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Abstract 8 

In this paper, based on linear potential flow theory, an alternative semi-analytical model is 9 

developed using the potential decomposition method for wave interaction with a vertical cylinder with 10 

a submerged porous plate. The semi-analytical model is verified by comparing with the previous 11 

analytical results and the numerical results. The influence of geometrical/physical parameters is further 12 

investigated. Results show that there exists a critical frequency beyond which the wave loads on the 13 

vertical cylinder are mitigated significantly. The submergence and the radius of the porous plate are 14 

the key factors affect the wave loads on the cylinder. 15 

Keywords: Wave loads mitigation; Porous plate; Semi-analytical model; Critical frequency. 16 

1. Introduction 17 

Due to the simplicity in manufacturing and installation, pile-type foundations are often used in 18 

coastal and offshore engineering, such as offshore wind turbines, seaports, offshore platforms. (Dhanak 19 

and Xiros, 2016). Mitigating the wave loads on the pile is beneficial for lowering its construction cost. 20 

Since porous structures dissipate wave energy, it is widely used in coastal engineering (Takahashi et 21 

al., 2003; Huang et al., 2011; Liu and Li, 2013; Mackay and Johanning, 2020; Zhai et al., 2021; Zheng 22 

et al., 2020). Meanwhile, porous structures are also expected to protect the offshore structures from 23 
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heavy loads triggered by sea waves (Sun and Jahangiri, 2017). 1 

Many investigations have been carried out to investigate the effect of porous structures on wave 2 

loads acting on coastal and offshore structures. Kaligatla et al. (2017) found that the existence of the 3 

porous wall is beneficial for mitigation of the wave loads on the seawall. Koley and Sahoo (2021) 4 

investigated water wave interaction with an array of vertical flexible porous barriers. Occurrences of 5 

Bragg resonance and cloaking of the multiple barriers were analyzed. Chanda and Nandan Bora (2020; 6 

2022) carried out the analytical investigation on the surface and flexural gravity waves interaction with 7 

a pair of submerged vertical porous barriers above a porous seabed. Compared with that of water waves, 8 

the incorporation of the flexural gravitational waves leads to different hydrodynamic problems. 9 

Williams et al. (2000) theoretically studied the wave diffraction from a floating cylinder whose 10 

middle part is porous and found that the porous portion affects the wave forces significantly. Teng et 11 

al. (2000; 2001), Sun et al. (2005), Ning et al. (2017), Liang et al. (2020), and Mackay et al. (2019; 12 

2021) investigated hydrodynamic characteristics of the cylinder with porous sidewall. They found that 13 

the wave loads on the inner cylinder can be effectively reduced by properly designing the upper porous 14 

wall. Sarkar and Bora (2019; 2020) found that the porous medium located at the lower part of the 15 

cylinder also leads to the reduction of the wave loads on the cylinder. Liu et al. (2018) and Behera et 16 

al. (2020) analyzed the effect of the multiple porous barriers on the wave loads on the inner cylinder. 17 

It was found that the hydrodynamic forces on the inner cylinder are reduced significantly as the number 18 

of porous barriers increased. Wu and Chwang (2002) examined the impact of a porous plate on wave 19 

loads on a vertical cylinder. They found that the horizontal porous plate is of interest from the point of 20 

view of wave loads reduction. 21 

We note that the analytical solution presented in Wu and Chwang (2002) requires the solution of 22 

the complex dispersion relationship caused by the horizontal plate. Based on linear potential flow 23 

theory, Liu et al. (2011) developed a new semi-analytical model for the submerged porous disk. The 24 

advantage of the method in Liu et al. (2011) is that there is no requirement for solving the complex 25 

dispersion relationship. Liu et al. (2011) formulated the radial eigenfunction in a circular fluid region 26 

based on the potential decomposition method. Mathematically, an eigenfunction decomposition for the 27 

problem of a cylinder with a ring-shaped porous submerged plate has not yet been presented. 28 
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Triggered by the investigation of Wu and Chwang (2002) and Liu et al. (2011), in the present 1 

work, we aim at developing an alternative semi-analytical solution by avoiding the solution of the 2 

complex dispersion relationship (see Eq. (18) in Ref. (Chwang and Wu, 1994).). This research will 3 

extend the analytical solutions for wave interaction with the conventional structure of a vertical 4 

cylinder equipped with a submerged porous plate. Besides, the contribution of this paper is to explore 5 

the underlying physical mechanism of wave loads variations of the vertical cylinder with the 6 

submerged porous plate, as well as the influence of geometrical/physical parameters.  7 

This paper is organized as follows. In Section 2, problem definition and semi-analytical solution 8 

are described. In Section 3, numerical results and discussions are presented. Finally, concluding 9 

remarks are given in Section 4. 10 

2. Problem definition and semi-analytical solution 11 

2.1 The boundary value problem 12 

The problem of wave scattering by a vertical cylinder with a submerged horizontal porous plate 13 

is considered here (shown in Fig. 1). The structure is subjected to regular waves propagating along the 14 

negative x-direction with wave height H (H = 2A, where A is wave amplitude) and angular frequency 15 

ω. Symbolically, a, b, h1, h2, and d represent the outer plate radius, the cylinder radius, the draft of the 16 

porous plate, the distance between the plate and the seabed, and the water depth, respectively. The 17 

cylindrical polar coordinate (r, θ, z) with its origin O located at the center of the cylinder on the still-18 

water level is used to define the mathematical problem. 19 
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a) 2 

 3 

b) 4 

Figure 1 a) Sketch and fluid domain division and b) 3-D diagram for a vertical cylinder with a submerged 5 

porous plate. 6 

Under the framework of potential flow theory, the fluid can be described in terms of a time-7 

dependent velocity potential (r, , z, t) = Re[(r, , z)e−it], where the symbol of Re[ ], i, and (r, , 8 

z) represents real part of a complex, the imaginary unit, and the spatial velocity potential, respectively.. 9 

As shown in Fig. 1, the whole fluid domain is divided into three sub-regions, i.e., the outer region 10 

Ω1 (-d ≤ z ≤ 0, r ≥ a), the upper region above the plate Ω2 (-h1 ≤ z ≤ 0, b ≤ r ≤ a), and the region beneath 11 

the plate Ω3 (-d ≤ z ≤ -h2, b ≤ r ≤ a). The velocity potential in each sub-region Ωj is denoted by  j (j = 12 

1, 2 and 3), which satisfies the Laplace equation in corresponding sub-regions, i.e.,  13 

 
2 0j = . (1) 14 

The velocity potential also satisfies the appropriate boundary conditions on the free-surface and 15 

seabed, namely, 16 
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where g is the gravitational acceleration. The boundary condition on the impermeable surface of the 4 

vertical cylinder can be expressed as 5 
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Following Sollitt and Cross (1972) and Yu (1995), the boundary condition on the thin porous 9 

plate can be expressed as 10 
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z
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= −   = −


. (6) 11 

Here k0 is the incident wavenumber, which is the positive real solution of the dispersion relation 12 

of ω2= gk0tanh(k0d) ; the complex porous coefficient of the submerged porous plate 𝐺 =13 

𝛾

𝑘0𝛿
{𝑓 − i [1 +

𝐶𝑚(1−𝛾)

𝛾
]}

−1

; δ is the physical thickness of the porous plate; γ, f and Cm are the porosity, 14 

the linearized resistance coefficient, and the added-mass coefficient of the porous medium, 15 

respectively (Yu, 1995); G can be written as Gr + iGi, where Gr denotes the real part and Gi the 16 

imaginary part. Physically, Gr and Gi represent the drag and the inertia effect of the porous plate, which 17 

lead to wave energy loss and phase change, respectively. 18 

At the far field (i.e., r→∞), the velocity potential of ϕ
1 satisfies the condition of 19 

 ( )0 1 Ilim i 0
r

r k
r

 
→

   
− − =  
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, (7) 20 

where ϕ
I
 is the velocity potential of incident waves (i.e., ( )I 0 0 0

0

i
= i cos J ( ) ( )m

m m

m

gA
m k r Z k z



=

−
  


). 21 

Jm(k0r) denotes the first kind of Bessel function of order m. Z0(k0z) represents the vertical eigenfunction, 22 

which is mathematically defined in Eq. (18). 23 

On the interface between different sub-regions, the velocity potentials satisfy the following 24 
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matching conditions: 1 

 

1 2
1

1 3
1

2 3
1

= for 0,  

= for ,  

for ,

 
−   =  


 

−   − =
 
 

=   = −
 

h z r a
r r

d z h r a
r r

b r a z h
z z

 

 

 

, (8) 2 

and 3 

 ( )

1 2 1

2
0 3 2 1

1 3 1

for 0,

i for ,

for ,

h z r a

k G b r a z h
z

d z h r a

 


 

 

= −   =



= −   = −


= −   − =

. (9) 4 

The velocity potential of φj(j = 2 and 3) are linearly decomposed into two parts, namely 5 

 
, ,=j j v j h  + . (10) 6 

For the present problem, the velocity potential of ϕ
j
 is linearly decomposed as ϕ

j,v
 and ϕ

j,h
. 7 

Hence, the velocity potential of ϕ
j,v

 and ϕ
j,h

 satisfy the Laplace equations. The velocity potentials of 8 

ϕ
2,v

, ϕ
2,h

, ϕ
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, and ϕ
3,h

 satisfy the following boundary conditions: 9 
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We note that the fluid domain of Ω2 and Ω3 is a ring region, which is different to the circular 13 

region as dispicted in Liu et al. (2011). This directly leads to the different form of corresponding 14 

boundary conditions (see Eqs. (12) and (13)). The velocity and pressure continuity conditions (i.e., 15 
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Eqs. (8) and (9)) can be re-written as: 1 
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2.2 Analytical derivation 5 

In this section, a semi-analytical solution of the wave diffraction problem defined in Section 2.1 6 

is derived. In sub-region Ω1, the velocity potential 1 can be written as 7 
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where ε0 = 1 and εm = 2 (m ≥ 1), Aml (m, l = 0, 1, 2…) are unknown coefficients. The coefficients of kl 9 

(l = 1, 2, 3 …) are the positive real solutions of the following dispersion relation, 10 

 ( )2 tanl lgk k d = − . (16) 11 

The radial eigenfunctions Um (klr) are written as: 12 
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where (1)H ( )m lk r  denotes the first kind of Hankel function of order m, Km (klr) is the second kind of 14 

modified Bessel function of order m. The vertical eigenfunctions Zl (klz), which satisfy the orthogonal 15 

relation with respect of [-d, 0], can be written as 16 
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The scattered velocity potentials 2,v and 2,h in sub-region Ω2, which satisfy free-surface and rigid 2 

body boundary conditions (i.e., Eqs. (2) and (4)), can be written as: 3 
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where λl can be derived by the following relations 7 
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By referring to Eqs. (11) and (13), the unknown coefficient of βml can be determined by 9 

substituting ϕ
2,h

  into corresponding boundary conditions, i.e., ϕ
2,h

 = 0 for r = a, -h1 < z < 0 , and 10 

∂ϕ
2,h

/∂r = 0 for r = b, -h1 < z < 0. Hence, we have 11 
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We truncate the infinite series of βml as finite series by introducing the truncation number L̂ and 13 

M̂ (i.e., l = 0, 1,…L̂; m= 0, 1,…M̂). The implementation of truncation number L̂ and M̂ results in 14 

[(M̂+1)×(L̂+1)] unkowns to be solved. 15 

The radial eigenfunctions Pm (lr) and Qm (lr) in Eq. (19) are given by 16 
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respectively, where Im ( ) denotes the first kind of modified Bessel function of order m, Km ( ) denotes 20 

the second kind of modified Bessel function of order m. The vertical eigenfunctions Yl (lz), which 21 

satisfy the orthogonal relation with respect of [-h, 0], can be written as 22 
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and Qml (z) is written as 24 
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The velocity potentials 3,v and 3,h in Ω3, which satisfy the seabed impermeable condtion and the 2 

boundary conditions shown in Eqs. (3) and (5), are given as: 3 
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where l = i / (d-h1); the radial eigenfunctions Rm (lr) and Sm (lr) are defined as 7 
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The vertical eigenfunctions Vl (l z), which satisfy the orthogonal relation with respect of [-d, -11 

h1], can be written as  12 
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and Tml (z) are given by 14 

 ( )
( )

( ) ( )2 2

cosh

tanh cosh

ml

ml

ml ml ml

z d
T z

h h



  

+  = . (32) 15 

Inserting Eqs. (15), (19), (20), (27) and (28) into Eqs. (13) and (14), and then implementing the 16 

orthogonal relationship of the vertical, radial, and circular eigenfunctions, we obtain the following set 17 

of equations: 18 
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The above algebraic equations can be solved by standard matrix techniques. The unknown 4 

coefficients Aml

(1)
, Aml

(2)
, Aml

(3)
, Aml

(4)
, Aml

(5)
, Cml

(1)
, and Cml

(2)
 can be determined by truncating the infinite 5 

series in Eqs. (15), (19), (20), (27) and (28) to a finite term. Thus, the velocity potentials in relevant 6 

sub-regions can be determined. The corresponding details are shown in Appendix Eqs. (A1)~(A7). 7 

The total horizontal force can be calculated by integrating the pressure on on surfaces Sb1(-h1 ≤ z 8 

≤ 0, r = b) and Sb2(-d ≤ z ≤ -h1, r = b): 9 
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where nx = cosθ, representing the normal vector in the x-direction. The force-induced bending moment 11 

regarding the point of (0, 0, -d) can be written as 12 
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where nz represents the normal vector in the z-direction. Since ( )cos cos
2

0
d 0= m



    for m = 0 and 14 

m ≥ 2, the total horizontal force Fx in Eq. (35) and the bending moment M in Eq. (36) can be calculated 15 

for m = 1. The vertical force Fz can be written as 16 
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where m = 0 in ϕ
2
 and ϕ

3
, owing to ( )cos m =



 
2

0
d 0  for m ≥ 1. 18 

The dimensionless wave amplitude can be calculated as 19 
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3. Numerical results and discussions 2 

3.1 Validation 3 

To examine the convergence of the semi-analytical solution, the horizontal force and wave 4 

amplitude at different truncated numbers  L̂  and M̂  are calculated in Table 1 and Table 2. The 5 

horizontal force |Fx|  and the wave amplitude |ζ| are nondimensionalized by ρgAb2 and A, 6 

symbolically, |Fx|/ρgAb
2
 and |ζ|/A, respectively. 7 

Results of |Fx|/ρgAb
2
 for the different truncated number L̂ is shown in Table 1. The geometrical 8 

wave parameters are fixed as b/d = 0.25, a/d = 0.5, h1/d = 0.1, and G = 0.5 + 0.5i. From the results 9 

shown in Table 1, it is found that excellent convergence can be achieved as L̂  = 20. Hence, the 10 

truncation number L̂ of 20 was adopted throughout the calculations. Results of |ζ|/A with the different 11 

truncated number M̂ is shown in Table 2 (k0d = 2). From the data presented in Table 2, we found that 12 

the semi-analytical solution converges at M̂ = 20.  13 

Hence, in this paper, the calculations are conducted by setting the truncated number as L̂ = 20 14 

and M̂ = 20. 15 

Table 1. Results of nondimensionalized horizontal force |Fx|/ρgAb
2 with the different truncated numbers L̂. The 16 

geometrical parameters are fixed as b/d = 0.25, a/d = 0.5, h1/d = 0.1, and G = 0.5 + 0.5i. 17 

Truncated 

number L̂  
(M̂ = 20) 

Nondimensionalized horizontal force |Fx|/ρgAb
2
 

k0d = 0.5 k0d = 1 k0d = 2 k0d = 3 k0d = 5 k0d = 7 k0d = 10 

3 2.944  4.984  6.142  6.611  6.057  4.717  3.474  

5 2.944  4.987  6.157  6.618  5.991  4.599  3.366  

8 2.945  4.989  6.162  6.616  5.968  4.570  3.345  

15 2.945  4.989  6.162  6.614  5.959  4.558  3.335  

20 2.945  4.989  6.163  6.614  5.955  4.553  3.331  

25 2.945  4.989  6.163  6.614  5.955  4.553  3.331  

 18 

Table 2. Results of nondimensionalized wave surface |ζ|/A with the different truncated numbers M̂. The 19 

geometrical and wave parameters are fixed as b/d = 0.25, a/d = 0.5, h1/d = 0.1, G = 0.5 + 0.5i, and k0d = 2. 20 
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Truncated 

numbers M̂  
(L̂ = 20) 

Nondimensionalized wave surface |ζ|/A (θ = 0) 

r/d = 0.3 r/d = 0.4 r/d = 0.6 r/d = 1 r/d = 1.5 r/d = 3 r/d = 5 

0 1.465  1.212  0.628  0.126  1.154  0.199  0.220  

5 2.097  1.850  1.307  1.153  1.092  1.514  1.347  

10 2.097  1.850  1.307  1.154  1.116  1.080  0.987  

15 2.097  1.850  1.307  1.154  1.116  1.081  1.064  

20 2.097  1.850  1.307  1.154  1.116  1.081  1.061  

25 2.097  1.850  1.307  1.154  1.116  1.081  1.061  

We validate the present semi-analytical model with the published results in Wu and Chwang 1 

(2002). Note that the solution of the complex dispersion relationship (see Eq. (18) in Ref. (Chwang 2 

and Wu, 1994)) is required for the analytical model adopted in Wu and Chwang (2002). Besides, the 3 

evanescent-mode terms are not involved in Wu and Chwang’s (2002) model. We also compare our 4 

results with numerical results calculated using a boundary element method (BEM) model (Mackay et 5 

al., 2021). Good agreement shown in Fig. 2 verifies the present alternative semi-analytical model. 6 
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a)                                     b) 8 

Figure 2 Comparisons of dimensionless horizontal force and bending moment obtained from the present model, Wu 9 

and Chwang (2002) and the numerical model (i.e., BEM). Geometrical/physical parameters are h1/d = 0.2, d/ = 0.5 10 

and b/a = 0.7. λ indicates the incident wavelength satisfying the relation λ = 2π/k. χ and  refer to Fb/F∞ and 11 

Mb/M∞, respectively. F∞ and M∞ denote the wave loads on a vertical cylinder without the porous plate. 12 

3.2 Results and discussions 13 

Following the above model validation, parametriccal studies were carried out to reveal the 14 

influence of the submerged plate on wave loads acting on the cylinder. In the paper, the moment center 15 



 

 13 

is taken at the bottom center of the vertical cylinder (0, 0, -d). 1 

3.2.1 Effect of the porous coefficient 2 

The effect of the porous coefficient is evaluated by considering G =  (1+1i), where  = 0(i.e., 3 

1E-7), 0.1, 0.5, 1, 2, 5, 20 and +∞ (i.e., 1E7). Variation of |Fx|/ρgAb2, |M|/ρgAb3 and |Fz|/ρgAb2 against 4 

the dimensionless wave number k0d for different porous coefficients are shown in Fig. 3. 5 

    6 

a)                                   b) 7 

 8 

c) 9 

Figure 3 Variation of |Fx|/ρgAb2, |M|/ρgAb3 and |Fz|/ρgAb2 for different porous coefficients. Geometrical parameters 10 

are fixed as b/d = 0.15, a/d = 0.3 and h1/d = 0.0125. 11 

From Fig. 3 (a~c), we observe that the horizontal/vertical force and force-induced bending 12 

moment are considerably mitigated by implementing the submerged porous plate for a certain 13 

frequency range. We also find a critical wavenumber kc, beyond which the horizontal/vertical force 14 

and force-induced moment on the structure are reduced significantly. The wave force/moment 15 

approaches zeros at the critical wave number kc. In contrast, for k < kc, the horizontal and vertical wave 16 
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 14 

loads experience a spike value as G→0. 1 

To clarify the physical meaning of the zero-value wave horizontal wave force, we plot the results 2 

of horizontal wave force (Fx), added mass (μ) and radiation damping (υ) in the sway mode of the 3 

vertical cylinder in Fig. 4, which are calculated by solving the corresponding sway-mode radiation 4 

problem (Li et al., 2022). Comparing the results in Fig. 3 a) and Fig. 4, we observe that zero-value 5 

horizontal force on the cylinder in the scattering problem corresponding to null radiation damping and 6 

the rapid changes of the added mass in sway mode. That is to say, there are no radiated waves in sway 7 

mode if the cylinder experiences forced motion with the critical frequency (i.e., corresponding to kc).  8 

Besides, we solved the heave-mode radiation problem of the present structure. The related 9 

velocity and pressure continuity conditions are given in Appendix Eqs. (A8)~(A9). Fig. 5 shows the 10 

results of vertical wave force (Fz), added mass (μ) and radiation damping (υ) in heave mode. From Fig. 11 

5, we observe that location of the peak vertical force corresponds to that of the peak radiation damping 12 

and the rapid changes of the added mass. Previously, Martin and Farina (1997) and Zhao et al. (2017) 13 

also found those features theoretically. However, they did not thoroughly explain the relevance 14 

between the radiation problem and the diffraction problem at the critical frequency. 15 

 16 

Figure 4. Variations of the horizontal wave exciting force, added mass and radiation damping. Geometrical/physical 17 

parameters fixed G = 0, b/d = 0.15, a/d = 0.3 and h1/d = 0.0125. 18 
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 1 
Figure 5. Variations of the vertical exciting force, added mass and radiation damping. Geometrical/physical 2 

parameters are fixed as G = 0, b/d = 0.15, a/d = 0.3 and h1/d = 0.0125. 3 

As the porous coefficient G increases, the submerged porous plate becomes a ‘transparent’ plate. 4 

The horizontal force/moment are modified significantly and approaches to that corresponding to the 5 

‘pure’ cylinder at k > kc. However, for k < kc, G affects the moment slightly. In general, the frequency 6 

range of k > kc may be of significance from the point of view of wave loads mitigation. It is essential 7 

to note that properly setting the porous coefficient is key for reducing wave loads. As for present 8 

calculations, G of 0.5+0.5i may maximize the reduction of wave loads. 9 

In general, G affects the wave loads significantly. For cases of ε approaches 0, the wave  10 

amplification above the plate lead to the soaring of the vertical wave force at k = kc. However, the 11 

energy dissipation caused by the porosity leads to the wave loads reduction at k > kc for cases of ε = 12 

0.5~2. 13 
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a)                                         b) 15 

Figure 6. Variations of |Fx|/ρgAb2 and |M|/ρgAb3. Geometrical/wave parameters are fixed k0d = 3, b/d = 0.15, a/d = 16 

0.3, h1/d = 0.0125. 17 
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Here we investigate the influence of Gi and Gr on wave loads on the structure for the case of k0d 1 

= 3. From Fig. 6, the minimum of wave loads is observed at (0, 0.5) approximately. And the minimum 2 

of wave loads cannot be found at the horizontal axis. This is due to the fact that the inertial and drag 3 

components of G affect the loads via different mechanisms. Gi modifies the wave loads by changing 4 

the phase difference of wave motion. However, Gr denotes the energy loss and dominates the load 5 

mitigation caused by the porous plate.  6 

Fig. 7 (a-d) shows the wave amplitude distributions surrounding the vertical cylinder for different 7 

porous coefficient (i.e., G = ε(1+1i), ε= 1E-7, 0.5, 2, 1E7). It is observed that the porous plate can 8 

positively suppress the wave run-up of the cylinder. Compared with a pure cylinder, the wave setdown 9 

occurs at the rear edge of the cylinder with a solid plate. Within the scope of the present calculations, 10 

the wave run-up on the cylinder is mitigated maximally for G = 0.5(1+1i). 11 

   12 
a) G = 0(i.e. 1E-7(1+1i))                              b) G = 0.5(1+1i) 13 

 14 

   15 



 

 17 

c) G = 2(1+1i)                              d) G = +∞(i.e. 1E7(1+1i)) 1 

Figure 7 Three-dimensional wave amplitude distributions at a) G = 0(i.e. 1E-7(1+1i)), b) G = 0.5(1+1i), c) G = 2 

2(1+1i) and d) G = +∞(i.e. 1E7(1+1i)). Geometrical/physical parameters are fixed as k0d = 6, b/d = 0.15, a/d = 0.3, 3 

h1/d = 0.0125. 4 

 5 

3.2.2 Effect of the submergence  6 

The influence of the submergence of the porous plate on the hydrodynamic forces (Fx, M) is of 7 

interest from point of view of structure design. The parameters are fixed as b/d = 0.15, a/d = 0.3 and 8 

G = 0.5(1+1i). Numerical calculations were performed with different draft of h1/d = 0.0125, 0.025, 9 

0.05, 0.1, 0.25, 0.5, 0.75 and 0.95. The variations of |Fx|/ρgAb2, and |M|/ρgAb3 as a function of the 10 

dimensionless wavenumber k0d for different plate draft is shown in Fig. 8. 11 

From the results shown in Fig. 8, it can be observed that the submergence affects the wave loads 12 

on the cylinder significantly. The remarkable load reduction is found for smaller draft. However, the 13 

load reduction becomes milder as the submergence increases. Moreover, the location of peak load 14 

shifts to high frequency range as the draft increases. 15 
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    a)                                      b) 17 

Figure 8 Variation of |Fx|/ρgAb2 and |M|/ρgAb3 for different drafts of the porous plate, h1. Geometrical/physical 18 

parameters are b/d = 0.15, a/d = 0.3, and G = 0.5(1+1i). 19 

 20 

3.2.3 Effect of the radius of a submerged porous plate  21 

In this section, we explore the impact of the plate radius on the hydrodynamic characteristics of 22 



 

 18 

the cylinder. The effect of the submerged plate radius is evaluated by varying a/b as 1.375, 1.5, 1.625, 1 

and 1.75. The variation of |Fx|/ρgAb2 and |M|/ρgAb3 against the dimensionless wavenumber k0d for 2 

different plate radius are shown in Fig. 9. 3 

From Fig. 9 (a-b), we observe that the plate radius significantly affect the horizontal force and 4 

force-induced bending moment. As the plate radius increases, the horizontal force and force-induced 5 

bending moment have an similar trend. It is worth noting that the location of the minimum horizontal 6 

force/moment shifts to higher frequency range as the plate radius decrease. 7 
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Figure 9 Variation of |Fx|/ρgAb2 and |M|/ρgAb3 for different plate radiu. Geometrical/physical parameters are b/d = 10 

0.2, h1/d = 0.025. 11 

 12 

3.2.4 Hydrodynamic characteristics of the cylinder in irregular waves 13 

The analysis of the above results was carried out based on monochromatic waves, while the 14 

hydrodynamic characteristics of the cylinder in irregular waves are of interest in realistic cases. The 15 

velocity potential of the irregular waves can be obtained by summing the velocity potential of each 16 

wave component: 17 
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In this section, we adapt the JONSWAP spectrum as the target spectrum, whose spectral density 19 

function can be written as  20 
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 19 

where α is the wave spectrum energy scale parameter, whose value is related to the significant wave 1 

height (Hs), α = 0.1, fp is wave spectrum peak frequency, γ is the peak enhancement factor, γ = 3.3, the 2 

value of peak shape coefficient σ is chosen as 3 
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We separated the frequency range of 0.5fp -3.0fp as N components and defined the wave amplitude 5 

of the ith component as ai (i=1, …, N). Here, a particular form of irregular wave group (Tromans et al., 6 

1991) is used to calculate assign the amplitude of the ith wave component: 7 

we use the NewWave type irregular wave to calculate assign the amplitude of the ith wave 8 

component: 9 

 ( ) ( )max

1

/
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i i i i i

i

a A S f f S f f
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=   , (42) 10 

where S(fi) is the wave energy spectrum corresponds to the ith wave component, ∆fi is the frequency 11 

resolution (∆fi = 2.5fp /N) and Amax is the maximum amplitude which equals to the summation of ai. 12 

Considering that each wave component satisfies the Laplace equation and appropriate boundary 13 

conditions in the corresponding fluid region, the derivation of the corresponding velocity potential 14 

expression refers to section 2.2. The total horizontal force and moment can be calculated as 15 
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where ωf is the spectral density angular frequency. 18 

Variations of Fx,irr/ρgAb2 and Mirr/ρgAb3 against kfd for different porous coefficients are shown in 19 

Fig. 10. The geometrical parameters are fixed as b/d = 0.15, h1/d = 0.025 and G = 0.5(1+1i). The effect 20 

of the porous coefficient is evaluated by considering G =  (1+1i), where  = 0, 0.1, 0.5, 1, 2, 5, 20 and 21 

1E7.  22 

From Figs. 10 (a-b), it can be observed that the curves of the total horizontal wave force and 23 



 

 20 

overturning moment on the porous structure in irregular waves demonstrate similar trend as that in 1 

regular waves. Interestingly, null value of wave force/moment at the critical wave number was 2 

canceled due to the weighted average of the spectral density of the spectrum. In addition, the spike of 3 

the wave force/moment is also canceled.. Recalling Fig. 3, the frequency bandwidth corresponding to 4 

the null value of Fx and M is very narrow for  = 0.  5 

However, the critical frequency still exists for cases of irregular waves, beyond which the wave 6 

load mitigation can be observed. The wave loads/moment on a vertical cylinder with porous plate are 7 

smaller than those on a pure vertical cylinder in irregular waves at the interesting frequency region, 8 

which means the wave loads on the cylinder shall be positively suppressed by integrating with porous 9 

structure in irregular waves. 10 
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    a)                                         b) 12 

Figure 10 Variation of Fx/ρgAb2 and M/ρgAb3 for different porous coefficients of G=(1+1i)ε in irregular waves. 13 

Geometrical parameters are fixed as b/d = 0.15、a/d = 0.3 and h1/d = 0.125 14 

 15 

4. Concluding remarks 16 

This paper considers an extension of earlier work (Wu and Chwang, 2002) and has developed an 17 

alternative semi-analytical solution for wave interaction on a vertical cylinder with a submerged porous 18 

plate. The model is validated by comparing with published analytical results and numerical results 19 

from a BEM solver. The solution of the complex dispersion relation (caused by the horizontal porous 20 

plate) is not required for the present method. In addition, compared with Wu and Chwang's (2002) 21 

solution, the evanescent mode waves are considered mathematically. In contrast to the solution for a 22 



 

 21 

submerged porous plate, additional auxiliary radial eigenfunctions in the ring region are needed. 1 

Theoretical investigations have been carried out to explore the effect of various geometrical/ 2 

physical parameters. Wave loads are mitigated effectively in the presence of the submerged porous 3 

plate among a certain frequency region. A critical wavenumber kc corresponds to the lower threshold 4 

of a loads mitigation region. For a solid plate, kc corresponds to the presence of the null radiation 5 

damping and the obvious changes of added mass for the structure in sway mode.  6 

Wave loads on the cylinder are mitigated remarkably for the frequency region of k > kc as the 7 

porous coefficient decreases. But, for k < kc, the horizontal and vertical wave loads experience a spike 8 

value as G→0, which should be avoided in practical engineering. 9 

It is expected that the results obtained in this work will provide the necessary background for 10 

designing appropriate and efficient structures for reducing wave loads on an offshore pile. Future 11 

investigations considering wave nonlinearity or extreme waves are of interest. 12 
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Appendix 21 

The expressions of diffraction potential in detail are shown as 22 
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and 4 
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where Aml
(1)

, Aml
(2)

, Aml
(3)

, Aml
(4)

, Aml
(5)

, Cml
(1)

, and Cml
(2)

 are unknown coefficients of scatting potential.  6 

Substituting the diffraction potentials (i.e., Eqs. (A1 a) ~ (A1 e) in Appendix) into the velocity and pressure 7 

continuity conditions (i.e., Eqs. (33) and (34)) at the interfaces between the adjacent subdomains, employing 8 

orthogonal relation, truncating the velocity potential expressions as a finite series (i.e., the upper bound of m and l 9 

are selected as M̂ and L̂, respectively), a set of linear equations corresponding to the scatting problem are expressed 10 

as 11 
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where the matrix of [Ξ]  can be expressed as  13 
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The matrix of [Β]  can be expressed as 15 
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The components [Β]  are as follows 17 
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The matrix of [X] which represent the unknown coefficients, is given by 4 
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The components of [Ξ] are as follows: 6 
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Considering the radiational problem caused by the heave motion of the vertical cylinder with a submerged 5 

porous plate, on the common boundaries between different sub-regions, the radiational velocity potentials must 6 

satisfy appropriate transmission conditions: 7 
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We obtain the set of algebraic equations by using the orthogonal relationship of the vertical, radial, and circular 11 

eigenfunctions, which is similar to the solving process of the diffraction problem. Thus, the radiational velocity 12 

potentials in relevant sub-regions can be determined accurately. 13 
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