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Abstract. The problem of the extraction of the relevant information for pre-

diction purposes – in a Big Data time series context – is tackled. This issue is

especially crucial when the forecasting activity involves macroeconomic time

series, i.e. when one is mostly interested in finding leading variables and, at

the same time, avoiding overfitted model structures. Unfortunately, the use of

big data can cause dangerous overparametrization phenomena in the enter-

tained models. In addition, two other drawbacks should be considered: firstly,

human–driven handling of big data on a case-by-case basis is an impractical

(and generally not viable) option and secondly, focusing solely on the raw

time series might lead to suboptimal results. The presented approach deals

with these problems using a twofold strategy: i) it expands the data in time–

scale domain, in the attempt to increase the likelihood of giving emphasis

to possibly weak, relevant, signals and ii) carries out a multi-step dimension

reduction procedure. The latter task is done by means of cross–correlation

functions (whose employment will be theoretically justified) and a suitable

objective function.

Keywords Autoregressive models; big data; distributed lag model; macroe-

conomic time series; multiresolution analysis; prediction; wavelet theory.

1 Introduction

Theoretical and applied research is nowadays focusing, with greater and greater in-

tensity, on mathematical models aimed at predicting the future values taken by one or

more time series. Economics is an area traditionally characterized by high degrees of

uncertainty and reliable forecasting methods are always in demand. However,building,



testing and tuning–up a statistical prediction model for economic variables is an abso-

lutely non trivial task. In fact, virtually all the economic–related processes reflect, to a

different extent, the very many sources of instability nowadays World is affected from.

Such disturbances can inject unwanted phenomena into the time series under inves-

tigation, e.g. in the form of noise, spikes, asymmetric cycles and other idiosyncratic

components and irregularities. Under such conditions, even sophisticated forecasting

models – whose construction often require heavy, conjoint efforts from different qual-

ified actors (e.g. academic researchers, economists, statisticians and practitioners) –

generally deliver suboptimal performances or can fail altogether. In such a situation,

unconventional information of the type big data can be fruitfully employed. In fact,

once extracted and properly processed, those data might possess valuable leading

capabilities. In addition, they can show many other desirable properties such as: i)

real-time availability; ii) free of charge accessibility; iii) great flexibility. However,

sometimes, those advantages might turn into dangerous misleading factors. Tempted

by the sometimes overwhelming quantity of available information, the analyst might

use too much of it and include too many and/or logically unrelated variables in the

entertained statistical models. Such an indiscriminate use of the available information

set is against the parsimony principle and, as a result, not negligible to big amounts

of uncertainty are injected into the analysis.

The strategy proposed in the present paper is a multi-step procedure aimed at

coping with such a scenario; in fact, it is designed to extract a small subset of useful

information (mainly in the form of wavelet components) employable in a parsimonious,

statistically correct, linear prediction models.

2 The proposed method

As an evolving term, it is difficult to give an exact definition of big data. In

general, this term relates to any huge amount of structured, semistructured and un-

structured collection of (possibly multi-source) data, which can be computationally
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exploited to the end of gaining useful information. Such data–sets can be extracted

from official and unofficial sources. The former are usually archives maintained and

disseminated by public organisms (ministers, central banks as well as national and

supranational statistical bureaus) or private institutions (e.g. department of motor ve-

hicles, research companies, transportation authorities). Unofficial sources are a much

more complicated matter. In this case, in fact, the information is made available

usually with no guarantees about its (potential) statistical usability. Being built and

disseminated by many kinds of entities, by design outside the “statistical control”

of certifying organisms, these data should be always taken with certain reservations.

Clearly, it is always possible to conduct different types of tests to check their statisti-

cal properties (e.g. in terms of probabilistic structure, presence of dominant frequency

components, linearity, coherence with similar phenomena) – or to adjust them (e.g.

in case of outliers, trading day effects or periodic components). However, all these

actions can be generally taken ex post. While there are many on-line big data sources

– such as Google Trends, Google AdWords or Twitter data, just to cite a few, in

the present paper we restrict our attention to one in particular, which stores the

queries submitted to the search engine Google Search, i.e. Google Trends (for Italy

the address is https://trends.google.it/trends/?geo=IT). In more details, by means

of Google Trends (henceforth GT ) data, we can measure the popularity of top search

queries, across various regions and languages. Prior to their diffusion, the data are

“normalized”, (i.e. only the relative level of interest over time for a keyword phrase is

made available). GT data are publicly and readily available free of charge and can be

easily customized – other than for different configurations of the keywords of interest

– also for geo-localization and time span. However, those data embody, to different

extents, the sources of uncertainty above mentioned; in particular little or none is

known about their quality control as well as the type and size of the population of

reference, which, all the more so, changes over time. By design, GT data clearly rule

out significant portions of a given population (i.e. those with no computer alphabeti-

zation or limited or no access to proper hardware equipments). Other uncontrollable

sources of bias are technical – e.g. prolonged power outages, network failures, speed
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and other network-related technological constraints – or even political (certain States

regulate or prohibit WWW–based activities). Finally, there are always chances that

Google Search queries are submitted by non-human entities, e.g. Artificial Intelligence

algorithms.

2.1 Outline of the method

The proposed method, called W–BD (Wavelet Big Data), uses a multi–step procedure

aimed at iteratively and progressively reducing the complexity of a given big-data

set. Narrowed down to a workable number of variables, the search space is finally

investigated using methods commonly employed in time series analysis. However,

unlike many available dimension reduction procedures, in the case of the present

paper the information set is initially expanded to include, along with the original

(potentially interesting) variables extracted, also their wavelet decomposition. In more

details, the focal point of W–BD method rests on the fact that the relevant, (usually

tiny) portion of information is not only “hidden” in the time domain – represented

by the columns of length T (the time span) of a huge dimension time series matrix

of size T × N – but it is also assumed to be embedded in the time–scale domain.

Therefore, the search space is double, being represented by both time and time–scale

spaces; the former is explored in the usual theoretical framework of the times series

analysis whereas the latter is investigated through a set of equations, designed to

generate wavelet sequences and achieve the deconstruction of possibly complicated

and/or non–linear dynamics. In particular, the method employed here – called Multi

Resolution Analysis (MRA) (see, for example, ?, ? and ?) – allows the decomposition

of a given time series into its resolution levels, until a prefixed, bounded and arbitrary

determined, maximum level.

W-BD method applies the MRA technique to a predefined, empirically chosen set

of Google Trends time series, say Ω ⊂ ℵ; |Ω| << |ℵ|, being ℵ the “big set” containing

the totality of the GT time series (our population of reference) and the symbol |·| indi-

cating the cardinality function. Once applied to Ω, MRA generates the set Ω′q, of size
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q. In practice, Ω′q is an expanded version of Ω as it stores all the wavelet components

the time series belonging to Ω are decomposed into. Therefore, it will be |Ω′q| > |Ω| by

a factor of (J + 1), being J the number of the (arbitrarily chosen) wavelet decompo-

sition levels. In general, Ω′q is high dimensional, with possibly hundreds or thousands

of elements and hopefully contains a low–dimensional subset containing only the rel-

evant information. This subset is obtained by applying ad hoc dimension reduction

procedures which are based on i) cross-correlation functions (whose employment in

this particular context will be discussed and justified in Paragraph 4) between the

different wavelet components in Ωq and the time series of interest and ii) an objective

function (discussed in Paragraph 6.1), designed to measure the forecasting ability of a

multivariate predictor in comparison with its univariate counterpart. By means of the

function sub i), a subset called Ω′′ is generated whereas the function sub ii) is used

to define a more refined subset, denoted by the symbol Ω◦. Further, human–driven,

steps based on the adopted target function – along with a through evaluation of a

small number of competing equations used for the reconstruction of the underlying

process – are needed to deliver the final forecasting model.

Despite the fact that W-BD is purposely designed to extract and employ wavelet

decomposed time series (along with the lagged dependent variable), there are always

chances that one of the following two scenarios takes place:

i) one or more series belonging to Ω (i.e. the set containing only the raw, non-

decomposed series) and to Ω′q (which contains the decomposed series) are se-

lected. This case excludes the contemporaneous presence, in any of the enter-

tained models, of a given series xi,t and its wavelet decomposition Wj(xi,t) at

any level j.

ii) exclusively raw series are selected.

In other words, in i), the multivariate predictor is built using both decomposed and

not decomposed time series. On the other hand, the case sub ii) refers to a (mostly
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theoretical) case where no decomposed time series are found useful (and therefore

W-BD method collapses to a standard multivariate model).

In the sequel, the set containing the non–decomposed time series (as in the case

ii) will be denoted by the symbol Ω.

More formally, let Ω∗ be the final subset containing the “best” variables, four

different configurations of the problem are possible:

a) Ω∗ ⊂ Ω – being |Ω∗| << |Ω| + |Ω′q| ≡ |Ω| – i.e. the final subset comprises only

not decomposed time series (fact that rules W–BD out);

b) Ω∗ ⊂ Ω′q – being |Ω∗| << |Ω| + |Ω′q| ≡ |Ω′q| – i.e. improvements are expected by

employing solely decomposed time series;

c) Ω∗ ⊂
[
Ω ∪ Ω′q

]
– being |Ω∗| << |Ω| + |Ω′q| – i.e. improvements are expected by

using both original and decomposed time series;

d) Ω∗ ≡ ∅. In this case the current information set cannot support W–BD.

Under case c), to avoid redundancy, a statistical model must not embody time

series belonging to both Ω and Ω′q. On the other hand, case a) falls into the more

traditional regression framework, which obviously rules out W–BD method, as well as

the case sub d). The most interesting case is the one under b) and its straightforward

extension c).

To summarize, as a result of a first overview performed on the available big data

set ℵ, the set Ω is extracted. Its multiresolution–driven expansion generates the set

Ω′q = W(Ω), with the subscript q referring to its size (the number of time–scale com-

ponents), whereas the Wavelet transforming function (i.e. W) is of the type Maximum

Overlapping Discrete Wavelet Transform (MODWT) ? and will be illustrated in the
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next Section 3. A double step procedure is finally applied on Ω′q to built a lower di-

mension set, which will be denoted by the symbol Ω◦. As it will discussed later, Ω◦

is not the final subset (already defined with Ω∗), as it provides just one of the pos-

sible configurations the final set of regressors might take. This is consistent with the

fact that the adopted target function gives only rough indications on the prediction

capabilities of the selected variables, whose inclusion in a final statistical model must

be carefully evaluated and tested.

Finally, lag selection of the dependent variable has not be considered yet, as it

falls within the more standard domain of autoregressive order determination. The

related procedure, as well as its integration in the W–BD scheme, will be discussed

in Paragraph 3. For now, we only need to denote the information set represented by

the dependent variable’s (y) own past, i.e. {Ω̃y ≡ yT−1, yT−2, . . . , y1}.

2.2 Statement of the problem

As already pointed out, big data should be looked at as complex information systems

embedding useful structures, whose patterns can be hard to detect, given the high

dimensionality of the problem. Through W–BD, the strong uncertainty associated

with the use of big data (here of the type GT ) is dealt with by extracting only the

relevant information and employing it to enhance the forecasting power of a linear

predictor. This is mainly done by (automatically) analysing the leading features of i)

each of the time–scale decomposition levels the GT series have been broken into and

ii) the raw time series belonging to Ω, with respect to yt (i.e. our dependent variable,

here in the form of a given macroeconomic time series). The prediction capabilities of

the decomposed series are compared with those obtained by using an information set

made up only by y’s own past {Ω̃y}. Formally, what we are looking for is a subset of

{Ω′q} and {Ω̃y} so that the following condition is verified:

MSPE(E[yt+m]|{Ω∗ ∪ Ω̃y}) < MSPE(E[yt+m]|Ω̃y),
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being {Ω∗}, {Ω̃y} as above defined and MSPE the Means Square Prediction Er-

ror, evaluated at forecast horizons m = 1, 2, . . . ,M . Any given raw series xt,i and

its wavelet decomposition Wi(xt,i) are mutually exclusive (cannot be simultaneously

belong to Ω∗). We are therefore interested in assessing the prediction performances

achieved by conditioning the dependent variable to its own past and the information

obtained from a suitable set of (lagged) wavelet components (or the correspondent

raw series). In such a context, as it will be illustrated, the “natural” benchmark –

which is adopted here – is the pure autoregressive model.

3 The analysis in time–scale

The degree of complexity characterizing many macroeconomic time series would

greatly benefit from the outcomes of an analysis with arbitrary high levels of resolu-

tion in both time and frequency domains. Unfortunately, the Heisemberg uncertainty

principle dictates that the more precisely a measurement is taken in frequency (time)

domain the more the lack of resolution will result in time (frequency) domain. There-

fore, if one wish to investigate the dynamical behaviour of a given realization of a

stochastic process expressed at different frequencies, it is unavoidable to deal with

the consequences of this principle and, as a result, to find a compromise. Fourier–type

transforms are generally not an option since, under this set-up, time information is

lost and it is not recoverable. Furthermore, by design Fourier spectrum is only suit-

able for stationary time series and shows no sensitivity towards transient relations or

structural changes. A good compromise between considering the pure time series data

(maximum time localization information) and looking at data through a Fourier anal-

ysis in frequency space (maximum frequency localization information) is the analysis

of the type wavelet, as it is designed to retain some frequency localization and some

time localization. In practice, through the wavelets, the spectral characteristics of a

given time series can be estimated as a function of time. As a result, a sufficiently clear

picture of the time evolution of its different periodic components is generally allowed.

In more details, the wavelet theory deals with the Heisenberg uncertainty principle

by means of the MRA, i.e. by analysing signals at different frequency bands with
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different levels of resolutions: higher frequencies (showing good time resolution and

poor frequency resolution) and lower frequencies (showing good frequency resolution

and poor time resolution). In this sense, MRA is a useful tool for most real–life time

series, i.e. composed of long-lasting, lower frequencies (approximations) and short-

lasting higher frequencies (details).

Let L2(R) be the space of all squared integrable functions (otherwise known – e.g.

in the case of signal processing – as space of function with finite energy) on R and

ψ = f(t) ∈ L2(R) be a fixed generic function. Function ψ = f(t) is a wavelet under

the following two conditions:
∫∞
−∞ ψ(·)du = 0 and

∫∞
−∞ ψ2(·)du = 1. Furthermore,

to be a wavelet, ψ must also meet (among others) the admissibility condition. Let

Ψ(f) =
∫∞
−∞ ψ(u)e−i2πfudu be the transformation of ψ in the Fourier sense, this func-

tion is admissible under 0 < CΨ < ∞, being Cψ =
∫∞

0
|Ψ(f)|2
f df . The last relation is

important as it allows the reconstruction of a given function f(x) from its (continuous)

wavelet transformation. Wavelet functions have strong practical implications since

they are subjected to the shifting and scaling operations, i.e. ψa,b(t) = 1√
a
ψ( t−ba ), be-

ing b ∈ R and a ∈ R+(a 6= 0), respectively the translation and the dilation parameter.

The energy normalization factor a−
1
2 serves the purpose of equating scale–wise the val-

ues yielded by the square integrability of ψa,b. In other words, this function guarantees

the decomposition of a square integrable function in terms of its dilated and translated

wavelet so that the energy in the transform space can be equated to the signal energy.

A given input signal x = f(t) ∈ L2(R) is continuously wavelet–transformed (CWT)

according to: Wx(a, b) =< x,ψa,b >=
∫∞
−∞ x(t)ψ∗a,b(t)dt = 1

a

∫∞
−∞ x(t)ψ∗( t−ba )dt, be-

ing Wx(a, b) the scaled and localized wavelet coefficients whereas with ψ∗ and < ·, · >

the complex conjugate of ψ and the scalar product in L2(R) are respectively de-

noted. This last relation is invertible and therefore the reconstruction of the original

signal from its wavelet decomposition is always possible, through the so-called recon-

struction of identity operation, i.e.: x(t) = 1
Cψ

∫
R
∫
RWx(a, b)ψa,b

da db
a2 . CWT is highly

redundant and thus its discrete version (Discrete Wavelet Transform, DWT) – which

associates wavelets to orthonormal bases in R2 – is often used instead. By signal dis-
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cretization, a time series xt; t = 1, 2, . . . T , of sample size T and finite energy, can

now be expressed using an orthonormal wavelet basis, i.e.

x(t) =
∑
m

∑
n

dnmψ
m
n (t), (1)

being ψ(t) the analyzing wavelet and dmn expressed as follows:

dmn =

∫ ∞
−∞

x(t)ψmn (t)dt. (2)

The orthonormal basis functions are all the dilations (denoted by the Latin letter

m) and translation (denoted by the Latin letter n) associated to this function. The set

of basis functions can be expressed as ψmn (t) = 2
m
2 ψ(2mt−n). From (1), the contribution

of xt, ascribable to an admissible level m wavelet decomposition, is given by dm(t) =∑
n d

m
n ψ

m
n (t). By virtue of this last equation, one can assess i) the dynamics of xt

across different scales and ii) the contribution of each of them as a fraction of the

total energy. The computation of the quantities in (1) and (2) is crucial for W–

BD method, as they make possible the decomposition of a time series. The method

employed to this end, devised by Mallat ?, is called MRA. This approach is designed

to build orthogonal wavelet basis and, practically, results in an algorithm employing

both wavelet functions and filter banks. The MRA–based decomposition of a given

time series is achieved by sequentially performing its transformation into a series of

details and approximations at progressively coarser levels. Let φ(t) be the scaling

function and amn the function associated with both the wavelet ψ(t) and its detailing

coefficients dmn (see Equations 1 and 2). At a given scale m, both amn and dmn can

be computed using a
(m+1)
n , i.e. the scaling coefficient at the next finer scale, i.e.:

amn =
∑
l h[l− 2n]am+1

l and dmn =
∑
l g[l− 2n]am+1

l , being h[n] and g[n] respectively

the low–pass and the high–pass filters. In other words, amn and dmn are signals resulting

from the convolution with the high pass – low pass filters followed by a downsampling

of factor 2.
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In the present paper, MRA has been performed through a modified version of

DWT , i.e. the Maximum Overlapping DWT (MODWT ). This is an highly redun-

dant, non orthogonal method which has been chosen mainly for the following two

reasons: i) it can work with time series of arbitrary length (in contrast to orthogonal

DWT which requires the sample size to be an integer multiple of 2J) and ii) the

signals an and dmn are associated with 0–phase filters. Under MODWT the perfect re-

covery of the original signal is allowed. Let x be a T–dimensional vector representing

the real valued input signal {xt; t = 0, 2, . . . , T − 1}. For each admissible level J0 the

MODWT procedure results in length T , J0 + 1 vectors, say Wj and Vj , respectively

storing the wavelet and the scaling coefficients. Following ? these two vectors can be

respectively written as

Wj = Λjx (3)

and

Vj = Θjx, (4)

being both Λj and Θj T × T matrices respectively storing the values of the

wavelet and scaling filters. Equations 3 – 4 are respectively computed as follows:

Wj,t =
∑Lj−1
l=0 h̃j,l, xt−l modN and VJ,t =

∑Lj−1
l=0 g̃j,l, xt−l modN , with

{
h̃j,l

}
and {g̃j,l}

being the length L, level j equivalent wavelet and scaling filters for the transform of

the type DWT , above denoted by the symbols g[·] and h[·]. MODWT is a filter-

ing approach aimed at modifying the observed series xt by artificially introducing

an extension of it. In practice, unobserved samples [x−1, x−2, . . . , xT−2, xT−1, x0] are

assigned the observed values [xT−1, xT−2,...,x0]. This method considers the series as

it were periodic and is known as using circular boundary conditions, where wavelet

and scale coefficients are respectively given by:

W̃j,t =

T−1∑
l=0

h̃◦j,l, xt−l modT , (5) ṼJ,t =

T−1∑
l=0

g̃◦j,l, xt−l modT , (6)

being h̃◦j,l and g̃◦j,l respectively the periodization of h̃j,l and g̃j,l.
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Let Λ̃j Θ̃j two T × T matrices respectively storing the values of the wavelet and

scaling filters computed in (5) and (6), the signal is recovered using the following

equation:

x =

J0∑
j=1

Λ̃Tj W̃j + Θ̃T
j0Ṽj0 =

J0∑
j=1

D̃j + S̃j0 . (7)

For a given level j (j = 1, 2, ...J), MRA delivers the coefficients set Dj , which

reflects signal local variations at the detailing level j, and the set SJ0 , accounting

for the long run variations. Finally, in the present paper, MODWT–based MRA has

been performed by means of the “Pyramid Algorithm” ?. Being able to perform MRA

using only O(N) multiplications (in contrast with a “brute force” approach which

requires N2 operations), it can be considered a computationally efficient algorithm.

The detailed explanation of the “Pyramid Algorithm” is beyond the scope of the

present paper (the interested reader is referred to ? and ?).

4 Detection of the leading components

We are interested in evaluating an expectation function of the type

E([x(t+m)], yt), (8)

which expresses the linear statistical relationships between the time series of inter-

est (yt) and the generic time series xt, which can belong either to the set comprising

i) the original time series {Ω} (Subsection 4.1) or ii) to the set of the decomposed

time series {Ω′q} (Subsection 4.2).

4.1 The case of raw time series

The case sub i), dealing with time series belonging to Ω, poses no theoretical nor

practical problems, as it falls within the well consolidated framework of the linear

analysis of bivariate stochastic processes. In practice, the leading GT time series are

searched using the traditional approach, i.e. by sequentially employ the empirical
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cross–correlation function (ECCF ) – computed until a predefined, arbitrary lag m

– between the given GT variables and the variable of interest yt. The use of such a

function is particularly suitable for big data, as it is fast to compute and susceptible

of being put in easy-to-interpret and handle format, either graphical (e.g. in the form

of matrix of graphs) or tabular.

4.2 The case of wavelet components

The assessment of the leading capabilities of a decomposed time series is performed

– as in the case of raw time series – through the analysis of the empirical cross

correlation function. However, this time the focus is on the the cross correlation

structure arising between the level j wavelet decomposition of a generic time series xt

– xt ∈ Ω′q ⊂W(Ω) – and the original variable of interest yt. To this end, an estimator

of (8) is proposed through the following theorem:

let

Γ x,y,m = cov(xt+m, yt) (9)

be the lag m cross-covariance sequence between two random vectors x and y,

assuming the following conditions to hold, i.e.

a) (x, y) forms a jointly, second–order, discrete stationary process, i.e. satisfying the

following conditions: i) each of the series are second-order stationary and ii) the

autocovariance function depends only on the lag m = 1, 2, . . . ; ∀t;

b) x = f(t) satisfy the above stated (see Section 3, page 5) admissibility conditions;

c) x’s maximum level of decomposition, say J , satisfies the boundary conditions,

J ≤ (K + 1); T = 2K , K ∈ Z+,

the function Γ x,y,m can be decomposed as:

Γ x,y,m =

J∑
j=1

Γ
[
wj(xt), yt

]
m

+ Γ
[
vj(xt), yt

]
m
, (10)
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being Γ
[
wj(xt), yt

]
m

the cross covariance function computed between the wavelet

coefficients and the unfiltered time series (the wavelet–signal cross covariance) at

level j and scale 2j−1 and Γ
[
vj(xt), yt

]
m

the cross covariance function computed

between the scaling coefficients and the unfiltered time series (the scaling–signal cross

covariance) at level J and scale 2J .

Proof Equation (10) has been derived using the results in ?, where the validity

of wavelt covariance decomposition is established component–wise in a MODWT–

based MRA set-up. In more details, by denoting function (9) with Γ x,y,m0 , where the

subscript 0 serves the purpose of particularizing this function to the formal context

as reported in ?, the related decomposition takes the form

Γ x,y,m0 =

J∑
j=1

Γ
[
wj(xt), wj(yt)

]
m

+ Γ
[
vJ(xt), vJ(yt)

]
m
.

Now, keeping in mind that – under asymptotic conditions J →∞ (i.e. the number

of available scales goes to infinity) – it holds true that the sum of all available wavelet

covariances yields the covariance between xt and yt. Therefore, using the results in ?,

Equation 22, page 180, it is

cov(xt, yt) = Γ x,y,m =

∞∑
j=1

Γ
[
wj(xt), wj(yt)

]
m=0

, (11)

recalling that, under Gaussianity of xt and yt, the MODWT estimator of wavelet

covariance is unbiased and asymptotically normally distributed.

Since MRA allows perfect recoverability of the original signal (7), i.e.

yt =

J∑
j=1

wj(yt) + vJ(yt), (12)

the function Γ x,y,m can be asymptotically decomposed as follows:
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Γ x,y,m =

J∑
j=1

Γ
[
wj(xt) + vJ(xt), yt

]
m

; J →∞.

Using the result in ?, Equation 23, page 180, the finite sample counterpart of (10)

can be expressed as follows: Γ x,y,m =
∑J
j=1 Γ

[
wj(xt), yt

]
m

+ Γ
[
vJ(xt), yt

]
m

. This

ends the proof.

Due to the the MODWT’s boundary conditions, by using all of the wavelet coef-

ficients at all scales, biased estimations of the autocovariance function are unavoid-

able. However (see Equation 24, page 18 in ?), for large T the ’biased’ estimates of

the cross–covariance function generated by Γ x,y,m, should be approximately equal

to those obtained from the wavelet-based estimator calculated without involving the

MODWT coefficients.

The above stated condition a), validating Equation 9, must be carefully evaluated

for the cross-covariance function (10) to be valid. However, we know that, in big data

contexts, checking for such a condition on a case-by-case basis it is not a viable option.

To circumvent this problem, the idea is to apply an “high” order autoregressive filter

to the time series belonging to both Ω′q and Ω and to work with the resulting white

noise residuals. This technique, called prewithening, is suitable for big data contexts

as can be easily implemented and automatically run. A detailed explanation of this

method is beyond the scope of the present paper (the interested reader is referred,

for example, to ?, and, more recently, to ?). Here, it is worth pointing out two facts

about prewhitening: firstly it is here used only for variable selection purposes (i.e. to

find the most predictive lag(s)) whereas the rest of the analysis is carried out using

the original variables; secondly, this technique not only is a powerful bias reduction

method but it is also a very fast procedure. In fact, prewhitening methods do not

assume the specification of the “correct” model, being in general sufficient to find

one able to generate a white (or close to white) noise residuals’ sequence. This is the

reason for which it is not uncommon to prewhite time series through simple (possibly
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differenced) autoregressive models (thus avoiding more complicated structures, e.g.

involving moving average operators).

Under prewhitening, (10) is rewritten in terms of white noise residual sequences

as follows. Let:

a) the generic wavelet sequence [wj(xt)]
∗ be the white noise residuals resulting from

a “sufficiently” high (to ensure whiteness) p̂ order autoregressive models, i.e.

[wj(xt)]
∗ = φ(B)wj(xt), with B the backshift operator – i.e. Bnwt = wt−n – and

φ(B) the autoregressive operator, i.e. φ(B) = 1− φ1(B)− φ2(B2)− · · · − φp(Bp),

satisfying the usual stationary conditions;

b) y∗ be the prewhitened version of y ,

therefore, equation (10) can be expressed in terms of white noise series, i.e.

Γ x
∗,y∗,m =

J∑
j=1

Γ
[
[wj(xt)]

∗, y∗t

]
m

+ Γ
[
[vJ(xt)]

∗, y∗t

]
m
.

The wavelet cross-covariance estimator can now be defined as follows:

Γ̂ x
∗,y∗,m =

J∑
j=1

{
1
M

∑T−m−1
t=Lj−1 [wj(xt+m)]

∗ y∗t ; m = 0, 1, . . . ,Mj(T )− 1

0 |m| ≥Mj(T ),

with Mj = T − Lj + 1 and L being the wavelet filter length, as defined in (5)

and (6). Finally the normalized version of (10), i.e. the MRA–based Empirical Cross

Correlation Function (mECCF ), reads as follows:

mECCF (x∗t , y
∗
t ,m) =

Γ̂ x
∗
t ,y
∗
t ,m

σ2
x∗t
σ2
y∗t

; m = 1, 2, . . . ,M. (13)

Function (13) will be extensively employed in the empirical study presented in the

sequel (Section 7).
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5 The dimension reduction procedures

In this section, the dimension reduction problem of the set Ω – i.e. the one containing

the whole set of GT variables – is tackled. To this end, the already defined subsets –

i.e: Ω, Ω̃, Ω′q – will be separately considered.

5.1 Building the subset Ω̃

Finding the autoregressive structure of the time series of interest is consistent with

the nature of macroeconomic variables. In fact, they are generally characterized by a

non negligible amount of persistence which can generate well defined patterns in their

lagged probabilistic structures. In more details, the dependent variable is supposed

to be a finite realization of a possibly infinite linear processes of the type: Yt =∑∞
j=0 ψjεt−j ; t = 1, 2, . . . , T , being ψ0 = 1, {ψj}∞j=0 characterized by fast decaying

coefficients and {εt} generating a sequence of iid variables, so that E[εt] = 0 and∑∞
j=0 ψ

2
j <∞. As it will clarified later, W–BD is a fast evaluation procedure requiring

a simple statistical model to deliver useful information. Therefore, the available (finite)

realization of Yt, i.e. yt, is modelled according to a p − order autoregressive model

(AR(p)) of the type: yt − µx =
∑p
j=1 ϕt(yt−j − µx) + εt; t = 1, 2, . . . , T , being

µy = E[yt] and {εt} as above detailed.

As it is well known, the order of the filter p̂ = p(T ) can be selected using a

wide range of criteria both in time and frequency domains. The procedure chosen

here is based on the Akaike Information Criterion (AIC), which is one of the most

well known selector, successfully employed for many types of time series models,

including the autoregressive ones. It is based on evaluating the “distance” between

the estimated model and the true (unknown) model. Formally, it can be defined as

follows: AIC = −2 max log(L(θ̂|y)) + 2K, being K the dimension of the model and

L(θ̂|y) the likelihood function. AIC selection strategy – commonly referred to as

MAICE (Minimum AIC Expectation) – is a procedure aimed at extracting, among

the candidate models, a model order, say p̂, satisfying p̂ = arg min
p≤P0

AIC(p). MAICE
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procedure requires the definition of an upper bound P0, as a maximum order the

given time series can reach. The choice of this constant is a priori and arbitrary.

5.2 Building the subset Ω◦.

The present subsection is devoted to the construction of the subset Ω◦, that is the one

containing only the relevant (i.e. leading) wavelet components. This task is performed

through a eight–step procedure as illustrated below.

1 From ℵ (the population of the GT time series), a (possibly very large) subset called

Ω is extracted. Ω contains those variables which, in a broad sense, can be potentially

useful for the explanation of the phenomenon at hand. This subset can be built in

a qualitative fashion, e.g. based on brainstorming techniques or experts opinions.

Also, any sorts of empirical evidences or outcomes from previous investigations,

even if loosely related, can be fruitfully exploited. Quantitative techniques, based

e.g. on big correlation matrices or clustering methods, can be employed as well;

2 set Ω is MRA–transformed element–wise, until an arbitrary, admissible, resolu-

tion level J – so that the set Ω′q, with cardinality (J + 1) ∗ |Ω| is generated. Let

{Ω′ ≡ x1,t, x2,t, . . . , xN,t} – with {xi,t; i = 1, . . . , N ; t = 1 . . . , T} – be the matrix

containing the GT time series extracted in the previous step 1, subset Ω′q is then de-

fined as
{
Ω′q ≡Wt,i,j ≡Wj(xi,t); i = 1, . . . , N ; t = 1, . . . T

}
; { j = 1, . . . , J}, be-

ing Wj the level j wavelet component related to the series xi,t;

3
{
Ω′q
}

is subjected to the prewhitened procedure, which has been outlined in Section

4.2. As a result, the set
{
pwΩ′q

}
is generated, i.e.:

{
pwΩ′q

}
= P(

{
Ω′q
}

),

with the symbol P denoting the prewhitening function;
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4 for each and every series in
{
pwΩ′q

}
, the empirical cross correlation function (ECCF )

(13) is computed with respect to the prewhitened version of the dependent variable,

i.e. P(yt). In symbols:

Γ̂
(
P(wt,j),P(yt),m

)
; (14)

5 the series possessing leading properties under (14) – i.e. showing one or more em-

pirical cross–correlations statistically significant ∀m < 0 – are detected, extracted

and stored in the subset pwΩ′′ ⊆ pwΩ′q. Depending on the problem at hand, the

last inequality can be relaxed to m ≤ 0 (e.g. for nowcasting purposes, in the case of

data – such as the GT series – which are available in real time and thus earlier than

the updating disseminated at the end of the month of reference or in the following

one);

6 pwΩ′′ is back-transformed into its original (not prewhitened) form, by filtering back

its elements. As a result, set Ω′′ – is generated, i.e.:

Ω′′ ⊂ Ωq = P−1(pwΩ′′).

Ω′′, therefore, encompasses all the leading wavelet components.

7 due to the potentially i) high cardinality of the set Ω′′ and ii) the strong interdepen-

dency structures among its elements, an ulterior subsetting procedure is in order.

The resulting subset – called Ω◦ – is the maximizer of an ad hoc target function

F(·), which will be detailed in Section 6.1. Function F(·) is sequentially computed

on J different competing subsets – Ω′′′j ; j = 1, . . . , N , which are extracted from

Ω′′. The candidate subsets in Ω′′′j can be built randomly and/or on the basis of the

knowledge of the phenomenon of interest so far accrued.

Formally:

Ω◦ = argmax
Ω′′′j

F(Ω′′′j ⊂ Ω′′); j = 1, . . . , N. (15)
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However, Ω◦ is not the only subset considered to build the final subset Ω?. In fact,

it is crucial to emphasize how function F(·) is designed to provide only a rough

estimation of the gains obtainable by increasing the dimension of a linear model

with additional, wavelet–based, information. Therefore, Ω◦ – as it will be outlined

later – does not represent a globally optimal subset;

8 because of that, N F–suboptimal subsets – i.e. { Ω◦,1, . . . Ω◦,N ; N << J} – so

that {Ω◦,j} = F(Ω′′′j ) – are retained under the condition that their associated

target functions F show values not “too far” from the optimal one (i.e. F(Ω◦)).

Practically, they need to be within a reasonable, predefined, threshold λ. All such

N subsets are stored in a set denoted by the symbol Ω•, which verifies the following

condition:

Ω• : |F(Ω◦)−F(Ω◦,j)| ≤ λ; j = 1, . . . , N. (16)

Ω• is reasonably deemed to potentially contain exploitable information not ac-

counted for by Ω◦.

It is worth emphasizing that while step 1 is generally human driven, steps from 2

to 6 can be easily automatized. Finally, the crucial steps 7 and 8 can be carried out

also with the help of suitable heuristic methods, e.g. of the type Genetic Algorithm

(?, ?).

5.3 Building the subsets Ω

Subset Ω̄ comprises those GT variables which are able to generate an amount of useful

information greater than that achievable by using any levels (singularly or combined)

of the related wavelet decompositions. W–BD method rests on the idea that wavelet

decomposed time series possess better leading capabilities than the original ones.

However, the case at hand – i.e. Ω 6= ∅ – cannot be a priori excluded. Consistently,

the statistical model adopted for the evaluation of the benefits related to the GT
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variables (presented in the next section 6), formally encompasses both these types of

time series.

Recalling that with {xi,t} and wj(xi,t) the generic GT series and its j–level wavelet

decomposition are respectively defined, it is

xi,t ⊂ Ω ⇐⇒ MSPE(E[yt+m]
∣∣ xi,t < MSPE(E[yt+m]

∣∣wj(xi,t)), ∀j, (17)

denoting with ⇐⇒ the logic symbol “if and only if”. The searching procedure

for these variables undergoes the same steps followed for the definition of subset Ω◦

reported in the previous Section 5.2.

Finally, in (17), the strict inequality has been chosen over its non strict counter-

part to stress the fact that, even in the (mostly theoretical) case where a raw series

and one (or a combination of more) of its wavelet component(s) is (are) perfectly

interchangeable, the latter should be always preferred. This is for consistency with

the idea that, in general, a decomposed time series is more informative (e.g. more

easily interpretable or susceptible of comparative analysis) than its non decomposed

counterpart.

6 The statistical model

To evaluate the prediction power of the series belonging to
[
Ω′′ ∪ Ω

]
, a statistical

model able to quickly and efficiently process those variables is in order. As already

pointed out, the dependent variable’s autoregressive structure (stored in the subset

Ω̃) must also be evaluated and accounted for. The evaluation model chosen is of the

type general dynamic regression, which can be formulated as in (18). Consistently

with what referred to in point 7 (Section 5.2), this equation is not intended to pro-

vide immediately usable outcomes (e.g. predictions) but only results useful for the

definitions of the final subset of variables Ω∗. In more details, (18) is a selection tool
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serving the sole purpose of generating N residual variances for each of the N models

generated by Ω′′′j ; j = 1, . . . , N .

For a model of the class general linear dynamic, the data are supposed to take the

form of a vector time series process zt = (yt, x
′
t)
′, being xt = (x1,t, . . . , xk,t)

′ ∈ Rk

and yt the dependent variable (variable of interest). Recalling that the set of lagged

dependent time series is denoted by Ω̃, we have that our generic (independent) time

series variable xt belongs (in a mutual exclusive way) to one of the following sets {Ω},

{Ω′′} or {Ω̃}. Under this three-fold division, the general dynamic regression model

takes the form

ŷt = α0 +

p∑
i=1

yt−i +

k∑
j=1

q∑
i=0

βj,pxj,t−i, (18)

being {yt−m; m = 1, 2, . . . ,M ; ∈ Ω̃} and {xt ∈ Ωy ∪Ω′′}.

At this point, under their associated target functions F̂(·), different models (18)

are

1. built according to different configurations of the variables in {Ω• ∪Ω◦};

2. tested (e.g., for statistical significance, residuals autocorrelation structure and

distribution);

3. calibrated (see Section 6.2)

so that the final, low dimension, competition set Ω∗ is defined.

6.1 Estimation of the predictive power generated by Ω′′ and Ω

The improvements achievable by employing GT data are assessed by evaluating the

in sample performances delivered by both (18) and its univariate counterpart (19) –

here employed as a benchmark – through Equation 20. In particular, Equation 19 is

obtained by suppressing the last right side term in (18), so that it collapses to an

autoregressive model, ie.e:
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ŷt = α0 +

p∑
j=1

yt−j . (19)

Once determined through the MAICE procedure, recalled in the previous Section

5.1, the (possibly sparse) lag structure of Equation 19 is kept fixed across all the

distributed lag models (18) attempted. In other words, only the series belonging to

subsetsΩ′′ andΩ are supposed to be recursively F–tested. In symbols: F(Ω′′, Ω)
∣∣∣
Ω̃=k

.

The estimation of the predictive power of model (18) is performed by means of

the objective function indicated by FM |U (·), which has been prposed in ? as a slightly

modified version of Akaike’s Final Prediction Error (FPE) – derived by Bhansali ?.

Function F(·) is a fast and effective way to measure the model predictability based

on the estimation of the h–step ahead Mean Square Error of Prediction (MSPE) of

the multivariate predictor versus its univariate counterpart. It is defined as follows:

(h)F̂M |U = 1−
FPEM(h)

FPEU(h)
, (20)

being

FPEU(h) = σ̂2
U (h)(1 +

p(U)

T
)

and

FPEM(h) = σ̂2
M (h)(1 +

p(M)

T
),

where the subscripts M and U respectively refer to the multivariate and the uni-

variate predictors whereas σ̂2 is the estimated OLS residual variance and p denotes

the number of parameters (including the constant). The left superscript h in (h)F̂M |U ,

for simplicity of notation, will be omitted if not strictly necessary.
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Recalling (15), the model generating the subset Ω◦ – denoted by the symbol M◦

– is the one satisfying the following maximization problem, i.e.:

M◦(Ω◦) = maximize
Ω,Ω′′,Ω̄

F̂M |U (y)

under F̂M |U (y) > 0.

(21)

The resulting subset Ω◦ – selected based on the ECCFs – is likely to generate

better forecasting results than the benchmark model. While this subset, on one hand,

can provide precious insights on the variable of interest, on the other hand, as already

pointed out, should not be used tout court in a statistical model, without further

investigations. Therefore, once the target function has been maximized and the set

Ω◦ stored, both the procedures detailed in 5.2 and 5.3 are rerun many times until N

subsets Ω◦j ; j = 1, 2, . . . , N , satisfying the threshold expressed in (16), are generated.

There are at least three reasons justifying this iterative approach. Firstly, given the

possibly very high number of “good” ECCFs (13), subset Ω′′’s cardinality (but also

Ω̄’s) should be constrained, in order to build a valid statistical model. This means, for

Ω◦, to undergo an ulterior subsetting procedure. However, the resulting time series

could still generate low F̂M |U (y)’s values. Such a situation is generally related to the

high degrees of uncertainty conveyed by big data sets. In more details, it can happen

that a variety of facts – mostly difficult to detect at a preliminary stage of an analysis

involving big data (e.g. overparametrized or redundant models, lack of degree of free-

dom or simply poor predicting power of just one of the independent variables) – can

disrupt the performance of an otherwise good set of predictors. Secondly, (20) is not

designed to evaluate the goodness of a statistical model (e.g. statistical significance

of its parameters, well–behaving residuals autocorrelation structures and their distri-

bution). Thirdly, by examining the curve of the sorted values of F̂(·), it is possible to

carry out a graphical sensitivity analysis. In fact, once a “sufficient” number of such

values are available, one can draw conclusions on the level of interchangeability of the

GT variables, by visually inspecting both shape and smoothness of this curve.
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Clearly, the threshold λ (16) must be in agreement with the constraint expressed

in Equation 21. This equation can be now finally reformulated in order to identify

the F–subsets of suboptimal (but worth to be evaluated) variables – called Ω•, with

|Ω•| = N – according to the predefined threshold λ (which accounts for the degree of

“suboptimality” of the series), i.e.

M•(Ω•) = maximize
Ω,Ω′′′,Ω̄

F̂M |U (y)

under F̂M |U (y) > 0

under |F(Ω◦)−F(Ω◦,j ⊂ Ω′′)| ≤ λ

(22)

In practice, by means of Equation 22, subset Ω◦ is expanded to include potentially

valuable information which could not be adequately captured by (21) but that might

be embedded in “slightly” suboptimal time series belonging to Ω′′.

Finally, it is worth emphasizing that this procedure is very fast, being based on

OLS estimators of the lagged time series coefficients. Even though the computation of

(20) requires very little computer power, exhaustive searching routines – based on the

iterative applications of Equation 20 to all the possible model configurations induced

by the element in Ω′′ – can be run in a reasonable time only if |Ω′′| is “small”.

6.2 Building the final models

Through the procedures explained in Sections 5 and 6, the information needed to build

a fully operational statistical model is now available. In fact, both the multivariate

(18) and the autoregressive (19) models generally could not be employed for any

use apart from a rough subset selection. This is because neither (21) nor (22) are

designed to deliver perfectly calibrated models but only to provide indications on the

positive (if any) effects generated by GT external variables. In particular, through

those equations the parameters statistical significance cannot be tested. It is only
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when both the models are properly refined that the additional information conveyed

by GT data can be fully exploited and the related benefits more precisely assessed.

The last step of W–BD is aimed at building the final, operational model, here

denoted with the symbol M∗ =M∗(Ω∗). Model M∗ is of the type (18) and is built

out of two, low–cardinality subsets, i.e. Ω◦ and Ω•, respectively with cardinality 1

and N << |Ω′′|. To this end, a standard model selection procedure for autoregressive

lag suppression and external variables (GT ) subsetting have been applied to (18),

which is thus built using different configurations of the time series in Ω◦ and Ω•.

In particular, the well known Box–Jenkins (B-J ) procedure has been adopted. The

explanation of this method is beyond the scope of the present paper, therefore the

interested reader can refer, for example, to ? and ?. B–J method is usually time

consuming and requires a not negligible amount of experience to be properly carried

out. However, this operation is now feasible for it is applied to a very small set of

competing models (originated from a small set of predicting variables Ω◦ and Ω•).

The benchmark autoregressive model undergoes the same two–stage identifica-

tion procedure as the distributed lag model. In facts, it is firstly determined by

MAICE method and then fine–tuned through the B–J procedure. The reason for

that is twofold: a) should (19) be carefully evaluated and properly built in the first

place, the whole analysis would be biased against its multivariate counterparts, for

which the same statistical attention would be infeasible or impractical; b) in many

cases, one might be interested in processing a number of dependent variables related

to the same phenomenon. In this case, therefore, the already extracted and processed

information set can keep (at least part of) its validity. The phenomenon considered

in the empirical experiment (presented in the following Section 7) is an example of

such a situation. Here – being the variable of interest available for eight different age

groups – one might be interested in an age–specific statistical analysis. In this case,

a time consuming procedure – envisioning the construction of up to eight statistical

models – should be carried out.
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7 Empirical Expriment

In this section, W–BD method has been applied to the time series “Unemployment-

to-population ratio”, collected on a monthly basis by the Italian National Institute of

Statistics (Istat) by interviewing a sample of approximately 77,000 households, rep-

resenting 175,000 individuals Italian residents (even if they are temporarily abroad).

The data – available at the following web-address: http://dati.istat.it/ – account for

eight different age profiles, out of which we will concentrate our attention on the group

“age 15 and over”. For consistency with the GT data employed, the time span con-

sidered is January 2004–August 2018, for a total of 176 observations. The employed

wavelet is of the type Daubechies with 8 vanishing moments. In more details, this

experiment has been designed to simulate two common real-life activities, i.e., the
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