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ABSTRACT

Bayesian optimisation (BO) has been widely used to solve problems
with expensive function evaluations. In multi-objective optimisa-
tion problems, BO aims to find a set of approximated Pareto optimal
solutions. There are typically two ways to build surrogates in multi-
objective BO: One surrogate by aggregating objective functions
(by using a scalarising function, also called mono-surrogate ap-
proach) and multiple surrogates (for each objective function, also
called multi-surrogate approach). In both approaches, an acquisition
function (AF) is used to guide the search process. Mono-surrogate
has the advantage that only one model is used, however, the ap-
proach has two major limitations. Firstly, the fitness landscape of
the scalarising function and the objective functions may not be
similar. Secondly, the approach assumes that the scalarising func-
tion distribution is Gaussian, and thus a closed-form expression
of the AF can be used. In this work, we overcome these limita-
tions by building a surrogate model for each objective function and
show that the scalarising function distribution is not Gaussian. We
approximate the distribution using Generalised extreme value dis-
tribution. The results and comparison with existing approaches on
standard benchmark and real-world optimisation problems show
the potential of the multi-surrogate approach.
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1 INTRODUCTION

Many real-world optimisation problems involve multiple conflicting
objectives to be achieved. These problems are called multi-objective
optimisation problems (MOPs). There is no single solution to such
problems because of the conflicting nature between the objectives.
The solutions to such problems are known as Pareto optimal so-
lutions, and represent the trade-off between objectives [16]. We
define a multi-objective optimisation problem (MOP) as:

minimise f = (f1(x),..., fin(x))

with m > 2 objective functions fij(x):S — R. The (nonempty)
feasible space S is a subset of the decision space R” and consists
of decision vectors x = (xi,.. .,xn)T. In solving such problems,
usually, the aim is to find an approximated set of Pareto optimal
solutions.

In many real-world MOPs, the objective functions rely on compu-
tationally expensive evaluations. Such problems are usually black-
box optimisation problems without any closed-form for the objec-
tive functions. Bayesian optimisation (BO) can be used to alleviate

subjectto x €S

the computational cost and to find an approximated set of Pareto
optimal solutions in the least number of function evaluations. These
methods rely on a Bayesian model as the surrogate (or metamodel)
of the objective functions and find promising decision vectors by
optimising an acquisition function. The Bayesian model is usually
a Gaussian process because it provides a meaningful quantification
of uncertainty, which is then used in optimising the acquisition
function. The acquisition function balances both exploration and
exploitation in guiding the search process. A single objective BO
with expected improvement (EI) as the acquisition function was first
used in [17]. Emmerich et al. [6-9, 28] extended the EI to expected
hypervolume improvement (EHVI) in multi-objective Bayesian opti-
misation. Recently, a closed-form expression of EHVI was proposed
for batch multi-objective Bayesian optimisation [3].

In multi-objective BO, there are typically two different approaches
to build a Bayesian model. In the first one, the models are built for
each objective function and an acquisition function utilising these
models is then used to find promising decision vectors. This ap-
proach is called multi-surrogate approach. The multi-objective BO
with EHVI is a multi-surrogate approach. In the second one, a single
Bayesian model is built after aggregating the objective functions.
This approach is called mono-surrogate approach. The well-known
ParEGO [12] algorithm comes under the second category. The sec-
ond approach reduces the number of objectives from m to one.
Moreover, a single objective acquisition function can be used in the
mono-surrogate approach. The computational complexity of the
first approach is at most O(mN?) and of the second approach is at
most O(N3), where N is the size of the data set.

The ParEGO converts the multiple objectives into a single ob-
jective by utilising the augmented weighted Tchebycheff (TCH)
[27] as the scalarising function. A Gaussian process model is then
built on the scalarising function, which is then used in optimising
the EI to find the next promising decision vector. Although the
mono-surrogate approach is appealing, it has two major limitations.
The first one is that the fitness landscape of the scalarising function
and the objective functions may not be similar. In other words, a
promising decision vector by using the surrogate on the scalarising
function may not be promising for the underlying objective func-
tions. The second limitation is that the approach assumes that the
resulting scalarising function is Gaussian and thus a closed-form
expression of the EI can be used.

We show that the distribution of the scalarising function after
building individual models for each objective function is not Gauss-
ian. Therefore, we approximate the distribution of the scalarising
function using the Generalised extreme value (GEV) distribution
[4, 26]. Particularly, we use the type I family of distributions in
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the generalised extreme value theory to approximate the distribu-
tion. The GEV distribution is then used in optimising the expected
improvement to find the next promising decision vector.

We compare mono-surrogate EI (as in ParEGO), multi-surrogate
EI (this work) and multi-surrogate EHVI (as in EHVI-EGO [28])
approaches on standard benchmark and real-world optimisation
problems with a different number of objectives and decision vari-
ables. The results on benchmark and real-world multi-objective
optimisation problems clearly show the potential of the proposed
work. To be summarised, the contributions of this work are as
follows:

(1) We show that the weighted Tchebycheff function (TCH) as
the scalarising function after building independent models
for each objective function is not Gaussian.

(2) We approximate the distribution of the TCH with the type
I family of the Generalised extreme value theory.

(3) We solve a real-world multi-objective free-radical polymeri-
sation optimisation problem by using the multi-surrogate
EI approach.

The rest of the paper is structured as follows. In Section 2, we
provide a background to the Bayesian optimisation. In Section 3, we
provide the main details of the proposed approach by comparing it
with a mono-surrogate approach. In Section 4, we conduct numeri-
cal experiments and show the results on benchmark and real-world
multi-objective optimisation problems. Finally, we conclude and
mention the future research direction in Section 5.

2 BAYESIAN OPTIMISATION

In multi-objective BO, the input is the data set {(x;, f(xi))}l{il of
size N. This data set can be obtained with a design of experiment
technique e.g. Latin Hypercube sampling [15]. As mentioned in the
introduction, there are typically two approaches to build surrogate
models on the data set: A single Bayesian model (mono-surrogate
approach) or multiple Bayesian models (multi-surrogate approach).
The Gaussian process models are the most commonly used Bayesian
models in BO. They are non-parametric and provide uncertainties in
predictions, which makes them different from other non-Bayesian
and parametric models. The uncertainty is then used in the acquisi-
tion function in finding the promising decision vector. A Gaussian
process (GP) can be defined with a multivariate normal distribution
[23]:

f ~ N K),

where p is the mean vector and K is the covariance matrix. Without
loss of generality, we use a prior of zero mean. A covariance function
(or kernel) is used to get the covariance matrix. In this work, we used
a Gaussian (or RBF or squared exponential) kernel with automatic
relevant determination [21, 24]:

’ 2 13 |xj B xJ/' |2 2
k(x,x',0) = of exp (—5 Z l—z) + 0, 0xx/,
Jj=1 j
where © = (O'f, Ii,...,In, on) is the set of hyperparameters and dxy
is the Kronecker delta function. The notation |x; — xj’.l represents
the Euclidean distance between x; and x’. The hyperparameters
can be estimated by maximising the marginal likelihood function
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Algorithm 1 Bayesian optimisation

Input: Data Set D = {(x;, f,-)}l{\il
Output: Evaluated solutions

1: while Termination criterion is not met do
2: Train the G® models on the data set

3: Optimise the acquisition function i.e. x* « argmax, EI(x)
4 Evaluate x* and add to the data set
[23]:

p(f1X,0) =

1 -
— exp {——fTK 1f} .
3 2
|27K |2
The posterior predictive distribution at new point x*after training
the model is also Gaussian:

P (F1X". X £,0) =N (", OKTIE,
K(x*,x") - x(x*,X)TK_lx(X, x*))

The acquisition function determines the next decision vector to
be evaluated. The expected improvement (EI) is one of the well-
known and widely used acquisition functions. It measures the
amount of improvement over the current best objective value and
balances both exploitation and exploration. For a minimisation
problem, the improvement over the best evaluated function value

f(x)is:
I(x) = max(0, f'(x) = f).

The expected improvement can then be estimated as:

(%)
%ﬂﬁj 1)df

—00
As the posterior is Gaussian, the expected improvement has a closed-
form expression:

f'®- u(X)) . G(X)¢(f'(X) - ,U(X))’

o(x) o(x)

asr(®) = (/09 — u)2

where p(x) and o(x) is the posterior mean and standard deviation,
respectively and ®(-) and ¢(-) are cumulative and probability distri-
bution function of standard normal distribution, respectively.

In mono-surrogate multi-objective BO, this formulation of EI
can be used as the objective functions are aggregated into a sin-
gle function. In the multi-surrogate approach, EHVI, which is an
extension of EI for multiple objectives can be used. In this work,
we focus on EI after using multiple surrogates. The EI is usually
a multimodal function and therefore, a suitable optimiser e.g. an
evolutionary algorithm is often used to optimise it to find the next
decision vector, which is then evaluated with expensive objective
function and added to the data set. This process continues until a
termination criterion is met. Algorithm 1 outlines these steps.

3 MONO-SURROGATE VS MULTI-SURROGATE

The mono-surrogate approach is one of the well-known approaches
in Bayesian optimisation. We start by introducing the weighted
Tchebycheff (TCH) function [1, 16, 27] in a widely used mono-
surrogate approach (the ParEGO algorithm). The TCH function is
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defined as:
g = max (wi(fi — zi)),

where w is the weight vector and z is the ideal objective vector (or
minimum of objective function values). In ParEGO, an augmented
Tchebycheff formulation was used to obtain properly Pareto opti-
mal solutions [16]. If the objective function values at the current
iteration are normalised between 0 and 1, then z is a vector of ze-
ros. Given a data set with decision variable and objective function
values, the TCH converts the multiple objective function values
into a single value. A Gaussian process model is then built on the
resulting data set, which is then used in optimising the expected
improvement. Recently, three other scalarising functions called
hypervolume improvement, dominance ranking and sign distance
were proposed in [22] and used in the framework of the mono-
surrogate approach.

In this work, we use a multi-surrogate approach by building
independent models on each objective function. These independent
models are then used to build a probabilistic model for the TCH
function, which is then used in optimising the EI. We start by
providing a simple example to compare both approaches with TCH
as the scalarising function.

Consider two objective functions f; and f; shown in Figure 1. We
assume that these functions are black box and their analytical forms
are not available. However, we have some data set (with decision
variable and objective functions values) shown as + in the figure.
The true or underlying TCH function is also shown in the figure.
As mentioned, there are two ways to build surrogate models: mono-
surrogate and multi-surrogate. In the mono-surrogate approach,
we get the TCH values after aggregating two objective values (right
plot in Figure 1). We then build a Gaussian process model on it as
shown in Figure 2. We then maximise the EI to get the next decision
variable value i.e. x* = argmax EL The location of x* can be seen
in Figure 2. We then evaluate the x* with the objective functions.
The resulting objective function values are shown as square in the
right in Figure 2. In this way, the mono-surrogate approach tries to
find a potential decision vector for the scalarising function and not
for the underlying objective functions. To address this concern, we
can build independent models for objective functions.

The predictions with uncertainty estimates after building inde-
pendent models are shown in Figure 3. The challenge is how to use
these models to find the distribution of the TCH as the scalarising
function. We start to address this challenge by showing that the
resulting scalarising function after building independent models
on objective functions is not Gaussian. The weighted Tchebycheff
function is defined as:

g = max (wi(fi — 2;)),

where f; is Gaussian i.e. fi ~ N(y;, O'iz); ui and o; are the posterior
predictive means and standard deviations, respectively. The above
formulation can be written as [13, 19]:

g ~max N(Wi(,ui - zj), Wisziz) (1)

After some rearrangements, the distribution shown above can be
written in the following closed form expression [2, 14, 20]:

m o ¢(9_Wi(illii_zi))
LT ¢(g—‘%’;‘z")) ) @
i - wi(u; — zi)
[e(*—o—)

where ¢(-) and ®(-) represent the probability density and cumulative
density functions of the standard normal distribution, respectively.
The distribution in Equation (2) has a closed-form expression but it
is not Gaussian distributed. Therefore, a closed-form expression of
acquisition functions, which rely on the Gaussian assumption of the
function cannot be used. A possible solution to this problem is to
approximate the distribution with Generalised extreme value theory
[4, 26]. The distribution can be described with Type 1 distribution
in Generalised value distributions. Specifically, we use a Gumbel
distribution [25] for approximating the scalarising function:

g ~ Gumbel (o, f)

where o and f are location and scale parameters, respectively. The
probability density function is:

I _(yeeti
p(gi|a,‘3) :_e—(tz+e fi) fori=1,...,N
B
where t; = 2%, We can estimate the parameters by maximising

the following log-likelihood function

1

N N
LL(a, f) = Nlog 5 Diti— ek,
i=1 i=1

where N is the number of samples drawn from Equation (1) or (2).
The estimated parameters are:

N
a, f = argmax l_[ p(gile, p) Or

af =1
1 N N
a, f =argmax (Nlog = - Z ti — Z eiti)
a,f ﬁ i=1 i=1

After taking the partial derivatives, the parameters can be estimated
by solving the following two equations:

_a

Y, gie *
N -

IS

1 N e

a:—ﬂlog(— eﬁ)
N &

Once the parameters are known, we can use the approximated
distribution in estimating the EI:

B=g-

=[S

g’ (x) ,
s = j max(0, 4'(x) - g) dg

—00
One major drawback is that the EI does not have a closed-form
expression. Therefore, we use Monte Carlo for estimating the EI.
To summarise, we first approximate the distribution of TCH using
Gumbel distribution and then draw samples from the distribution
to estimate EI. For the two-objective example, the resulting TCH
predictions and uncertainty estimates after building independent
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Figure 1: A bi-objective optimisation problem. Both objectives are to be minimised. The data is shown in’+’ in the left figure.
The Pareto front and the objective space are shown in the middle figure. The resulting scalarising function with the data set is
shown in the right figure.
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Figure 4: A Gaussian process model and the landscape of EI on the weighted Tchebycheff function after building independent
models for each objective function (left figure). The evaluated solution (shown as the square marker) in the objective space

after maximising the EI (right figure).

Gaussian process models on objective functions are shown in Fig-
ure 4. We also show the landscape of the expected improvement in
the figure and can see that the optimal location is different from
the mono-surrogate approach. The resulting decision variable is
then evaluated with underlying objective functions and as can be
seen, the objective function values lie on the Pareto front. This
demonstration on an easy one-dimensional two objective optimi-
sation problem shows that the multi-surrogate approach is better
and finding an appropriate distribution of the scalarising function
is important.

4 NUMERICAL EXPERIMENTS

We investigate the performance of the multi-surrogate approach
on standard DTLZ [5] benchmark and a real-world Free-Radical
Polymerisation problem [18]. We compare it to the ParEGO as the
mono-surrogate approach and multi-surrogate expected hypervol-
ume improvement (EHVI) [7, 28]. We implemented all different
approaches and used the same settings wherever possible for a fair
comparison. The numerical settings used are as follows:

Problems: DTLZ (2, 5 and 7), Free-Radical Polymerisation

Number of objectives: 2 and 3

Number of decision variables: 4 and 5

Number of independent runs = 11

Size of the initial data set: 10 X number of decision variables

Maximum number of function evaluations: 30 X number of

decision variables

e Kernel: Squared exponential (or Radial basis function, Gauss-
ian) with automatic relevant determination

o Optimiser to maximise acquisition functions: Genetic Algo-
rithm

e Optimiser to maximise marginal likelihood in Gaussian
process: BFGS with 10 restarts

e Performance indicator: Hypervolume

The hypervolume with the number of function evaluations for
DTLZ problems with five decision variables and two objectives are
shown in Figure 5. As can be seen, the multi-surrogate approach
outperformed the other two approaches. The performance of the

mono-surrogate approach can be explained with our analysis in
the previous section. In the multi-surrogate EHVI approach, the
hypervolume contributions of solutions dominated by the current
approximated Pareto front is zero, which can make it difficult for the
algorithm to converge. The same concern in using EHVI was also
mentioned in [22]. The multi-surrogate approach did not perform
well on the DTLZ7 problem. The problem has a disconnected Pareto
front and separable objective functions. The performance of the
multi-surrogate approach can be related to the shape of the Pareto
front and is worth exploring as the future research direction. The
approximated Pareto fronts with three different approaches of the
run with the median hypervolume are shown in Figure 6.

The real-world problem is Free-Radical Polymerisation problem.
The problem is the manufacturing of Polyvinyl Acetate polymer.
The polymer is manufactured in a batch reactor and the process
can be modelled with a series of ordinary differential equations.
These equations are stiff and therefore solving these equations can
be computationally expensive. The computation time varies from
30 seconds to 20 minutes for one evaluation. The problem involves
four decision variables: monomer concentration, initiator concen-
tration, the temperature of the rector and polymerisation time and
three objectives: maximise weight average molecular weight (MW),
number average molecular weight (MN) and minimise polydisper-
sity index (PDI). The hypervolume and approximated Pareto fronts
after running mono-surrogate and multi-surrogate approaches are
shown in Figure 7. As can be seen, the multi-surrogate approach
outperformed the mono-surrogate approach. We also show the two
dimensional scatter plots between different objectives in Figure 8.

The multi-surrogate approach relies on approximations and
Monte Carlo simulations when estimating EI, which makes the
optimisation process slower. The computation time on the DTLZ2
problem of one run with two objectives and five variables of both
approaches is shown in Figure 9. As can be seen, the multi-surrogate
approach is slower than the mono-surrogate approach. However,
this computation time may not be significant in many real-world ap-
plications and may be negligible compared to the objective function
evaluation.
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Figure 6: Approximated Pareto fronts of the run with the median hypervolume value.

5 CONCLUSIONS

In this work, we presented a multi-surrogate approach in multi-
objective Bayesian optimisation. In comparison to the mono-surrogate
approach, the proposed approach did not use the surrogate model
built on the scalarised function and did not assume the scalarised
function distribution is Gaussian. We built independent Gaussian
process models on the objective functions and showed that the
weighted Tchebycheff as the scalarising function after building in-
dependent models for each objective function was not Gaussian. We
approximated the scalarising function distribution with Type 1 of
the Generalised value extreme value distributions and used Monte
Carlo to estimate the acquisition function. For the demonstration
of the potential of the multi-surrogate approach, we tested the ap-
proach on benchmark and real-world problems. The proofs and
analysis of the results indicated that one should use an appropriate
distribution of the resulting scalarising function in multi-objective
Bayesian optimisation.

Future work will include testing on other scalarising functions
e.g. hypervolume improvement, dominance rank, penalty bound-
ary intersection and scalarising functions used in the evolutionary
multi-objective optimisation algorithms. As mentioned, the multi-
surrogate approach is more computationally expensive than the
mono-surrogate approach. An alternative to alleviate the computa-
tion cost is to use the Laplace approximation for the distribution
of the scalarising function. We provided initial calculations of the
Laplace approximation in the Appendix. We plan to work on using

these calculations in the future. Testing on a wide range of bench-
mark and real-world problems will also be in our future works.
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APPENDIX

Laplace approximation calculations for
bi-objective optimisation

Let us denote mi = w;(u; — z;) and si = w;oj, where y;, 0y, z; and
w; are the ith element of the posterior mean vector, the standard
deviation vector, the ideal objective vector and the weight vector,

respectively. The distribution of g mentioned in Equation (2) can
also be written as:

_(g-m1? _(g-m2?
1 g-mi|]| € 2s1% % e 22 z g—m2
plg) = —Erfc l— J fc [7 } 3)
4 Vst s1Erfe [— g-ml s2Erfe [— g-m2 V2s2
Vsl Vas2

The mode, gy can be calculated by taking the derivative of the

. dlogyg
loggie. a0
(g-mn? (g-ma”
2e? 1+ VIm| o B2 (g_mz)slamc[%:ﬂ]_e 222 (g - mi)s23Exfe %]
-0
(g-m1? (g-m2)?
Vzrsi2s22| e 2s12 lerfc[7£:1]+e 2522 sakefc %:2]2]

@
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The equation does not have a closed form expression for estimat-
ing the mode. Therefore, the mode can be estimated by maximising
a posteriori with an iterative method e.g. Newton’s method.
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Figure 9: Computation time of mono- and multi-surrogate
approaches on the DTLZ2 problem with two objectives and
five decision variables

Once the mode is known, we can estimate the second derivative
at the mode:

A

_ (dzlogg
462 -gy

(g-m)? —g+mi)?
=|-e 12 n51552Erfc[7]
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After estimating the mode and the second derivative at the mode,
the distribution of g can be written as:

g~ N(go,A™),

where go is the mean and A™! is the variance. These calculations
allow us to use the closed form expression of acquisition functions
e.g. expected improvement and probability of improvement.

Results on DBMOPP

In addition to DTLZ, we tested the proposed approach on a single
instance of DBMOPP [10, 11]. The results of hypervolume with
five objectives and 10 decision variables are shown in Figure 10.
We did not see a significant difference in the results of the two
approaches. As DBMOPP problems are visualisable, the solutions
can be projected to two dimensions. We plotted the solutions with
the number of function evaluations in Figure 11. The solutions on or
inside the convex hull (shown in red) represent the Pareto optimal
solutions. As can be seen, both approaches converged closer to
the Pareto front. This problem is relatively easier and does not
have any complexity like local Pareto fronts, varying density and
dominance resistance regions. It will be worth testing the multi-
surrogate approach on complex DBMOPP problems.
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