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The human genome is capable of producing hundreds of thousands of

different proteins and non-coding RNAs from <20 000 genes, in a co-

ordinated and regulated fashion. This is achieved by a collection of

phenomena known as mRNA processing and metabolism, and encom-

passes events in the life cycle of an RNA from synthesis to degradation.

These factors are critical determinants of cellular adaptability and plastic-

ity, which allows the cell to adjust its transcriptomic output in response to

its internal and external environment. Evidence is building that dysfunc-

tional RNA processing and metabolism may be a key contributor to the

development of cellular senescence. Senescent cells by definition have exited

cell cycle, but have gained functional features such as the secretion of the

senescence-associated secretory phenotype (SASP), a known driver of

chronic disease and perhaps even ageing itself. In this review, I will outline

the impact of dysregulated mRNA processing and metabolism on senes-

cence and ageing at the level of genes, cells and systems, and describe the

mechanisms by which progressive deterioration in these processes may

impact senescence and organismal ageing. Finally, I will present the evi-

dence implicating this important process as a new hallmark of ageing,

which could be harnessed in the future to develop new senotherapeutic

interventions for chronic disease.

The hallmarks of ageing

The hallmarks of ageing are a series of basic health

maintenance mechanisms that together describe the

molecular, cellular and systemic effects that drive

or result from the ageing process in multiple species.

At the time of writing, there have been nine intercon-

nected and multifaceted hallmarks described which are

as follows: genomic instability, epigenetic alterations,

mitochondrial dysfunction, altered intercellular com-

munication, deregulated proteostasis, deregulated

nutrient sensing, telomere attrition, stem cell exhaus-

tion and cellular senescence [1]. The interconnections

between hallmarks means that impacting one hall-

mark can have significant effects on other hallmarks.

The criteria for a phenomenon to be defined as a
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hallmark are (a) it should occur during normal ageing,

(b) its experimental induction should result in acceler-

ated ageing and (c) its experimental abrogation should

bring about improvement to aspects of the ageing phe-

notype. The hallmarks of ageing may represent useful

points of future therapeutic intervention for the dis-

eases of ageing.

Cellular senescence; a driver of
organismal ageing

Cellular senescence is one of the most intensively stud-

ied hallmarks of ageing and is described as a perma-

nent cell cycle arrest, which occurs in response to

cellular damage or cell stress [2]. Senescent cells have

important functions in young systems, including roles

in protection from tumorigenesis, and tissue remod-

elling and repair during development and wound

healing [3]. However, during the ageing process, senes-

cent cells accumulate in response to cumulative cellular

insult and impaired immune clearance. There are mul-

tiple types of senescent cells and senescence can be

provoked by multiple stimuli [4]. Senescent cells have

many features that differentiate them from their non-

senescent counterparts [5], which are depicted in Fig. 1

and described in Table 1. Importantly, senescence has

since been linked with multiple common, chronic dis-

eases of ageing in animal models and in humans

including lung fibrosis [6], osteoarthritis [7], age-related

macular degeneration [8], neurodegeneration [9], vascu-

lar dysfunction [10], cardiovascular disease [11],

chronic kidney disease [12], diabetes [13] and non-

alcoholic fatty liver disease (NAFLD) [14]. Selective

removal of senescent cells has been demonstrated to

result in improved lifespan and healthspan in animal

models [15]. Subsequent work in these systems has

Fig. 1. The characteristics of senescent cells. This figure illustrates the characteristics of senescent cells. These include mitochondrial

dysfunction, secretion of the senescence-associated secretory phenotype, characteristic changes to gene expression, the presence of

senescence-associated heterochromatic foci (SAFH), increased resistance to apoptosis, altered size and morphology, the high lysosomal

content indicated by high levels of senescence-associated beta galactosidase, genetic damage and exit from cell cycle.
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demonstrated beneficial effects on brain ageing and

neurodegenerative disease [16] and musculoskeletal

function [17]. More recently, selective removal of

senescent cells by induced apoptosis (senolysis) has

been demonstrated to result in clinical improvement in

humans in the context of idiopathic lung fibrosis [18]

and diabetic kidney disease [19].

Dysregulated mRNA processing and
metabolism: a link between splicing
and stress

A unifying feature of most of these provocations for

senescence is an aberrant response to different types of

cellular stress. Eukaryotic cells have several mecha-

nisms to deal with internal and external stresses, but

one of the most important is alternative mRNA pro-

cessing and metabolism [20–23]. This term refers to the

collection of phenomena that happen to an RNA

molecule from its transcription to its degradation, to

ensure correct regulation of gene expression. Newly

transcribed mRNAs are processed to add a 50 cap

structure, undergo splicing to remove non-protein cod-

ing intronic sequences and are subject to the addition

of a poly A tail prior to export from the nucleus. Fol-

lowing export, RNAs can be transported to specific

subcellular localisations, stored and sequestered, or

they may be translated (if they code for proteins).

Their stability is regulated by post-transcriptional

regulation by the action of microRNAs and other

non-coding RNA (ncRNA) species, or RNA-binding

proteins (RBPs). At the end of their lifecycle, they are

then degraded by the exosome (Fig. 2). Ribosomal

RNAs (rRNAs), transfer RNAs (tRNAs) and messen-

ger RNAs (mRNAs) all undergo processing, and there

is evidence that suggests that metabolism of all three

RNA species are associated with ageing and/or cellular

senescence [24,25].

Messenger RNA (mRNA) processing specifically is

the collective set off phenomena that allow most

eukaryotic genomes to adjust their transcriptomic out-

put in response to internal and external environmental

cues. It brings exceptional adaptability and plasticity

to the human genome, and accordingly, over 95% of

all human genes express more than one isoform [26].

Alternative isoforms may have differential spatial or

expression patterns, and often confer alternative or

antagonistic function. For example, the VEGFA gene

produces two main classes of isoform, some of which

promote angiogenesis, and some are anti-angiogenic

[27]. There are seven primary forms of alternative

mRNA isoform production. These are alternative pro-

moter usage, alternative polyadenylation, cassette exon

usage, mutually-exclusive exon usage, alternative 50

splice site usage, alternative 30 splice site usage and

retained introns. Alternative mRNA splicing is regu-

lated at two levels; at the level of DNA or pre-mRNA

sequence, and by the binding of a series of splicing

regulator proteins (Fig. 3). There are a number of

sequence elements that regulate splicing; the core ele-

ments (the 50 splice site, the 30 splice site, the

polypyrimidine tract and the branch point), which are

binding platforms for elements of the spliceosomal

machinery and are essential for splice site usage.

Mutations in these regions are often causal for inher-

ited genetic disease [28]. Then, there are a set of auxil-

iary binding sites termed exon and intron splicing

silencers (ISS, ESS) and enhancers (ISE, ESE) [29].

These motifs are responsible for more regulated splic-

ing, and are primarily responsible for the plasticity of

splicing. These sequences are important because they

bind important spliceosomal components or splicing

regulatory proteins responsible for alternative splicing.

Serine arginine-rich (SRSF) splicing factors bind to

ESE and ISE elements and usually, but not exclu-

sively, promote splice site usage. Conversely, heteroge-

neous nuclear ribonucleoprotein particles (hnRNPs)

bind to ISE and ISS elements and usually, but again

not exclusively, inhibit splice site usage. The combina-

torial balance of splicing activators and inhibitors

determines whether a given splice site is used and a

given isoform expressed [30].

Table 1. Characteristics of senescent cells. The characteristics of

senescent cells are given below. BrdU, bromodeoxyuridine; EdU,

5-ethynyl-2’-deoxyuridine; MMP, Matrix metalloproteinases; ROS,

reactive oxygen species; SAHF, senescence-associated heterochro-

matic foci; SA-b-Gal, senescence-associated beta galactosidase.

Characteristic Marker References

Exit from cell

cycle

Ki67/EdU/BrdU negative [107]

Dysfunctional

mitochondria

Elevated ROS, aberrant

mitochondrial structure

[108]

Resistance to

apoptosis

TUNEL assay negative [109]

High

lysosomal

content

SA-b-Gal positivity [110]

Morphological

change

Light/confocal Microscopy [111]

Chromatin

reorganisation

Presence of SAHF [112]

Altered gene

expression

Elevated p16, p21, p15 expression [113]

Secretion of

SASP

Altered IL6, IL8, IL-1b, IL-1a, MMP

expression plus others, often cell

type specific

[114]
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Regulation of splicing factors

Splicing factors themselves are regulated at multiple

levels. They are regulated at the level of transcription

by repeated and constitutive activation of cellular sig-

nalling pathways such as ERK and AKT [31], but also

interface with other signalling pathways, including

AMPK, FOXO1 and mTOR [32], due to crosstalk

between pathways. They are thus influenced by a great

many of the stimuli classically associated with ageing,

including inflammation, DNA damage, mitochondrial

dysfunction and dysregulated nutrient sensing [33–35].
Many SASP-associated cytokines associated with para-

crine senescence are regulated by the NFjB pathway

[36], which in turn is also influenced by ERK sig-

nalling. Splicing factor expression may initially

increase in acute response to inflammatory factors, but

chronic inflammation exerts a negative influence on

their expression. Many splicing factors also feed for-

ward and regulate the processing and stability of

inflammatory genes [37,38]. Although individual splic-

ing factors exert patterns of temporal and spatial

specificity of expression, they are co-ordinately regu-

lated at the level of transcription by ‘master control

genes’ such as FOXO1 and ETV6, which lie down-

stream of ERK and AKT [31], and also the DNA

damage response gene ATM [39]. Splicing factors are

also regulated by phosphorylation at the protein level;

their subcellular localisation is controlled by kinases of

the CLK and SPRK classes [40], and by the action of

AKT [41]. Finally, splicing factors frequently regulate

their own expression by the inclusion or exclusion of

poison exons which promote degradation by the

nonsense-mediated decay pathway [42,43].

Fig. 2. The life cycle of an mRNA. This figure illustrates the lifecycle of an mRNA from birth to death. Gene expression is co-transcriptional,

so these processes may occur simultaneously. Following transcription, messenger RNA transcripts are processed to add a 5’ cap structure,

spliced to remove introns and undergo the addition of a poly A tail. Processed mRNAs are then exported from the nucleus to the cytoplasm,

where they may be translated (if they code for proteins) or act as non-coding RNAs that regulate other genes. RNAs may be sequestered at

specific cellular locations for later translation. RNA transcripts can be dynamically regulated by the action of non-coding RNAs or RNA bind-

ing proteins and are degraded at the end of their functional lifespan. Exonic sequences are given on blue, intrinsic sequences in red.

The nuclear membrane and nuclear pore are indicated by a curved coral line. The cap structure is given by a blue circle and the ribosome is

given in pale orange. The nascent polypeptide is given by green circles.
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Splicing factors, ageing and
senescence

Gene set enrichment analyses (GSEA) of age-related

gene expression signatures deriving from human

peripheral blood indicates that the pathways that regu-

late alternative splicing are amongst the major path-

ways disrupted by age in multiple human populations

[44]. Splicing factor genes are usually, but not exclu-

sively, downregulated during ageing and senescence,

but this may differ from tissue to tissue [45]. Each

individual splicing event, however, is determined by

combinatorial binding of splicing factors to individual

splicing regulatory sequences [30], the directionality of

effect for different splicing factors in different contexts

may thus vary. Changes in splicing factor expression

are manifested as changes to programs of alternative

splicing in different organ systems in ageing people

[44,46,47], and can be explained at least in part by

upstream changes in splicing regulation [48]. Splicing

factor changes have also been extensively reported by

ourselves and others in senescent cells of multiple cell

and tissue types [39,49–55]. Splicing factor expression

has been shown to associate with lifespan in humans

[56] and in other species [56,57], and similarly are cau-

sally involved in response to other lifespan-extending

phenomena such as dietary restriction (DR) in humans

[58] and in other species [57]. Interestingly, changes in

splicing factor expression and the consequent down-

stream effects on splicing are not a feature of ageing in

naked mole-rats, a species with exceptionally long life

and negligible senescence [59].

Disrupted patterns of alternative splicing are a major

characteristic of many common chronic age-related dis-

eases, such as cancer [60], neurodegenerative disease

[61], osteoarthritis and cardiovascular disease [62], and

also more systemic diseases of the elderly, such as frailty

and sarcopenia [63]. Most of these diseases are also

characterised by senescence as described above. Splicing

changes are also prevalent in rare diseases associated

with premature ageing such as idiopathic pulmonary

fibrosis [64] and Hutchinson Gilford Progeria Syndrome

Fig. 3. The regulation of alternative splicing. (A) The schematic gives a representative intron (black line), flanked by its two exons (blue

boxes), with the regulatory sequence elements and some of the proteins that bind to them marked. The splice donor site is given by GU.

The branch site is marked by an A. The polypyrimidine tract is annotated by a gold bar annotated YYYYY. The splice acceptor site is given

by AG. Intron and exon splicing enhancer sequences are given by green boxes, and intron and exon splicing silencer elements by pink

boxes. (B) The binding of Serine Arginine rich splicing factor (SRSF) splicing activators (given in green and marked SR) activates splice site

usage and results in spliced exons. (C) The binding of heterogeneous nuclear ribonucleoprotein particles (given in orange and marked

hnRNP) inhibits splice site usage and results in lack of splicing and retention of intron.
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(HGPS) [65]. There are also links between common

chronic disease and dysregulation of splicing factors.

Levels of the HNRNPA0, HNRNPM and AKAP17A

are predictively associated with multiple ageing pheno-

types in humans, where splicing factor levels measured

at baseline are associated with later cognitive decline

and hand grip strength, a measure of sarcopenia [66].

There is a well-characterised increase in transcriptional

noise with ageing, but recent findings suggest that mea-

sures of expression at the level of mRNA processing

may be a better determinant of the ageing process [67].

Potential mechanistic links between
disrupted splicing regulation and
senescence

The likely candidacy of disrupted mRNA processing

regulators as a major driver of senescence stems from

the multifunctional nature of these proteins (Fig. 4

and Table 2). The global nature of splicing-associated

changes to the transcriptome means that effects are

likely to be far reaching for the transcriptome as a

whole. A total of 98% of genes undergo alternative

splicing [26], and are represented in every cellular pro-

cess. Progressive and irreversible dysregulation of

splicing regulation will therefore inevitably lead to far-

reaching consequences for cells and systems. Further-

more, the auto-regulatory nature of splicing factor reg-

ulation means that disruption to the homeostasis of

splicing regulation is likely to result in ongoing and

increasing disruption.

There are also isoforms of known senescence genes

with altered functionality or expression. Isoforms of

CDKN1A (which encodes p21) demonstrate different

temporal dynamics in response to doxorubicin, with

p21 variant 2 showing a slower, but more marked

Fig. 4. The mechanisms by which dysregulated splicing factor expression could induce and maintain cellular senescence. These include

genome-wide disruption of alternative splicing, dysregulation of mRNA export, dysregulation of RNA stability, disruption of mRNA surveil-

lance pathways such as nonsense-mediated decay, increase in aberrant splice products, stabilisation of mRNAs encoding inflammatory fac-

tors, impaired transcriptomic response to cellular insult resulting in reduced molecular resilience, failure of telomere maintenance and

uncoupling of transcription-coupled DNA damage and splicing interactions.

6 The FEBS Journal (2022) ª 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

RNA processing in senescence L. W. Harries



response to genotoxic stimuli [68]. Isoforms of ANRIL,

derived from the CDKN2A locus which also encodes

p14, p15 and p16, also demonstrate altered functional-

ity in response to different senescence-inducing provo-

cations [69]. Splicing response is also tightly coupled

to DNA damage [70]. Many genes with important

roles in damage repair have alternatively spliced iso-

forms. The cyclin D1 gene encodes several isoforms

with different abilities to initiate DNA damage

response (DDR); with the cyclin D 1a isoform able to

initiate DDR, but the cyclin D 1b isoform lacking this

ability [71]. Similarly, an age-related increase in the

expression of the truncated Tp53 isoform D40p53 is

associated with an accelerated ageing phenotype and

increased levels of senescence [72].

Disrupted splicing is likely to result not only in

changes to the abundance of canonical isoforms, but

also result in the occurrence of aberrant splicing

events. Recent evidence has also suggested that

dynamic retained intron events occur in senescence

and in aged tissues, and were negatively correlated

with the expression of their host genes [73]. Accumula-

tion of retained introns has also been described in the

pre-symptomatic stage of ageing in wild-type mouse

models [74]. Aberrant isoforms may have dominant

negative properties, altered functional characteristics

or misdirected subcellular localisation which may have

profound implications for cells, tissues and systems

and contribute to ageing and senescence phenotypes.

Altered levels of splicing factors may also compro-

mise the ability of an organism to react to challenging

stimuli in its environment and reduce transcriptomic

resilience, leading to multiple forms of cellular stress.

As described above, cellular stress is a major provoca-

tion for senescence. Many genes use mRNA surveil-

lance pathways such as nonsense-mediated decay

(NMD) as part of their normal regulation, in addition

to its role in mRNA quality control [75]. Proper splic-

ing is essential for NMD, as the deposition of the

exon-junction-complex (EJC) at the site of spliced

exons is a signal for initiation of degradation [76].

Without effective NMD, RNA quality control mecha-

nisms may be compromised, as has been observed in

nematode models [77] and in humans [78].

Many splicing factors also have roles in RNA stabil-

isation or destabilisation [79,80]. In addition to its role

on splicing, splicing factors such as hnRNPD (also

known as AUF1) act to destabilise their targets

through binding to A-rich elements (AREs) in their 30

untranslated regions [81]. Other splicing factors such

as hnRNPA1 can stabilise, rather than destabilise their

targets [82]. The aberrant production of transcripts

with alternative 30 untranslated regions can have con-

sequences for their regulation by microRNAs or

RNA-binding proteins, another stress responsive gene

regulatory mechanism [83]. This has particular rele-

vance when the role of splicing factors in regulation of

multiple components of the SASP is considered. Many

pro-inflammatory cytokines are regulated by A-rich

elements in their 30 untranslated regions [84,85]. Dys-

regulated expression of splicing factors can thus alter

the negative regulation of SASP factors, leading to

induction of chronic levels of inflammation.

Splicing factors also have additional roles in RNA

export [86,87]. The ability to shuttle processed RNAs

to the cytoplasm for translation or storage is a key

component of the quality control of gene expression.

Defects in this process lead to the accumulation of

aberrant or mislocalised RNAs in the cell and are

commonly observed in neurodegenerative disease [88].

Many splicing factors have roles in telomere mainte-

nance [89–91]. HNRNPF and H associate with the G

quadruplex elements in the hTERC component of the

Table 2. Mechanisms by which dysregulation of splicing factor

expression or activity can modulate senescence phenotypes. The

progressive dysregulation of splicing factor gene expression and

activity over time is predicted to interface with many of the

molecular mechanisms underpinning cellular homeostasis and

cellular health, by virtue of their multifunctional nature. Some of

the pathways that may be affected by dysregulated expression of

splicing factors are given below.

Mechanism Consequence References

Changes to patterns of

canonical splicing

Expression of pro-

senescence isoforms

[68,69,71]

Increase in aberrant

splicing

Increase in transcriptional

noise and production of

isoforms with altered

functionality

[73,74]

Disruption to RNA

surveillance

Failure of RNA quality

control and fine tuning of

gene expression

[77,115]

Altered dynamics of

RNA turnover

Enhanced stability of

SASP mRNAs

[81,82]

Defective RNA export Altered subcellular

localisation of mRNAs,

nuclear accumulation and

impaired translation of

mRNAs

[88,116]

Compromised telomere

maintenance

Telomere shortening and

initiation of replicating

senescence

[89–91]

Decreased plasticity and

adaptability of

transcriptome

Decreased molecular

stress resilience

[117]

Uncoupling of DNA

damage response and

splicing regulation

Accumulation and faulty

repair of DNA damage

[70,95]
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telomerase holoenzyme and modulate telomerase activ-

ity and telomere length [92]. Other splicing factors can

promote recruitment of telomerase to telomeres [93] or

modulate the accessibility to the telomerase promoter

to its transcription factors [91]. Telomerase itself is

also regulated during development by alternative splic-

ing [94].

Finally, there are known interactions between

mRNA processing factors and transcription-coupled

DNA damage response. ATM, an initiator of DNA

damage response, is known to be a negative regulator

of splicing factor expression [39], but the mRNA pro-

cessing pathway is however co-transcriptional, not lin-

ear. RNA molecules may exist in a state where there

may be interactions between not only RNA and

mRNA processing factors, but also between nascent

transcripts and DNA. Evidence is mounting that dys-

regulated coordination between different RNA pro-

cessing steps may facilitate introduce defects in

genome stability by disrupting the interactions between

nascent RNA and the DNA template [95]. DNA dam-

age is also able to directly modify splicing proteins via

PARylation, arginine methylation, acetylation, ubiqui-

tination/sumoylation or phosphorylation [70].

Splicing factor dysregulation may thus act at many

points in the development of senescence, and con-

tribute to multiple senescence phenotypes. These pro-

teins play multiple and interlinked roles in many

aspects of the initiation and persistence of the senes-

cence phenotypes, including DNA repair, telomere

shortening, decreased molecular stress resilience and

secretion of the SASP. As such, this phenomenon is

poised to interface with multiple hallmarks of ageing,

with influence on many aspects of ageing biology.

Splicing factors as potential
therapeutic targets for age-related
disease

Many important gene regulatory proteins are tightly

regulated to maintain correct homeostatic levels, and

splicing factors are no exception. Splicing factors are

normally held in a narrow homeostatic range by a

combination of autoregulation and transcriptional

control via cellular signalling pathways, many of which

are responsive to age-associated stimuli [31,39]. During

the ageing process, repeated and constitutive activation

of signalling pathways such as AKT and ERK exerts

negative regulatory pressures on splicing factor expres-

sion via the transcription factors ETV6 and FOXO1

[31]. Splicing factors also commonly auto-regulate via

the inclusion or exclusion of a poison exon, which pro-

motes mRNA degradation [96]. The expression of

most splicing factors declines with age [44]. It therefore

follows that restoration of splicing factor levels back

within their normal homeostatic constraints may con-

fer an advantage to the cell. Early studies suggested

that some splicing factors may be upregulated by treat-

ing cells with the polyphenol resveratrol [97], a mole-

cule long associated with healthspan benefits [98–100].
Subsequent studies demonstrated that the effect of

resveratrol and associated analogues produced a global

restoration of splicing factor levels, and was associated

with reversal of multiple aspects of cellular senescence

in primary human dermal fibroblasts [101]. Similar

results were obtained in studies where primary human

dermal fibroblasts were treated with specific inhibitors

of the negative upstream signalling pathways ERK

and AKT, or their downstream effectors FOXO1 or

ETV6 [31]. Other studies demonstrated that it was pos-

sible to uncouple reversal of different aspects of the

senescence phenotype and produce reversal and attenu-

ation of SASP, without re-entry to cell cycle in pri-

mary human endothelial cells by treatment of cells

with mitochondria-targeted hydrogen sulphide (H2S)

donors [102]. These data clearly demonstrate the

potential utility of small molecule or genetic modula-

tion of splicing factor expression for attenuation of

cellular senescence, but challenges still remain in terms

of specific delivery to senescent cells, translation to sys-

temic models and precise dosing to maintain home-

ostasis. In this respect, the presence of auto-regulatory

feedback loops may actually be an advantage, as over-

stimulation will elicit a negative regulatory response

and attenuation of splicing factor mRNA levels. The

development of splicing regulatory modulators is in its

infancy, but nevertheless holds great potential for

future senotherapeutics.

Dysregulated mRNA processing: the
10th hallmark of ageing?

Dysregulation of mRNA processing fulfils all the crite-

ria for categorisation as a new hallmark of ageing.

The first criteria is that a hallmark must occur during

normal ageing. Data suggest that splicing factor dys-

regulation does occur during human ageing, both at

the level of populations [44] but also in multiple cell

types at the individual cellular level in terms of senes-

cence [31,39,49,50,101,102]. This is echoed by disrup-

tion to patterns of alternative splicing in multiple

tissues in multiple species during ageing

[48,56,103,104], except in animals that have negligible

senescence [59]. The second criteria is that its experi-

mental induction of defects in RNA processing should

result in accelerated ageing. Data on this aspect are
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harder to find as complete knockout of many splicing

factors is lethal and mimicking transcriptome wide pat-

terns of splicing defects consistent with those found in

ageing experimentally is difficult. Mice where the

HNRNPD gene has been ablated do show evidence of

accelerated ageing, however, including kyphosis

(hunched back), reduced subcutaneous fat and repro-

ductive organ atrophy [91]. Experimental depletion of

HNRNPD or SRSF2 expression also yields cellular

senescence [102]. Similarly, genetic perturbation of

HNRNPA3, SRSF7 and SRSF4 expression levels was

sufficient to provoke senescence, as was disruption of

transcriptome wide splicing patterns using a pharmaco-

logical inhibitor of SF3B1, an important component of

the U2 snRNP involved in branch site recognition [53].

Similarly, depletion of the pre-mRNA processing factor

Prp19 promotes cellular senescence and premature age-

ing in mouse skin [95]. The third criteria of a hallmark

of ageing is that its experimental abrogation should

bring about improvement to aspects of the ageing

phenotype. Restoration of splicing factor expression

using small molecule or genetic means has been shown

to be capable of rescuing multiple aspects of the senes-

cent cell phenotype [31,101,102]. Similarly, overexpres-

sion of the RNA processing factor PRP19 has been

shown to extend human endothelial cell lifespan in vitro

by increasing stress resilience and DNA repair capacity

[105]. Examples of the beneficial effect of systemic

restoration of splicing regulation on in vivo ageing mod-

els are not so well-documented, but, overexpression of

Prp19 has been shown to increase lifespan in a Droso-

phila systemic model [106]. It should also be noted that

the original description of the hallmarks of ageing states

that not all the hallmarks are fully supported yet by

interventions that succeed in ameliorating ageing [1].

Conclusion and open questions

Given the evidence presented here, it should be consid-

ered that dysregulated mRNA processing fulfils at

Fig. 5. The 10 hallmarks of ageing. The addition of dysregulated mRNA processing as the 10th hallmark of ageing, joining mitochondrial

dysfunction, dysregulated nutrient sensing, epigenetic alteration, cellular senescence, stem cell exhaustion, telomere attrition, altered

cellular communication, disrupted proteostasis and genomic instability.
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least as many of the criteria as some of the phenomena

already designated as hallmarks of ageing, and as such

should be designated as such (Fig. 5). The links between

dysregulated mRNA processing, cellular senescence and

ageing are now beginning to coalesce into a clearer pic-

ture, which is perhaps unsurprising given that correct

alternative splicing is a fundamental pre-requisite to cel-

lular health. Approaches to restore splicing regulation

and restore transcriptomic plasticity may therefore rep-

resent a useful new tools in our senotherapeutic

armoury, although there are still questions to answer.

First, what is the most facile and effective methodology

to restore them to their correct homeostatic positions?

Is it sufficient to do this systemically, or do we need to

restrict our interventions to target organs and cell

types? The answer to this will largely depend upon the

desired outcome; restoring splicing regulation in acces-

sible target organs in the context of relieving aspects of

age-related disease is likely lower hanging fruit than

tackling bigger and more systemic issues. A second

question is regarding the impact of splicing-targeted

senotherapies on the non-senescent cells resident in the

same organs. In this scenario, it may be advantageous

to consider senescent cell targeting, or strategies to

attenuate only aspects of the senescent cell phenotype

such as the SASP. There is still work to do here and this

work is in its infancy, but represents an exciting new

future therapeutic avenue.
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