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Abstract

This article introduces the R package evgam. The package provides functions for
fitting extreme value distributions. These include the generalized extreme value and
generalized Pareto distributions. The former can also be fitted through a point process
representation. Package evgam supports quantile regression via the asymmetric Laplace
distribution, which can be useful for estimating high thresholds, sometimes used to dis-
criminate between extreme and non-extreme values. The main addition of package evgam
is to let extreme value distribution parameters have generalized additive model forms, the
smoothness of which can be objectively estimated using Laplace’s method. Illustrative
examples fitting various distributions with various specifications are given. These include
daily precipitation accumulations for part of Colorado, US, used to illustrate spatial mod-
els, and daily maximum temperatures for Fort Collins, Colorado, US, used to illustrate
temporal models.

Keywords: generalized extreme value distribution, generalized Pareto distribution, point pro-
cess, generalized additive model, Laplace’s method, R.

1. Introduction
Practical extreme value analyses have typically considered modeling block maxima with the
generalized extreme value (GEV) distribution or exceedances of a high threshold with the
generalized Pareto distribution (GPD); see Davison and Smith (1990) for a seminal work on
the latter approach, and Coles (2001) for a detailed overview of both approaches. Here, the
GEV and GPD distributions will be considered the extreme value distributions (EVD). Smith
(1989) develops a model using Pickands’ (1971) point process representation of extremes,
which, in some sense, marries the two EVDs.
Various packages have been contributed to the Comprehensive R Archive Network (CRAN)
to fit EVDs in R (R Core Team 2021). One of the earliest, package ismev (Heffernan and

https://doi.org/10.18637/jss.v000.i00


2 evgam: Generalized Additive Extreme Value Models in R

Stephenson 2018), allows users to recreate many of the analyses presented in Coles (2001).
Later R packages, such as evd (Stephenson 2002), evir (Pfaff and McNeil 2018), extRemes
(Gilleland and Katz 2016) and mev (Belzile, Wadsworth, Northrop, Grimshaw, and Huser
2020), have offered various functions for fitting univariate and multivariate EVDs. For a
review see Gilleland, Ribatet, and Stephenson (2013), and for an up-to-date list of packages
contributed to CRAN see the dedicated task view by Dutang and Jaunatre (2020).
This work focuses on regression-based models for extremes, a flexible class of nonstationary
model for extremes achieved by letting EVD parameters vary with covariates. Nonstation-
arity was considered in early models for extremes, in particular Smith (1986) and Smith’s
(1989) study of trends in ground-level ozone. Packages ismev and evd offer some scope
for linear forms. Such forms, however, can be restrictive if an involved choice of covariate
parametrization is required before sufficient flexibility is achieved (if it can be achieved).
More general regression-based EVD parameter forms can offer more robust analyses. Hall
and Tajvidi (2000), Davison and Ramesh (2000) and Ramesh and Davison (2002), for ex-
ample, consider local-likelihood fitting of trends. Pauli and Coles (2001) use a penalized
likelihood approach where smoother EVD parameter estimates incur less penalty. Pauli and
Coles’s (2001) approach builds on results for exponential family models covered in Green
and Silverman (1994), but relies on fixed smoothing parameters to control the amount of
penalty. Chavez-Demoulin and Davison (2005) consider generalized additive model (GAM)
forms for GPD parameters, which allow a given parameter to be represented with one or
more ‘smooths’, i.e., smooth functions, each of which may have a different smoothness. Yee
and Stephenson (2007) consider the vector GAM (VGAM) setting of Yee and Wild (1996)
for representing EVD parameters with GAM form. More recently, Randell, Turnbull, Ewans,
and Jonathan (2016) use spline forms and roughness-penalized priors to represent variation in
EVD parameters when modeling significant wave heights, using Markov chain Monte Carlo for
inference. Youngman (2019) models exceedances of a threshold with a GPD with parameters
of GAM form and a high threshold estimated by GAM form quantile regression, as proposed
in Yee and Stephenson (2007) and Northrop and Jonathan (2011).
GAM forms typically consider additive smooths represented with splines. Various packages
contributed to R fit EVDs with parameters of GAM or spline form. In particular, package
VGAM (Yee 2010, 2015) allows the GEV and GPD distributions to be fitted with param-
eters of GAM form. Various EVDs are also available within package gamlss (Rigby and
Stasinopoulos 2005). Alternatively, ismev’s gamGPDfit() implements Chavez-Demoulin and
Davison (2005), i.e., fits a GPD with parameters of GAM form through backfitting. Marginal
spline forms are also allowed for GEV parameters in package SpatialExtremes (Ribatet 2020),
although the package’s focus is multivariate analyses, in particular with max-stable processes.
Fitting of the GEV with parameters of GAM forms is also possible with package mgcv with
option family = "gevlss". EVDs can also be fitted using the integrated nested Laplace
approximation (INLA) software (Rue, Martino, and Chopin 2009), which specifies smooths
as latent Gaussian random fields (GRF) that depend on hyperparameters. Options for GAM-
based quantile regression, which can be useful for threshold estimation, include the packages
VGAM and qgam (Fasiolo, Wood, Zaffran, Nedellec, and Goude 2021). Package quantreg
(Koenker 2021) allows quantile regression using B-splines.
Estimating GAM forms for EVDs under fixed smoothing penalties is fairly straightforward.
For example, parameter estimates can maximize a penalized log-likelihood; recall Pauli and
Coles (2001). Smoothing parameter (or hyperparameter) selection, however, is perhaps the
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most challenging part of fitting a distribution with parameters of GAM form. In package
VGAM this is eased by users specifying the degrees of freedom for smooths, from which
smoothing parameter estimates are derived. Degrees of freedom are deemed more intuitive
to specify than smoothing parameters themselves. Alternatively package gamlss includes
function find.hyper(), which minimizes a generalized Akaike information criterion to find
optimal degrees of freedom. Wood (2011) proposes an objective approach to smoothing pa-
rameter estimation for exponential family distributions by treating penalized parameters as
multivariate Gaussian random effects, which are integrated out by Laplace’s method. This
gives a marginal likelihood for smoothing parameters; see Section 2.5. Wood, Pya, and Säfken
(2016) extend this approach beyond the exponential family. This method is implemented in
function gam() from package mgcv with option method set to "ML" or "REML". Laplace’s
method is used by Rue et al. (2009) in INLA to integrate out latent GRFs so that hyper-
parameters can be optimally estimated. Optimal estimation can be beneficial when degrees
of freedom cannot easily be user-specified; a GAM form comprising many smooths is one
example.
The aim of package evgam is to bring together three things: 1) the flexibility of the dif-
ferent smooths available in package mgcv for fitting EVDs with parameters of GAM form;
2) objective inference for all parameters; and 3) functions for drawing common inferences
from extreme value analyses, such as return level estimates with uncertainty quantified. For
1), in particular, mgcv offers GAMs incorporating thin plate regression splines, which are
particularly attractive for modeling multidimensional processes, such as spatial processes, or
interactions between splines formed by tensor products, as implemented in mgcv through
te(). For 3), evgam provides functionality for estimating return levels from nonstationary
EVD parameters and straightforward quantification of their uncertainty.
Initially evgam performed the analysis of Youngman (2019), i.e., using the asymmetric Laplace
distribution (ALD) to estimate a quantile of GAM form, and then estimating the distribution
of its excesses with a GPD with parameters of GAM form. This article presents extensions
that allow estimation of GEV distribution parameters of GAM form. These can be estimated
from block maxima or from threshold exceedances through the point process model of Smith
(1989). The point process model allows simultaneous estimation of all parameters required for
return level estimation, while potentially being less wasteful of data than the block maxima
approach. Furthermore, the point process model is implemented through the intuitive r-
largest order statistics model representation; see, e.g., Coles (2001, Section 7.9). Finally,
evgam allows estimation of EVDs based on censored data, which can be useful for data
known to be recorded with little precision, and is also available in gamlss.
The next section gives details of EVDs available in evgam, deriving return levels from them,
and a summary of how they are fitted. Section 3 introduces evgam’s main functions. Section 4
presents various examples of use of evgam, including spatial and temporal models. A brief
summary is given in Section 5.

2. Extreme value modeling

2.1. Extreme value distributions

This section outlines the three EVD models supported by evgam, and quantile regression via
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the ALD; see Yu and Moyeed (2001). Fuller details of the EVD models can be found in Coles
(2001, Chapters 3, 4 and 7).

Generalized extreme value distribution

The GEV distribution is appropriate for block maxima of sufficiently large blocks. Here years
will be considered as blocks, to help intuition; henceforth we will refer to annual maxima. A
random variable Y that is GEV distributed has cumulative distribution function (CDF)

FGEV(y;µ, ψ, ξ) = exp
{

−
[
1 + ξ

(
y − µ

ψ

)]−1/ξ
}
,

which is defined for {y : 1+ξ(y−µ)/ψ > 0} with (µ, ψ, ξ) ∈ R×R+ ×R/{0}. The limit ξ → 0
is used for the ξ = 0 case, which corresponds to the Gumbel CDF, exp(− exp{−[(y−µ)/ψ]}).
For all models this limit is invoked in evgam if |ξ| < 10−6.

Generalized Pareto distribution

The GPD is used to model excesses of a high threshold u. For a random variable Y , it is a
model for the conditional distribution (Y − u) | (Y > u) with CDF

F
(u)
GPD(y;ψu, ξ) = 1 −

[
1 + ξ

(
y

ψu

)]−1/ξ
,

which is defined for {y : y > 0 and 1 + ξy/ψu > 0} with (ψu, ξ) ∈ R+ × R/{0}. The
exponential CDF, 1 − exp(−y/ψu), is used for the ξ = 0 case.

Poisson-GPD point process model

The Poisson-GPD point process model is considered as an extension of the GPD model with
high threshold u that allows estimation of GEV parameters. For random variables {Yi}i=1,...,n
and y > u the Poisson-GPD model has intensity measure

Λ(A) = ny(t2 − t1)
[
1 + ξ

(
y − µ

ψ

)]−1/ξ
,

where A = [t1, t2] × (y,∞), ny is the time period under study and ti = (i− 0.5)/n.

Asymmetric Laplace distribution (for threshold estimation)

The ALD is not an EVD in the usual sense. It is useful in threshold-based extreme value
analyses for allowing quantile estimation (Yu and Moyeed 2001). The GPD and Poisson-GPD
models rely on a ‘high’ threshold. Coles (2001, Chapter 4) discusses assessing its choice.
High can be sometimes be intuitively defined through a high quantile, e.g., 0.9, 0.95 or 0.99.
Quantile regression can be used to estimate such thresholds, especially covariate-dependent
thresholds. The ALD has density function

fALD,τ (y;u, σ, τ) = τ(1 − τ)
σ

exp
{

−ρτ
(
y − u

σ

)}
,
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where ρτ (y) = y(τ − I{y < 0}) is the check function, for indicator function I{}; see Koenker
(2005) for an overview of quantile regression. The modified check function of Oh, Lee, and
Nychka (2011) is used in evgam to ease inference.

2.2. Return levels

Return levels are often sought from extreme value analyses. Let Fann denote the CDF of
the annual maximum. Then the return level, zp, corresponding to return period 1/p years,
satisfies Fann(zp) = 1 − p.

GEV and Poisson-GPD models

For the GEV distribution

zp = µ− ψ

ξ

{
1 − [− log(1 − p)]−ξ

}
, (1)

when ξ ̸= 0 and µ−ψ log(− log(1−p)) otherwise. Equation 1 also applies to the Poisson-GPD
model if formulated in terms of annual maxima.

GPD model

For a GPD representing independent excesses of threshold u, where ny observations occur
each year and such that P(Y > u) = ζ,

zp = u+ ψu
ξ

[(nyζ/p)ξ − 1], (2)

when ξ ̸= 0 and u+ ψu log(nyζ/p) otherwise.
For the GEV it is typically reasonable to assume that annual maxima are independent. For the
GPD, however, excesses of a threshold may occur in clusters, which requires that Equation 2
be adjusted accordingly. This is achieved through the extremal index, 0 < θ ≤ 1, so that
zp = u + ψu

ξ [(nyζθ/p)ξ − 1] when ξ ̸= 0 and u + ψu log(nyζθ/p) otherwise. Currently evgam
only allows relatively simple, constant estimates of θ based on the moment-based estimator
of Ferro and Segers (2003). An example is given in Section 4.2.

2.3. Nonstationarity

Outline

Now consider Y (x), a random variable indexed by covariate x. The purpose of evgam is
to allow straightforward fitting of EVDs with parameters that vary flexibly with x. The
following notation will be used. For the GEV, suppose that annual maxima Y (x) ∼
GEV

(
µ(x), ψ(x), ξ(x)

)
; for the GPD, that Y (x) −u(x) | Y (x) > u(x) ∼ GPD

(
ψu(x), ξ(x)

)
;

for the Poisson-GPD model, that Y (x) − u(x) | Y (x) > u(x) GEV
(
µ(x), ψ(x), ξ(x)

)
; and

for the ALD that Y (x) ∼ ALD
(
u(x), σ(x)

)
.
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Return levels
If covariate x relates to time, return levels typically need different treatment. Two examples
are given here for illustration: one for the GEV case, and one for the GPD case. These should
be sufficient to inform other situations.
Suppose that covariate x defines month, i.e., xi = month(i), for i = 1, . . . , n, and that Y (xi) ∼
GEV

(
µ(xi), ψ(xi), ξ(xi)

)
are monthly maxima, which may have a different distribution each

month. The CDF of the annual maximum then takes the composite form

Fann(z) =
ny∏
xj=1

{
FGEV

(
z;µ(xj), ψ(xj), ξ(xj)

)}nyw(xj)
, (3)

where ny = 12 and w(xj) are weights: w(1) = w(3) = w(5) = w(7) = w(8) = w(10) =
w(12) = 31/365, w(2) = 28/365 and w(4) = w(6) = w(9) = w(11) = 30/365. (This, for
simplicity, considers only 365-day years.) The 1/p-year return level, zp, satisfies Fann(zp) =
1 − p. Unless zp has closed form, which is rare, it must be found numerically. This approach
to return level estimation is implemented in Section 4.2.
The case of covariate x being time-dependent is handled similarly with the GPD. Now suppose
xi = day(i). The composite form for Fann is then given by

Fann(z) =
ny∏
xj=1

{
FGPD

(
z; ζ(xj), ψu(xj), ξ(xj)

)}nyw(xj)
,

where ny = 365 and FGPD denotes the unconditional distribution of a random variable Y :

FGPD(y; ζ, ψu, ξ) = 1 − ζ
[
1 − F

(u)
GPD(y − u;ψu, ξ)

]
, for y > u, (4)

and ζ = P(Y > u). Here we would take w(xj) = 1/ny, for all xj . Again zp satisfying
Fann(zp) = 1 − p is typically only found numerically. This approach is demonstrated in
Section 4.2 and, additionally, continuous time-dependent x is considered. Then infinitely
many values exist for x. Fann formed over a product would therefore be an approximation
based on the 365-point set {1, . . . , 365}. More or fewer points may benefit this approximation’s
accuracy and computational cost. A 50-point set is used in Section 4.2.
In the above, composite forms for Fann are easily modified for non-monthly maxima or non-
daily threshold exceedances. For example, the former might instead use ‘seasonal’ maxima,
where season may be problem-specific, or the latter might use hourly threshold exceedances.
The return period need not be defined in terms of years, either.

2.4. Inference

For the GEV model, consider annual maxima {Y (xi)}i=1,...,n. We might obtain these by
dividing a sequence of random variables by year and retaining each year’s maximum. Let f∗
denote a model’s density function. The GEV likelihood is then

L(µ,ψ, ξ) =
n∏
i=1

fGEV
(
y(xi));µ(xi), ψ(xi), ξ(xi)

)
,

with µ = (µ(x1), . . . , µ(xn)), ψ = (ψ(x1), . . . , ψ(xn)) and ξ = (ξ(x1), . . . , ξ(xn)). For the
GPD, now let {Y (xi)}i=1,...,n be n threshold excesses. They would be obtained by retaining
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the threshold exceedances from a sequence of random variables and then calculating their
excesses of the threshold. The GPD model likelihood is

L(ψu, ξ) =
n∏
i=1

fGPD
(
y(xi);ψu(xi), ξ(xi)

)
,

with ψu = (ψu(x1), . . . , ψu(xn)) and ξ = (ξ(x1), . . . , ξ(xn)).
The Poisson-GPD model’s likelihood is slightly more challenging as it requires integration over
all possible x, i.e., X . Consequently evgam currently only considers models where integration
is over time-dependent x, over which GEV parameters must be constant. Hence, consider
{Yt(xi)} for i = 1, . . . , n and times t = 1, . . . , T . The Poisson-GPD model’s likelihood is

L(µ,ψ, ξ) =
n∏
i=1

exp

−ny

[
1 + ξ(xi)

(
y(r)(xi) − µ(xi)

ψ(xi)

)]− 1
ξ(xi)

×

r∏
t=1

ψ−1
[
1 + ξ(xi)

(
y(t)(xi) − µ(xi)

ψ(xi)

)]− 1
ξ(xi) −1

 (5)

for time period ny, n-vectors µ, ψ and ξ and where y(t)(x), for t = 1, . . . , T , denote the order
statistics of sample y1(x), . . . , yT (x) with r < T chosen by the user. An example where µ(x),
ψ(x) and ξ(x) vary with spatial locations is given in Section 4.1.
The ALD is fitted to data relating to original random variables {Y (xi)} for i = 1, . . . , n. Its
likelihood is therefore

L(u,σ) =
n∏
i=1

fALD
(
y(xi);u(xi), σ(xi)

)
,

with u = (u(x1), . . . , u(xn)) and σ = (σ(x1), . . . , σ(xn)).
Interval-censored data can also be fitted with evgam. Suppose [y−(xi), y+(xi)] denotes the
censoring interval of y(xi), a realization from F ( ; ·). Then the likelihood takes the form

L(·) =
n∏
i=1

[
F
(
y+(xi); ·

)
− F

(
y−(xi); ·

)]
.

2.5. Generalized additive modeling

Package evgam is primarily designed to allow nonstationarity in EVD parameters by assuming
GAM forms in covariate x.

Basis representations

GAM forms for EVD parameters rely on basis representations. Consider covariate x and
GEV parameters µ(x), ψ(x) and ξ(x). evgam relates parameters via fixed link functions
to η∗, which has a basis representation. For GEV, µ(x) = ηµ(x), logψ(x) = ηψ(x) and
ξ(x) = ηξ(x), where

η∗(x) = β0 +
K∑
k=1

Dk∑
d=1

βkdbkd(x)
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with βkd and bkd basis coefficients and functions, respectively. The upshot of the basis repre-
sentation is that we can write η∗(x) = x⊤β where x⊤ is a row of a design matrix X, which
has elements determined by the choice of the bkd basis functions and 1 +

∑K
k=1Dk columns,

each of which corresponds to an element of β⊤ = (β0, β11, . . . , βKDK
). The log link is used

through evgam for any parameters with support R+.

Penalized likelihood

Various likelihoods were introduced in Section 2.4. For data y = {y1, . . . , yn} with correspond-
ing covariates {x1, . . . ,xn}, estimating an EVD corresponds to estimating basis coefficients
β. Each likelihood from Section 2.4 can then be written L(β) with log-likelihood ℓ(β).
To estimate EVD parameters a penalized log-likelihood of the form

ℓ(βλ,λ) = ℓ(βλ) − 1
2β

⊤Sλβ,

is considered for smoothing parameters λ = (λ1, . . . , λK), where Sλ is a penalty matrix with
elements determined by the chosen bkd basis functions. Sλ may be written Sλ =

∑K
k=1 λkSk,

where rows and columns of matrix Sk corresponding to bk′d, k′ ̸= k, comprise zeros. Often the
non-zero terms in the Sk matrices are non-overlapping. One contrary example are penalties
constructed by tensor products (De Boor 1978); see Wood (2011) for fuller details.

Restricted maximum likelihood

Following Wood (2011), β can be integrated out using Laplace’s method, which results in a
restricted log-likelihood of the form

ℓ(λ) = ℓ(β̂λ,λ) + 1
2 log |Sλ|+ − 1

2 log |H(β̂λ)| + constant, (6)

where β̂λ maximizes ℓ(βλ,λ) for given λ, H(β̂λ) = −∇∇⊤ℓ(β,λ)|β=β̂λ
and |Sλ|+ denotes

the product of positive eigenvalues of matrix Sλ. Optimal smoothing parameters, λ̂, can be
found by numerically maximizing ℓ(λ), which is typically best performed through Newton or
quasi-Newton methods, as implemented by evgam. Fitting a model therefore involves inner
iterations, for given λ, which give β̂λ, and outer iterations, which give λ̂.

3. Features of evgam

3.1. Function evgam()

Basic use

The package evgam mainly relies on function evgam(). Its main arguments are

evgam(formula, data, family)

Typically formula is a list comprising formulae: one formula compatible with mgcv::s() for
each EVD parameter. Hence, see the help for mgcv::s() for details of its use. If a single
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formula is supplied, it is repeated for each EVD parameter so that the same form is assumed
for each parameter. Use of data is the same as for, e.g., lm(). Interval-censored data can
also be handled with formula. Supplying cens(left, right) as the response specifies that
data$left and data$right are variables giving lower and upper ends of censoring intervals,
respectively. Any response data for which data$left and data$right are equal are treated
as uncensored. (Note that left- and right-censored data can be handled with sufficiently
high and low lower and upper interval ranges, respectively.) An example fitting the GPD to
censored data is given in Section 4.1.
The default family is "gev", which corresponds to the GEV distribution. GPD, Poisson-
GPD and ALD models are specified with "gpd", "pp" and "ald", respectively. evgam also
supports fitting of exponential, "exponential", Weibull, "weibull", and Gaussian, "gauss",
distributions.
For the ALD, the quantile to be estimated must be given: supplying ald.args = list(tau =
0.9), for example, gives an estimate of the 0.9 quantile. For the point process model, the time
period under study and the number of order statistics to use are required: supplying pp.args
= list(ny = 30, r = 50) specifies a 30-period time period, e.g., 30 years, if parameters
representative of annual maxima are sought, and 50 order statistics. Note that r = -1 uses
all order statistics. Fitting ALD and Poisson-GPD models is demonstrated in Section 4.2
and Section 4.1, respectively. Section 4.1 also demonstrates how pp.args$id may be used to
specify partitions of data over which integration is not required.

Additional options

The default values used by evgam are designed to be robust. In some circumstances, how-
ever, changes to some arguments’ default values may improve performance. First consider
trace, which accepts 0 (default), 1, 2 or −1; increasing numbers report more on optimiza-
tion iterations, and −1 reports nothing. trace can be useful for ensuring that inner and/or
outer iterations have converged. There are two arguments that may improve speed for large
datasets. First, maxdata specifies the maximum number of rows in data that will be used
in model fitting: if nrow(data) > maxdata, then maxdata rows of data are sampled with-
out replacement. Second, maxspline specifies the maximum number of rows in data that
are supplied to mgcv::s() to create bases; all rows of data are then used for fitting unless
maxdata > maxspline is also invoked. Initial values for ρk = log λk, k = 1, . . . ,K, are sup-
plied with rho0; evgam’s default is λk = 1 for all k. Providing a scalar specifies the same
initial value for each λk, whereas a vector of length K allows different initial values. Argu-
ment inits allows initial values for βλ to be specified in various ways, such as subsets of βλ.
Argument outer specifies how the restricted log-likelihood of Equation 6 is optimized: the
default, "BFGS", uses the BFGS quasi-Newton method; "Newton" uses Newton’s method; and
"FD" uses BFGS with finite-difference approximations to the gradient of Equation 6 w.r.t.
each ρk. See evgam()’s help file for details of its other options.

3.2. Function qev()

Also included in evgam is qev() for quantiles of EVDs. It solves Fann(zp) = p, numerically
where necessary, for zp. Its arguments are

qev(p, loc, scale, shape, m = 1, alpha = 1, theta = 1, family, tau = 0)
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Figure 1: Gridded and station-based elevation data for study region.

In the above p is p in Fann(zp) = p, and loc, scale and shape are an EVD’s location, scale
and shape parameters, respectively. In terms of Section 2.3, m corresponds to ny, alpha to
w( ), theta to θ, family is that supplied to evgam(), and tau corresponds to 1 − ζ.

4. Illustrations
Illustrations for evgam are given below. All require evgam to be loaded, which is done with

R> library("evgam")

4.1. Spatial modeling: Colorado precipitation

To illustrate the key functionality of evgam the dataset COprcp will be used, which contains
daily precipitation amounts, prcp, in mm on day date at locations identified by meta_row for
part of Colorado, US. (This was the domain studied in Cooley, Nychka, and Naveau (2007).)
Each location’s metadata corresponds to a row in COprcp_meta.

The COprcp data
The data can be loaded and conjoined with the metadata using

R> data("COprcp", package = "evgam")
R> COprcp <- cbind(COprcp, COprcp_meta[COprcp$meta_row, ])

The dataset COprcp also includes COelev, gridded elevation data for the study region. A plot
of gridded elevations (Figure 1) can be obtained with

R> brks <- pretty(COelev$z, 50)
R> cols <- hcl.colors(length(brks) - 1, "YlOrRd", rev = TRUE)
R> image(COelev, breaks = brks, col = cols, asp = 1)
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The function colplot() is included in evgam to plot points that are colored according to a
variable. Station elevations can be superimposed on the gridded elevations of Figure 1 with

R> colplot(COprcp_meta$lon, COprcp_meta$lat, COprcp_meta$elev,
+ breaks = brks, palette = cols, add = TRUE)

Before fitting any models, a ‘data.frame’ for plotting, COprcp_plot, is created using

R> COprcp_plot <- expand.grid(lon = COelev$x, lat = COelev$y)
R> COprcp_plot$elev <- as.vector(COelev$z)

Subsequent models will use elevation as a covariate, so it has been included in COprcp_plot.
Coordinate and covariate names match those in COprcp_meta.

GEV model

First we model annual maxima using the GEV distribution, introduced in Section 2.1. This
model will be implemented by creating a ‘data.frame’ comprising annual maxima at each
station. Since date is of class ‘Date’, this can be done with

R> COprcp$year <- format(COprcp$date, "%Y")
R> COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)

which aggregates over meta_row, i.e., over the station IDs, and then the metadata can be
added to COprcp_gev with

R> COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row, ])

The next step is to provide formulae for smooths to pass to mgcv::s(). A spatial model will
be fitted that allows spatial variation in the GEV’s location and scale parameters. Spatial
variation is achieved with thin plate regression splines, which are mgcv::s()’s default. The
basis dimension, k, has been specified to differ with GEV parameter. The GEV’s shape
parameter is assumed constant. The value of k caps a smooth’s degrees of freedom, and
hence, in some sense, its ultimate wiggliness. In practice, k should be chosen larger than a
smooth’s expected degrees of freedom so that the smoothing parameters control the effective
degrees of freedom. The GEV’s location parameter also includes a smooth in elev, station
elevation. This is specified as a cubic regression spline, bs = "cr", with k left at its default.
The smooths for all GEV parameters are then specified with

R> fmla_gev <- list(prcp ~ s(lon, lat, k = 30) + s(elev, bs = "cr"),
+ ~ s(lon, lat, k = 20), ~ 1)

To fit the model we issue

R> m_gev <- evgam(fmla_gev, COprcp_gev, family = "gev")

(but could have omitted family = "gev" above since it is evgam()’s default).
Having fitted the model, it is sensible to check whether smooths are necessary, and if so
whether they are well specified. This can be done through summary() with
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R> summary(m_gev)

** Parametric terms **

location
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.56 0.26 111.89 <2e-16

logscale
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.24 0.02 118.07 <2e-16

shape
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.08 0.02 5.08 1.92e-07

** Smooth terms **

location
edf max.df Chi.sq Pr(>|t|)

s(lon,lat) 19.27 29 178.23 <2e-16
s(elev) 5.19 9 19.39 0.00139

logscale
edf max.df Chi.sq Pr(>|t|)

s(lon,lat) 13.94 19 211.15 <2e-16

The necessity of smooths can be checked through p values. In this example they are all
≪ 0.01, indicating the smooths are beneficial. All one- or two-dimensional smooths can be
viewed with plot(), i.e.,

R> plot(m_gev)

which is shown in Figure 2. Often predictions are sought from a fitted model. These are
achieved with predict(). Predictions for the GEV’s three parameters for COprcp_plot can
be obtained with

R> gev_pred <- predict(m_gev, COprcp_plot, type = "response")
R> head(gev_pred)

location scale shape
1 12.79505 5.344232 0.07941214
2 13.09313 5.422900 0.07941214
3 13.38081 5.503366 0.07941214
4 13.67835 5.585679 0.07941214
5 13.97230 5.669885 0.07941214
6 14.27654 5.756028 0.07941214
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Figure 2: Output of plot(m_gev) for Colorado precipitation annual maxima.

where head() suppresses estimates for all but the first six rows of predict()’s output. Note
that type = "response" is used to predict parameters on their original scale, similarly to the
predict() method for ‘glm’ objects. Hence gev_pred is a three-column ‘data.frame’ with
columns for the GEV location, scale and shape parameters, respectively. Predictions can be
viewed using image() and a few lines of code (omitting the constant shape parameter), e.g.,

R> for (i in 1:2) {
+ plot.list <- COelev
+ plot.list$z[] <- gev_pred[, i]
+ image(plot.list, asp = 1)
+ title(paste("GEV", names(gev_pred)[i]))
+ }

which is shown in Figure 3. Lastly, the 100-year return level for the locations in COprcp_plot
can be estimated. This is an estimate of the 0.99 quantile of the distribution of the annual
maximum for each location and achieved with

R> gev_rl100 <- predict(m_gev, COprcp_plot, prob = 0.99)
R> head(gev_rl100)

q:0.99
1 42.47033
2 43.20524
3 43.93974
4 44.69434
5 45.45587
6 46.23844
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Figure 3: Plots of GEV parameter estimates for Colorado precipitation annual maxima and
of the 100-year return level estimate.

and plotted using

R> rl100 <- COelev
R> rl100$z[] <- gev_rl100[, 1]
R> image(rl100, asp = 1)
R> title("100-year return level")

which is also shown in Figure 3. Uncertainty estimates, in particular for return levels, are
covered in Section 4.3.

GPD model

The GPD is used to model excesses of a high threshold. Here, following Cooley et al. (2007),
the threshold is set at 11.4mm using

R> threshold <- 11.4

To fit the GPD only threshold exceedances are considered. Setting excesses corresponding to
non-exceedances as NA ensures that only exceedances are modeled, which is done using

R> COprcp$excess <- COprcp$prcp - threshold
R> is.na(COprcp$excess[COprcp$excess <= 0]) <- TRUE

A similar formula, in terms of smooths, is used for the GPD model as was used for the
GEV model, although this model comprises only two parameters and a non-constant shape
parameter is allowed. A smooth with elev is included for the GPD’s scale parameter, which
is partly motivated by use of a constant threshold. A varying threshold model is given in
Section 4.2. The GPD model is fitted with
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R> fmla_gpd <- list(excess ~ s(lon, lat, k = 20) + s(elev, bs = "cr"),
+ ~ s(lon, lat, k = 15))
R> m_gpd <- evgam(fmla_gpd, COprcp, family = "gpd")

Summaries, plots and predictions can be produced for m_gpd as demonstrated above for
m_gev, and so are not demonstrated again. Using predict(..., prob = ...) if family =
"gpd" uses Equation 2. The example of Section 4.2 demonstrates return level estimation in
the presence of dependence.

Poisson-GPD model
For the point process model, following Section 2.4, our data will be considered realizations
of {Yt(x)} for location x in region X and time t = 1, . . . , T . Hence covariate x is not time-
dependent, and log-likelihood (5) is used. If different locations have different T , ny(x) should
be used in log-likelihood (5). evgam facilitates that by allowing vector pp.args$ny. Note that
names(pp.args$ny) must match the unique pp.args$id values to ensure that the correct
ny(x) and {Yt(x)} coincide.
Different stations in COprcp are identified by variable id. We want to assume a constant
point process rate for a given id. We do this by setting pp.args$id to "id". (Double use of
‘id’ is a coincidence.) For this model fmla_gev is re-used and then evgam() called with

R> pp_args <- list(id = "id", ny = 30, r = 45)
R> m_pp <- evgam(fmla_gev, COprcp, family = "pp", pp.args = pp_args)

In the above the 45 largest observations at each station are used, and 30 periods of observation
at each station are specified. COprcp comprises 30 years’ data (aside from a few missing values)
at each station; hence the Poisson-GPD model’s GEV parameter estimates will represent the
distribution of the annual maximum.
Summaries, plots and predictions can be produced for m_pp similarly to m_gev, and so are
again omitted for brevity. Note that the r-largest order statistics at a given station may exhibit
dependence similarly to threshold excesses and so the same considerations for predict(...,
prob = ...) as for the GPD apply.

Censored response data and tensor products: GPD model revisited
Cooley et al. (2007) allude to precipitation being recorded with relatively little precision.
Sometimes such data may want to be treated as censored. For example, continuous data
recorded to the nearest integer, x, say, could be treated as interval-censored on [x−0.5, x+0.5).
Alternatively, measurement x might be given with stated tolerance δ, i.e., x± δ, so that the
response should be treated as interval-censored on [x − δ, x + δ]. Cooley et al. (2007) state
that some precipitation values were recorded to the nearest tenth of an inch, i.e., ∼ 2.5mm.
One option for setting up the censoring interval is

R> delta <- 2.5
R> COprcp$lo <- pmax(COprcp$excess - delta, 1e-6)
R> COprcp$hi <- COprcp$excess + delta

Tensor products, e.g., De Boor (1978) and Wood (2006), can be used to specify interactions
between smooths. For example, instead of a thin plate regression spline, a two-dimensional
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Figure 4: Output of plot(m_gpg_cens) for Colorado precipitation threshold exceedances
treated as censored with spatial smooths formed from tensor products.

smooth can be formed through the tensor product of two one-dimensional smooths. The
earlier GPD formula is modified for interval-censored response data and spatial smooths
formed from two cubic regression splines with

R> fmla_gpd_cens <- list(cens(lo, hi) ~ te(lon, lat, k = c(6, 8)) +
+ s(elev, bs = "cr"), ~ te(lon, lat, k = c(6, 8)))

which specifies rank 6 and rank 8 cubic regression splines for longitude and latitude, respec-
tively (a choice based on the tall rectangular shape of the domain). The GPD is then fit as
above, but with a new formula, and plotted with

R> m_gpd_cens <- evgam(fmla_gpd_cens, COprcp, family = "gpd")
R> plot(m_gpd_cens)

which is shown in Figure 4.

4.2. Temporal modeling: Fort Collins temperatures

This example considers FCtmax, a data frame comprising daily maximum temperatures, tmax,
in degrees Celsius at Fort Collins, Colorado, US. The data cover 1st January 1970 to 31st
December 2019. There are 95 missing values during this period. Two different approaches
to assuming that the distribution of extreme temperatures changes throughout the year are
considered. The aim is to estimate the 100-year return level.
The data are loaded using

R> data("FCtmax", package = "evgam")
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GEV model for monthly maxima
The first model uses monthly maxima and the first step is to identify the monthly maxima.
Dates are identified by date, of class ‘Date’, so years and months are obtained with

R> FCtmax$year <- format(FCtmax$date, "%Y")
R> FCtmax$month <- format(FCtmax$date, "%m")

and then aggregate() can be used to find the monthly maxima with

R> FCtmax_mnmax <- aggregate(tmax ~ year + month, FCtmax, max)

Separating FCtmax_mnmax by month with split(), i.e.,

R> FCtmax_mn <- split(FCtmax_mnmax, FCtmax_mnmax$month)

is one option to proceed, which gives a ‘list’ of ‘data.frame’s, each comprising monthly
maxima over years for a given month.
GEV parameter estimates for each month’s maxima are obtained with

R> fmla_simple <- list(tmax ~ 1, ~ 1, ~ 1)
R> gev_fits <- lapply(FCtmax_mn, evgam, formula = fmla_simple,
+ family = "gev")
R> gev_pars <- sapply(gev_fits, coef)

where fmla_simple specifies that for a given month all GEV parameters are constant.
The function qev() is then used to estimate the 100-year return level using Equation 3 from
Section 2.3. This requires the weights w(xi) for i = 1, . . . , 12. These are simply

R> weights <- (1/365.25) * c(31, 28.25, 30)[c(1, 2, 1, 3, 1, 3, 1, 1, 3, 1,
+ 3, 1)]

and are supplied to qev(), documented in Section 3.2, using

R> rl_100_gev <- qev(0.99, gev_pars[1, ], exp(gev_pars[2, ]), gev_pars[3, ],
+ m = 12, alpha = weights, family = "gev")

This gives a 100-year return level estimate of 39.37◦C.

GPD model for daily threshold exceedances
What is an extreme temperature at one time of the year is different from that occurring at
another time of the year. As a result, extreme values are now defined as exceedances of a
time-varying threshold. The threshold itself is estimated as the 99th percentile by quantile
regression. Hence ζ = 0.01, given Equation 4 from Section 2.3, so we set

R> zeta <- 0.01

A threshold estimate that varies over the course of a year and that is the same and continuous
from year to year is sought. This is achieved through a cyclic cubic regression spline, specified
with bs = "cc" in mgcv::s(). The variable cyc is therefore created using
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Figure 5: Daily maximum temperatures at Fort Collins for 2018 and 2019 with a cyclic
estimate of the 99th percentile superimposed.

R> FCtmax$cyc <- as.integer(FCtmax$date) %% 365.25

The formula for the model is specified, and then the model fitted, using

R> FC_fmla_ald <- list(tmax ~ s(cyc, bs = "cc", k = 15),
+ ~ s(cyc, bs = "cc"))
R> FC_ald <- evgam(FC_fmla_ald, FCtmax, family = "ald",
+ ald.args = list(tau = 1 - zeta))

Variables for the estimated threshold, threshold, and resulting excesses, excess, are added
to FCtmax using

R> FCtmax$threshold <- predict(FC_ald)$location
R> FCtmax$excess <- FCtmax$tmax - FCtmax$threshold
R> is.na(FCtmax$excess[FCtmax$excess <= 0]) <- TRUE

It is quite useful to superimpose the threshold estimate on a scatter plot of the data, which
is shown in Figure 5 for 2018 and 2019’s data, and obtained using

R> use <- FCtmax$year %in% c("2018", "2019")
R> plot(FCtmax[use, c("date", "tmax")])
R> lines(FCtmax[use, c("date", "threshold")], col = "red")

Having established that the estimated threshold is satisfactory, its excesses are modeled as
GPD realizations with

R> FC_fmla_gpd <- list(excess ~ s(cyc, bs = "cc", k = 15), ~ 1)
R> FC_gpd <- evgam(FC_fmla_gpd, FCtmax, family = "gpd")

which assumes a cyclic form for the scale parameter and a constant shape parameter. Note
that setting non-exceedances to NA earlier ensured they were ignored by evgam().
It is not reasonable to assume that these excesses of the threshold are independent. Hence to
estimate the 100-year return level using Fann for the GPD’s nonstationary case, introduced in
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Section 2.3, allowance needs to be made for clustering: i.e., an estimate of the extremal index,
θ, is needed. The function extremal() is used to give an estimate based on the moment-based
estimator of Ferro and Segers (2003). This is implemented with

R> theta <- extremal(!is.na(FCtmax$excess), FCtmax$date)

where FCtmax$date is supplied to allow the missing values in FCtmax$tmax to be identified.
This gives an extremal index estimate of 0.498, corresponding to an average cluster size,
defined in terms of grouped threshold exceedances, of 2.01 days.
To estimate the 100-year return level, finite values of the continuous variable cyc need to
be chosen. We could simply choose 1:365, but there may be occasions when the numerical
estimate is computationally expensive. If the cyclic form is fairly smooth, fewer points can
then be used. This is demonstrated here with the use of 50 points instead. A ‘data.frame’
of 50 cyc values is created using

R> rl_df <- data.frame(cyc = seq(0, 365.25, l = 51)[-1])
R> rl_df$threshold <- predict(FC_ald, rl_df, type = "response")$location
R> rl_df[, c("psi", "xi")] <- predict(FC_gpd, rl_df, type = "response")

and then qev() used to estimate the 100-year return level with

R> rl_100_gpd <- qev(0.99, rl_df$threshold, rl_df$psi, rl_df$xi, m = 365.25,
+ theta = theta, family = "gpd", tau = 1 - zeta)

which gives a 100-year return level estimate of 39.1◦C.
Return level estimates corresponding to monthly maxima can also be obtained with this
model. For example, using rl_df <- data.frame(cyc = 1:31) above would use 31 cyc
points, i.e., each day in January, to estimate the 100-January return level.

4.3. Uncertainty estimation

The above Colorado precipitation and Fort Collins temperature examples are used in this
section to demonstrate the various options for uncertainty estimation available with evgam.

Standard errors for EVD parameters

First consider uncertainty estimates for parameters of an EVD. The GEV model of Section 4.1
will be used for demonstration. The key function here is predict() using argument se.fit =
TRUE. Standard error estimates for GEV parameters estimated for each row of COprcp_plot
using m_gev can be obtained with

R> gev_pred <- predict(m_gev, COprcp_plot, type = "response", se.fit = TRUE)
R> head(gev_pred$se.fit)

location scale shape
1 1.994659 1.040021 0.01565573
2 1.959301 1.039746 0.01565573
3 1.926856 1.039144 0.01565573
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4 1.890763 1.038210 0.01565573
5 1.855742 1.036937 0.01565573
6 1.815885 1.035324 0.01565573

which shows just the standard error estimates, stored as se.fit.

Standard errors for return levels

Uncertainty estimates for return levels can also be produced. These rely on the Delta method
and are achieved with

R> gev_rl100_pred <- predict(m_gev, COprcp_plot, prob = c(0.95, 0.99),
+ se.fit = TRUE)
R> head(gev_rl100_pred$se.fit)

q:0.95 q:0.99
1 4.517385 6.742178
2 4.495358 6.726219
3 4.473734 6.709576
4 4.449786 6.690467
5 4.425445 6.670132
6 4.398455 6.647173

which shows standard error estimates for the 0.95 and 0.99 quantiles of the GEV distribution.

Simulation of EVD parameters and return levels

Sampling distributions of EVD parameters or return levels can be skewed. Standard errors
will not capture this. simulate() can generate samples of parameters or return levels. nsim =
5 samples for each GEV parameter from the model of Section 4.1 for each row of COprcp_plot
are generated using

R> gev_sim <- simulate(m_gev, nsim = 5, newdata = COprcp_plot,
+ type = "response")
R> lapply(gev_sim, head, n = 5)

$location
[,1] [,2] [,3] [,4] [,5]

1 12.25439 10.71028 10.53553 9.567743 10.09293
2 12.63838 11.06068 10.88727 9.883204 10.38144
3 12.99209 11.40178 11.20496 10.191711 10.67896
4 13.36530 11.77925 11.53158 10.506131 10.96285
5 13.72497 12.16215 11.83904 10.818363 11.24886

$scale
[,1] [,2] [,3] [,4] [,5]

1 4.480346 4.547956 5.612368 5.190501 4.185828
2 4.556733 4.620141 5.682444 5.268406 4.258340
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3 4.634989 4.694098 5.754027 5.347685 4.333002
4 4.715167 4.769884 5.827163 5.428356 4.409894
5 4.797316 4.847551 5.901895 5.510435 4.489096

$shape
[,1] [,2] [,3] [,4] [,5]

1 0.08375257 0.09334157 0.08169095 0.06817597 0.05721014
2 0.08375257 0.09334157 0.08169095 0.06817597 0.05721014
3 0.08375257 0.09334157 0.08169095 0.06817597 0.05721014
4 0.08375257 0.09334157 0.08169095 0.06817597 0.05721014
5 0.08375257 0.09334157 0.08169095 0.06817597 0.05721014

Supplying argument prob gives simulations that represent EVD quantiles. The above can be
modified to give nsim = 5 samples from the 100-year return level’s sampling distribution for
each row of COprcp_plot with

R> gev_rl_sim <- simulate(m_gev, nsim = 5, newdata = COprcp_plot,
+ prob = 0.99)
R> head(gev_rl_sim)

[,1] [,2] [,3] [,4] [,5]
1 35.30873 33.54998 59.37531 40.39781 43.78416
2 36.00414 34.45198 59.82865 41.09509 44.52713
3 36.72965 35.34028 60.28422 41.79733 45.25559
4 37.47619 36.27176 60.73772 42.52105 45.98495
5 38.25113 37.20957 61.19147 43.25599 46.70621
6 39.05827 38.19213 61.64964 44.01687 47.40486

Suppose that a 95% confidence interval for the 100-year return level for the third station,
Boulder, in COprcp_meta is sought. This can be approximately achieved by estimating quan-
tiles of the sampling distribution of the 100-year return level estimate. A 10,000-member
sample can be drawn from this distribution with

R> gev_rl_boulder_sim <- simulate(m_gev, nsim = 1e4,
+ newdata = COprcp_meta[3, ], prob = 0.99)

and then its 2.5th and 97.5th empirical percentiles used to form an approximate 95% confi-
dence interval using

R> quantile(gev_rl_boulder_sim, c(0.025, 0.975))

2.5% 97.5%
97.57636 116.50727

This could also have been achieved with predict() using se.fit = TRUE if a symmetric
sampling distribution was a fair assumption.
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Simulations of numerically-estimated return levels

Approximate confidence intervals can also be obtained for numerically-estimated return levels.
This is demonstrated for the example of Section 4.2, which uses Equation 4. First, parameters
are simulated from the ALD and GPD models for each row in rl_df, introduced in Section 4.2,
using

R> FC_sim_ald <- simulate(FC_ald, newdata = rl_df, nsim = 1e3,
+ type = "response")
R> FC_sim_gpd <- simulate(FC_gpd, newdata = rl_df, nsim = 1e3,
+ type = "response")

which gives 1000 samples. Then the 100-year return level is calculated for each sample using

R> rl_sim <- qev(0.99, FC_sim_ald[[1]], FC_sim_gpd[[1]], FC_sim_gpd[[2]],
+ m = 365.25, theta = theta, family = "gpd", tau = 1 - zeta)

Again, the 2.5th and 97.5th percentiles estimated from the return level sample can be used
to form an approximate 95% confidence interval using

R> quantile(rl_sim, c(0.025, 0.975))

2.5% 97.5%
38.64569 39.77104

Note that 39.37◦C, the estimate obtained earlier from fitting separate GEV distributions to
monthly maxima, falls well within this interval. Note also that uncertainty in the extremal
index estimate, theta, calculated in Section 4.2, is not propagated here.

5. Summary and discussion
The R package evgam has been developed to allow the fitting of various EVDs with parameters
of GAM form. Such forms are an intuitive and robust way of allowing parameters to vary
with covariates. Examples in which parameters vary over space, through two-dimensional thin
plate plates or the tensor product of two one-dimensional splines, and with time, specifically
over the course of a year such that continuity is imposed from year to year, have been given.
Examples also demonstrate fitting GEVs and GPDs, the Poisson-GPD model for extremes,
and use of the ALD for threshold estimation through quantile regression. Various options
for prediction and uncertainty estimation relevant to extreme value analyses have also been
presented. Further functionality is planned for package evgam.

Computational details
The results in this paper were obtained using R 4.0.3 with the evgam 0.1.4 package. R itself
and evgam are available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
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