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A systematic literature review of evidence for the use of assistive
exoskeletons in defence and security use cases

Dominic J. Farris?, David J. Harris? (®, Hannah M. Rice?, James Campbell®, Alistair Weare®, Debbie Risius®,
Nicola Armstrong“® @ and Mark P. Rayson®
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Science and Technology Laboratory, Salisbury, UK; 9School of Sport, Health and Exercise Science, University of Portsmouth,
Portsmouth, UK; *Human Social Sciences Research Capability Framework, BAE Systems, London, UK

ABSTRACT ARTICLE HISTORY
Advances in assistive exoskeleton technology, and a boom in related scientific literature, Received 16 December 2021
prompted a need to review the potential use of exoskeletons in defence and security. A system- Accepted 24 March 2022

atic review examined the evidence for successful augmentation of human performance in activ-
ities deemed most relevant to military tasks. Categories of activities were determined a priori
through literature scoping and Human Factors workshops with military stakeholders. Workshops human factors: use case:
identified promising opportunities and risks for integration of exoskeletons into military use load carriage;’ '
cases. The review revealed promising evidence for exoskeletons’ capacity to assist with load car- manual handling

riage, manual lifting, and working with tools. However, the review also revealed significant gaps

in exoskeleton capabilities and likely performance levels required in the use case scenarios.

Consequently, it was recommended that a future roadmap for introducing exoskeletons to mili-

tary environments requires development of performance criteria for exoskeletons that can be

used to implement a human-centred approach to research and development.

KEYWORDS
Exoskeletons; military;

PRACTITIONER SUMMARY

We assessed the state-of-the-art for the use of wearable assistive exoskeletons in UK defence
and security use cases. A full systematic review of the literature was undertaken, informed by
use cases developed in military stakeholder workshops. Clear gaps in exoskeleton capability and
use case requirements were identified, leading to recommendations for future work.

Abbreviations: AC: alternating current; EMG: electromyogram; ESM: electronic supplementary
material; RPE: ratings of perceived exertion

1. Introduction individuals. The latter focus has often been driven by
defence and security organisations with an ultimate
goal of enhancing the capabilities of military person-
nel. Augmented performance in walking, running, and

Since the last turn of the century, significant effort has
been injected to the development of wearable robotic
exoskeletons intended to augment human perform-
ance. Augmentation in this context can mean enabling  l0ad carriage has been a common goal in this context,
the user to optimise performance levels within their ~ With reducing the human energy cost of these activ-
biological potential, or enhancing their capabilities ities being the main target of exoskeleton develop-
beyond their biological potential. The applications for ~ ers. As recently reviewed by Sawicki et al. (2020),
such devices are broad, with some designed as progress in this area in the last decade has been
rehabilitation aids, others to enable movement follow-  significant. From earlier tethered designs, through to
ing neuromuscular damage or disease, and many sim-  current autonomous and fully wearable technologies,
ply trying to augment the capabilities of healthy  there are now multiple examples of both powered
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Table 1. Scoping search terms and strategy.

Search number

Search terms and combinations

coONOULL A WN =

o

Wearable assistive technology OR Exoskeletons OR wearable technology
TS = (Augment OR Improve OR Enhance OR Boost) AND TS = Performance
Evidence OR Proof OR Indication

TS=(Physical OR Cognit*)

“reduce fatigue”

NOT (injury OR medical)

1+2+6

1+24+3+6

1+24+3+5+6

10 1+2+3+4+6

*TS =Topic Search (Title and abstract only).
and passive exoskeletons that reduce the energy

Table 2. Generalised military use case definitions.

2. Methods

Generalised use case

Description

Operational - dismounted patrol

Support — Vehicle Mechanic / Aircraft Technician

This use case defined the scenario where an exoskeleton had to be worn
and used for long periods without the opportunity for support
or storage

This use case defined the scenario where an exoskeleton could be worn
for short periods of time for specific tasks with access to power, and
then removed for storage.

required from the human user to walk or run.
Another key focus of exoskeleton technologies has
been to assist with manual work. The primary goal
of such exoskeletons has been to reduce the phys-
ical demands placed on workers and reduce the
number of related injuries. Such devices have now
reached the point of commercial development. With
the great recent advancements in exoskeleton tech-
nology, it is timely to reconsider the potential for
exoskeletons to be implemented in a defence and
security setting. Mudie et al. (2018) have recently
published a conceptual framework that outlines key
research stages that must be completed for exoskel-
etons to be introduced into service by the military.
However, before procurement, it is prudent to inves-
tigate the existing opportunities across the military
for implementing exoskeletons to augment humans
performing job tasks, and review the existing evi-
dence that exoskeletons can help with those tasks.
By identifying current gaps in research or exoskel-
eton capabilities, a roadmap for introducing exoskel-
etons to military service can be further developed.

Therefore, the aim of this study was to systematic-
ally review the literature pertaining to exoskeletons for
augmentation of human performance, within a UK
military context. This review was undertaken to inform
the development of a roadmap for the introduction of
exoskeletons into military service. A preliminary sub-
aim was to define and evaluate military use cases for
exoskeletons in order to provide scope and context
for the findings of the literature review.

2.1. Preliminary scoping review

To gauge the extent of the literature relevant to exo-
skeletons for augmentation of human performance, an
initial scoping review was conducted. Databases
searched were: Web of Science, IEEExplore, Athena
(Ministry of Defence internal database) and Defence
Technical Information Centre. The search terms and
strategy (outlined in Table 1) were designed to cap-
ture studies testing evidence of augmentation of
human performance with wearable exoskeletons, but
not testing of exoskeletons intended for medical pur-
poses. Articles were then screened to identify what
categories of exoskeleton had been tested in the pub-
lished literature.

2.2. Human factors use case workshops with
military stakeholders

Two human factors use case workshops were con-
ducted with military stakeholders to separately evalu-
ate two generalised military exoskeleton use cases for
exoskeletons (Table 2). Each workshop was partici-
pated in by 4-6 currently serving UK military person-
nel, recruited for their relevant expertise, and
including representatives of all main services (Army,
Navy, Airforce). After being briefed on current exoskel-
eton technology and research, participants were asked
to comment on the relevant exoskeleton use case.
Participants were asked to identify the most promising
opportunities, and the most important risks for
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Figure 1. The hierarchical categorisation of scoped studies first categorised the articles based on the activity supported by the
exoskeleton technology. Sub-categories were then created that organised the studies based on the body part where the device
provided assistance, and whether the device used a power supply (powered) or relied on passive mechanisms.

Table 3. Revised database search strategy.

Database

Search terms

Web of Science #1 ALL=(exoskeleton*)

#2 TS=(Augment * OR improve OR boost OR optimise )

#3 TS=(performance OR efficiency)
#4 TS=(physical OR cognit* )

(
(

#5 TS=(Reduce OR minimi * OR lower)
(

#6 TS=(Energy cost OR metabolic cost OR metabolic power OR effort OR muscle activation OR muscle force OR load )

#7 TS=(medical OR injury OR rehabilitation)

#8 (#1 AND ((#2 AND #3 AND #4) OR (#5 AND #6))) NOT #7

*ALL searches the entire article; TS searches the title and abstract.

implementing exoskeletons in that use case. The most
important opportunities and risks were used to give
specific military context to the discussion of the sys-
tematic literature review outcomes.

2.3. Systematic review of literature

Following the scoping review and use case workshops,
a full systematic search for literature was conducted in
the following databases: PubMed, Web of Science,
IEEEXplore, Scopus, and Athena. The search results
were combined with those from the initial scoping
review. The records were de-duplicated and initially
screened for relevance based on title and abstract,
with ineligible or irrelevant articles removed. The
remaining results were eligibility screened based on
the full text of the articles, and remaining ineligible
articles removed. Articles that passed screening were
categorised according to the scheme in Figure 1
before data extraction was completed and study qual-
ity was assessed.

2.3.1. Study identification (searching)

Based on the returned results, the search terms used
during the scoping review were considered to be lim-
ited in capturing relevant studies that tested exoskel-
eton effectiveness without referring to augmentation
or enhanced performance explicitly. In particular,

many studies have focussed on mechanistic evidence
for augmentation, such as reducing metabolic cost,
electromyogram (EMG) activity, forces exerted on the
user, or ratings of perceived exertion (RPE). It was also
considered after pilot searching that the recent boom
in wearable technologies for a vast range of purposes
made the term ‘wearable technology’ too generic.
Table 3 shows the revised search terms as developed
for Web of Science searching. The syntax used for the
other databases is available in ESM 1. No limitations
on study date were imposed, and the final search was
completed on 30 May 2021.

2.3.2. Selection of studies (screening)

Studies were screened against the exclusion criteria
outlined in Table 4. Criterion EX2 (Table 4) excluded
studies that did not involve participants completing an
activity identified through the workshops as being an
opportunity of high importance for the use cases. This
was done to focus the review on exoskeleton augmen-
tation of activities of greatest value to military person-
nel. For studies to be included they must have tested
exoskeleton augmentation of humans during load car-
riage, manual lifting, working with tools (overhead), or
squatting and standing. Evidence for augmentation
was considered as either direct evidence (improved
task  performance) or mechanistic evidence
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Table 4. Exclusion criteria.

Criteria Code Description
Not a full research study related to human EX1 The article was not peer-reviewed or did not
augmentation describe a complete experiment that tested if
an exoskeleton affected an outcome variable
related to human performance (e.g.
pilot testing)
Not an activity of highest importance to defence EX2 The article tested exoskeleton augmentation of
and security humans in an activity that was not prioritised
following the use case workshops
Not a wearable device EX3 The exoskeleton or assistive device was not
wearable. An exception was made for lab-
based studies where the control or actuation
hardware was not worn by the user but the
end-effector was
Requires user control input EX4 The exoskeleton was controlled by user button
press or hand-held control (e.g. a joystick)
Not English language EX5 The full article was not available in English
(measurements that indicate a mechanism for  The literature scoping process identified that current

improved performance - e.g. metabolic power or EMG).

2.3.3. Data
and synthesis
Key data were extracted from studies that passed
through screening and tabulated according to the cat-
egorisation scheme in Figure 1. This included: partici-
pant group descriptors; study design; a broad
description of the exoskeleton mechanism; the
intended means of augmentation; main outcome
measures used to assess augmentation; and whether
or not the study showed evidence of augmentation.
Each study also underwent a quality assessment using
a modified version of a questionnaire developed by
Harris, Wilson, and Vine (2018), that drew its main
items from the Quality Index of Down’s and Black
(Downs and Black 1998), the Epidemiological Appraisal
Instrument (Genaidy et al. 2007) and Durant’s (DuRant
1994) checklist for the evaluation of research articles.
Harris, Wilson, and Vine (2018) included items specific
to their review purpose that were removed and
replaced with items specifically linked to the current
review topic. The final questionnaire consisted of 17
questions and is provided with study scoring in ESM
2. Each question was answered yes or no, and articles
with 12 or more yes answers were considered high
quality; 7-11 yes answers as medium quality; and
articles with fewer than 7 yes answers as low quality.
Study results were descriptively synthesised and a nar-
rative review was composed.

extraction, quality  assessment,

3. Results
3.1. Scoping review outcomes

This initial search returned 289 articles that were
imported into Endnote X8 software and de-duplicated.

literature had addressed seven activity categories for
the top-level of hierarchical categorisation (Figure 1).
These categories were: walking, load carriage, running,
manual lifting, manual work with tools (including over-
head working), squatting and standing, and grasping.
It was apparent that two broad applications of exo-
skeletons that encompassed sub-applications subject
to similar general considerations had emerged: (1)
Exoskeletons to augment performance in field opera-
tions (walking, load carriage, running); (2) Exoskeletons
to augment performance in support operations (man-
ual lifting, working with tools, squatting/standing).

3.2. Human factors use case workshop outcomes

In the operation use case workshop, participants
reported and unanimously agreed across all three
services, that the highest priority opportunity for the
use of exoskeleton technology is in load carriage
assistance over long distances, particularly in moun-
tainous terrain. Rated slightly less important was the
ability to increase speed of travel during a patrol.
However, improved speed may result in an indirect
benefit as the use of exoskeletons to support loads
was expected to reduce fatigue and minimise the time
required to rest. Improvement in cognitive perform-
ance (e.g. decision-making) was also identified as a
potential indirect benefit resulting from reduced
fatigue due to exoskeleton use. Unloaded walking and
running were not prioritised as highly as load carriage,
owing to the less frequent and less-demanding nature
of these tasks.

In the support operations use case workshop, an
opportunity for exoskeletons was identified to provide
support for rearming of helicopters, specifically the fit-
ting of Hellfire missiles to Apache aircraft. In the
example, cranes and trolleys were deemed unsuitable
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[ Identification of studies via databases ]
Records identified from
database searching (n = 1054):
5 Web of Science (n = 750) Record.s rgmoved before
5 Scopus (n = 91) screening.
& PubMed (n = 158) , ?:g)hcate FaGards Tetmean (1=
§ IEEEXplore (n = 55) Records from
= initial scoping
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Y v
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Records screened (title and
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Reports assessed for eligibility Reports excluded (n = 225):
(full text) E— EX1(n=114)
(n=279) EX 2 (n=94)
EX 3 (n=16)
EX4 (n=0)
EX5(n=1)
—/

Studies included in review
(n=54)

Figure 2. PRISMA formatted flow diagram (Page et al. 2021) displaying literature search and screening results.

given the variability of the terrain and the current
requirement for personnel to lift missiles from the
backs of trucks to then be fitted in confined spaces. A
second opportunity also related to lifting support dur-
ing maintenance/engineering tasks, but offered a
speed advantage over the use of cranes or trolleys
even when they were suitable. Both opportunities
were considered as specific examples of the more
general task of lifting and fitting heavy equipment.

3.3. Systematic literature review search results

The finalised database searching returned 1054 records
which were added to the existing records from the ini-
tial scoping search (289). Deduplication left 1194 items
for title and abstract screening, and 279 items that
went through to full text screening. After full text
screening, 225 items were removed, linked to the

following exclusion criteria: EX1—114, EX2—94,
EX3 — 16, and EX5 — 1 (see Table 4 for exclusion criteria
definitions). This resulted in 54 articles for inclusion in
the final review (process summarised in Figure 2).

3.4. Summary of evidence extracted for
exoskeletons to assist load carriage

Eighteen articles passed screening that described stud-
ies evaluating the ability of exoskeletons to augment
human load carriage (Table 5). These were sub-cate-
gorised into passive and powered devices and are
reported below with reference to which body parts
they targeted with assistance.

3.4.1. Passive exoskeletons for load carriage
Four articles (Dijk, et al. 2018; Gregorczyk et al. 2010;
Schiffman et al. 2008; Ketko et al. 2017) examined
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devices that passively offloaded multiple joints within
the lower limb. Four of these devices sought to trans-
fer backpack loads directly to the ground via passive
links incorporating spring-damping elements, theoret-
ically offloading the lower limbs. Van Dijk et al. (2018)
and Gregorczyk et al. (2010) showed that passive leg
support exoskeletons increased the rate of oxygen
consumption (VO,) during walking with additional
loads. However, van Dijk et al. (2018) showed their
device bore 30% of the backpack load, and reduced
participants’ ratings of perceived exertion (RPE).
Further to this, Schiffman et al. (2008) tested the
effects of the same exoskeleton as Gregorczyk et al.
(2010) on postural control and balance during stand-
ing. Bodily sway and limits of stability were reduced
by the exoskeleton, but it is unclear if this is of benefit
or hindrance to the wearer. Ketko et al. (2017) eval-
uated a device that supported backpack load on a
wheeled strut, pulled behind the user. Although this
device reduced ground reaction force peaks (-40%)
and pressure on the shoulders of the users, no direct
testing for augmented performance was undertaken.
Furthermore, Ketko et al.'s (2017) device increased the
stride-to-stride variability of underfoot centre of pres-
sure location during loaded walking. Each of the
experimental studies above were conducted with cur-
rent or ex-military personnel as participants, and loads
were representative of those carried by dismounted
combatants in the US Army (Gregorczyk et al. 2010;
Schiffman et al. 2008), Dutch Royal Marine Corps (Dijk,
et al. 2018), or Israeli Defence Force (Ketko et al.
2017). One further study (Li et al. 2018) presented a
spring-loaded knee device, designed to assist knee
extension during stair climbing with added load.
Although the results showed a general reduction in
knee extensor muscle activity when the device was
applied, this was not statistically confirmed and only
five participants were included in the study.

3.4.2. Powered exoskeletons for load carriage

Exoskeletons that assisted the user with load carriage
by applying powered support to lower limb joints
were investigated in a further ten articles. Three stud-
ies (Lee et al. 2018; Malcolm et al. 2017; Panizzolo
et al. 2016) used similar soft material exosuits with
powered actuators to generate torque at the hip and
ankle joints via cables routed from the lower back to
the heel of a boot. In all cases using the device pow-
ered-on resulted in up to a 15% reduction in meta-
bolic power during backpack loaded walking (loads
were 6.8kg and 23kg). Sado et al. (2018) used a full
lower limb exoskeleton design that provided powered

ERGONOMICS . 9

torque generation at the hip and knee joints to effect
large reductions in vastus intermedius (43%) and
gastrocnemius (60%) EMG magnitudes. These reduc-
tions were achieved for a task of walking while carry-
ing a 2kg toolbox in-hand. Also with a full lower limb
device, Long et al. (2018) provided powered torque
assistance to the knee joint, and passive spring-loaded
assistance to the hip and ankle joints during walking
with a 30kg backpack load. Although Long et al.
(2018) observed lower heart rates when using the exo-
skeleton, there was no statistical support for
this outcome.

Three studies tested the use of powered exoskele-
tons that assisted at the hip joint only (Cao et al.
2021; Ding et al. 2016; Panizzolo et al. 2019). All three
used similar exoskeleton design concepts, employing
a soft exosuit with actuator-driven cables providing
assistive torques at the hip joints. These studies
showed that using a hip assisting device powered-on
versus powered-off resulted in significant reductions
in metabolic power (8-15%), with backpack loads of
15-23kg. A further three studies tested exoskeletons
that provided powered assistance to the ankle joint
only. Ankle assistance reduced metabolic power
(8-15%) in all three studies (Mooney, Rouse, and Herr
2014; Zhang et al. 2017; Galle et al. 2014).

A final category of exoskeletons to augment load
carriage were powered devices that assisted the
shoulders and lower back. Two studies were returned
for this category (Poliero et al. 2020; Park et al. 2017).
Park et al. (2017) combined active and passive mecha-
nisms to evenly distribute backpack load between
shoulders and pelvis, and also bear the dynamic iner-
tial forces generated by backpack motion. This device
was shown to reduce metabolic power for walking
with an additional load of 25% bodyweight (~20kg)
by 8.7% (Park et al. 2017). Poliero et al. (2020) showed
that a powered exoskeleton assisting extension torque
at the lower back and hips restricted hip motion and
had no effect on lower back muscle EMG activity,
when walking with up to 15kg carried in-hand.

3.5. Summary of evidence extracted for
exoskeletons to assist manual lifting

Twenty three articles passed screening that described
studies evaluating the ability of exoskeletons to aug-
ment performance in manual lifting tasks. These were
sub-categorised into passive and powered devices and
are reported below with reference to which body
parts they target with assistance.
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Table 6. Continued.

Evidence of augmented

Exoskeleton mode

Quality score

high

performance?

Main outcome measures

Study design

Participants (age, height, mass)

of assistance

Study

Yes — EMG median values

EMG from spinal

Within subjects repeated measures with

7 male participants

Powered torque assistance at

Chen et al. 2018

reduced by ~30%

extensor muscles

two factors: exoskeleton mode

(27.9 + 2 years,

hips and lower back

(powered-on vs. off); speed (slow,
normal, fast). Task was Lifting and

lowering a 5kg box 3 times
Within-subject repeated measures, 2

1.78£0.08 m, 70 + 6.4 kg)

high

Lifting: Unclear — mixed EMG

EMG from shoulder, back and

8 participants — 4 female

Passive spring-loaded

Theurel et al. 2018

results, HR & RPE not

arm muscles, HR, RPE,

factors: Exoskeleton condition (exo vs

(31 +2years, 1.66+0.04m,
62 +10kg) and 4 male

(33 £ 3 years,

assistance at arms
and shoulders

different, reduced stability.
Walking: Unclear - Triceps

postural stability (centre of
pressure displacement).

no-exo); Handling task (lifting a 9kg/
5kg load, walking with 15 kg/8 kg load,

stacking a 15 kg/8 kg load with 90

degree rotation).

brachii EMG reduced, HR

1.79£0.03m, 78 =3 kg).

not different, reduced RPE.
Stacking: Unclear — mixed

EMG results, HR & RPE not
different, increased time

to completion.
Yes — more than 36%

medium

Within participants repeated measures on  EMG at the right Vastus

5 participants (no sex details)

Powered torque assistance to

Sado et al. 2019

reduction in EMG activity at
the quad and calf during
both lifting and walking.

Intermedius and right

Gastrocnemius

one factor: exoskeleton (exo vs no-exo)
in lifting (4.3 kg box from floor with

static hold) and walking tasks.

(28 + 5years, 1.78+0.2m,

76 + 5kg)

hip and knee
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3.5.1. Passive exoskeletons for manual lifting

Ten studies evaluated passive devices that provided
assistance at the spine and pelvic region via stiff elas-
tic elements (Table 6). One study assessed augmenta-
tion by testing the maximum weight an individual
could lift (Baltrusch et al. 2018). By this metric no aug-
mentation was achieved. Eight studies used EMG from
spinal extensor muscles to evaluate the exoskeleton’s
efficacy (Koopman, Kingma, et al. 2019; Madinei et al.
2020; Baltrusch et al. 2020; Koopman, Kingma,
et al. 2020; Koopman, Kingma, et al. 2020; Baltrusch
et al. 2019; Alemi et al. 2019; Thamsuwan et al. 2020).
Findings were mixed, with three studies reporting that
passive support did not affect EMG magnitudes
(Koopman, Kingma, et al. 2019; Baltrusch et al. 2019;
Thamsuwan et al. 2020), but the remaining five show-
ing reductions in peak EMG signal up to 15-30% of
maximal voluntary contractions (Madinei et al. 2020;
Baltrusch et al. 2020; Koopman, Kingma, et al. 2020;
Koopman, Kingma, et al. 2020; Alemi et al. 2019). One
study also found that the exoskeleton device caused
an increase in abdominal muscle peak EMG (Alemi
et al. 2019). Mechanical loading on the lower back
was assessed in four studies by calculating joint
moments at the joint between the fifth lumbar verte-
bra and the sacrum (Koopman, Kingma, et al. 2019) or
by using musculoskeletal modelling and simulation to
calculate compressive loading in the lumbar spine
(Koopman, Kingma, et al. 2020; Koopman, Kingma,
et al. 2020; Picchiotti et al. 2019). Results were mixed,
with two studies finding a reduction in spinal loading
during lifting tasks with passive exoskeletons
(Koopman, Kingma, et al. 2019; Koopman, Kingma,
et al. 2020) and two finding no effect (Koopman,
Kingma, et al. 2020; Picchiotti et al. 2019). Two studies
employed measures of metabolic power during repeti-
tive lifting tasks to evaluate their exoskeletons
(Baltrusch et al. 2020; Baltrusch et al. 2019). Both stud-
ies found that the exoskeletons reduced metabolic
costs of lifting tasks by 17-18% on average. However,
Baltrusch et al. (2019) showed that their lifting exo-
skeleton significantly increased the metabolic cost of
walking by approximately 15%.

There was one example of a passive exoskeleton
that used springs to assist shoulder and arm muscles
during lifting tasks (Theurel et al. 2018). Participants
lifted, stacked and walked with a box weighing
between 5 and 15kg. Using the device during lifting
and stacking tasks resulted in 50-70% reductions in
shoulder muscle activity and was increasingly effective
when larger masses were lifted. However, the stacking
task took longer to complete with the exoskeleton,
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EMG in other muscles increased, and there was no
effect on heart rate or perceived exertion of the
participants.

3.5.2. Powered exoskeletons for manual lifting
Eleven studies tested exoskeletons to assist lifting
using powered motors targeting the pelvic region and
lower back. Ten of these studies used EMG recordings
from spinal extensor muscles to assess such an exo-
skeleton’s ability to reduce muscular effort or load.
Significant reductions in EMG signal magnitudes from
spinal extensors were observed in eight of these stud-
ies; two showed reductions of approximately 15%
(Huysamen, de Looze, et al. 2018; von Glinski et al.
2019), four studies observed reductions of 30-40%
(Toxiri, Ortiz, et al. 2018; Yong et al. 2019; Koopman,
Kingma, et al. 2019; Chen et al. 2018), and two
40-60% (Di Natali et al. 2021; Ji et al. 2020). One study
additionally reported that an exoskeleton had no
effect on heart rate variability or self-reported percep-
tions of exertion via the BORG scale despite reductions
in EMG signals (von Glinski et al. 2019). A final study
providing powered support at the pelvis and lower
back recorded subjective user responses, but lacked a
control condition for making comparisons relevant to
this review (Toxiri, Ortiz, et al. 2018). Sado et al. (2019)
tested an exoskeleton that assisted using powered
motors at the knee and hip, with a passive support
connecting the exoskeleton frame across the ankle to
the ground. Their results showed an average 36%
reduction in EMG signal magnitude for one knee
extensor muscle, and one ankle plantar flexor muscle.

3.6. Summary of evidence extracted for
exoskeletons to assist overhead work & working
with tools

Eight studies tested exoskeletons designed to assist
overhead work or working with tools (Table 7
(Huysamen, de Looze, et al. 2018; Moyon, Poirson, and
Petiot 2018; Otten, Weidner, and Argubi-Wollesen
2018; Spada et al. 2019; Spada et al. 2017; Hyun et al.
2019; de Vries, Krause, and de Looze 2021; Weston
et al. 2018)). The tasks involved included: simulated
engineering tasks with tools (Weston et al. 2018), drill-
ing (Hyun et al. 2019), overhead setting screws and
grinding (Otten, Weidner, and Argubi-Wollesen 2018),
holding a tool overhead (Huysamen, de Looze, et al.
2018), overhead sanding (Moyon, Poirson, and Petiot
2018), and plastering (de Vries, Krause, and de Looze
2021). All of these papers assessed passive devices,
seven of which used springs for support of the arms

and shoulders (Huysamen, de Looze, et al. 2018;
Moyon, Poirson, and Petiot 2018; Spada et al. 2019;
Spada et al. 2017; Hyun et al. 2019; de Vries, Krause,
and de Looze 2021; Weston et al. 2018), and one used
pre-pressurised pneumatic gas struts (Otten, Weidner,
and Argubi-Wollesen 2018). Three studies were
assessed as being low quality and these showed
mixed results (Moyon, Poirson, and Petiot 2018; Otten,
Weidner, and Argubi-Wollesen 2018; Spada et al.
2017). Moyon, Poirson, and Petiot (2018) and Otten,
Weidner, and Argubi-Wollesen (2018) showed reduc-
tions in cardiac cost and EMG from shoulder or arm
muscles, respectively, but both only recorded these
measures from a subset of participants. More positive
findings were observed in medium and high quality
studies. Huysamen, de Looze, et al. (2018) found sig-
nificant reductions in arm and back muscle EMG sig-
nals when holding a 2 kg weight overhead, and Spada
et al. (2019) showed a 56% increase in the time partic-
ipants could hold their arms statically extended. In
precision tasks, Spada et al. (2019) also found exoskel-
etons resulted in faster execution times, greater preci-
sion scores, and lower self-reported exertion. EMG
signals from arm and shoulder muscles were reduced
by passive exoskeletons during drilling (Hyun et al.
2019) and plastering (de Vries, Krause, and de Looze
2021) tasks. However, Weston et al. (2018) showed
that an arm exoskeleton connected to a torso vest
increased forces exerted by back muscles, and forces
acting on the spine.

3.7. Summary of evidence extracted for
exoskeletons to assist standing and squatting

Five of the returned studies assessed exoskeletons to
assist standing or squatting (Table 8). One study exam-
ined the effects of a passive knee exoskeleton on per-
formance in a cognitive task (Sustained Attention to
Response Test) lasting 4 minutes, while maintaining a
semi-squatted posture (Bridger et al. 2018). Although
heart rate was reduced (9 beats per minute) and par-
ticipants’ perceived workload was lower with the exo-
skeleton, performance on the cognitive test was
unaffected. Two studies used powered knee extension
assistance during repeated sit-to-stand or squatting
motions (Gams et al. 2013; Kim et al. 2013). Gams
et al. (2013) showed the exoskeleton significantly
reduced metabolic power during five minutes of
repeated squatting, and Kim et al. (2013) found reduc-
tions in integrated EMG during sit-to-stand and squat-
ting with loads up to 26kg. One study presented
unclear results for a passive knee extension-assist soft
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16 D. J. FARRIS ET AL.

Table 7. Continued.

Evidence of augmented

Exoskeleton mode

Quality score

Participants (age, height, mass) Study design Main outcome measures performance?
Yes — 56% longer static hold.

of assistance

Study

medium

Perceived exertion for all tasks,

Within subject repeated

18 male automotive workers

Passive elastic support to

Spada et al. 2019

No disruption to manual
handling task (but no

plus task specific
benefit).

measures. One factor:

from a single factory

(43 £11 years;

shoulders and arms.

performance (maintenance

exoskeleton (exo vs no-exo).
Three tasks: 1) holding a
static posture with

of static position; number of
lifts; repetitions executed &

precision score)

1.76 £0.06 m; 77.3+9.1kg)

Faster execution of the

precision task and higher
precision scores on arch

tracing.

extended arms; 2) repeated

manual handling task and
3) performing precision

‘arch tracing’ task.

Lower reported exertion in

all three tasks.
Yes - significant reductions in

high

Within subject repeated Monitored MVCs using surface

11 male plasterers

Passive arm-support located at

de Vries, Krause,

both muscle activation and
reported exertion when

EMG on four main agonists
and two antagonists for

measures. One factor:

the shoulder.

and de

exoskeleton (exo vs no-exo).
Completed a series of
plastering tasks

Looze 2021

wearing the exoskeleton.

Difference in exertion

raising/lowering the arm.

Participants reported RPE.

present for ceiling but not

wall tasks (i.e.

when overhead).
No - back muscle and spinal

medium

Simulated muscle forces (spinal

12 males (25.3 £ 6 years, Within-subject repeated

Passive spring-loaded arm

Weston et al. 2018

forces were considerably
increased by use of the

exoskeleton.

and abdomen) and
simulated lumbar

spine forces.

measures. 4 factors:

81.9+£9.8kg, 1.84+0.05m).

attached to a torso vest

(Weston

Exoskeleton condition (exo

supports the weight of

a tool.

et al. 2018)

vs no-exo), tool weight, tool
height, symmetry of stance.

exosuit during 5 minutes of repeat sit-to-stand, with a
statistically significant 3.2% reduction in metabolic
power, no significant difference in RPE (despite a
slight average reduction), and no consistent patterns
in results for anaerobic threshold or EMG data (Lee,
Kim, and Park 2020).

4, Discussion
4.1. Exoskeletons to assist load carriage

Carriage of additional loads beyond one’s own body
mass significantly increases the energy cost of walk-
ing, and loads carried in backpacks are also a source
of discomfort due to added pressure on the shoulders
and torso (Knapik, Reynolds, and Harman 2004).
Consequently, exoskeletons have been developed to
bear some of the additional load and reduce the
energy cost of walking while carrying such loads. In
the military use case workshops, participants reported
and unanimously agreed that the highest priority
opportunity for the use of exoskeleton technology in
defence and security is in the assistance it could pro-
vide the wearer in carrying heavy loads over long dis-
tances. The key benefit of any exoskeleton
augmentation aimed at loaded walking will likely be
to reduce the human energy cost. Workshop partici-
pants identified that this would benefit dismounted
personnel by allowing them to walk for longer, cover-
ing greater distances, and/or arriving at their destin-
ation less fatigued (physically and cognitively) and in
better condition to perform subsequent activities.

The main outcome measure used in the literature
to evaluate exoskeleton effectiveness was the user’s
metabolic power during loaded walking. Although
metabolic power does not directly evidence augmen-
tation, a reduction in metabolic power for a given
walking speed theoretically predicts that the user
could walk for longer before becoming fatigued or
walk faster than usual for an equivalent energy cost.
Of the studies returned, those that implemented
powered assistance to the hip and/or ankle joints
were most effective in reducing metabolic power for
loaded walking, reporting reductions of 7-15% for
carrying loads between 15 and 23 kg (Lee et al. 2018;
Malcolm et al. 2017; Panizzolo et al. 2016; Sado et al.
2018; Cao et al. 2021; Ding et al. 2016; Panizzolo
et al. 2019). No such reductions were achieved with
passive devices that sought to unburden the user by
transferring the backpack load directly to the ground
(Dijk, et al. 2018; Gregorczyk et al. 2010; Ketko et al.
2017). This is despite passive load transfer devices sig-
nificantly reducing the load borne by the user (Dijk,



17

)
Y
=
o
=z
o]
Y]
&
w

‘(sybrom |je) 1enbs
ul wnipads Jamod D3
pajesbajul pue ‘pueis-0}

-11s buunp 3 paresbaul
dPsnw sdadupenb
wnipaw

‘A|[enueisgns

paueA salbajesls [043U0d
JURIBYIP 40} dUuIRYRId JasM
‘bunienbs jeadas sy jo

G—€ sainuiw buunp pasnpai
Apuedyiubis a1am YH pue
ybuy
‘syuedpiued 1oy

paueA 3dY pue ‘paseasnul
A|jesauab sem g

‘bunds ayy buibebus Aq Joy
palesuadwod sem Sy} pue
‘1Aap pabebuasip ayy Aq
U033[3%s0xa-0u 0} pasedwod
paseanul Ajjeuibiew

wnipaw  sem uopdwnsuod usbAxQ — oN

3dY Ul uordNpas uedyubls

-uou Inq |[ews ‘pjoysaiy}
21q0J3eUR IO SNSal

919|dwodul ((%'€) Jomod
31j0geIdW Ul SUOIdNpal

ybiy
‘SpueWISp Yse}

padNpal UOI3[YSOXd

9y} 1ey3 paniadsad

syuedpiued ‘[(wdq) anuiw

1ad syeaq ] bumenbs yum
PaAISSCO YH Ul S9seIdUl

91ebiw Ajjensed pip

11 Inq ‘aduewlopad [YyS uo
aJnjsod panenbs jJo 1d3ye
dAneb3U By I1ebau jou

ybuy

‘uondwnsuod uabAxo — sap

[lews Ing 3uedyiubls —iespun

pIp UOI9I3YSOXd BY) — Je3pun

wnuyads Jamod HiA3

ul suondnpal uediubls — sap  pajeibajul pue g pajelbay|

"SUOIHPUOD UOID[IHSOXD
Jo Bupjues 1asn ‘YH
‘uonndwnsuod uabAxo Jo ey

'3dY ‘epnuubew
DN3 3pPsnw b3)
‘uonndwinsuod uabAxo Jo ey

‘pjoysaiys digosaeue !(afeds
b10g) 34y ‘4omod dijoqersy

‘1s91 3yl

Buunp yH pue ‘(xapu| peo]

%seL YSYN) 1591 ayy buunp

peopjiom paaidiad ‘(1HVS)

159 dsuodsay 031 uonuANY
PaUILISNS UO 3dURWLIONA

(II°qteq 01 pappe
6592 8 91 9 ‘0 yum)
1enbs ‘uonow pueis-o}
-)IS :219M SHSe] (0X3-0U SA
0X3) UOIIIPUOD UOID|9YSOXd
— J012B} BUQ "SaInseaw
paleadas 13[gns uyum
‘buimenbs pajeadas
JO sanuIW G
sem yse] ‘(sa1bajens
]0J3U0D JUAIBYPIP € YUM
UOJ3[YSOXD ‘U0I3[INSOXD
0U) UOIIPUOD UOID|INSOXdD
— J01JB} BUQ "SaInseaw
paleadas 13[gns uyum

‘puels-01
-Us pajeadal Jo sanuIW G
SeM se] "(9JUe]sisse ou
u033|s0X3 ‘papeo|-bunids
UOJ3|9)SOXd ‘UOID9NSOXd
0U) UOIJIPUOD UOID|DNSOXD
— JO1JB} SUQ "SaINSeaW

paleadas 13[gns ulyum
uiwy/sdal
07 1@ sulw G Joj pajeadas

pue1s-01-1IS yse] ‘(0Xa-0u SA

0X3) UOI}PUOD UOID|NSOXd
— 10128} dUQ “SaINSeIW
pajeadal 13(gns uIyHMm

Buipuels ajiym

5159} dAINUbOd Hups|dwod

SeM YSB] "(0X3-0U SA

0Xd) UOIJ|SOXd ‘(panienbs

SA PaXe|a4) 2iN1sod

1S1030B) OM] ‘S2JNseaw
pajeadal 1a[gns-ulyum

(BYG9FOLL ‘WSOOFSLL

'68°0 F ¢'v¢) siuedpiyed oz

By F6L ‘WO FEQL
's1edk € F 67)

sajew bunoAk Ayyesy /

(B 08—, ‘W S8 L-vLL

‘s1eak 9g-67) S9eW ¢

(s|1e3op 4330
ou ‘s1eak 701 F8'€)

syuedpiued Ayyeay L€

(B LFEQ ' WIEYF6/LL
's1eak 9 F 67)

saultely [ehoy N L

uoIsu1xa aauy Bunsisse
Jojenyoe diewnaud pasamod

uoIsu1xa aauy Bunsisse
1e Jojow anbioy pasamod

uolsuaixa diy bunsisse
wssiueydaw bupds sa1ssed

UOISUIIXD WY
Bunsisse 1INsoxa 1os e 0}
paydele spueq d1se[d dAIssed

‘uoIxaly Julof aauy Bunsisas
1e Jadwep-bunds anissed

€10C '€ 1o Wiy

€L0C '[e 19 swen

810z "|e 19 sniunf

020T led pue ‘wiy ‘937

8107 '[e 12 1abpug

jduewiopad
pajuswbne Jo 9duU3pIAg

2102s Ajjend

SoJnseaw aWo0d1No uley

ubisap Apnis

(ssew ‘ybiay ‘abe) syuedpined

adueIsIsse Jo
3poW UO0I3|HS0XT

Apnis

‘buipuels pue Buiienbs BuilsISse 10} SUOII|ONSOXD JO S1349 Y1 Bullen|eAd SIIpNIS WOy PIIDRIIXD

uonewlojul £3y ‘g ajqel



18 D. J. FARRIS ET AL.

et al. 2018; Ketko et al. 2017). A probable explanation
for this discrepancy is that the added mass of the pas-
sive devices offset the benefits of unloading, or that
the semi-rigid designs restricted the user’s natural
movement. This limitation highlights the need for
lightweight designs that do not encumber the user’s
movement and the potential value of the aforemen-
tioned fabric exosuit designs (e.g (Lee et al. 2018;
Malcolm et al. 2017). However, the reductions in meta-
bolic power observed with these exosuits have typic-
ally been reported by comparison of using the suit
powered-on vs powered-off, when an ideal control
condition would be loaded walking without wearing
the suit at all. In these cases, it is not entirely clear if
user performance is truly augmented compared to
normal performance levels. Panizzolo et al. (2016)
showed that the reduction in metabolic power
achieved was 7% when the mass of the device was
accounted for, versus the 15% reported compared to
a powered-off condition. Furthermore, there is evi-
dence that wearing the aforementioned soft exosuit
unpowered does not incur an increase in metabolic
power relative to normal walking (Ding et al. 2016).
These two results give confidence that the exosuits
achieved a reduction in metabolic power, but it is
likely closer to 7% than 15%. It should also be noted
that some of the prototype designs tested did not
require the user to carry the mass of the control sys-
tem and actuators in any experimental condition
(Malcolm et al. 2017; Ding et al. 2016; Zhang et al.
2017; Galle et al. 2014). Therefore, these particular
studies show proof-of-concept for exoskeleton assist-
ance rather than complete exoskeleton designs that
can reduce the metabolic cost of load carriage.
Considering where on the lower limb to provide
exoskeleton assistance, devices generating torque at
the ankle or hip separately were able to reduce meta-
bolic power by similar amounts (8-15%) for carrying
loads of 15-23 kg (Lee et al. 2018; Malcolm et al. 2017;
Sado et al. 2018; Cao et al. 2021; Ding et al. 2016;
Panizzolo et al. 2019). However, the greater metabolic
reductions observed for ankle exoskeletons were
tested with only one participant as part of a larger
study (Zhang et al. 2017). More complete work,
showed an ankle exoskeleton to reduce metabolic
power of walking with a 23kg backpack by 8%
(Mooney, Rouse, and Herr 2014). Interestingly, when
exoskeletons were used to assist at both the hip and
ankle, the metabolic power reduction was not further
increased (Lee et al. 2018; Malcolm et al. 2017). The
reason for this is unclear, although these different
studies were not performed with the same

exoskeleton hardware and control systems, making
direct comparison challenging. Where best to provide
assistance for load carriage remains an open question,
although other factors such as locating device mass
close to the body centre of mass will also affect this
choice (adding mass distally to the limb is more meta-
bolically costly). Powered assistance to hip and/or
ankle joints appears a promising mode of exoskeleton
assistance to augment load carriage, but it is worth
noting that the studies reviewed here are entirely
laboratory-based and involved highly controlled condi-
tions. Studies were mostly conducted on treadmills at
constant walking speeds. Adaptable control schemes
that allow exoskeletons to adjust to the user task
requirements outside the lab are becoming a reality
(Kim et al. 2019), but are still in development.
Furthermore, studies have begun to employ adapta-
tion of exoskeleton control parameters to optimise
performance for individual users, showing improved
outcomes (Zhang et al. 2017). This highlights that a
‘one-size-fits-all’ approach to device assistance may be
sub-optimal, and exoskeletons likely need to be pro-
grammed for each wuser to maximise benefits.
Therefore exoskeleton designs with more tuneable
control and stiffness parameters should be considered
a priority for design and development.

Alternative to assisting the lower limb, two exoskel-
etons that assist load carriage at the torso and lower
back were tested in the literature. Park et al. (2017)
used a device that combined passive backpack load
distribution between shoulders and pelvis, with pow-
ered support to resist the backpack’s inertial forces.
This combination reduced the metabolic cost of walk-
ing with an added load equivalent to 25% body
weight by 8.7% (Park et al. 2017) and was linked to a
reduction in EMG activity of associated muscles.
However, Park et al.s (2017) result was in comparison
to a control condition where the device was discon-
nected but still worn, so it is not clear if the benefits
outweigh the unknown metabolic penalty for wearing
the device alone. The device of Poliero et al. (2020),
was designed to assist manual lifting, however walking
while carrying boxes with weight ranges from 1.2 to
15 kg was also assessed; users reported that the device
hindered their walking, and hip range of motion and
walking speed were reduced. This result highlights the
significant challenge of designing exoskeletons to
assist the main task performed by the user while not
hindering other tasks that must be performed.

Considering the evidence above from a military use
case perspective, it appears that exoskeletons for load
carriage tested in the available literature are in very



early stages of development. In the use case develop-
ment and workshops, load carriage activities were
considered of most importance to field-based opera-
tions for dismounted patrol. When undertaking long-
distance load carriage walking activities, personnel will
typically be spending extended periods away from
their base of operations, potentially with limited or no
vehicular support. This means that any equipment
they take (including exoskeleton technology) will need
to be carried/worn at all times. This is significant, as it
raises a number of caveats and additional require-
ments associated with such exoskeleton technology.
First, exoskeletons must not require access to external
support (e.g. AC power) during the timeframe of the
mission. Given that the most promising results identi-
fied above were for powered devices, a critical consid-
eration will be whether power supply technology and
device energy consumption are sufficiently developed
for purpose. Here, exoskeletons that harvest energy to
generate electricity (e.g. Donelan et al. 2008) may
prove valuable. The workshops clearly identified a con-
sideration that exoskeletons must not impede or hin-
der the many other activities that might be performed
on patrol. At present, the reviewed work describes
devices that support a specific task (e.g. walking on
flat ground at a fixed speed). The only paper to inves-
tigate if an exoskeleton for one purpose hindered
another activity showed that a lifting exoskeleton hin-
dered walking performance (Poliero et al. 2020).
Exoskeletons for military load carriage will need to be
adaptable to dynamic user needs, or at least not hin-
der other activities when powered-off. Until these cri-
teria are addressed, exoskeletons will not be suitable
for deployment during combat operations. They also
may need to be tuned to individual users, and the
user familiarised with the exoskeleton, which links to
another consideration raised in the workshops that
there could be an increased training burden intro-
duced by exoskeletons.

There is promising proof-of-concept evidence that
exoskeletons could be used to augment load carriage
by lowering the metabolic cost of loaded walking. The
main application in defence and security would be for
dismounted patrol, a task that introduces a number of
considerations that must be taken into account in the
development of load carriage exoskeletons moving
forward. Mudie et al. (2018) have proposed a frame-
work for testing military exoskeletons that gradually
increase the military-specific nature of testing proto-
cols from lab-based experiments, to simulated field
tasks, to military training exercises. This approach is
logical, but we propose it could be augmented by
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integration into a broader human-centred design
framework. Such an approach requires the military
end-user to develop a priori requirements for exoskel-
eton performance that can be used in the decision to
progress an exoskeleton from one stage of testing to
the next. For example, what level of reduction in the
metabolic cost of load carriage is sufficient evidence
for augmented performance to warrant further invest-
ment in testing? What are the ‘deal-breakers’ or risks
that an exoskeleton must be shown to avoid to war-
rant further investment? By adopting a human-centred
design approach, the military end user can proactively
influence the design process, leading to more efficient
development of exoskeletons designed to fit the mili-
tary use case.

4.2. Exoskeletons to assist manual lifting

Exoskeletons to assist manual lifting mostly used pas-
sive stiff-elastic elements or torque motors at the pel-
vis and lower back, to offload the spinal extensor
muscles during lifting. These systems act in parallel
with the lower spinal extensor muscles (erector spi-
nae) and connect the torso to the pelvis and/or thighs
in an effort to transfer loads between the two, bypass-
ing the lumbar spine. Devices assessed in the litera-
ture were developed for the purpose of reducing the
risk of lower-back injuries in industrial workforces who
are required to perform repetitive manual lifting tasks.
Although the present review was concerned with exo-
skeletons for human augmentation, as opposed to
injury mitigation, the two purposes share a common
mechanism of reducing the need for force production
by the user's muscles. Therefore, we reviewed studies
that assessed whether exoskeletons could influence
musculoskeletal loads, regardless of the intended pur-
pose of the device. It is also valuable to compare the
state-of-the-art to the needs of potential military use
cases. The participants in the support use case work-
shop identified the opportunity for exoskeletons in
assisting manual lifting tasks. A specific example was
for arming Apache helicopters. It was considered that
a trolley was impractical for this task due to poten-
tially rough terrain and challenging access to the mis-
sile rail. However, the loads borne by personnel were
greater than should be lifted manually, and if an exo-
skeleton could unload the user’s muscles sufficiently
(augmenting user strength), this task could be made
safer and more efficient. Therefore, the review also
considers how relevant current findings are to this use
case scenario.
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The majority of studies used EMG from spinal
extensor muscles to assess the load placed on the
user, however the results were mixed. Thirteen studies
showed that exoskeletons reduced spinal extensor
EMG and seven showing no effect. Inconsistent results
were present for both passive and powered devices,
although powered devices more consistently reduced
EMG signals. A potential explanation for the mixed
results is the challenging nature of consistently meas-
uring and interpreting EMG across studies. Spinal
extensor muscles are complex, with multiple muscles
and each having many compartments. EMG sensors
record from a limited volume of muscle, and the sig-
nal recorded is sensitive to the exact location of the
sensor relative to the underlying muscle. There are
also many muscles in close proximity to the lumbar
spine, resulting in potential cross-talk. Additionally
there are deep spinal muscles that cannot be recorded
from using surface EMG sensors. The choice of which
metric to extract from the EMG signal is also problem-
aticc, with some studies choosing signal peaks
(Koopman, Kingma, et al. 2020; Koopman, Kingma,
et al. 2020; Thamsuwan et al. 2020; Huysamen, de
Looze, et al. 2018; Toxiri, Ortiz, et al. 2018; Koopman,
Kingma, et al. 2019; Lazzaroni et al. 2019), others inte-
grate or take the root-mean-squared of the signal over
the lifting task (von Glinski et al. 2019; Yong et al.
2019; Ji et al. 2020), some use the mean or median of
the signal (Poliero et al. 2020; Koopman, Kingma, et al.
2019; Baltrusch et al. 2020; Baltrusch et al. 2019; Chen
et al. 2018), and two took the average of the 9ot per-
centile of the signal (Madinei et al. 2020; Di Natali
et al. 2021). The choice of metric was not related to
whether or not a study found a positive result.
Furthermore, even with consistent methods, the rela-
tionship between a muscle’s EMG signal and the force
that muscle is producing is highly complex. EMG is a
measure of the neural drive reaching the muscle, and
under static conditions has a reasonably linear rela-
tionship with that muscle’s force output (Enoka 2015).
However, during dynamic movements the relationship
is highly complex, being mediated by many factors
including muscle length, velocity and contraction his-
tory (whether it has been lengthening or shortening
for example) (Enoka 2015). Therefore, if an exoskeleton
affects movement kinematics, a change in muscle acti-
vation may not correspond to a proportional change
in muscle force. Some studies attempted to account
for this by using EMG signals as input to computa-
tional musculoskeletal models that account for muscle
length and velocity when computing muscle forces
and spinal compression forces (Koopman, Kingma,

et al. 2020; Koopman, Kingma, et al. 2020; Picchiotti
et al. 2019). In two such studies with passive exoskele-
tons, one showed the exoskeleton reduced compres-
sive load in the lumbar spine by up to 21%, but the
other showed no effect (Koopman, Kingma, et al.
2020; Koopman, Kingma, et al. 2020). Koopman,
Kingma, et al. (2019) also used a musculoskeletal
model to evidence that a powered exoskeleton
reduced lumbar spine compression forces, although
the exoskeleton also reduced movement speed. These
mixed findings are despite similar methods for EMG
measurement and  musculoskeletal  modelling.
Therefore, the current evidence for whether exoskele-
tons to assist lifting are effective in reducing musculo-
skeletal loads in the lower back is unclear. Inconsistent
application of EMG measurements and analysis may
be partially responsible for mixed results, and incorpo-
rating musculoskeletal modelling to better estimate
muscle and spinal forces should improve assessments
of exoskeleton efficacy. However, musculoskeletal
models are sensitive to model properties and the
approach to computing muscle forces. Muscle forces
are often computed using optimisation, and the
chosen cost function to optimise can influence the
outcomes. Therefore, researchers should also develop
validated musculoskeletal models and simulation
frameworks that can be used consistently across stud-
ies. Mudie et al. (2018) recommended that a standard
list of techniques, including EMG and musculoskeletal
modelling, are used for the assessment of exoskele-
tons in development for military use. Here we recom-
mend further that specific procedures for data
acquisition, processing and analysis are determined for
each technique, otherwise comparison between stud-
ies remains problematic.

A general opportunity raised in the support use
case workshop was to augment the user’s lifting cap-
acity such that tasks currently requiring a two-person
lift or assistance with cranes could be carried out by
an individual. However, only one study assessed
whether a lifting exoskeleton could augment the user
by increasing their maximal lifting capacity (Baltrusch
et al. 2018). Although the result was that no augmen-
tation was achieved, the study only required partici-
pants to lift a maximum of 23kg, a load that
participants were capable of lifting without an exo-
skeleton. If military organisations are to pursue exo-
skeletons for lifting, the weight of objects to be lifted
must be identified in order to set targets for exoskel-
eton designers. In the example of arming a helicopter,
the weight of the missile and the proportion of that
weight which must be supported should be provided.



To broaden the potential application, a review of simi-
lar tasks where a common exoskeleton design might
be relevant could be undertaken to ascertain a min-
imum and maximum requirement for lifting capacity.
In addition to lifting capacity, there are some other
important distinctions between opportunities identi-
fied for the support use case and the problem of
reducing lower back injuries that is considered by
published work. First, exoskeletons for reducing lower
back injuries are generally only concerned with off-
loading the lumbar spine. Therefore, such exoskele-
tons do not generally unload the upper or lower
limbs. For significantly augmenting the user’s lifting
capacity, it is likely that all involved muscle groups
will require assistance. Only one study assessed an
exoskeleton for assisting arm and shoulders muscles
(Theurel et al. 2018), and this study showed mixed
results in terms of the passive device's ability to
reduce EMG signals. One study assessed an exoskel-
eton that did provide support from the lower back
down across to the lower extremities with connected
torque motors at the hip and the knee and passive
elements to transfer the load to the ground (Sado
et al. 2019). This paper showed the exoskeleton suc-
cessfully reduced selected leg muscle EMG. Therefore,
it may well be possible to extend devices supporting
the pelvis and lower back to also support the
lower limb.

A common theme in the risks identified by work-
shop attendees was that the exoskeleton must not
hinder performance of tasks that must be completed
while wearing an exoskeleton. Some studies high-
lighted that their exoskeletons designed to assist lift-
ing elevated metabolic cost (Baltrusch et al. 2019),
reduced walking speed (Baltrusch et al. 2019), and
restricted hip motion during walking (Poliero et al.
2020). Another showed an increase in abdominal
muscle EMG during lifting tasks (Alemi et al. 2019).
The vast majority of studies in the lifting category
only evaluated the exoskeleton for a simple symmet-
rical lifting task. The fact that current lifting exoskele-
tons are designed for injury mitigation in industrial
settings highlights the need for military end users to
proactively set requirements for developers. Our work-
shops highlighted an opportunity for lifting exoskele-
tons in a military use case, but exoskeleton developers
need to be informed of requirements and incentivised
to develop appropriate exoskeletons. An understand-
ing of what loads a lifting exoskeleton must bear to
be of use to military support personnel and what con-
current activities must not be hindered for each use
case is a necessary first step.
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4.3. Exoskeletons to assist overhead work &
working with tools

The exoskeletons tested in the eight returned studies
were all passive. The exoskeletons supported the user
by transferring loads that would normally be experi-
enced by the arm to the torso or lower body. In prin-
ciple, this mode of assistance should unload the
smaller muscles of the arms, which are further disad-
vantaged when holding a tool with extended arms or
working overhead. This category was reviewed as a
specialised subset of lifting exoskeletons, as the main
purpose is to alleviate muscular effort when working
with additional mass in hand. However, it was consid-
ered separate, as the requirements differ in that the
user is maintaining an upright body posture, and the
arms are the main target for assistance. Overhead
work or work with tools was deemed relevant to the
military support use case as the workshop participants
identified an opportunity to assist with removal and
installation of components. The tasks assessed by
studies were not military support tasks, but were con-
sidered relevant as generic examples of working over-
head or with tools, potentially for extended periods of
time. Most relevant perhaps was the simulated aero-
space engineering tasks performed in Weston et al.
(2018). The value of supporting such tasks with an
exoskeleton was anticipated to be reduced fatigue,
increased working speed, and increased precision (due
to reduced fatigue or discomfort). The higher quality
studies in this category generally showed positive
results in relation to each of these performance meas-
ures. Evidence from static (Huysamen, de Looze, et al.
2018) and dynamic (Hyun et al. 2019; de Vries, Krause,
and de Looze 2021) tasks showed reductions in EMG
activity with the use of exoskeletons. Furthermore,
increased speed and precision of task performance
was reported by Spada et al. (2019). Positive findings
were also supported by user reports of perceived
effort (Spada et al. 2019; de Vries, Krause, and de
Looze 2021). Therefore, evidence from generic tasks is
promising for exoskeletons intended to assist over-
head work or working with tools. However, there are
some important further considerations. First, the same
careful consideration of EMG data analysis and inter-
pretation expressed in section 5.2 must be observed.
Second, for military purposes, specific use case scen-
arios must be explored to understand user require-
ments and to design experiments to test these
scenarios. Finally, it was shown by Weston et al. (2018)
that an exoskeleton transferring arm load to the torso
increased back muscle and spine forces. This high-
lights the need for studies to assess if exoskeletons
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that offload the arms do so at the expense of other
parts of the body. Exoskeletons that transfer the over-
head load to the ground may have advantages over
those that transfer the load to the body and require
exploration.

4.4. Exoskeletons to assist standing and squatting

Squatting and standing are movements that cut across
all aspects of activities performed within a defence
and security context, including maintenance, routine
support functions and front-line operations. In the
case of dismounted patrol, this is likely to be a sub-
function of an exoskeleton designed to assist loaded
walking. For the support use case it is likely to be a
sub-function of working with tools that involves stand-
ing or adopting a squatted posture for a prolonged
period of time. Holding a squatted or standing pos-
ition can be fatiguing and consequently affect person-
nel’s physiological, biomechanical and cognitive
performance in concurrent tasks or tasks that follow.
Bridger et al. (2018) showed that, despite physiological
effects and perceived assistance, an exoskeleton to
support standing did not improve performance in cog-
nitive tasks. One possible explanation for this is that
the exoskeleton itself introduces a confounding cogni-
tive demand, although it could simply be that the
physiological benefit is too small (heart rate reduced
by 9 beatsmin~') to affect cognitive function.
Powered devices assisting at the knee were able to
reduce the metabolic costs of repeat squatting or sit-
to-stand (Gams et al. 2013; Kim et al. 2013), and one
passive device supporting knee extension was shown
to provide small (3.2%) but statistically significant
reductions in metabolic cost during a repeated sit-to-
stand task (Lee, Kim, and Park 2020). Alternatively,
another study showed that passive hip assistance
reduced the metabolic cost of sit-to-stand compared
to wearing the device while it was not assisting
(Junius et al. 2018). However, wearing the device
alone increased the metabolic cost from not wearing
the exoskeleton, resulting a net zero effect. The latter
finding implies that passive assistance at the hip may
be useful, if it can be applied with a device that hin-
ders the user less. Therefore, evidence suggests that
the demands of prolonged standing or squatting may
be reduced with exoskeleton support. In the support
use case such exoskeleton assistance might be most
applicable when integrated with upper body devices
to assist manual handling or work, meeting a need to
transfer loads in-hand to the lower limb and poten-
tially the ground. In particular, powered support to

knee extensors seems beneficial. For dismounted
patrol, support for standing is likely to be an add-
itional benefit provided by a load carriage assist
device. Exoskeletons acting at the knee specifically
were not highlighted when reviewing the load car-
riage literature, but could become more important
when studies consider incline and decline locomotion
with added load (Nuckols et al. 2020), or energy har-
vesting functionality (Donelan et al. 2008).

4.5. Limitations

There are several limitations to the approach
employed in this piece of work. Firstly, the use case
workshops represented an exercise in technology-
push. Participants were asked only to consider oppor-
tunities for exoskeletons to augment performance, not
whether or not an exoskeleton was the most appropri-
ate solution to the problem. Furthermore, the work
only considered opportunities for exoskeletons to aug-
ment personnel in their roles as they currently exist.
An alternative approach might also consider if exoskel-
etons could be employed to change the way military
personnel operate for the better. In a similar vein, par-
ticipants were briefed on exoskeletons using examples
of extant technologies and were not asked to consider
idealised technology solutions. This was to maintain
realistic expectations given the state-of-the-art.
Related to the literature review process, only papers
published in peer-reviewed journals were considered.
This may have excluded some grey literature pro-
duced by military sources. Furthermore, it is recog-
nised that commercial exoskeletons may be
developed without internal testing results being pub-
lished in scientific literature. Therefore exoskeletons
may have been developed and tested that could not
be considered here. For example, some branches of
the British armed forces have introduced a dynamic
weight distribution system to assist with load carriage,
but evidence for its effectiveness has not been openly
published. Finally, the review scope was restricted to
the most relevant categories of exoskeleton as deter-
mined from the workshops. This led to a wealth of
papers examining exoskeletons to assist unloaded
walking and running being omitted. The justification
for this is that a dismounted patrol would rarely walk
or run without any additional loads. For a review of
state-of-the-art research on exoskeletons to assist
unloaded locomotion, the reader is referred to Sawicki
et al. (2020).



4.6. Next steps towards a roadmap for
introducing exoskeletons to military service

Several key emerging themes from the literature
review have led to the following recommendations for
the next steps in developing a roadmap for introduc-
ing exoskeletons to military service:

1. Research is required to develop ‘augmentation
thresholds’ for experimentally measured changes
in outcome variables that represent meaningful
augmentation in each military use case. For
example, what percent reduction in the metabolic
cost of carrying a standard added load results in
improved physical or cognitive performance dur-
ing or at the end of a typical patrol?

2. Work must be done to establish a battery of tasks
that personnel must complete during specific use
cases. These can be used to design experiments
that also test if an exoskeleton will hinder tasks
other than the one it is designed to assist.

3. Use case-specific standardised experimental proto-
cols should be designed to test if augmentation
thresholds are met. These protocols can provide a
standard test for exoskeletons designed for a
given use case, and can be used to fairly compare
different devices intended to provide the
same function.

4. Use case-specific experimental measurement and
data processing standards should be developed
to ensure consistency across testing of different
devices. This could include standard procedures
for measurement of motion capture, ground reac-
tion forces, and EMG, for example. It might also
include approved processes for musculoskeletal
modelling and data processing and analysis.

5. Augmentation thresholds, lists of tasks, standar-
dised protocols and procedures should all be
made available to researchers and developers to
help drive design concepts towards mili-
tary adoption.

6. Furthermore, elements from point five should be
incorporated into a design specification that also
outlines how exoskeletons must integrate with
other body-borne systems, state what tasks it
must not hinder, and specify other fundamental
design features. Engaging developers with work-
ing towards such specifications may require sig-
nificant investment from the military services.

7. Exoskeletons should be experimentally shown to
meet augmentation thresholds and not hinder
other tasks in a lab environment before progres-
sion to field testing. This does not preclude early
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stage engagement of military stakeholders, whose
input could help shape the development and use
of exoskeleton technologies.

8. Existing military exoskeleton testing frameworks
should be expanded to incorporate more use
cases beyond that of dismounted patrol.

9. Exoskeletons should not be evaluated in isolation
from other research and development pro-
grammes seeking to address similar problems.
This will help avoid progression of exoskeleton
technologies that are superseded by alternative
technologies or solutions.

Some valuable key points were also raised in rela-
tion to the most promising current design concepts.
First, exoskeletons that can be tuned to assist individ-
ual users differently are likely to be more effective
than a one-size-fits-all approach. Second, for the load
carriage use case, exoskeletons that assist at the hip
and ankle are most promising to pursue, particularly if
they are lightweight. Third, due to the more predict-
able environment and the task-specific nature of cur-
rent exoskeletons, implementing exoskeletons for a
support use case is more feasible than for a dis-
mounted patrol use case, in the shorter term.

4.7. Conclusions

Via scoping of the extant scientific literature, this study
identified two generalised military use cases for exo-
skeletons. The dismounted patrol use case and the
support operations use case were validated by suitably
qualified and experienced serving members of the
British Army, Royal Navy, Royal Marines and Royal Air
Force. Validation occurred during human factors work-
shops that also identified a register of considerations
for each use case, including opportunities and risks.
The greatest opportunities for exoskeletons were to
assist dismounted patrol in load carriage and to assist
support personnel in lifting and fitting components,
including arming aircraft with missiles. A systematic
search and review of the literature highlighted promis-
ing evidence for exoskeletons’ capacity to assist with
load carriage, manual lifting and working with tools.
However, the review also revealed significant gaps in
exoskeleton capabilities and likely performance levels
required in the use case scenarios. Load carriage exo-
skeletons were considered to be in early stages of
development, and exoskeletons for manual lifting and
working with tools had been developed with a non-
military purpose. It is recommended that military-spe-
cific device requirements be determined to inform the
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development of future exoskeletons for military use
cases. Additionally, a human-centred design frame-
work should be adopted in order to advance future
research and development efforts. Research studies
involving humans within this framework also require
standardised experimental measurement procedures
for data collection and analysis, to ensure consistency
and valid comparisons between studies.
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