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Abstract
The pulsatile release of gonadotropin-releasing hormone
(GnRH) and its frequency are crucial for healthy reproductive
function. To understand what drives GnRH pulses, a combi-
nation of experimental and mathematical modelling ap-
proaches has been used. Early work focussed on the
possibility that GnRH pulse generation is an intrinsic feature of
GnRH neurons, with autocrine feedback generating pulsatility.
However, there is now ample evidence suggesting that a
network of upstream neurons secreting kisspeptin, neurokinin-
B and dynorphin are the source of this GnRH pulse generator.
The interplay of slow positive and negative feedback via
neurokinin-B and dynorphin, respectively, allows the network
to act as a relaxation oscillator, driving pulsatile secretion of
kisspeptin, and consequently, of GnRH and LH. Here, we
review the mathematical modelling approaches exploring both
scenarios and suggest that with pulsatile GnRH secretion
driven by the KNDy pulse generator, autocrine feedback still
has the potential to modulate GnRH output.
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Introduction
Gonadotropin-releasing hormone (GnRH) is a peptide
hormone that mediates the central control of
www.sciencedirect.com Cu
reproduction. It is secreted from hypothalamic neurons
and is transported to gonadotrope cells within the ante-
rior pituitary (Figure 1a). It stimulates these cells to
synthesise and secrete two gonadotropin hormones,
luteinising hormone (LH) and follicle-stimulating hor-

mone (FSH) that, in turn, stimulate steroidogenesis and
gametogenesis in the gonads [1e4]. GnRH secretion is
episodic, with pulses of GnRH driving pulses of gonad-
otropin secretion that are essential for normal mammalian
reproduction [5,6]. In humans, these pulses typically last
for a few minutes and are at intervals of approximately
30 min to several hours. Downstream effects of GnRH
are dependent on pulse frequency [1e4,7,8]; most
notably, gonadotropin secretion is suppressed when
constant GnRH is applied and recovers on return to
pulsatile GnRH [9]. The frequency of GnRH pulses is

noticeably different under different physiological condi-
tions, with frequency increasing during puberty which in
turn drives increased gametogenesis and gonadal steroid
production [10], and before ovulation, contributing to
the generation of the menstrual cycle’s pre-ovulatory
gonadotropin surge [11,12]. Stimulus dynamics are also
crucial for therapeutic intervention where pulses of
agonist can maintain or increase gonadotropin secretion,
whereas sustained stimulation ultimately reduces them,
causing a form of chemical castration that can be
exploited in the treatment of hormone-dependent can-

cers and other sex steroid hormone-dependent condi-
tions [12,13]. This begs the question of how the pulsatile
signal is generated, and early work suggested that the
GnRH pulse generator might lie within GnRH neurons
themselves [1e3]. However, it has also long been known
that GnRH neurons are subject to regulation by upstream
neurons [14] and importantly that the neuropeptide
kisspeptin and its receptors (Gpr54) are both essential
for normal mammalian reproduction [14e19]. Once it
was identified that kisspeptin neurons within the arcuate
nucleus additionally express the two neurotransmitters

neurokinin B (NKB) and dynorphin they became known
as KNDy neurons [20]. They were later shown also to be
glutamatergic [21,22], and there is now strong evidence
that these KNDy neurons are the GnRH pulse gener-
ator (Figure 1).

Here, we review the literature dedicated to mathe-
matical approaches that have been used to inform our
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Figure 1

(a) Diagram of the GnRH pulse generator driven by the KNDy neuronal population and showing the stimulation of gonadotropes by GnRH in the anterior
pituitary. (b) Diagram showing the KNDy pulse generator hypothesis. The positive feedback from NKB moves the system into a pulsatile regime.
Dynorphin builds up slower, meaning after a period of pulsatility dynorphin builds up enough to inhibit the release of NKB. This causes a decrease in NKB
signalling, which moves the system out of the area of pulsatile dynamics in the parameter space.

2 Mathematical Modelling of Endocrine Systems
understanding of GnRH pulse generation. The classical

HodgkineHuxley formalisation [23] is used as the core
of many of the neuronal models that have been devel-
oped, each with varying levels of focus on particular
aspects of the GnRH neuron’s dynamics. Mean-field
neuronal network-level models as well as purely
phenomenological approaches have also been used to
investigate pulsatile GnRH release.
GnRH neurons
Early in vitro work revealed episodic GnRH release from
pieces of hypothalamic tissue and from GT1 cells (a
GnRH neuron-derived cell line) supporting the notion
that GnRH pulse generation was an intrinsic property of
GnRH neurons [24,25]. Leading on from this, mathe-
matical models of the GnRH have been proposed and
updated to aid our understanding of the mechanisms
Current Opinion in Endocrine and Metabolic Research 2022, 27:100407
that could allow GnRH neurons to produce consistent

pulses of GnRH. At the turn of the century, the elec-
trophysiology of GnRH neurons was modelled [26,27]
based on electrophysiological data from GT1 neurons
[26], using the classical HodgkineHuxley formulation
[23] with an additional submodel for Ca2þ dynamics.
The approach of this model inspired several biophysical
models which focused on the potential for autocrine
feedback of GnRH to cause pulsatile GnRH release
[28e30] through interactions between G-proteins and
Ca2þ dynamics [31,32].

The autocrine GnRH feedback approach was supported
by evidence that GnRH neurons co-express GnRH and
its receptors [25] along with in vivo studies that indi-
cated that GnRH inhibits GnRH release [33,34],
although others have reported no effect of GnRH
www.sciencedirect.com
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Modelling GnRH pulse generation Plain et al. 3
analogues on GnRH secretion [35,36]. GnRH receptors
are G-protein coupled receptors that couple primarily to
Gq in pituitary gonadotropes [1e3] but are thought to
couple also to Gi and Gs in GT1 neurons [37e39]. The
modelling revealed that autocrine feedback could
generate pulsatile GnRH secretion with GnRH
receptor-mediated stimulation of aq and as (a-subunits
of respective G-proteins) driving GnRH release,

followed by negative feedback due to the GnRH
receptor-mediated activation of ai at higher GnRH
concentrations [31]. The model also showed that this
behaviour is robust to parameter changes and hetero-
geneity in the GnRH neurone population. An obvious
caveat here is that much of the experimental data
supporting an autocrine role for GnRH is derived from
work on murine brain slices and on a single murine
GnRH-neuronal cell line (GT1 cells). Accordingly, the
importance of such autocrine feedback pathways for
other species (and indeed, under different physiological

conditions) remains to be determined.

At the same time, a phenomenological model was pro-
posed to explain the combination of pulsatile and surge-
like GnRH secretion [40], using fast-slow dynamics.
Models that use fast-slow dynamics do so by having at
least two subsystems [41]. There is a ‘fast’ subsystem
that produces distinct behaviour on a short timescale
and a ‘slow’ subsystem operating on a significantly
longer timescale. When combined, the slow and fast
subsystem interact to produce a variety of complex dy-

namics governed by the separation of timescales be-
tween the two. Here, the idea is that the pulses of
GnRH are driven by slow modulation (of the order of
minutes to hours) of GnRH neuronal dynamics (time-
scale of seconds), and that the large surge in circulating
gonadotropin levels prior to ovulation is driven by slow
regulation (of the order of hours to a day) of GnRH
secretory dynamics (timescale of minutes to hours)
[40]. The minimal biological detail used or directly
modelled, however, limits the ability of this model to
predict biological mechanisms underlying these
distinct behaviours.

Concurrently to this model development, a new trans-
genic mouse line was developed to selectively target
GnRH neurons with a Ca2þ indicator [42], enabling the
identification of long-duration (around 10 s) Ca2þ
transients. This prompted further investigation into the
electrophysiology of the GnRH neuron, which found
that Ca2þ transients occur only in burst firing (groups of
high-frequency action potentials separated by periods of
quiescence) GnRH neurons [43]. GnRH is secreted by
exocytotic fusion of GnRH-containing secretory gran-

ules with the plasma membrane; since Ca2þ is the key
stimulus for rapid regulated exocytotic secretion, it is
unsurprising that these burst-associated Ca2þ transients
are viewed as the primary driver for the pulses of GnRH
release [44]. Alongside this discovery, Lee et al. built on
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the HodgkineHuxley model developed by LeBeau et al.
[27] to further understand these Ca2þ transients and
their relationship with the GnRH neuron’s electrical
bursting behaviour [43,45]. It was suggested that in
order for the model to produce the irregular bursting
seen experimentally, two Ca2þ-activated Kþ currents
were needed [46] with one of these being previously
unidentified in GnRH neurons [43].

A distinguishing feature of the GnRH neuron is their
long dendrites which as well as receiving synaptic input,
propagate action potentials like axons, thus gaining the
name dendrons [47]. The soma of the GnRH neuron
holds Ca2þ stores, and the regulated release of this Ca2þ
controls the length of the burst length and the inter-
burst interval [48]. Given the relative length of these
dendrons, action potentials can occur at a significant
distance from the soma thus potentially impacting the
bursting behaviour. Chen et al. [17] modify a previous

model [43] to include a single dendron as a cable and
account for its spatialetemporal dynamics. It was found
that increasing diffusion along the dendron or
decreasing the distance from the action potential to the
soma could cause the inter-burst interval to increase
(ranging from a couple of seconds to close to a minute)
and the burst duration to decrease. Therefore, indi-
cating that dendron length (or more specifically synaptic
input location) may have an important impact on the
bursting behaviour of GnRH neurons.

Over time, the body of experimental work describing
the electrophysiology of the GnRH neuron has grown.
Both irregular bursting and parabolic bursting (intra-
burst frequency increasing then decreasing over several
minutes) have been observed in GnRH neurons with
irregular bursting occurring in 98e99% of cells [49], and
more recent electrophysiological research has identified
a fast Kþ current (IA) and a hyperpolarisation-activated
current (Ih) [50] not previously included in GnRH
neuronal models. In 2016, Moran et al. [51] developed
an updated HodgkineHuxley style model for the GnRH
neuron with a submodel of Ca2þ dynamics that was

based on more recent electrophysiological data. Simu-
lations with this model predict the occurrence of both
parabolic and irregular bursting, and the introduction of
biological noise to the model allows for spontaneous
action potentials. Different bursting behaviours were
achieved by only varying channel conductances (pri-
marily a slow inwards Ca2þ current and a Ca2þ-activated
Kþ current) raising the possibility that such conduc-
tances are altered by neuromodulators.

The GnRH neuron is an integral part of the pulse

generator as it secretes GnRH to the pituitary; however,
this does not necessarily mean the generator is solely
located within the GnRH neuronal population. As
mentioned above, the pulsatile nature of GnRH release
can be externally modulated or even wholly driven by
rrent Opinion in Endocrine and Metabolic Research 2022, 27:100407
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4 Mathematical Modelling of Endocrine Systems
upstream inputs, with the obvious possibility being
stimulation by kisspeptin [52].
Modulation of GnRH neurons by kisspeptin
Given that kisspeptin acts directly on GnRH neurons
[53,54] and is a strong candidate for influencing GnRH
release, the model previously developed by Chen et al.
[17] was expanded to account for the impact of kiss-
peptin on the behaviour of the GnRH neuron [55]. This
model suggested that kisspeptin increases the firing rate
of GnRH neurons via a combination of different mech-
anisms: (1) by activating phospholipase C (PLC) and
then stimulating the production of inositol 1,4,5

trisphosphate (IP3), (2) by stimulating the release of
Ca2þ from internal stores that depolarises the cell due to
inhibiting Ca2þ-sensitive Kþ channels and/or activation
of Ca2þ-sensitive nonspecific cation channels; (3) by
activating transient receptor potential canonical 5
(TRPC5) channels allowing Ca2þ into the cell and
depolarising it [56e59]. This depolarisation increases
the excitability of the neuron. Therefore, the applica-
tion of kisspeptin can lead to the modulation of the
GnRH neurons’ activity and encourage firing. This
suggests that kisspeptin is a major stimulator of GnRH

release, so that pulsatile kisspeptin release could dictate
the temporal profile of GnRH release.

A new model [60] investigated the GnRH neuron’s
ability to produce pulsatile behaviour using autocrine
feedback of GnRH and Ca2þ dynamics as has been
proposed in the earlier work [31,32]. This updated
model also included the role of kisspeptin and how it
affects GnRH release, focusing on the activation of
TRPC5 channels and the release of Ca2þ from internal
stores which as mentioned previously causes depolar-
isation [59]. The updated model produces both the

irregular and parabolic bursting seen in GnRH neurons,
and the continuous application of GnRH causes hyper-
polarisation and abolishes firing. Because GnRH causes
the release of Ca2þ from the endoplasmic reticulum
(ER) of the neuron, it also causes the depletion of the
ER Ca2þ store, and this activates store-operated Ca2þ
entry. Therefore, after a period of GnRH exposure (i.e.,
when stimulation stops), the ER Ca2þ store is depleted,
and this depletion of the ER stimulates Ca2þ influx
through a store-operated calcium current (ISOC) [27,61]
that depolarises the neuron, enabling it to resume burst

firing a few minutes after the cessation of GnRH. This
aligns with experimental observations [62], indicating
the importance of internal Ca2þ dynamics in success-
fully modelling GnRH neuron behaviour.

The modelling of the interaction of kisspeptin with the
GnRH neuron also aligns with some experimental re-
sults. Specifically, the administration of kisspeptin to
silent GnRH neurons in the model induces spiking with
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a further application 25 min later failing to achieve this
[56]. The model can replicate this due to the impact of
kisspeptin on the TRPC5 channel in these neurons.

Most interestingly, the model predicts that a pulsatile
application of kisspeptin to the GnRH neuron can cause
the release of GnRH to be locked to this pulsatile input.
When pulsatile kisspeptin is applied, GnRH release is

locked at a much lower pulse frequency, and this ratio
can be decreased by increasing the concentration of
kisspeptin used or the timescale of the negative auto-
crine feedback [60,63]. This prediction could be an
interesting avenue of investigation in light of recent
experimental observations from rodents showing that
the synchronised periods of activity of the KNDy
neuronal population have a 1-to-1 relationship with LH
pulses [18,64], but this relationship could break down
when KNDy pulses are generated at higher frequencies
[65]. An intriguing possibility here is that the precise

relationships between kisspeptin and GnRH dynamics
are modulated by the autocrine effects of GnRH
outlined above, although it should be noted that other
mechanisms could explain the lack of a simple 1-to-1
relationship between KNDy neuronal activity and LH.
Here, obvious possibilities include the depletion of
GnRH and/or LH pools as well as the refractoriness of
gonadotropes to GnRH [66].
KNDy neurons as the pulse generator
Considerable progress has been made in the mathe-
matical modelling of GnRH neurons, and such models
demonstrate a potential to generate episodic GnRH
secretion. However, there is now a growing body of ev-
idence that pulsatile GnRH secretion could be driven by
pulsatile kisspeptin secretion and that KNDy neurons
can, therefore, be considered as the GnRH pulse

generator. Key observations here are that KNDy neurons
form contacts with the synaptic terminals of GnRH
neurons [67] and exhibit synchronised activity matching
pulsatile LH secretion [18] in addition to kisspeptin
and its receptors being necessary for LH release and
reproduction [68,69].

The increased focus on the KNDy neurons has resulted
in identifying the role of NKB and dynorphin within the
KNDy network [70], with NKB exciting KNDy neurons
postsynaptically while dynorphin acting presynaptically

to inhibit the release of NKB from the neurons, and
kisspeptin having no impact on KNDy electrical activity
[71], as KNDy neurons do not express Gpr54 [72]. A
population-level model of the KNDy network was
developed [73] based on these experimental findings.
Specifically, the model considered the average firing rate
and basal activity of the network along with NKB and
dynorphin. In the model, the combined positive and
slower negative feedback mechanisms driven by NKB
www.sciencedirect.com
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Figure 2

Effect of perturbations in network excitability and NKB signalling on the
position of the solution within the parameter space, and therefore the
pulsatile dynamics of the KNDy network model. At position 1, the
described increase in either of these two parameters allows the system to
retain pulsatility while impacting the pulse frequency and shape (Voliotis
et al., 2021). While at point 2, a similar increase would cause the system
to cease pulsing and become quiescent.

Modelling GnRH pulse generation Plain et al. 5
and dynorphin, respectively, allow the network to
function as a relaxation oscillator creating the observed
periodic (i.e., pulsatile) behaviour (Figure 1b). That is,
positive feedback via NKB excites the KNDy population
into a spiking state, while the slower increase in
dynorphin signalling of dynorphin eventually inhibits
the effect of NKB driving the KNDy population back
into the quiescent state, hence generating persistent

pulsatile behaviour. These synchronised pulses in the
modelled network cause the pulsatile release of kiss-
peptin which as suggested by Chen et al. [55] can drive
periodic GnRH release. The model predicted that the
KNDy system produces pulsatile dynamics within a
particular range of basal activity. These model pre-
dictions were tested experimentally using different
frequencies of optogenetic stimulation to change the
endogenous basal activity of KNDy neurons in vivo,
identifying a clear shift from very little LH release at
0.5 Hz stimulation to the emergence of regular LH

pulses at 1 Hz [73].

The model was further examined by investigating the
impact of a disruption to the network in the form of
blocking either dynorphin or NKB signalling pathways.
Model simulations predicted that as the inhibition of
dynorphin signalling is increased, the range of basal ac-
tivity that produces oscillatory behaviour in turn
increased. Again, this was confirmed in vivo using a k-
opioid receptor antagonist to block the dynorphin
signalling, with this in place it was found that 0.5 Hz

stimulation now induced regular LH pulses [73]. The
interruption of the other major signalling pathway via
NKB was also examined and simulations predicted that
it would cause the range of basal activity that produced
oscillations to decrease. In vivo testing using an NKB
receptor (TAC3R) antagonist showed that the previ-
ously high frequency of LH pulses achieved during 5 Hz
stimulation was eliminated using this antagonist [73].
Together these results indicate that the KNDy neuronal
population can produce oscillations via network-level
dynamics driven by NKB and dynorphin, and that the
disruption of these interactions can significantly alter

the temporal profiles of GnRH secretion and GnRH-
driven LH secretion.

Further investigation of this model focused on the
impact of the ovarian cycle on the dynamics of the
KNDy population [74]. It is known that ovarian steroids
can modulate the pulsatile GnRH secretion of GnRH
release [64], but the exact mechanisms are uncertain.
Estrogen has been shown to reduce the expression of
kisspeptin, NKB, and dynorphin but increase the
expression of vesicular glutamate transporters in KNDy

neurons [75]. Given that KNDy neurons can commu-
nicate via glutamate [21,22,70,76], the effects of es-
trogen on any one or more of these parameters provide a
potential mechanism for the modulation of KNDy
neuron excitability and output by the steroid hormone.
www.sciencedirect.com Cu
The KNDy network model predicts either silent or
pulsatile behaviour depending on the values of key pa-
rameters, such as the strength of NKB and dynorphin
signalling or network excitability. For example, an in-
crease in the network excitability can, depending on
specific model parametrisations, either increases pulse
frequency or wholly inhibit pulses (Figure 2). This re-
sembles the well-documented differential effect that
various excitatory neurotransmitters and neuropeptides
have on LH secretion depending on gonadal steroids.
For instance, it has been long known that the impact of
N-methyl-D-aspartate (NMDA) (glutamate receptor

agonist) on LH (hence on GnRH) release varies
dependent on the level of estrogen. LH release is
inhibited without estrogen but stimulated following the
introduction of estrogen [77,78]. Also, NKB receptor
inhibition has been shown to cause an increase [79] or
decrease [80] in LH release. Model simulations suggest
how such behaviour might arise [74]. Dependent on the
baseline levels of NKB and network excitability, and
therefore the system’s position in the parameter space
(i.e., model parametrisation), they show that an equal
increase in NKB signalling could cause the network to

burst at a higher frequency or to cease bursting and stay
silent. This concept of parameter space and its impor-
tance in determining how the system responds to
perturbation are illustrated in Figure 2.

Overall, this continued investigation reveals that the
synchronised and pulsatile dynamics of the KNDy
population can be explained by this network-level
behaviour driven by the interplay between NKB and
dynorphin. In addition, the level of gonadal steroids in
rrent Opinion in Endocrine and Metabolic Research 2022, 27:100407
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6 Mathematical Modelling of Endocrine Systems
the system is crucial to predicting how various external
stimuli alter the pulsatile dynamics and indicate ways in
which the impacts of these stimuli could be mitigated
by targeting-specific mediators of communication
within the network, such as NKB or dynorphin.
Conclusion
Given the physiological and physiological and therapeu-
tic relevance of pulsatile GnRH secretion and theways in
which pulsatile GnRH dynamics are interpreted by pi-
tuitary gonadotropes, modelling the GnRH pulse
generator has attracted considerable attention. GnRH
neurons have proven to be valuable as model systems for

understanding fundamental features of neuronal signal-
ling. Here, mathematical modelling has complemented
electrophysiological and biochemical studies to provide
detailed insight into (for example) relationships be-
tween cellular anatomy, firing activity, and Ca2þ tran-
sients, as well as the potential for autocrine feedback to
cause pulsatile secretion. However, GnRH neurons
receive multiple additional inputs, and mathematical
modelling has shown how the intrinsic pulsatility caused
by autocrine feedback could potentially bemodulated by
such inputs. Indeed, a large body of work has shifted

focus squarely onto one of these inputs, KNDy neuronal
network and its pulsatile dynamics as the GnRH pulse
generator. In this scenario, the KNDy neurons act as the
primary driver for GnRH secretion, while possible auto-
crine feedback from GnRH has a potential modulatory
role. Here, mathematical modelling has informed
thinking around the origins, and respectively the
parameter space in the model in which pulsatile behav-
iour will occur, as well as how physiological or pharma-
cological manipulations might move the system into or
out of this dynamic regime. An obvious caveat here is that
much of the experimental results that have been used to

inform themodelling were generated from studies with a
limited number of rodent models, so system behaviours
in different species (and indeed, under different devel-
opmental conditions) remain to be explored in depth.
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