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Copyright © 2021 Livio Fenga and Carlo Del Castello. -is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

A compounded method—exploiting the searching capabilities of an operation research algorithm and the power of bootstrap
techniques—is presented. -e resulting algorithm has been successfully tested to predict the turning point reached by the
epidemic curve followed by the COVID-19 virus in Italy. Future lines of research, which include the generalization of the method
to a broad set of distribution, will be finally given.

1. Introduction

In general, predicting the time of a peak conditional to a set
of time-dependent data is a nontrivial task. Often carried out
in a multitasking fashion, requiring the availability of time
and resources, the correct estimation of future turning
points can be important in many instances but becomes
crucial in the case of epidemic events. -ese are the typical
circumstances when the forecasting exercise is conducted
online and on a time series exhibiting a small sample size.
However, under these conditions, the problem might be-
come particularly complicated since statistical methods
usually employed for these purposes—for example, of the
type hidden Markov (e.g., Hamilton [1] and Koskinen and
Oller¨ [2]) or nonparametric (e.g., Delgado and Hidalgo [3])
models—not only are very demanding in terms of building
and tuning procedures but typically requiring the availability
of a “long” stretch of data. In addition to that, the time series
related to epidemics usually show highly nonlinear dy-
namics, which, if not preprocessed, make them not suitable
for standard linear models. On the other hand, attempting to
fit nonlinear models, e.g., of the type self-exciting threshold
autoregressive (for example, [4]) or the artificial neural
network [1, 5], is not a viable option, due to the above-
mentioned sample size issues. In any case, when an ill-tuned

model is fitted on a time series, reliable outcomes should not
be reasonably expected. -erefore, an approach able to
perform under the above-outlined conditions is proposed.
In essence, the problem is solved by building a unified
framework in which two powerful techniques—belonging to
two different branches of computational statistics—are se-
quentially employed to lower the amount of uncertainty
embedded in the observed data and to find a (possibly
global) optimum through which the “best” statistical dis-
tribution for the dataset at hand is found.

2. The Unified Framework

As above stated, the approach studied in this study is rooted in a
unified framework in which two powerful paradigms are
exploited. -e first one, which belongs to the so-called com-
puter intensive statistical methods, is the bootstrap, which will
be detailed in Section 4. By using this technique, a high number
of “bona fide” replications of the original data are generated. In
essence, each of the bootstrap series obtained “mimics” the
observations recorded, so that the number of series observ-
ed—which in real life is typically equal to one—becomes (very)
high. Repeating a mathematical operation (e.g., the computa-
tion of an estimator) B times makes possible (i) the assessment
of the degree of uncertainty associated with the obtained
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estimations and (ii) less-biased estimators. -e latter goal is
achievable by the design of the bootstrapmethod, as through its
replications, the use of central tendency functions, such asmean
or median, is possible. -e second tool employed is an opti-
mization method for the selection of the “best” parametrization
of a class of statistical distribution commonly used in the lit-
erature. In practice, this step is performed in the so-called
bootstrap world, meaning that it is sequentially repeated for
each bootstrap sample. By doing so, the degree of uncertainty
associated with the selected distribution is lower than the one
obtainable by processing just one set of data (the real
observations).

3. Data and Contagion Indicator

-is study employs the data related to COVID-19, collected
and regularly updated by the Italian National Institute of
Health (an agency of the Italian Ministry of Health) and by
the Italian Civil Protection Department. -e whole dataset is
freely and publicly available in a comprehensive database,
accessible on the Internet at the web address https://github.
com/pcm-dpc/COVID-19/tree/master/dati-regioni. -e
dataset includes 38 daily data points collected at national
level during the period starting from January 19 toMarch 27.
-e used indicator—which will be referred to as the variable
of interest—is obtained by subtracting, for each day, from
the total number of people tested positive of corona virus
both the number of the deaths and of the recovered.

4. The Resampling Method

-e choice of the most appropriate resampling method is far
from being an easy task, especially when the identical and
independent distribution (i.i.d.) assumption (Efron’s initial
bootstrap method) is violated. Under dependence structures
embedded in the data, simple sampling with replacement has
been proved (for example, Carlstein [6]) to yield suboptimal
results. As a matter of fact, i.i.d.-based bootstrap schemes are
not designed to capture and therefore replicate dependence
structures. -is is especially true under the actual conditions
(small sample sizes and strong nonlinearity). In such cases,
selecting the “right” resampling scheme becomes a partic-
ularly challenging task as many resampling schemes are not
designed to capture the dynamics typically found in epi-
demiology. As an example, the well-known resampling
method called sieve bootstrap—introduced by Buhlmann
[7]—cannot be employed due to the quadratic shape almost
always found in this type of time series.

In more details, while in the classic bootstrap, an en-
semble Ω represents the population of reference the ob-
served time series is drawn from, and in MEB, a large
number of ensembles (subsets), say {ω1, ..., ωN}, become the
elements belonging to Ω, each of them containing a large
number of replicates {x1, ..., xJ}. Perhaps, the most important
characteristic of the MEB algorithm is that its design
guarantees the inference process to satisfy the ergodic
theorem. Formally, denoting by the symbol |·| the cardinality
function (counting function) of a given ensemble of time
series {xt ∈ωi; i� 1, ...,N}, the MEB procedure generates a set

of disjoint subsets ΩN ≡ ω1∩ω1 ···∩ωN s.t. EΩN µ(xt), with
µ(·) being the sample mean. Furthermore, basic shape and
probabilistic structure (dependency) are guaranteed to be
retained ∀x∗t, j ⊂ ωi ⊂ Ω.

MEB resampling scheme has not negligible advantages
over many of the available bootstrap methods; it does not
require complicated tune-up procedures (unavoidable, for
example, in the case of resampling methods of the type block
bootstrap), and it is effective under nonstationarity. -e
MEB method relies on the entropy theory and the related
concept of (un)informativeness of a system. In particular,
the maximum entropy of a given density δf (x) is chosen so
that the expectation of the Shannon informationH� E (− log
δo (x)) is maximized, i.e.,

maxH
δ(x)

� E(− log δ(x)). (1)

Under mass- and mean-preserving constraints, this
resampling scheme generates an ensemble of time series from a
density function satisfying (4). Technically, the MEB algorithm
can be broken down into the 8 steps detailed as follows:

(1) A sorting matrix of dimension T× 2, say S1, ac-
commodates in its first column the time series of
interest xt and an index set, i.e., Iind � {2, 3, ..., T}, in
the other one.

(2) S1 is sorted according to the numbers placed in the
first column. As a result, the order statistics x( t ) and
the vector Iord of sorted Iind are generated and, re-
spectively, placed in the first column and second
column.

(3) “Intermediate points,” averaging over successive
order statistics, are computed, i.e., ct �

((x(t) + xt+1)/2), t � 1, . . . , T − 1, and intervals It
constructed on ct and rt are derived, using ad hoc
weights obtained by solving the following set of
equations:

(i) f(x) � (1/r1)exp([x − c1]/r1),
wherex ∈ I1, r1 � (3x(1)/4) + (x(2)/4).

(ii) f(x) � (1/ck − ck− 1), x ∈ (ck; ck+1),

rk � (x(k− 1)/4) + (x(k)/2) + (x(k+1)/4), k � 1, . . . , T − 1.

(iii) f(x) � (1/rT)exp([cT− 1 − x])/rT,

wherex ∈ IT, rT � (xT− 1/4) + (3xT/4).

(4) From a uniform distribution in [0, 1], T pseudo-
random numbers are generated and the interval
Rt � (t/T; t+ 1/T] for t� 0, 1, ..., T − 1 is derived, in
which each pj falls.

(5) A matching between Rt and It is created according to
the following equations:

xj,t,me � cT− 1 − |θ|ln 1 − pj , if pj ∈ R0,

xj,t,me � cT− 1 − |θ|ln 1 − pj , if pj ∈ RT− 1.
(2)

so that a set of T values {xj, t} as the jth resample is
obtained. Here, θ is the mean of the standard ex-
ponential distribution.
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(6) A new T× 2 sorting matrix S2 is defined, and the T
members of the set {xj,t} for the jth resample obtained
in Step 5 is reordered in an increasing order of
magnitude and placed in column 1. -e sorted Iord
values (Step 2) are placed in column 2 of S2.

(7) Matrix S2 is sorted according to the second column
so that the order {1, 2, ..., T} is then restored. -e
jointly sorted elements of column 1 are denoted by
{xS,j,t}, where S recalls the sorting step.

(8) Steps 1–7 are repeated a large number of times.

In order to give a clearer picture of the MEBOOT al-
gorithm, in Figure 1, its flowchart is reported. As it can be
noticed, four different functions characterize this resampling
method.-e sorting function plays a key role, as it operates in
two different points of the algorithm, i.e., to order the values
belonging to the original time series (S1) and to restore the
given time sequence for each of the bootstrapped data (S2).
Besides the pseudorandom function generator, whose em-
ployment is straightforward, the two remaining functions, i.e.,
the average and the matching, are, respectively, used to
compute the mean of the maximum entropy density and to
create a matched sequence of the intervals Rt’s.

5. Bootstrap-Driven Forecast Optimization

-is section aims to define an alternative method to forecast
our variable of interest by means of an optimization ap-
proach designed to fit a set of distribution functions applied
to each bootstrap replication.

-e variable of interest is assumed to approximately
describe a logistic function, scaled by a normalizing pa-
rameter h (representing the asymptotic number of cases), as
shown in Figure 2, so that its derivative is a Gaussian
function rescaled accordingly, i.e.,

f(t |h, μ, σ) � h
1

σ
���
2π

√ e
− (1/2)(t− μ/σ)2

, (3)

where t represents the number of days since pandemic has
started in Italy, h represents the magnitude scale, µ repre-
sents the peak of daily cases (scale), and σ represents the
standard deviation (shape).

Now, given

(i) -e parameter vector θ� (h, µ, σ), where θ ∈Θ
(ii) -e total active cases xt since the infection spread
(iii) A generic bootstrap distribution x∗t,i ∈ω ⊂Ω, where

i ∈ {1..N} is the ith bootstrap within N replicates
(iv) x∗t,i � f(t| h, μ, σ), where x∗t,i is the theoretical value;

the objective function is defined as follows:

∀i ∈ 1..N{ } min
θi∈Θ

MSEi x
∗
t,i, x
∗
t,i 

� min
θi∈Θ

Avgi x
∗
t,i − x
∗
t,i 

2
.

(4)

-is is a nonlinear unconstrained optimization problem
which cannot be addressed using standard global optimization

methods (e.g., of the type simplex, branch and bound, or
branch and cut), which are designed for linear programming
(LP) [8] and mixed-integer linear programming (MILP) [9],
within the field of discrete combinatorial problems [10].

On the other hand, local search simulated annealing
metaheuristic designed to approximate global optimization
can be used to solve unconstrained nonlinear problems in a
large space.

6. Simulated Annealing Optimization

Simulated annealing (SA), following Van Laarhoven and
Aarts [11], is a probabilistic technique for approximating the
global optimum of a given function. Specifically, it is a
metaheuristic used to approximate global optimization in a
large search space for an optimization problem.

Xt
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S1 is generated

The sorting matrix
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is generated
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Figure 1: Flowchart of the MEBOOT algorithm.

Journal of Probability and Statistics 3



-e name and inspiration come from annealing in
metallurgy, a technique involving heating and controlled
cooling of a material to increase the size of its crystals and
reduce their defects. Both are attributes of the material that
depend on its thermodynamic free energy. Heating and
cooling the material affects both the temperature and the
thermodynamic free energy. Simulated annealing can be
used to approximate the global minimum for a function with
many variables. -is approach was used by Kirkpatrick et al.
[12] to solve the traveling salesman problem. -ey also
proposed its current name, simulated annealing. -e notion
of slow cooling implemented in the simulated annealing
algorithm is interpreted as a slow decrease in the probability
of accepting worse solutions as the solution space is ex-
plored. Accepting worse solutions is a fundamental property
of metaheuristics because it allows for a more extensive
search for the global optimal solution.

In general, simulated annealing algorithms work as
explained next. -e temperature progressively decreases from
an initial positive value to zero. At each time step, the algo-
rithm randomly selects some neighbor state s∗ of the current
state s, measures its energy (in this case, theMSEi (x∗t, i) on the
bootstrap distribution), and decides between moving the
system to the state s∗ or staying in state s according to the
temperature-dependent probability of selecting better or
worse solutions. During the searching process, such a prob-
ability, respectively, can remain at 1 (or any positive number
smaller than 1) or decrease towards zero.

6.1. Simulated Annealing on Bootstrap Pseudocode. -e
following pseudocode presents the simulated annealing
heuristic applied to bootstrap replicates. For each bootstrap,
it starts from a state s0 and continues searching solutions
until temperature decay reaches a low temperature. In the
process, the call Neighbour (s, φ) generates a randomly
chosen neighbor of a given state s; the call Random U (0, 1)
picks and returns a value in the range [0, 1], uniformly at
random. -e annealing schedule is defined by the tem-
perature decay based on the fixed cooling rate ρ.

(i) Let the current temperature set at T� t0
(ii) Set the cooling rate ρ
(iii) For each bootstrap series i in {1, ..., N}

(i) Let current solution s� s0
(ii) Loop while temperature T> 1

(i) Pick a random neighbor, snew ← Neighbor
(s, φ), where φ is the radius around s

(ii) If Prob (E (s), E (snew) |T, kB)≥Random U
(0, 1): s ← snew

(iii) T ← T∗ (1 − ρ)

(iii) Output the final state s on ith bootstrap

Here, the function Prob (E (s), E (snew) |T, kB) is the
acceptance probability at each iteration given temperature T
and Boltzmann constant (Aarts and Korst [13] kB), i.e.,

Prob E(s), E snew( |T, kB(  �

1, if E(s)>E snew( ,

exp
E(s) − E snew( 

kBT
 , otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)
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Figure 2: COVID-19 active cases.
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-e employed criterion for the acceptance of bad so-
lutions has been preferred to the Boltzmann criterion if Prob
(E (s), E (snew)|T) (as suggested by the referee), since it
exhibited a much higher flexibility.

7. Empirical Evidence

In order to improve local search speed, the parameter space
Θ can be bounded to Θ0⊂Θ, so that useless tails have been
removed. Moreover, no information is lost under parame-
ters space reduced to

h ∈ [100000, 180000],

µ ∈ [35, 50],

σ ∈ [7, 13].

(6)

-e SA parameters have been iteratively tuned on a trial
and error basis, to maximize the procedure overall efficiency.
To this end, we set the initial temperature T0 �10000, the
cooling rate ρ� 0.0006, the Boltzmann constant kB � 100,
and the radius φ� 0.3 (θmax− θmin). -e optimization pro-
cedure has been applied to 500 bootstrap replications, de-
rived from the positive cases in Italy between February 19
and March 27. -e related results have been used to create

the frequency distribution upon magnitude scales and peaks
pairs, as shown in Table 1 and Figure 3.

-e average values, computed for each parameter, are as
follows: Avg (h)� 122178, Avg (µ)� 36.7, and Avg (σ)� 10.8.

Approximated confidence bounds are derived from the
normal distribution (with 0.01 significance level) for each of
the parameters, i.e.,

Pr(119401≤ h≤ 124955) � 0.99,

Pr(36.41≤ µ≤ 37.07) � 0.99,

Pr(10.6≤ σ ≤ 10.9) � 0.99.

(7)

By evaluating µ confidence intervals, a peak day of
daily cases between March 25 and 26 is inferred, while the
h magnitude parameter shows an asymptote in the curve
of the total positive cases between 120000 and 125000.
-e new cases curve has an asymptotic behavior, so
cutting the tail beyond the 0.1 cutoff for new infections,
the pandemic time window is hypothetically over after
May 16.

-is behavior is clearly described in Figures 4 and 5, which
have been built considering the Gaussian (Figure 4) and the
cumulated Gaussian (Figure 5) curves around the 99%
confidence lower and upper bounds for each parameter.

Table 1: COVID-19 bootstrap (AsymptoteClass, Peekday) frequency.

AsymptoteClass
±2500
Median point

Peekday
Total

34 35 36 37 38 39 40 41 42 43 44 45

100,000 13 19 3 8 3 — — 1 — — — — 47
102,500 22 27 6 5 3 — — — — — — — 63
105,000 18 13 12 6 3 1 2 — — — — — 55
107,500 16 5 6 4 — — — — — — — — 31
110,000 31 10 6 1 1 2 1 — — — — — 52
112,500 10 3 7 2 1 — 1 — — — — — 24
115,000 23 7 4 1 1 1 — — — — — — 37
117,500 11 1 2 3 1 — — — — — — — 18
120,000 6 2 4 1 3 — — — — — — — 16
122,500 3 — — 3 — 2 — — — — — — 8
125,000 3 — — 2 3 3 2 — — — 1 — 14
127,500 — — — — 1 — 1 — — — — — 2
130,000 1 — — 1 — 1 1 — — — — — 4
132,500 — — — 1 1 3 1 1 — — — 7
135,000 — — — 2 2 1 1 1 — — — — 7
137,500 — — — 1 3 1 1 — — — — 6
140,000 1 — — 1 — 1 2 1 1 — — 7
142,500 — — — — — 1 — — — — — — 1
145,000 — — — — — — 2 — — — — — 2
147,500 — — — — 1 — — — — — — — 1
150,000 — — — — — — 1 6 — — — 1 8
155,000 — — — — — 1 1 — — — 2
157,500 — — — — — 1 1 1 1 — — — 4
160,000 — — — — — — 2 1 — — 1 4
162,500 — — — — — 1 2 3 2 — 1 — 9
165,000 — — — — — 2 4 3 — 1 — 10
167,500 — — — — — 1 3 3 4 — — — 11
170,000 — — — — — 4 6 3 3 2 — 18
172,500 — — — — — — 6 9 2 2 — 19
175,000 — — — — — 1 1 9 1 1 — 13
Total 158 87 50 41 25 24 30 44 24 7 8 2 500
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Figure 3: COVID-19 bootstrap (AsymptoteClass, Peak day) distribution.
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8. Further Developments

-e SA optimization for fitting bootstraps derived from real
data is applicable to any kind of distribution known in the
literature and empirical distributions as well. -is research
highlights a great potential if the aforementioned procedure
is enhanced by introducing an automatic routine for the
“optimal” choice of either known (ξr) or empirical (ξe)
distributions, where (ξr, ξe) are in a predefined distribution
space Ξ. In some more details, the algorithm could include a
preprocessing light SA optimization (with a higher cooling
rate ρ to cut down the number of SA iterations) designed to
reduce the distribution space Ξ as well as the parameter
space Θξ for each distribution ξ ∈Ξ and thus boost the
optimization search.

Data Availability
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[2] L. Koskinen and L.-E. Öller, “A classifying procedure for sig-
nalling turning points,” Journal of Forecasting, vol. 23, no. 3,
pp. 197–214, 2004.

[3] M. A. Delgado and J. Hidalgo, “Nonparametric inference on
structural breaks,” Journal of Econometrics, vol. 96, no. 1,
pp. 113–144, 2000.

[4] M. P. Clements, P. H. Franses, J. Smith, and D. Van Dijk, “On
SETAR non-linearity and forecasting,” Journal of Forecasting,
vol. 22, no. 5, pp. 359–375, 2003.

[5] M. H. Hassoun, Fundamentals of Artificial Neural Networks,
MIT press, Cambridge, MA, USA, 1995.

[6] E. Carlstein, “-e use of subseries values for estimating the
variance of a general statistic from a stationary sequence,”=e
Annals of Statistics, vol. 14, no. 3, pp. 1171–1179, 1986.
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