error is the median across the 150 runs. The RMSE and W error are only comparable across
the emulator types, not with each other.

accurately by the rotated version. Minimising the error is generally important, so that we can explain as much of the1

modelled process as possible via our emulators, and avoid assigning explainable patterns to random error or system-2

atic bias, hence we mainly focus on the rotated choice, and this is the choice referred to as method BAS hereafter.3

When constructing emulators, we use the RobustGaSP package [47] as it is fast at fitting large numbers of GPs.4

We fit emulators with both a constant mean and a linear mean, and allow the correlation lengths to vary across the5

univariate emulators. Doing so means that the expectation for the full field at x cannot be calculated as efficiently6

as in [23], but as we require the variance and implausibility metric thereafter (more expensive), and as calibration7

applications have generally allowed for this full flexibility, we allow this here. For the basis emulators, we fit emulators8

with a constant mean, a linear mean, and with an automatically chosen mean function (a luxury we can afford owing9

to the small number of GPs required). We use the default kernel choice in RobustGaSP, the Mateŕn 5/2 kernel.10

We compare the performance of each set of emulators across the validation set and at x∗, with Table 1 showing11

several summary statistics for each. The sets of emulators compared are UV (constant mean for each grid box), UV+12

(the most accurate out of constant mean and linear for each grid box), BAS (constant mean for the basis coefficients),13
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BAS+ (best of constant, linear, and structured mean), and PC (constant mean only for this basis, as adding structure1

did not improve these metrics). In general, the UV+ and BAS+ options add some accuracy, but the constant mean2

approach performs relatively well in this example.3

The table gives the median RMSE across the 150 validation runs and at x∗, and the median error when scaled by4

W. When we consider the RMSE, the two UV emulators generally outperform all basis options, with UV+ giving a5

slight improvement. At x∗, the accuracy is substantially better for BAS, BAS+, and PC. When we instead consider6

the error in the W norm, all basis methods now outperform the UV options, both in terms of the validation set and7

at x∗. It is unsurprising that the BAS methods perform better in the W norm, as these correlations are accounted for8

when we project onto the basis. Likewise, if we consider the errors independently, then it is reasonable to expect that9

the UV method will perform better, as it is unconstrained by correlations, and is attempting to fit as well as possible10

in each grid box, rather than trading off between related grid boxes. The UV+ method is worse than UV in the W11

norm as the predictions may change rapidly between adjacent grid boxes when switching from a constant mean to12

linear mean, and whilst in terms of L2 error it is more accurate, this is not true if the errors are correlated.13

At x∗, the basis emulators are more accurate in this example, regardless of the basis choice, possibly aided by14

the correlated structure built into the emulators allowing more accurate extrapolation to this part of space. For the UV15

methods, we need to extrapolate simultaneously in several locations in order to get closer to z, which is more difficult16

than when we have this structure built in.17

Note that even if the coefficient emulators are perfect, the error at x∗ will not be zero, unless z can be written18

exactly as a linear combination of the q chosen basis vectors. In practice, this will not be the case, and the most19

accurate the coefficient emulators can be is given by the reconstruction error (7). For the PC basis, this error is 0.395,20

whilst for the rotated basis it is 0.187. Hence, although the final row of Table 1 suggests a limited difference between21

the prediction at x∗ between the two bases, there is more potential for improvement with the rotated basis (say, given22

additional model runs), whereas the PC basis is close to its theoretical minimum.23

Figure 4 compares the two error metrics for the UV and BAS emulators, showing that when considering the24

RMSE (left), the error for BAS is generally slightly higher, with the converse true for the W error, with a correlation25

around 0.91 for each metric. The fact that there is relatively little difference between the two methods lends strength26

to the argument for a basis method when considering their subsequent usage.27
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FIG. 4: The RMSE (left) and W error (right) across the validation set using the UV and BAS emulators.

5.2 Posterior sampling1

Figure 5 compares emulator samples at x∗ across two fixed latitudes (with the phenomenon exaggerated for a full 2D2

map), for the UV (left) and BAS (right) emulators. In each case, the emulator mean (blue) is relatively consistent with3

the truth (green), and is almost completely contained within the samples, with the BAS emulators generally more4

accurate for the top profile, whilst UV is better for the lower profile (particularly in the mean at the eastern end).5

The main difference between the two plots is in the samples, with individual samples from BAS resembling the6

physical model output, where this is not true for the UV emulator due to the lack of correlation. History matching only7

requires posterior expectations and variances to calculate implausibilities, hence when this is our goal, the physical8

incoherence of samples is not necessarily a problem. If instead the goal is prediction (e.g. in a time series we want to9

predict the output at the next, unobserved timepoints), or we are attempting to infer the probability of significant ice10

loss or risk of collapse of an ice sheet in a region, it then becomes extremely important to account for correlations11

between locations.12

Similarly as in Section 3.2, suppose that the average predicted thickness along the second ice thickness profile13

shown in Figure 5 is considered a reasonable proxy for overall changes in the ice sheet. According to samples from14

the UV emulator, the average relative thickness is between 0.31 and 0.38, whilst for the BAS samples the range is15

0.23-0.51, so that the correlated samples show a chance of both higher and lower thicknesses than would be expected16

by the UV case. If a collapse is triggered at an average level of less than 0.3 or 0.25, the UV samples indicate that this17

cannot happen, whereas the conclusion from BAS is that there is a non-zero chance of the true response being at this18

level.19

A similar range may be achieved by considering samples at individual grid boxes for the UV emulator, but how20
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FIG. 5: Ice sheet profile at two latitudes for the UV (left) and BAS emulators (right), at x∗, where the green line is the observed
profile, the blue line is the emulator mean, and the grey lines are samples from the emulator variance. The black dotted line
represents one particular sampled profile.

these relate to each other if multiple grid boxes across a region are important to the overall response is not clear.1

5.3 Computational time2

We compare the time taken to evaluate predictions and implausibilities for the UV and BAS methods for this ` =3

8922-dimensional example. We ignore the cost of fitting and validating the emulators themselves, as we could have4

used the faster method of [23], and instead focus on the post-emulation calculations.5

To build a picture of NROY space (as in Section 5.4), 106 or more samples from the emulator posterior may be6

required, although this is dependent on the dimension of X , the size of the NROY space (for small NROY spaces, we7

will require more samples to find a given number of acceptable points), and the number of waves already performed.8

The UV method requires ` emulator evaluations at each x, compared to q for BAS, hence if we have 106 samples9

from X , in our ice sheet example we need 5 million evaluations for BAS, compared to 8922 million for UV (a factor10

of 1784 greater). The number of evaluations required for BAS scales with Nq, for N the number of samples, instead11

of N` for UV.12
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Samples E[f ],Var[f ] UV impl UV W−1 E[c],Var[c] I(x) BAS
103 195.33 0.27 196 1422 0.11 4.02 1426
104 1714.45 2.88 1717 1422 1.01 4.47 1427
105 17017 31.35 17048 1422 10.01 6.76 1439
106 219334 317.26 219651 1422 129.02 27.93 1579

TABLE 2: Time (in seconds) to calculate emulator predictions and implausibilities for the UV and BAS methods,
using a MacBook Pro with 8GB memory, 2.3 GHz Intel Core i5 processor.

Table 2 compares the computational time required by the UV and BAS methods when the number of sam-1

ples from X increases. For UV, we evaluate E[f(x)] and Var[f(x)], and due to the lack of structure resulting in no2

fast method for calculating I, resulting in an expensive inversion of a non-diagonal variance matrix at any x (as3

(Var[f(x)]+Σe)
−1 varies in x), we calculate the univariate implausibility using the average expectation and variance4

across the ` outputs (calibrating using a summary as in [24]). For BAS, we need W−1, E[c(x)],Var[c(x)] and I(x),5

with the implausibility using (14).6

Overall, the BAS method is significantly faster for 105 or more samples, with little additional time required as7

the number of samples increases by a factor of 10. BAS requires a larger initial cost, with the one-off inversion of W,8

but any subsequent matrix calculations (e.g. the reconstruction error) exploit stored quantities, and large savings are9

realised by the significantly fewer emulator evaluations required. Greater parallelisation would significantly improve10

the UV method, but such improvements would benefit the BAS method also, with it being difficult to surpass the11

efficient calculation of I by exploiting the basis structure.12

Given emulator expectations and variances, the implausibility for BAS is also inexpensive to evaluate across a13

large sample, due to (14), with a million evaluations possible in under 30 seconds (including the time to calculate the14

reconstruction error, and project the required quantities onto the basis). For UV, even if we average the outputs at x15

and calculate a univariate implausibility metric, this implausibility calculation is slower when the number of samples16

is 105 or higher, due to averaging across large matrices.17

As ` increases, in general there is a larger initial cost for basis methods due to the inversion of W (unless this18

is diagonal), but all subsequent calculations, sampling and inferences are relatively cheap given q is always small,19

whilst the number of emulator evaluations increases with ` in the UV case, leading to greater computation for any20

future tasks.21
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FIG. 6: Density plot of NROY space for selected pairs of input parameters, for the UV NROY space (top row) and the BAS+
NROY space (equivalent plots on the bottom row). Each pixel in a pairwise plot shows the proportion of runs that are in NROY
space, averaged across the remaining parameters. Grey regions indicate parts of space where everything is ruled out. The white
triangle indicates the location of x∗, showing that this value has not been ruled out.

5.4 History matching1

There are several barriers to a direct comparison between the two approaches when calibrating. Exploiting the basis2

structure in (14), even for ` = 8922 it is extremely fast to evaluate the full `-dimensional implausibility for millions3

of points, whereas if we aim to calculate I(x) without this structure (i.e. with the UV emulators), there is a large4

expense.5

Due to this prohibitive expense for the UV emulators, as seen in Section 5.3, we can instead consider either6

a) calibrating to a global summary or b) assuming a diagonal Σe, so that inversion is significantly faster (simply7

multiplying by a vector). Neither option gives a perfect comparison, as the change in assumptions about the error8

structure of the field alters the underlying ‘true’ space that we are searching for, and there is not a consistency between9

thresholds for the different methods. Therefore, we assume that the BAS approach (that we can calculate fully and10

efficiently) is correct, and make assumptions that allow an approximate approach to be compared to this. In practice,11

if the decision was made to fit univariate emulators, either of the above would be chosen, and error tolerances defined12
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with this in mind.1

Using the BAS+ emulators, we calculate the full implausibility as in (14), evaluating the emulators and implau-2

sibilities for a space-filling sample from X . As the emulator variance is large relative to Σe, the standard threshold3

of T − RW(Γq, z) rules out none of X . If we were to simply consider the coefficient implausibility instead and set4

the bound for ruling out space as χ2
q,0.995, then 0.21% of runs are considered to be not implausible. Given that 1.2%5

of the runs across the training and validation sets are known to lie in the true NROY space, and given the presence of6

high emulator variance at this wave, this is almost certainly a too strict definition of XNROY , and we risk ruling out7

suitable regions of X .8

To provide a pragmatic bound that should avoid incorrectly ruling out too much of X , we use the algorithm9

outlined in (18). For each basis vector, the emulator contained a vector so that the minimum variance (Vmin) is not10

equal to zero, and therefore the estimated bound will not be equal to the theoretical bound T − RW(Γq, z). The11

resulting bound is estimated as T̃ = 100.5, leading NROY space to be given by:12

XNROY = {x ∈ X |ĨW(x) < 100.5}, (20)

substantially less strict than setting the bound as χ2
q,0.995 = 16.7, and hence we avoid the mistake of ruling out space13

too aggressively. This NROY space consists of 16% of X .14

To compare with the UV+ emulators, we set all non-diagonal entries of Σe to 0. With errors assumed to be15

independent, the implausibility values will be higher, and the usual bound results in the vast majority of space being16

ruled out (and we may have set a different error tolerance initially if we truly did have independent errors). Instead17

of using the same bound, we set the bound as the 16th percentile, so that the NROY space is the same size as in (20),18

and we can at least compare the structure of the two spaces (i.e. do we have similar ordering of points).19

Figure 6 compares the proportion of space classified as XNROY for the two examples, with pairs of input pa-20

rameters plotted, with all other parameters randomly sampled and averaged across, for the UV approximation (top)21

and BAS implausibility (bottom). There are clear relationships between some of the parameters, with some particular22

combinations of parameters completely ruled out (grey regions). There are differences, unsurprising due to the change23

in assumption made about the error structure, but in general the same parts of space are being completely ruled out,24

and the highest density is often in a similar location.25

We can further compare the NROY spaces as a whole by plotting (unnormalised) densities for each parameter,26

weighted by the exponential of the negative implausibility, with zero posterior density outside ofXNROY , as in Figure27
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FIG. 7: Weighting the UV and BAS NROY spaces by exp{−I(x)}, for nine of the model parameters, with the vertical line giving
the location of x∗.

7. Again, we see that in general the two methods are relatively similar, with peaked distributions around or close to x∗1

for some parameters (e.g. B sed), whilst others are still relatively uniform at this stage. Biases in density away from2

x∗ (given by the vertical line) does not imply a poor calibration, as it is possible that other regions of the parameter3

space, X , lead to output consistent with z. In reality, we would aim to refine the emulation and calibration by refitting4

emulators with the validation runs included, and/or running new ensembles of Glimmer, sampled from NROY space5

(and past examples have demonstrated that calibration accuracy can be improved after performing a few waves of6

history matching, e.g. [26]).7

Approximating the error variance by forcing it to be diagonal, therefore, does not appear to have made a huge8

difference, given that we can set an appropriate threshold for ruling out space. This result is similar to how there was9

not a huge difference in the emulator accuracy for the two cases, but given that one choice is significantly faster whilst10

allowing greater flexibility in the error specification (at least whilst an `× ` inversion is feasible as a one-off), this is11

likely the better choice in most cases.12
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5.5 Projection method1

The results from calibrating using basis coefficients, with a measure as in (13), are sensitive to the choice of W (i.e.2

to the projection norm used). In this section, we consider two cases: i) setting W = Σe, for consistency with basis3

selection (Section 2.1.3); ii) setting W = I`, i.e L2 projection, so that PI` = (ΓT
q Γq)

−1ΓT
q . It is not clear whether4

projection in a different norm will greatly affect the results, because W = Σe is included in (13) regardless of the5

projection method (via the inverted variance term).6

To demonstrate the potential difference, we calculate the coefficient implausibility for the 100 fields in the Glim-7

mer training data using both projection methods (with Var[c(x)] = 0, so that projection is the only difference), for8

different choices of Σe (as defined in equation (19)). We vary Σe by changing the correlation lengths δ, and allowing9

a non-constant variance across the output field, with the variance above an arbitrary latitude (with 8% of outputs above10

this line) set at a chosen σ2
n, with σ2 = 0.01 elsewhere as previously. Such an error variance represents how corre-11

lated the errors are, and potentially down-weights errors in the far north (i.e. we are more interested in representing z12

accurately elsewhere).13

Table 3 gives the correlation between ĨΣe(x) and ĨI`(x) as Σe is altered by changing (δ, σ2
n), with δ = 0.05 and14

σ2
n = 0.01 equivalent to Σe from Section 5. Generally, as the degree of correlation in W increases, the strength of15

the relationship between the two implausibilities decreases. Similarly, there is a decrease in the correlation between16

the two metrics as the two variance multipliers become more different, although this is more evident for the less17

correlated Σe choices. This lack of correlation between the two options is despite the fact that they both include the18

new W as their variance term: the new Σe enters into ĨI`(x) via the variance in every case.19

There are a number of consequences of changing the projection choice. The ordering of points may differ between20

the the two metrics, resulting in different conclusions about x∗, either in terms of its posterior distribution or the single21

value of x∗ that minimises distance to z. This can also cause changes in the size and composition of the resulting22

NROY space. Even when consistency between the two metrics is relatively high, there could still be changes in the23

ordering of points, and whether or not points should be ruled out. For the Σe used in the example in Section 5, there24

is an extremely strong correlation (≈ 1) whether we use L2 or W = Σe projection, but in general W can cause a25

difference in calibration results.26

6. DISCUSSION27

In this article, we have presented a method for efficiently emulating and history matching large output fields, without28

any loss of information, by using a basis structure when emulating, achieving calibration over the full field for the cost29
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δ,σ2
n 0.01 1 100

0 1 0.956 0.955
0.05 1 0.989 0.941
0.5 0.257 0.466 0.433
1 0.522 0.350 0.457

TABLE 3: Correlations between the subspace implausibility with projection in L2 and W = Σe, for different choices
of Σe, varying the correlation length δ and the variance multiplier σ2

n for the far north of the ice sheet.

of calibration in the subspace. Despite a relatively similar accuracy for the basis and univariate emulation approaches1

for a particular ice sheet example, the basis structure offers several advantages that make it a more suitable choice in2

many cases, including efficiency in terms of building and validating the smaller number of emulators (allowing more3

time for human input to improve emulation), efficiency in evaluating predictions and the implausibility metric for any4

x ∈ X , the physical-coherency of posterior samples from the emulator, and full flexibility in the definition of variance5

matrices Σe and Ση.6

Given a choice of basis for emulation, and the variance matrices required in history matching (Σe,Ση), we7

showed that the expensive, `-dimensional implausibility metric over the original field can be calculated exactly for8

any x with a single large matrix inversion required. To do so requires an appropriate choice of projection norm9

(W = Σe + Ση), and we showed the sensitivity of calibration in a subspace to the projection norm. Given this10

‘correct’ choice, we have that the full implausibility is the sum of the reconstruction error of the truncated basis and11

the coefficient implausibility with this projection. For a new x, we require only a q × q matrix inversion for q << `,12

so that the standard history matching metric is tractable for the millions of evaluations required in history matching.13

Without such a basis structure and consistent projection, this would not be possible.14

Although calibration only requires the expectation and variance of the field, being able to draw realistic samples is15

a benefit of the basis emulator, not given by an independent emulation approach (and given the computational savings16

afforded by such a method, getting this ‘for free’ is a nice property to have). This is also beneficial for Bayesian17

calibration, where full distributions are used, rather than the expectations and variances as in history matching.18

When history matching, we typically perform a multi-wave experiment, so that savings given when emulating a19

single field once are multiplied as we move to later waves, where to determine whether a point is in the current NROY20

space, we may need to evaluate its emulator expectation, and implausibility, at each of the previous waves. Climate21

models, in particular, have many different high-dimensional output fields, with the benefits of basis emulation and22

calibration increasing with the number of fields. Having O(10) emulators per field, rather than thousands, enables23

more expert time to be spent on fitting each emulator and exploration of X to proceed more efficiently. Calculating I24
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for each field is extremely fast (30 seconds for 1 million evaluations), whereas for UV emulators a summary would1

be needed to achieve this speed.2

To apply a basis method, little extra work or knowledge is required, as standard univariate emulators can be3

fitted to basis coefficients, as in our application. Selecting an appropriate basis is therefore the main problem, and in4

many cases, an out-of-the-box method such as SVD (with a rotation when required) is fast and easy to apply, giving an5

intuitive spatial basis. Even if a summary is used for calibration, rather than the full field, so that the fast implausibility6

calculation demonstrated here is not required, building and evaluating fewer emulators gives computational savings,7

whilst yielding spatially-coherent samples from the emulator posterior.8
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APPENDIX A. PROOF OF THEOREM 113

We apply the Woodbury formula [40,41]:14

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1, (A.1)

where A is an `× ` matrix, C is a q × q matrix, U is an `× q matrix, and V is a q × ` matrix.15

To prove the result, we show that the difference between the field implausibility and the reconstruction error can

be written as ĨW. We first expand the field implausibility using the Woodbury formula, so that:

I(x) = (z− ΓqE[c(x)])T (ΓqVar[c(x)]ΓT
q + W)−1(z− ΓqE[c(x)])

= (z− ΓqE[c(x)])T {W−1 −W−1Γq(Var[c(x)]−1 + ΓT
q W−1Γq)

−1ΓT
q W−1}(z− ΓqE[c(x)])

= (z− ΓqE[c(x)])T W−1(z− ΓqE[c(x)])

− (z− ΓqE[c(x)])T (W−1Γq(Var[c(x)]−1 +Ψ)−1ΓT
q W−1)(z− ΓqE[c(x)]),

where Ψ = ΓT
q W−1Γq. Applying the Woodbury formula again, we have:16

(Var[c(x)]−1 +Ψ)−1 = Ψ−1 −Ψ−1(Var[c(x)] +Ψ−1)−1Ψ−1. (A.2)
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Therefore, the field implausibility can be written as:

I(x) = (z− ΓqE[c(x)])T W−1(z− ΓqE[c(x)])

− (z− ΓqE[c(x)])T W−1ΓqΨ
−1ΓT

q W−1(z− ΓqE[c(x)])

+ (z− ΓqE[c(x)])T W−1ΓqΨ
−1(Var[c(x)] +Ψ−1)−1Ψ−1ΓT

q W−1(z− ΓqE[c(x)]).

(A.3)

By rewriting ĨW (from (13)),

ĨW(x) = (c(z)− E[c(x)])T (Var[c(x)] + Var[c(e)] + Var[c(η)])−1(c(z)− E[c(x)])

= (Ψ−1ΓT
q W−1z− E[c(x)])T (Var[c(x)] +Ψ−1ΓT

q W−1(Σe +Ση)W−1ΓqΨ
−1)−1×

(Ψ−1ΓT
q W−1z− E[c(x)])

= (Ψ−1ΓT
q W−1z− E[c(x)])T (Var[c(x)] +Ψ−1)−1(Ψ−1ΓT

q W−1z− E[c(x)]),

(A.4)

we have that the final line of (A.3) is the coefficient implausibility:

(z− ΓqE[c(x)])T W−1ΓqΨ
−1(Var[c(x)] +Ψ−1)−1Ψ−1ΓT

q W−1(z− ΓqE[c(x)])

= (Ψ−1ΓT
q W−1z−Ψ−1ΓT

q W−1ΓqE[c(x)])T (Var[c(x)] +Ψ−1)−1×

(Ψ−1ΓT
q W−1z−Ψ−1ΓT

q W−1ΓqE[c(x)])

= (Ψ−1ΓT
q W−1z− E[c(x)])T (Var[c(x)] +Ψ−1)−1(Ψ−1ΓT

q W−1z− E[c(x)]).

Hence, from (A.3), we have:

I(x) = (z− ΓqE[c(x)])T W−1(z− ΓqE[c(x)])

− (z− ΓqE[c(x)])T W−1ΓqΨ
−1ΓT

q W−1(z− ΓqE[c(x)]) + ĨW(x).
(A.5)
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Next, we rewrite the reconstruction error by adding and subtracting ΓqE[c(x)]:

RW(Γq, z) = (z− ΓqΨ
−1ΓT

q W−1z)T W−1(z− ΓqΨ
−1ΓT

q W−1z)

= (z− ΓqE[c(x)] + ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)T W−1×

(z− ΓqE[c(x)] + ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)

= (z− ΓqE[c(x)])T W−1(z− ΓqE[c(x)])+

(ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)T W−1(ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)+

2(z− ΓqE[c(x)])T W−1(ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)

= R1 +R2 +R3.

(A.6)

R1 is already present in the decomposition of I(x) in (A.5). Using that:1

I = Ψ−1Ψ = Ψ−1ΓT
q W−1Γq, (A.7)

we have:

R2 = (ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)T W−1(ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)

= (E[c(x)]−Ψ−1ΓT
q W−1z)TΓT

q W−1Γq(E[c(x)]−Ψ−1ΓT
q W−1z)

= (Ψ−1ΓT
q W−1ΓqE[c(x)]−Ψ−1ΓT

q W−1z)TΨ(Ψ−1ΓT
q W−1ΓqE[c(x)]−Ψ−1ΓT

q W−1z)

= (ΓqE[c(x)]− z)T W−1ΓqΨ
−1ΨΨ−1ΓT

q W−1(ΓqE[c(x)]− z)

= (ΓqE[c(x)]− z)T W−1ΓqΨ
−1ΓT

q W−1(ΓqE[c(x)]− z)

= (z− ΓqE[c(x)])T W−1ΓqΨ
−1ΓT

q W−1(z− ΓqE[c(x)]).

Similarly,

R3 = 2(z− ΓqE[c(x)])T W−1(ΓqE[c(x)]− ΓqΨ
−1ΓT

q W−1z)

= −2(z− ΓqE[c(x)])T W−1Γq(Ψ
−1ΓT

q W−1z− E[c(x)])

= −2(z− ΓqE[c(x)])T W−1Γq(Ψ
−1ΓT

q W−1z−Ψ−1ΓT
q W−1ΓqE[c(x)])

= −2(z− ΓqE[c(x)])T W−1ΓqΨ
−1ΓT

q W−1(z− ΓqE[c(x)]).
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Hence, from (A.6):

RW(Γq, z) = (z− ΓqE[c(x)])T W−1(z− ΓqE[c(x)])

− (z− ΓqE[c(x)])T W−1ΓqΨ
−1ΓT

q W−1(z− ΓqE[c(x)]),

and combining this with (A.5),1

I(x) = RW(Γq, z) + ĨW(x). (A.8)
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