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Abstract
1. Passive acoustic surveys are becoming increasingly popular as a means of 

surveying for cetaceans and other marine species. These surveys yield large 
amounts of data, the analysis of which is time consuming and can account for a 
substantial proportion of the survey budget. Semi- automatic processes enable 
the bulk of processing to be conducted automatically while allowing analyst time 
to be reserved for validating and correcting detections and classifications.

2. Existing modules within the Passive Acoustic Monitoring software PAMGuard 
were used to process a large (25.4 Terabyte) dataset collected during towed 
acoustic ship transits. The recently developed ‘Multi- Hypothesis Tracking Click 
Train Detector’ and the ‘Whistle and Moan Detector’ modules were used to 
identify occasions within the dataset at which vocalising toothed whales (odon-
tocetes) were likely to be acoustically present. These putative detections were 
then reviewed by an analyst, with false positives being corrected. Target motion 
analysis provided a perpendicular distance to odontocete click events enabling 
the estimation of detection functions for both sperm whales and delphinids. 
Detected whistles were assigned to the lowest taxonomical level possible using 
the PAMGuard ‘Whistle Classifier’ module.

3. After an initial tuning process, this semi- automatic method required 91 hr of 
an analyst's time to manually review both automatic click train and whistle de-
tections from 1,696 hr of survey data. Use of the ‘Multi- Hypothesis Tracking 
Click Train Detector’ reduced the amount of data for the analyst to search by 
74.5%, while the ‘Whistle and Moan Detector’ reduced data to search by 85.9%. 
In total, 443 odontocete groups were detected, of which 55 were from sperm 
whale groups, six were from beaked whales, two were from porpoise and the 
remaining 380 were identified to the level of delphinid group. An effective sur-
vey strip half width of 3,277 and 699 m was estimated for sperm whales and 
delphinids respectively.
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1  |  INTRODUC TION

Researchers are increasingly using bioacoustics to monitor remote 
marine ecosystems. Passive acoustic monitoring (PAM) has been used 
to study cetaceans for several decades using a range of approaches. 
PAM methods allow researchers to investigate a variety of ecolog-
ical questions across a range of taxa including density estimation 
(Leaper et al., 2000, 2003; Marques et al., 2009), spatial and tempo-
ral distributions (e.g. Merkens et al., 2019; Todd et al., 2020), effects 
of anthropogenic activity and potential mitigation (e.g. Baumgartner 
et al., 2019; Macaulay et al., 2017; Malinka et al., 2018) as well as sup-
porting visual surveys (Barlow & Taylor, 2005; Gridley et al., 2020). 
Mobile sampling, using towed arrays (e.g. Gordon et al., 2020; Rone 
et al., 2014; Thode, 2004) or gliders (e.g. Bittencourt et al., 2018; 
Cauchy et al., 2020) can provide designed coverage of larger survey 
areas. Charter and running costs for dedicated vessels can become 
a major budgetary component for towed array surveys. However, 
the use of automated data collection systems can allow towed PAM 
surveys to be carried out from platforms of opportunity with little 
human supervision of data collection. Platforms of opportunity are 
vessels at sea for other purposes which can allow ancillary data col-
lection. Typically, vessel costs are already covered by the vessel's 
primary task, thus platform of opportunity surveys can be very cost 
effective. Using platforms of opportunity largely eliminates vessel 
costs but highlights the importance of cost- effective analysis of 
large passive acoustic datasets where the project budget is now 
dominated by analyst time rather than survey costs.

Long- term platform of opportunity projects and autonomous 
static recorders can collect datasets which extend over months 
or years. This is compounded by the high sample rates required to 
capture high frequency vocalisations such as the ~130 kHz echolo-
cation clicks of harbour porpoise (Clausen et al., 2011; Villadsgaard 
et al., 2007) and Cephalorhynchus dolphins (Kyhn et al., 2009), fur-
ther increasing the volume of data to process.

In the absence of automated detectors, data are typically pro-
cessed by an analyst viewing a short- term Fourier transform (STFT) 
on a spectrogram display and listening to sections of interest. This 
takes considerable time, particularly for high frequency data where 
an analyst must listen in less than real time. Semi- automated analysis 
reduces the manual effort required from analysts, with the analyst's 
time being reserved for making the final decisions on targeted data. 

Automation can also reduce biases and errors which often result 
with human analysts (Aide et al., 2013; Heinicke et al., 2015) and 
provide additional information from the data such as bearings calcu-
lated from time of arrival differences for signals received on multiple 
hydrophones. A suite of automatic processes are currently available 
for analysing acoustic data for a range of species, including click de-
tectors and click classifiers (Gillespie et al., 2008; Madhusudhana 
et al., 2015; Miller & Miller, 2018), energy band comparisons 
(Klinck & Mellinger, 2011), extraction of spectral features (Gillespie 
et al., 2013; Lin & Chou, 2015) and more recently, machine learning 
methods (Bergler et al., 2019; Bermant et al., 2019; Jiang et al., 2018; 
Shamir et al., 2014). These methods differ in their computational re-
quirements, performance and ability to process sounds from a range 
of species, the wider environment and anthropogenic sources.

All automatic detection methods are subject to errors: both false 
negatives where detections from the species of interest are missed, 
and false positives where detections are erroneously assigned to 
the species of interest. Choices about how to balance these errors 
and their impact on the overall results are dependent on the study. 
Density estimation methods based on distance sampling (Buckland 
et al., 1993) which were first developed for visual surveys, generally 
deal well with missed detections by directly estimating the proba-
bility of detection as a function of distance from the track line. As 
long as there is a high probability of detection along the survey 
track, missed detections (false negatives) at greater distances are 
of no consequence since the reduction in detections is measured 
by the reduction in the estimate of detection probability (González 
et al., 2018; Thomas & Marques, 2012). Marques et al. (2009), 
showed that acoustic data can also be used if a false positive rate is 
known, but this is likely to vary for different datasets based on the 
characteristics of interfering noise. Therefore, determining whether 
the analyst should examine all detections and remove false detec-
tions, or examine a subset and estimate the fraction of detections 
that were false positives, will depend on deciding a balance between 
endeavour and statistical robustness.

Sperm whales lend themselves well to acoustic surveys. Their 
loud clicks can be heard at distances of several km, and they can be 
tracked and localised from a moving vessel with very modest equip-
ment using target motion methods. Several studies have published 
abundance estimates for sperm whales using standard line transect 
survey approaches (Lewis et al., 1998, 2007, 2018) or methods with 

4. The semi- automatic workflow proved successful, reducing the amount of an-
alyst time required to process the data, significantly reducing overall project 
costs. The workflow presented here makes use of existing modules within 
PAMGuard, a freely available and open- source software, readily accessible to 
acoustic analysts.
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small modifications (Barlow et al., 2001; Barlow & Taylor, 2005). 
Data are often processed with either RainbowClick (Gillespie & 
Leaper, 1996) or more recently PAMGuard (Gillespie et al., 2008). 
Both programs combine a simple transient click detector, combined 
with a sophisticated user interface, to enable an operator to effi-
ciently select and group click trains on consistent bearings likely 
to come from an individual or closely associated group. The click 
detector generally produces many false positive detections, which 
may come from a variety of sources: other cetacean species, pro-
pellor and engine noise from the survey vessel and other craft, 
and other naturally occurring sounds such as breaking waves. It is 
therefore necessary for an operator to examine every screen page 
of data to eliminate false detections. However, by only displaying 
detections, the page length can be longer and much less cluttered 
than would be possible with a standard spectrogram, and additional 
information such as bearings to detected sounds are displayed. This 
makes it possible for an operator to scan data offline at many times 
real- time.

In this study, we took a total of 1,696 hr of continuous data col-
lected from a hydrophone array deployed from a platform of op-
portunity while it made routine passages for other purposes. It is 
hoped that this opportunistic PAM data collection will be the start 
of a long- term project to collect PAM data on a wide scale, thereby 
contributing to world- wide cetacean population monitoring efforts. 
Data were processed for the extraction of multiple classes of ceta-
cean sounds including sperm whale echolocation clicks, broadband 
delphinid echolocation clicks, narrow band high frequency (NBHF) 
echolocation clicks and delphinid whistles. We report on the dis-
tribution of these sound types and provide detection functions for 
sperm whales and delphinids along the survey track. Importantly, we 
demonstrate how a carefully selected combination of automatic and 

manual processing allows for the time efficient processing of large 
datasets.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

Acoustic data were collected opportunistically on- board M/V 
Arctic Sunrise during passages in the Atlantic, Southern, Arctic and 
Indian Oceans using a towed hydrophone array (Vanishing Point 
Ltd; Figure 1). The data collected during this research was collected 
under permit number RWS- 2019/40813 for all work in Antarctic 
 waters. In other regions, no fieldwork permission was required. 
The array's streamer section comprised two pairs of hydrophone 
elements mounted within an oil (Isopar M) filled 5 m long, flexible, 
35 mm diameter polyurethane tube. This was towed at the end a 
350 m Kevlar- strengthened tow cable. Two hydrophones, the ‘me-
dium frequency’ pair (Benthos AQ4 elements and Magrec HP02 pre-
amplifiers, nominal frequency range 50 Hz to 40 kHz) were spaced 
3 m apart while the ‘high frequency’ pair (Magrec HP03 hydrophone 
and preamplifiers units, nominal frequency range 1– 200 kHz) were 
separated by 50 cm. Each array element was connected to one 
channel of a four- channel SAIL data acquisition card (St Andrews 
Instrumentation Ltd) where analogue filtering and gain were applied 
before each channel was sampled at 500 kHz. High pass filters of 
10 Hz and gain of 6 dB were applied to the ‘medium frequency’ chan-
nels 0 and 1, while a high pass filter of 2 kHz and gain of 12 dB ap-
plied to each of the ‘high frequency’ channels 2 and 3. Data from the 
SAIL acquisition card were written as four channel .wav files using 
PAMGuard (Gillespie et al., 2008) (available at www.pamgu ard.org), 

F I G U R E  1  Schematic of the towed PAM array and recording system used onboard M/V Arctic sunrise during acoustic surveys

http://www.pamguard.org
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which also carried out real- time acoustic processing, displayed re-
sults and logged the ship location from GPS.

2.2  |  Click processing

The raw wav data files were reprocessed onshore in conjunction 
with GPS data collected during the survey using PAMGuard (version 
2.01.05).

2.2.1  |  Detection and detector configuration

Odontocete clicks were detected on recordings from the high fre-
quency hydrophones (channels 2 and 3) using a PAMGuard click 
detector module. Time of arrival differences for the signal on the 
two hydrophones were used to estimate an angle of arrival for each 
detected click relative to the hydrophone array.

To achieve a good compromise between detection efficiency 
and processing workload, an exploratory analysis was conducted 
on a representative subset of data from transits 1 and 2, to de-
termine the PAMGuard click detector settings which enabled 
detection of all manually identified vocalisations while removing 
as many detections from noise sources as possible. This subset 
was representative of typical encounters identified during an 
initial pass through the data. The vessel propulsion system (pro-
pellor and engine noise) was the source of many false detections. 
PAMGuard allows detections on a certain range of bearings to be 
vetoed. All detections in a 40- degree sector ahead of the vessel, 
with bearings between +20 and −20 were discarded. To further re-
duce false detections from background noise, a range of detector 
trigger thresholds between 10 and 19 dB in 3 dB steps were ap-
plied and a value was chosen where the maximum number of false 
detections were removed, while still retaining all but one odon-
tocete click train. This optimised threshold was used to reanalyse 
all the recordings and timing, bearing and waveform information 
for the detected clicks were written to PAMGuard output files for 
further review and analysis.

Cetacean click vocalisations typically occur in trains, with fairly 
consistent and characteristic inter click intervals. Thus, trains of 
clicks, on a consistent bearing, are usually a more reliable cue than 
individual clicks. The ‘Multi- Hypothesis Tracking (MHT) Click Train 
Detector’ module within PAMGuard (Macaulay, 2020) was used to 
automatically group detected clicks into click trains. The module 
assesses the Inter- Click- Interval (ICI), amplitude, frequency content 
and bearing information of clicks to assemble putative clicks trains 
and then calculates the likelihood of being a true click train for every 
possible click combination. As more clicks are included in the model, 
the number of possible click trains increases exponentially and a 
pruning process is implemented so that only the most likely combi-
nation of clicks are retained in putative click trains. Each click train 
is given a �2 score. The lower the score, the more likely it is that the 
clicks within the train come from the same source or target animal. 

This process is computationally intensive, and while the pruning pro-
cess increases the efficiency of the model (Macaulay, 2020), remov-
ing as many false positive clicks as possible before running the MHT 
click train detector proved essential.

Settings for the MHT click train detector were based on those 
suggested by Macaulay (2020) and adjusted iteratively for the data 
subset. The settings for the MHT click train detector and its classi-
fier were then validated against a full manual analysis of the sub-
set using existing MATLAB functions for PAMGuard (available at: 
https://github.com/PAMGu ard/PAMGu ardMa tlab) within custom 
MATLAB scripts (version 9.9.0, MATLAB, 2020).

2.2.2  |  Classification

Following previous work to identify beaked whales in similar acoustic 
surveys (Keating & Barlow, 2013; Rone et al., 2014; Yack et al., 2010), 
two narrow band click classifiers with frequency sweeps were ap-
plied to detect beaked whales. The first using the PAMGuard de-
faults for beaked whales with a test band between 24 and 48 kHz, 
and the second higher frequency test band (40– 80 kHz) to search for 
higher frequency beaked whale clicks. The presence of a frequency 
sweep, assessed by eye in Wigner plots of individual clicks was use-
ful in identifying beaked whales. A narrow band classifier was also 
used to detect narrow band high frequency (NBHF) clicks, with a 
test band between 100 and 150 kHz, providing a classifier for any 
NBHF species such as harbour porpoise Phocoena phocoena, dwarf 
and pygmy sperm whales (Kogia spp.) and NBHF delphinids (e.g. 
Cephalorhynchus spp.). The classifier within the MHT module uses 
spectral template classifiers which correlate the average spectrum 
of each click train with species specific spectral templates and inter- 
click interval parameters. Classifiers were run within the MHT click 
train detector for sperm whales, beaked whales and dolphins.

2.3  |  Whistle processing

PAMGuard's ‘Whistle and Moan Detector’ (Gillespie et al., 2013) was 
run to detect odontocete whistle contours up to 24 kHz on the wav 
data files from the ‘medium frequency’ hydrophone pair (decimated 
to 48 kHz), using settings provided in Gillespie et al. (2013). The de-
tector identifies tonal sounds within recordings using a multi- stage 
process which removes noise, calculates an FFT, applies an ampli-
tude threshold and joins narrow band peaks in FFTs which are close 
in time and frequency to show ‘whistle contours’.

Whistle contours were then classified to the species level using 
PAMGuard's whistle classifier (Gillespie et al., 2013). The classifier 
works by breaking up the detected contours into fragments of equal 
length before the mean frequency (Hz), frequency slope (Hz/s) and 
curvature (Hz/s2) of the fragment are extracted. The distribution 
patterns of these parameters are calculated for whistles in encoun-
ters. The mean, standard deviation and skew of these parameters 
have been shown to vary between species (Gillespie et al., 2013). 

https://github.com/PAMGuard/PAMGuardMatlab
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Thus, whistles can be classified from multiple whistle fragments, by 
comparing distributions of fragments measured during acoustic en-
counters with distributions of contours from known species. Whistle 
classification was run separately for different geographical regions 
likely to have a different combination of ‘whistling’ species. In each 
region the classifier was trained using pre- existing and pre- labelled 
whistle contours of species likely found in that region. The train-
ing data were not necessarily collected from that region however. 
Contours used in training, also used in Gillespie et al. (2013), had 
been sampled at 48 kHz with fragment length and section length 
parameters set at 30 bins (160 ms) and 60 fragments respectively.

Where an event could not be classified, due to an insufficient 
number of whistle fragments, a range of frequency metrics of each 
event, such as mean whistle frequency and mean whistle slope were 
extracted. This information was used to aid species identification. 
Identification to the family level was attempted where species level 
identification was not possible.

2.4  |  Manual audit

All sections of data that contained click train detections and/ or 
whistle detections were manually audited using the PAMGuard 
viewer displays and data map. The automatic classification of trig-
gered click trains (e.g. sperm whale, beaked whale, NBHF, delphinid) 
was corrected where necessary. Echolocating odontocetes can most 
easily be distinguished on the bearing- time display of the click detec-
tor and click characteristics allow events to be placed into a species 

group. For example, using the PAMGuard Wigner plot for upsweep 
verification of beaked whale clicks (Papandreou- Suppappola & 
Antonelli, 2001; Yack et al., 2013). The MHT click train detector 
often fragmented a single click train into separate sections. In these 
cases, the analyst ‘marked up’ trains more accurately (Figure 2).

As the whistle and moan detector can trigger on any tonal sound 
within its detection range, it was important to inspect detected con-
tours to ensure only those from delphinids were included in later 
analyse and labelled using PAMGuard's ‘Spectrogram Annotation’ 
module. Delphinid click trains and whistles were merged where tem-
poral overlap occurred into delphinid encounter events.

2.5  |  Localisation

Click trains were localised using PAMGuard's Target Motion 
Analysis (TMA) module using the two- dimensional simplex 
method. This minimises the least squares error within a click train 
of bearings to a stationary location, estimating a different loca-
tion for each side of the track. A simple two element linear array 
was used in these transits. The bearings calculated by a time of 
arrival difference actually place the target on a semi- circular arc 
passing beneath the vessel's track line. Fortunately, line tran-
sect surveys are quite forgiving for these ambiguities. It has been 
shown (Leaper et al., 1992; Lewis et al., 2018) that when the per-
pendicular distances to detections are typically greater than the 
likely depth of the detected animal, the ‘vertical ambiguity’ can be 
accounted for by the detection function and has little impact on 

F I G U R E  2  Bearing- time windows within PAMGuard showing a sperm whale encounter over a 30- min period. Window A shows the 
fragmented trains produced by the click train detector, with window B showing the same event after a manual revision and mark- up process 
to identify single click trains for each vocalising whale where possible. Due to the overlap of click trains, especially at the upper and lower 
ends of the bearing scale, it is not always possible to distinguish between vocalising individuals
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density estimation. Thus, for localisation purposes bearings can 
be considered as being horizontal. A left right uncertainty still re-
mains, however, distance sampling methodology only requires a 
perpendicular distance from the track line (Buckland et al., 1993). 
Thus, there is no requirement to know which side of the track line 
an animal is on.

Perpendicular distances can be used to determine a detection 
function, an equation showing how the probability of detection 
falls with range from the track line. Perpendicular distances to click 
trains were processed using the ‘Distance’ package (version 1.0.2, 
Miller, 2020) within the R statistical analysis environment (ver-
sion 4.0.2, R Core Team, 2020) to estimate detection functions. 
Detection functions were calculated for both sperm whales and for 
non- NBHF delphinids.

Dolphins often bow ride and mill around the vessel. Clearly, 
target motion analysis cannot be used in these cases. However, a 
‘delphinid’ detection function was calculated using a subset of de-
tections which clearly moved past the array that had well- defined 
click trains.

Detection functions were calculated using data from all transits, 
as the same vessel and equipment were used throughout the study. 
Half normal and hazard rate models were explored for each species 
group, and the best model for each selected based on Akaike infor-
mation criterion (AIC) scores.

3  |  RESULTS

A total of 1,696 hr of four channel acoustic data were collected 
during more than 30,000 km of survey effort across the Atlantic, 
Southern, Arctic and Indian Oceans (Table 1). This resulted in 25.4 
Terabytes (TB) of 16 bit .wav files.

3.1  |  Click processing

After exploratory analysis, a 16 dB click detection threshold was cho-
sen over that of the 10 dB threshold used for real- time processing 
and other tested thresholds (13 and 19 dB) on the basis of the num-
ber of retained odontocete clicks and number of noise- originating 
clicks removed. The processed binary files produced by PAMGuard 
using a 16 dB compared to a 10 dB threshold were reduced in size 
between 78.5% and 99.6% for each transit (Table 2). Processing the 
1,696.3 hr of .wav files in PAMGuard took approximately 353 hr, an 
average of 4.8× real- time.

The MHT click train detector found 5,531 click trains within 
the subset, 636 of which were automatically classified as sperm 
whales. A spectral template threshold of 0.7 was chosen. This was 
the largest value which retained all true positives. Eighty- six sperm 
whale click trains were manually identified in the subset of data. 
All of these were identified by the automated click train detector, 
and no manually identified sperm whale click trains were missed. 
Five hundred and fifty click trains were, therefore, incorrectly 

identified as sperm whale click trains. False positive click trains 
were a mixture of echoes from true sperm whale events, delphinid 
clicks with peaks at lower frequency and detections from the noise 
of the towing vessel. 1,144 of the 5,531 click trains from the sub-
set were classified as delphinids, all of these detections were part 
of manually audited delphinid events and no manually identified 
delphinid event was missed by the MHT click train detector. Most 
of the 3,751 click trains which were not classified to species were 
from the towing vessel on occasions when vessel noise occurred 
outside the 40° veto zone, such as reflections from the seabed in 
shallow water and when the vessel was changing heading. Another 
source of unclassified click trains were short segments of sperm 
whale click trains which did not meet the correlation threshold of 
the spectral classifier. In all cases, there were many other short 
click train segments which did meet the classifier threshold, and 
so no sperm whale event was missed. Based on this exploratory 
analysis from the subset, unclassified click trains were discarded 
from any further analyses and were not manually validated when 
processing the entire dataset.

The total recording effort during the subset was 52.3 hr, while 
the duration of the click train encounters (identified automatically 
and highlighted for the analyst's attention and interpretation) 
was 17.7 hr, a reduction of approximately 66%, with none of the 
odontocete detections identified during the initial manual analy-
sis being missed. Analysing this reduced dataset took the analyst 
2.2 hr rather than 4.3 hr for the fully manual mark up, almost halv-
ing the workload.

The MHT click train detector settings were applied across the 
entire dataset. A standard laptop computer (Intel i7 2.80 GHz 2nd 
generation processor with 8GB of RAM) running the PAMGuard 
MHT click train detector unsupervised took 22.3 hr to process 
1,696.3 hr of data. Across the entire dataset the MHT click train de-
tector reduced the amount of data to process manually by 74.5%.

The three click classifiers with a frequency sweep took 56 min to 
classify all detected clicks for the entire dataset. In total, the man-
ual effort marking up classified clicks from the click classifier and 
click trains from the click train detector took 55.2 hr for the entire 
dataset.

It is likely, based on the acoustic characteristics of their clicks, 
that the six beaked whale detections in the Atlantic were of Cuvier's 
Ziphius cavirostris, Blainville's Mesoplodon densirostris or True's 
beaked whales Mesoplodon mirus (Baumann- Pickering et al., 2013; 
DeAngelis et al., 2018; Shaffer et al., 2013). There were 19 NBHF 
events detected in total. Two of which were likely harbour porpoise 
Phocoena phocoena off the northern Norwegian coast (Clausen 
et al., 2011; Quintela et al., 2020; Storrie et al., 2018; Villadsgaard 
et al., 2007). Sixteen detections made in shallow waters along the 
South American coast and one in the Drake passage were likely 
species of Cephalorhynchys dolphins. Thought to be Commerson's 
Cephalorhynchus commersonii, Peale's Lagenorhynchus australis or 
hourglass dolphins Lagenorhynchus cruciger based on click char-
acteristics and species distribution (Cipriano, 2018; Dellabianca 
et al., 2012; Kyhn et al., 2009, 2010; Reyes Reyes et al., 2015). From 
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these 16 acoustic encounters, two were confidently attributed to 
Peale's dolphins on the basis of sightings made during the acoustic 
encounter.

3.2  |  Whistle processing

PAMGuard's whistle classifier took approximately 62 min to process 
the entire dataset. The mean correct classification rate in the training 

dataset varied for each regional species group (64.1%– 82.9%) due 
to the different mix of species included for each region. Confusion 
matrices showed that within the training dataset all species were 
correctly classified on most occasions. However, some species 
showed consistently higher (>20%) miss- classification rates across 
regional groups. For example, pilot whales were miss- classified as 
killer whales between 29.7% and 32.5% of the time.

Two hundred and one of the 349 manually verified whistle 
events detected during this project were classified by the whistle 
classifier, with most of those not classified containing fewer than 
10 whistle contours. For example, four delphinid detections in the 
Western Antarctic Peninsula (WAP) were not classified but were 
manually attributed to killer whales Orcinus orca based on vocali-
sation characteristics (Reyes Reyes et al., 2017; Trickey et al., 2014; 
Wellard et al., 2020).

Manual validation of the automatically detected whistles across 
all transits took approximately 35.7 hr with the whistle and moan de-
tector reducing the amount of data to search by 86%.

Table 3 summarises all acoustic events resulting from automatic 
click and whistle detection. Classification was based on a combi-
nation of sightings data, aural inspection and automated click and 
whistle classifier outputs.

The best fitting detection functions for both sperm whales and 
non- NBHF delphinids used a hazard rate model with two parame-
ters and no adjustments. Fit was assessed using minimum AIC. This 
gave an effective strip half- width of 3,277 m for sperm whales and 
699 m non- NBHF delphinids (Table 4). For sperm whales, there is a 
reduction in the number of detections within ~500 m of the track 
line (Figure 3).

TA B L E  1  Summary of acoustic data collection on board M/V Arctic sunrise by transit with data size given in gigabytes (GB)

Transit Start– End
Recording 
effort (hours)

Size of 
recordings (GB)

Number of 
WAV files

Distance 
covered (km)

Average 
speed 
(knots)

1) English Channel to Islas Canarias 22- Aug- 2019
28- Aug- 2019

137 1,971 1,874 2,659 8.1

2) Islas Canarias to Dakar 01- Sep- 2019
04- Sep- 2019

52 753 1,051 1,264 8.9

3) Dakar to Cape Town 16- Sep- 2019
15- Oct- 2019

191 2,732 3,661 4,057 5.9

4) Cape Town to Vema to Cape Town 23- Oct- 2019
07- Nov- 2019

79 2,133 1,598 3,903 7.6

5) Cape Town to South Atlantic 03- Dec- 2019
16- Dec- 2019

261 3,763 5,025 4,783 10.4

6) South Atlantic to Ushuaia 17- Dec- 2019
26- Dec- 2019

218 3,143 4,827 4,783 10.4

7) Ushuaia to WAP 06- Jan- 2020
10- Feb- 2020

180 2,596 3,338 3,138 8.6

8) Norway to Svalbard 03- Sep- 2020
30- Sep- 2020

91 1,317 3,039 2,114 9.5

9) Seychelles to Saya de Malha 02- Mar- 2021
30- Mar- 2021

487 7,006 10,223 4,961 7.4

Total 1,696 25,414 34,636 31,662 8.5

TA B L E  2  Number of detected clicks in millions and their file size 
in gigabytes (GB) to highlight reduction in noise when a 16 dB click 
detector threshold and 20° veto was applied over the default 10 dB 
threshold

Transit

Number of detected clicks in 
millions (GB)

% reduction10 dB 16 dB

1 62.0 (13.0) 2.2 (0.5) 96.4

2 23.7 (5.0) 0.6 (0.1) 97.6

3 93.2 (21.7) 0.7 (0.2) 99.2

4 76.2 (19.8) 0.3 (0.1) 99.6

5 14.4 (3.0) 0.2 (0.03) 98.9

6 14.9 (3.1) 3.2 (0.7) 78.5

7 18.7 (3.9) 1.1 (0.2) 94.3

8 8.0 (1.7) 2.7 (0.1) 97.1

9 56.2 (11.8) 5.1 (1.1) 90.9

Total 367.3 (83.0) 16.1 (3.0) 95.6
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4  |  DISCUSSION

The semi- automatic processes applied to the large acoustic data-
set in this study used existing modules within PAMGuard. This 
methodology significantly improved acoustic analyst efficiency. 
Semi- automated analysis methods, such as these, are essential for 
large- scale acoustic surveys of wild animal populations, where data 
may be gathered near continuously over months and can total tens 
of terabytes, and budgetary limitations mean that specialist analyst 
time must be used cost- efficiently.

We appreciate that the analyses of such data will never be com-
pletely optimised for a number of reasons. All detection systems 
suffer from false positive and false negative detections. While a 

false positive is easily defined, the definition of a false negative in 
an acoustic survey is much more complicated. Lowering detection 
thresholds in order to detect more distant sounds will inevitably 
lead to a high rate of false positives. False negatives will inevitably 
increase as detector thresholds are increased to remove false posi-
tives. However, distance sampling methodology, used in this study, 
generally deals well with false negatives (Thomas & Marques, 2012). 
The detection threshold chosen for the click detector was appropri-
ate for the somewhat noisy towing vessel. Although false positives 
can generally be removed through manual audit, the additional cost 
of processing more detections can outweigh the statistical benefit of 
a larger sample size. A simple ‘optimal’ configuration is therefore illu-
sory unless we know what we are optimising for: is it the maximum 

Species grouping Common name
Number of acoustic 
group events

Physeteridae Physeter macrocephalus Sperm whale 55

Ziphiidae Unclassified Beaked whale 6

Phocoenidae Phocoena phocoena Harbour porpoise 2

Delphinidae Of which: 380

Delphinus delphis Common dolphin 8

Feresa attenuata Pygmy killer whale 18

Globicephala spp. Pilot whale 3

Grampus griseus Risso's dolphin 62

Lagenorhynchus acutus or 
L. albirostris

White beaked or 
white sided 
dolphins

7

Orcinus orca Killer whale 6

Pseudorca crassidens False killer whale 4

Stenella coeruleoalba Striped dolphin 7

Stenella frontalis Atlantic spotted 
dolphin

13

Stenella longirostris Spinner dolphin 66

Tursiops truncatus Bottlenose dolphin 5

NBHF 
Delphinidae

Lagenorhynchus 
australis, L. cruciger 
or Cephalorhynchus 
commersonii

Peale's, Hourglass 
or Commerson's 
dolphin

17

Of which: L. australis Peale's dolphin 2

Unclassified 164

Total 443

TA B L E  3  Summary of acoustic 
detections made from M/V Arctic sunrise. 
Likely classifications were made using 
a combination of sightings data, aural 
inspection and automated whistle and 
click classifier outputs

Model AIC score
Effective strip half 
width (m)

CV of 
estimate

95% CI of 
ESHW

Sperm whale

Hazard rate (hr) 4,834 3,277 0.06 3,135– 3,419

Half- normal (hn) 4,852 2,868 0.04 2,456– 3,010

Non- NBHF delphinids

Hazard rate (hr) 1,849 699 0.13 569– 829

Half- normal (hn) 1,889 1,222 0.04 1,759– 1,352

TA B L E  4  Summary of detection 
functions for sperm whales and non- 
NBHF delphinids across the entire M/V 
Arctic sunrise acoustic transits using click 
detections
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number of detections, the maximum ratio between the numbers of 
true detections and false positives, the maximum number of detec-
tions per unit of overall monetary cost, or what? Scientifically, it is 
important to have an adequate sample for statistical analysis, with 
few false positives, requiring analyst input. A more obtainable goal is 
to achieve the best balance between false positives and false nega-
tives, using appropriate threshold levels which can provide sufficient 
true detections for statistical analysis while managing the analyst 
time required to eliminate false positives. If these criteria can be met 
with reduced human effort, then a ‘sweet spot’ will be achieved be-
tween true detections and false positives that statistically describes 
animals along the track line.

It is likely that a mixture of automated processing and human 
validation will remain the standard method for acoustic data analy-
sis for the foreseeable future. However, improved algorithms, with 
a higher efficiency and/or a lower false alarm rate will reduce the 
amount of human effort required for data analysis. For example, Shiu 
et al. (2020) showed that a new algorithm for detecting the calls of 
North Atlantic right whales, reduces the false alarm rate to the point 
where a human analyst can check 1 month of continuous data in 
7.44 hr. However, potential short comings of automated detections 
must be kept in mind, for example the potential to miss changes in 
vocalisations over time (Sirvic, 2015), and for poorly understood or 
rare species to be missed (Shiu et al., 2020).

The MHT click train detector produced a large number of false 
positive sperm whale click trains in the subset, but did not miss any 

sperm whale events, ensuring important data were not lost during 
the analysis. Detector settings were heavily influenced by the back-
ground noise from the towing vessel and so thresholds should be 
adjusted to suit the background noise within each particular study.

Validation against the fully manual analysis of the subset showed 
that all automatically detected delphinid click trains occurred within 
manually marked up delphinid events and no delphinid events were 
missed. These comparisons provided a high degree of confidence 
that few delphinid events would be missed using the MHT click train 
detector. This detector provides a streamlined way to detect del-
phinids in large datasets. Grouping individual clicks into click trains 
and measuring them improves classification and with continued de-
velopment, there is potential to more accurately associate clicks to 
individuals (Macaulay, 2020).

While the MHT click train detector does not mark up each 
click train perfectly, by highlighting click trains automatically, the 
amount of data an analyst needs to search and mark up is greatly 
reduced. The 66% reduction in data to search, resulted in a 49% 
reduction in analyst time. Without reliable detectors, analysis 
 effort is largely governed by data volume; our study shows that 
with them analysis effort becomes a function of the number of 
cetacean encounters.

The Whistle and Moan detector (Gillespie et al., 2013) has 
been used in previous studies to find delphinid whistles (e.g. Erbs 
et al., 2017; Keating et al., 2015) and vocalisations of baleen whales 
(e.g. Miller et al., 2016). Gillespie et al. (2013) reported a recall of 
88% (the percentage of manual detections which were detected 
automatically). In this study, false positive whistle detections were 
manually removed by the analyst. This proved to be an important 
and necessary step as depth sounders of passing ships and other 
high frequency signals, likely from telemetry transceivers, triggered 
the detector on 25 separate occasions. By using this detector, and 
only investigating triggered events, the amount of data to search 
was reduced by 85.9% (the analyst needed 35.7 hr to process whistle 
detections in the full 1,696.3- hr dataset).

For sperm whales, reduction in detection range due to prevailing 
noise or propagation conditions is shown by the detection function 
and accounted for in density estimation. For whistles, where we are 
unable to use target motion analysis to estimate a detection func-
tion, it will be necessary to develop alternative methods to measure 
detection probability.

Although the whistle classifier has been shown to perform well, 
with Gillespie et al. (2013) reporting correct classification rates up 
to 94.5%, it is likely some classifications in this study could be in-
correct. There is a paucity of specific acoustic data for some species 
within the survey regions; thus, the data used to train the classifier 
likely may not have included all species present, nor reflect likely dif-
ferences in whistles between regions within the same species (Erbs 
et al., 2017). To increase the confidence in species classification, re-
gion specific recordings of as many cetacean species as possible are 
required to retrain the classifier. This will be particularly important 
for localised studies estimating abundance or investigating habitat 
preference (Erbs et al., 2017). When training data become available, 

F I G U R E  3  Combined hazard rate detection functions for sperm 
whales and non- NBHF delphinids across all transits on the M/V 
Arctic sunrise. With effective strip half- width of 3,277 m for sperm 
whales and 699 m for non- NBHF delphinids
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delphinid events within this study can be reclassified, compared and 
corrected where appropriate.

The combined hazard rate detection function for sperm whales 
gave an effective strip half- width (ESHW) of 3,277 m. Other stud-
ies using similar methodologies have reported ESHW's of 4.2– 
10 km (Fais et al., 2015; Gordon et al., 2020; Lewis et al., 2018). 
The 3.3 km ESHW reported is narrower than reported by other 
studies which is likely due higher levels of noise emitted by the 
towing vessel in this study. This detection function shows that a 
vocally active sperm whale within 1,500 m of the track line will 
be detected, and so g(0) for a vocal sperm whale is equal to 1. 
However, sperm whales are known to have silent periods which 
can be a function of social behaviour and may vary regionally 
(Jaquet et al., 2001; Whitehead & Weilgart, 1991) but these data 
are limited.

The sperm whale detection function measured during this study 
showed relatively low detections immediately adjacent to the track 
line. This is a common characteristic of sperm whale acoustic detec-
tion functions derived using data from simple two element towed 
arrays Gordon et al. (2020). It has been suggested that this is conse-
quence of plotting in two dimensions, which uses bearings that have 
an unknown vertical component. This effect will be most evident for 
sperm whales vocalising at depth close to the track line. TMA calcu-
lates the distance to the animal from the hydrophone but a substan-
tial component of this will be due to the animal's depth rather than 
its horizontal distance from the track line. Leaper et al. (1992) and 
Lewis et al. (2018) explored this with simple simulations and con-
cluded that if the ‘shoulders’ of the detection function were greater 
than typical vocalisation depths for the target species then this ef-
fect should not lead to substantial biases. Thus, problems could arise 
if detection range was substantially reduced as a result of high noise 
levels or unfavourable propagation conditions. If there is a reason to 
believe that propagation conditions are markedly different in differ-
ent regions, then efforts should be made to stratify detection func-
tions by region.

There is rather little information on detection range for del-
phinids during acoustic surveys. Martin et al. (2020) measured an 
ESHW of 367 m for dusky dolphins Lagenorhynchus obscurus, while 
Rankin et al. (2008) reported that the majority of dolphin detections 
were within a few kilometres of the array. Given the varied nature 
of group size and behaviour for delphinid species, and uncertainty in 
classifications, it is unlikely that reliable estimates of density could 
be obtained for delphinids using this acoustic method alone.

After an initial tuning process, automatic processing took 268 hr 
to run unsupervised on standard PC hardware (Intel i7 2.80 GHz 
second generation processor with 8GB of RAM). 90.9 hr of analyst 
effort was then required to manually audit automatic click train and 
whistle detections from 1,696 hr of data. A major advantage of PAM 
surveys on platforms of opportunity is that low field costs can allow 
very large datasets to be acquired. Analysis costs then become a 
large proportion of the overall budget. Thus, reducing required ana-
lyst time will have a large impact on overall costs allowing such sur-
veys to become a routine activity during transits producing valuable 

data on poorly known oceanic species. We suggest a similar ap-
proach is applicable for other applications where large bioacoustics 
datasets are one of the primary survey tools, for example, wild bats, 
insects or even in domestic animal welfare monitoring (Mcloughlin 
et al., 2019; Zilli et al., 2014).

The coverage provided by this initial survey is extremely broad, 
but sparse. The real value of initiatives like this will come once data 
have been collected for several years. Even so, interesting informa-
tion on distributions in rarely surveyed areas is evident. Delphinids 
were detected frequently across every transit. Sperm whales were 
detected close to the shelf break and in oceanic waters in all transits 
except that in the Southern Ocean. Higher detection rates were evi-
dent off north- west Africa, South Africa, South America and Svalbard. 
Sperm whales were also detected near seamounts such as Vema and 
Filippov in the South Atlantic and the Bathymetrists Seamounts 
Chain in the Tropical Atlantic. These detections address key knowl-
edge gaps on the distribution of sperm whales in poorly surveyed 
ocean areas, helping researchers target future survey  efforts. Further 
survey effort would provide data which could be used in habitat mod-
els to enable a more robust comparison between regions and expand 
on our understanding of fine scale distribution and their drivers. The 
data gathered during this study are freely available through the online 
repository OBIS- Seamaps (https://seamap. env.duke.edu/).

Over the past decade, more reliable and cost- effective hard-
ware, and sophisticated software has enabled non- specialist 
researchers to conduct bioacoustic surveys. In the marine environ-
ment such acoustic surveys can be conducted during opportunistic 
transits using a variety of survey platforms using highly automated 
and relatively inexpensive towed hydrophone systems. The task of 
detecting and classifying detections in such data so that species dis-
tributions and densities can be inferred is a time- consuming process 
for specialist acoustic analysts. Our study provides a template for 
efficient analysis of such large- scale acoustic datasets, reducing the 
time required by specialist analysts, and ultimately the cost of any 
acoustic- based study.
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