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Abstract: The environment plays a critical role in the development, dissemination, and transmission of antimicrobial re-
sistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the
environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective
concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence
on the role of non‐antibiotic PPCPs. Existing data show associations with the development of resistance or effects on
bacterial growth rather than calculating selective endpoints. Research has focused on laboratory‐based systems rather than
in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are
often within the range of laboratory‐derived MSCs and at concentrations shown to promote HGT. Increased selection and
HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure
and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire
resistance from environmental settings, with water environments being the most frequently studied. However, because this is
currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to
human health. In addition, we recommend that future research efforts focus on MSC‐based experiments for non‐antibiotic
PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2022;00:1–14. © 2022
The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Antimicrobial resistance (AMR) is a global health crisis,

with estimates suggesting that 1.27 million deaths globally
in 2019 were attributable to antibacterial resistance (Anti-
microbial Resistance Collaborators, 2022). Predictions have

suggested that this could rise to 10 million deaths annually
by 2050 if no steps are taken to address the issue (O'Neill,
2014). Many studies regard the environment as a source of
AMR, clinically relevant or otherwise (Pärnänen et al., 2016;
Perry & Wright, 2013); and increasing evidence supports
the view that the environment plays an important role
in the development, dissemination, and transmission of AMR
(Singer et al., 2016).

Many sources and dissemination routes of pharmaceuticals
and personal care products (PPCPs) into the environment exist
(Figure 1). Pharmaceuticals and personal care products, such as
prescription and non‐prescription drugs, illicit drugs, cos-
metics, disinfectants, detergents, and food preservatives, enter
the environment through anthropogenic pollution sources
(e.g., biocides released from laundry detergent [Dey et al.,
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2019] or pharmaceuticals released from drug manufacturing
effluent [Kümmerer, 2009]). Inappropriate disposal practices,
such as discarding licit and illicit drugs into household waste,
can also contribute (Dey et al., 2019).

In the environment, PPCPs potentially increase AMR levels
through selection or co‐selection. Selection occurs when a
chemical exerts direct selective pressure on a resistance
gene or mutation that confers resistance against that chem-
ical. Co‐selection occurs when a non‐antimicrobial chemical
exerts an indirect selection pressure on an antibiotic resist-
ance gene (ARG). This occurs via co‐location of genes con-
ferring resistance to different compounds on a plasmid or
other genetic element (co‐resistance; Baker‐Austin et al.,
2006) or when a single resistance mechanism provides re-
sistance to multiple compounds (cross‐resistance; e.g., efflux
pumps; Chapman, 2003).

In 2012, the top 20 questions concerning the hazards, ex-
posure assessment, and environmental and health risks of PPCPs
in the natural environment were derived by a set of prominent
experts in the field at a technical workshop hosted by the So-
ciety of Environmental Toxicology and Chemistry's Pharma-
ceutical Advisory Group (Boxall et al., 2012). The question posed
in the title of the present review—“Does environmental ex-
posure to PPCP residues result in the selection of antimicrobial
resistant microorganisms, and is this important in terms of
human health outcomes?”—was ranked third most important
out of the final 20 key questions decided by workshop partic-
ipants. On the tenth anniversary of the Boxall et al. publication,

we hope to address this question by reviewing whether PPCP
residues in the environment select or co‐select for AMR and
discuss the relevant importance to human health outcomes.

LABORATORY‐BASED STUDIES
INVESTIGATING SELECTION AND
CO‐SELECTION OF AMR
Selection

A number of laboratory studies have investigated whether
subinhibitory (environmentally relevant) concentrations of an-
tibiotics select for AMR. The lowest‐observable‐effect concen-
tration (LOEC) that selection occurs at is often called the
minimal selective concentration (MSC), and these terms are
often used interchangeably. The MS/LOECs can inform dis-
charge limits of antibiotics and can be used in risk assessments
to understand the hazard posed by measured environmental
concentrations (MECs). The highest concentration tested di-
rectly below the MSC/LOEC is termed the no‐observable‐effect
concentration, on which assessment factors can be applied to
calculate a predicted‐no‐effect concentration (PNEC; or PNEC
for resistance [PNECR] in the case of AMR). By dividing MECs
by PNEC values, a risk quotient can be calculated, where risk
quotients >1 indicate high‐risk environments (European Medi-
cines Agency, 2006; Murray et al., 2021). Risk of selection is
likely greater than single‐chemical risk quotient values when we
consider the total mixed chemical load in the environment.

FIGURE 1: Systems map showing pharmaceutical and personal care product (PPCP) and antimicrobial resistance (AMR) dissemination routes through
the environment covered in the present review, from wastewater environments to the natural environment. Environments where selection (by antibiotics)
and co‐selection (by non‐antibiotic PPCPs) may occur are indicated. Exposure sources and routes of AMR to humans that may result in a human health
outcome are also shown. The figure does not represent all anthropogenic sources of AMR or PPCPs into the natural environment but provides a
summary of those discussed in the present review. CSO= combined sewage overflow; HGT= horizontal gene transfer.

2 Environmental Toxicology and Chemistry, 2022;00:1–14—Stanton et al.
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The main experimental methods used to derive MSCs have
been single‐species competition assays. For single‐species
competition assays, selection coefficients (changes in the ratio
of resistant to susceptible bacteria over time) were calculated
to estimate MSCs (Gullberg et al., 2011, 2014; Kraupner et al.,
2020; Liu et al., 2011; Vos et al., 2020). Competition assays
have also been used to show that mixed communities require
higher antibiotic concentrations to cause selection (Klümper
et al., 2019).

Other studies have used complex, environmental commun-
ities that resemble natural environments to define MSCs. These
often involve liquid microcosm experiments or biofilms in-
oculated with sewage bacterial communities that are evolved in
the presence of antibiotics. Increases in resistance can be
measured phenotypically (e.g., agar plating) or genotypically,
with changes in gene prevalence quantitated with quantitative
polymerase chain reaction (qPCR) or metagenomic sequencing.
The three key approaches taken are as follows. 1) Microcosm
evolution experiments using qPCR to measure ARGs (Kraupner
et al., 2018; Murray et al., 2018, 2020; Stanton et al., 2020),
sequencing to measure ARGs (Murray et al., 2018; Stanton et al.,
2020), and/or plating to measure phenotypic resistance
(Kraupner et al., 2020; Stanton et al., 2020). 2) A validated growth
rate assay using growth rate as a proxy for selection (the Se-
lection Endpoints in Communities of Bacteria assay; Murray et al.,
2020). 3) Biofilms used in flow‐through experiments exposing
wastewater to antibiotics using qPCR to measure ARGs
(Lundström et al., 2016), sequencing to measure ARGs (Kraupner
et al., 2018, 2020; Lundström et al., 2016), and plating to
measure phenotypic resistance (Lundström et al., 2016).

A table of available MSCs/LOECs has been collated by
Murray et al. (2021), detailing test antibiotics, methods, anal-
yses, and the MSCs/LOECs/PNECs found. We have provided a
condensed version of this (Table 1), with updated ex-
perimentally derived MSC and LOEC values that were pub-
lished after Murray et al. (2021). In addition to experimentally
derived endpoints, PNECRs have been modelled for 111 anti-
microbials and 11 antibiotic combinations. These PNECRs were
based on minimum inhibitory concentration (MIC) values from
the EUCAST database (European Committee on Antimicrobial
Susceptibility Testing, 2022). The lowest 1% of observed MICs
was identified and a 10‐fold assessment factor applied. Values
of PNECR ranged from 0.008 (itraconazole) to 64 µg/L
(nitrofurantoin; Bengtsson‐Palme & Larsson, 2016).

Evidence suggests that antibiotic transformation products
(Fatta‐Kassinos et al., 2011) and enantiomeric antibiotics (Elder
et al., 2020) could also select for AMR. In addition, sub‐MSC
concentrations have been shown to increase persistence of
ARGs within bacteria communities (Kraupner et al., 2020;
Larsson & Flach, 2021; Stanton et al., 2020). The lowest con-
centration at which this occurs is termed the minimal increased
persistence concentration (Stanton et al., 2020).

The laboratory work investigating antimicrobials selecting
for AMR has largely focused solely on antibiotics selecting for
antibiotic resistance. However, Khan et al. (2017) determined
multiple MSCs for the disinfectants chlorine and monochlor-
amine using single‐species competition assays. In addition, a

recent review compared laboratory methodologies used to de-
fine MSCs for antibiotics and discussed the strengths and
weaknesses of these in relation to their use in defining antifungal
MSCs for antifungal resistance (Stevenson et al., 2022).

Co‐selection
Many compounds can potentially co‐select for resistance,

including PPCPs and non‐PPCPs, such as metals. Non‐antibiotic
PPCPs potentially co‐select for AMR, although research re-
mains limited. Research often focuses on co‐selection by dis-
infectants, insect repellents, and preservatives in personal care
products (PCPs). Benzalkonium chloride (BAC) is a quaternary
ammonium compound (QAC) and disinfectant found in cos-
metics, household cleaners, and washing detergents (Buffet‐
Bataillon et al., 2012). The QAC‐resistance gene qacEΔ1 forms
part of the backbone of the genetic element Class 1 integron
that carries numerous AMR gene cassettes. Thus, exposure to
QACs may maintain or select for Class 1 integrons (harboring
ARGs), resulting in co‐selection of AMR by co‐resistance
(Moura et al., 2009; Partridge et al., 2009).

Several studies have investigated the co‐selective potential of
BAC. Listeria monocytogenes evolved higher ciprofloxacin MICs
when experimentally exposed to BAC, with environmental strains
having higher basal QAC MICs than those isolated from food
(Guérin et al., 2021). Studies on Gram‐positive species found that
BAC exposure can decrease antibiotic susceptibility (Kampf,
2019) and increase antibiotic MICs (Nordholt et al., 2021). The
relevance of this to contaminated environments is questionable,
given the use of single‐strain experiments and inhibitory con-
centrations. However, increases in AMR and antibiotic tolerance
have been observed in experiments using river sediment com-
munities exposed to subinhibitory concentrations of BAC (Kim
et al., 2018; Oh et al., 2013). Another study exposed Pseudo-
monas aeruginosa to increasing concentrations of BAC and
found that ciprofloxacin MICs increased by 256‐fold. However, a
study using untreated sewage as inoculum found that BAC ex-
posure did not enrich antimicrobial, metal, or biocide resistance
genes (Murray et al., 2019).

Triclosan is a disinfectant found in PCPs, though it has now
been banned in soap products in many countries (Sinicropi
et al., 2022). One study evolving Stenotrophomonas malto-
philia in the presence of triclosan found reduced susceptibility
to tetracycline, chloramphenicol, and ciprofloxacin, mediated
through overexpression of the multidrug efflux pump SmeDEF
(Sanchez et al., 2005). Another study using a complex com-
munity in an anaerobic digester showed that high triclosan
concentrations increased tolerance to ciprofloxacin (Carey &
McNamara, 2016). Subinhibitory concentrations of triclosan
also decrease susceptibility of Escherichia coli to ciprofloxacin,
penicillin, kanamycin, and gentamicin, although penicillin tol-
erance reverted to wild‐type levels after 20 generations with no
triclosan exposure (Li et al., 2019). Salmonella enterica
serovar Typhimurium strains exposed to increasing triclosan
concentrations showed decreased susceptibility to chlor-
amphenicol, tetracycline, and ampicillin, with overexpression
of the AcrAB efflux pump, suggesting further co‐selective

Selection and HGT of AMR by PPCPs in the environment—Environmental Toxicology and Chemistry, 2022;00:1–14 3
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potential (Karatzas et al., 2007). However, collateral sensitivity
(whereby acquisition of resistance to one compound results
in increased susceptibility to another compound) arising
from triclosan (Curiao et al., 2016) and triclocarban (Carey &
McNamara, 2016) exposure in S. enterica has also been
documented. Beyond BAC and triclosan, chlorhexidine ex-
posure has also been associated with increasing AMR
(Kampf, 2019).

Zinc is used in numerous cosmetic products as an anti-
oxidant, antiaging, antimicrobial, and anti‐inflammatory agent
(Abendrot & Kalinowska‐Lis, 2018). In a single‐species com-
petition experiment, zinc increased the MSC of ciprofloxacin
by fivefold, suggesting that zinc and ciprofloxacin behave
antagonistically (Vos et al., 2020).

Though studies directly investigating selection for resistance
by other PPCPs have not been performed, research indicates

TABLE 1: Summary table of laboratory‐derived minimal selective concentration/lowest‐observable‐effect concentration values

Antibiotic Methodology MSC/LOEC (μg/L) Reference

Amikacin Single‐species evolution experiment 400 Sanz‐García et al. (2021)
Azithromycin qPCR of ARGs from sewage microcosm 750 Stanton et al. (2020)

OD using SELECT assay with sewage 1000 Murray et al. (2020)
Cefapime Isogenic competition experiment 4.74–13.61 H. Wang et al. (2022)
Cefotaxime qPCR of ARGs from sewage microcosm 4 Murray et al. (2018)

qPCR of ARGs from sewage microcosm 15.63 Murray et al. (2020)
qPCR of ARGs from sewage microcosm 125 Murray et al. (2020)

Ceftazidime Single‐species evolution experiment 400 Sanz‐García et al. (2021)
Ciprofloxacin Isogenic competition experiment 0.1 Gullberg et al. (2011)

OD using SELECT assay with sewage 0.98 Murray et al. (2020)
qPCR of ARGs from biofilm microcosm 1 Kraupner et al. (2018)
qPCR of ARGs from sewage microcosm 10.77 Stanton et al. (2020)
Isogenic competition experiment 0.004 Vos et al. (2020)
qPCR of ARGs from sewage microcosm 15.625 Stanton et al. (2020)
Isogenic competition in mallard gut 21 Atterby et al. (2021)
Single‐species evolution experiment 5 Sanz‐García et al. (2021)
Competition experiment in a biofilm 0.96 Tang et al. (2022)

Chloramphenicol OD using SELECT assay with sewage 250 Murray et al. (2020)
qPCR of ARGs from sewage microcosm 500 Murray et al. (2020)

Clarithromycin qPCR of ARGs from sewage microcosm 750 Stanton et al. (2020)
OD using SELECT assay with sewage 5000 Murray et al. (2020)

Erythromycin qPCR of ARGs from sewage microcosm 514.1 Stanton et al. (2020)
qPCR of ARGs from sewage microcosm 750 Stanton et al. (2020)
Isogenic competition experiment 3000 Gullberg et al. (2014)
OD using SELECT assay with sewage 25 000 Murray et al. (2020)

Fosfomycin Isogenic competition in planktonic system 400 Hjort et al. (2022)
Isogenic competition in biofilm system 1200 Hjort et al. (2022)

Gentamicin OD using SELECT assay with sewage 250 Murray et al. (2020)
qPCR of ARGs from sewage microcosm 250 Murray et al. (2020)

Imipenem Single‐species evolution experiment 250 Sanz‐García et al. (2021)
Kanamycin Isogenic competition experiment 470 Gullberg et al. (2014)
Levofloxacin Single‐species evolution experiment 80 Sanz‐García et al. (2021)
Nitrofurantoin Isogenic competition in planktonic system 400 Hjort et al. (2022)
Polymyxin B Single‐species evolution experiment 2000 Sanz‐García et al. (2021)
Rifampicin Isogenic competition in planktonic system 1100 Hjort et al. (2022)

Isogenic competition in biofilm system 1500 Hjort et al. (2022)
Streptomycin Isogenic competition experiment 1 Gullberg et al. (2011)

Isogenic competition in planktonic system 300–3100 Hjort et al. (2022)
Isogenic competition in biofilm system 2200–5900 Hjort et al. (2022)

Tetracycline qPCR of ARGs from biofilm microcosm 1 Lundström et al. (2016)
Single‐species evolution experiment 1500 Sanz‐García et al. (2021)
Isogenic competition experiment 15 Gullberg et al. (2011)
Isogenic competition experiment 45 Gullberg et al. (2014)

Trimethoprim OD using SELECT assay with sewage 31.25 Murray et al. (2020)
Isogenic competition experiment 33 Gullberg et al. (2014)
qPCR of ARGs from sewage microcosm 62.5 Murray et al. (2020)
Isogenic competition experiment 100 Kraupner et al. (2020)
Escherichia coli microcosm 100 Kraupner et al. (2020)
qPCR of ARGs from biofilm microcosm 100 Kraupner et al. (2020)
Isogenic competition in planktonic system 17 Hjort et al. (2022)
Isogenic competition in biofilm system 23 Hjort et al. (2022)

Adapted from Murray et al. (2021).
ARG= antibiotic resistance gene; LOEC= lowest observable effect concentration; MSC=minimal selective concentration; qPCR= quantitative polymerase chain re-
action; OD= optical density; SELECT= Selection Endpoints in Communities of Bacteria.

4 Environmental Toxicology and Chemistry, 2022;00:1–14—Stanton et al.
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they are warranted. For example, the anticonvulsant carbama-
zepine has been shown to increase ARGs in the Folsomia
candida gut (Y.‐F. Wang et al., 2020). Further, of 835 human‐
targeted non‐antimicrobial pharmaceuticals, 24% inhibited
growth of at least one bacterial species in vitro (Maier et al.,
2018). Any reduction in growth could indicate a potential se-
lective pressure (Greenfield et al., 2018; Gullberg et al., 2011,
2014; Murray et al., 2020). In addition, the insect repellents
picaridin and N,N‐diethyl‐meta‐toluamide have shown anti-
microbial properties against bacteria, yeast, and fungal species
(Kalaycı et al., 2014). 2‐Ethyl‐hexyl‐4‐trimethoxycinnamate, an
ultraviolet filter in sunscreens, caused reduced nitrification in a
river sediment community (Xu et al., 2020), again suggestive of
selective pressure. Parabens are used as preservatives in PCPs,
and resistance in bacteria is often mediated through similar
mechanisms to antibiotic resistance (Bolujoko et al., 2021). To
date, a single study has found little evidence to support co‐
selection of AMR by parabens when testing Enterobacter ger-
goviae (Davin‐Regli et al., 2006). Finally, linalool is an aromatic
plant metabolite found in 60%–90% of cosmetic products and is
used in detergents (Aprotosoaie et al., 2014). A study exposing
S. enterica serovar Senftenberg to linalool determined that re-
sistance to five antibiotics increased and amikacin resistance
decreased postexposure in comparison to non‐exposed strains
(Kalily et al., 2017).

LABORATORY‐BASED STUDIES
INVESTIGATING HORIZONTAL GENE
TRANSFER

Pharmaceuticals and personal care products can increase
the mobility of ARGs by enhancing horizontal gene transfer
(HGT). Elevated HGT rates increase the absolute abundance
and potential microbial host range of ARGs. Through the
ability to transfer to diverse hosts (Klümper et al., 2015),
mobile traits encoded on plasmids increase their potential to
persist and be selected and transported to novel environments
(Hülter et al., 2017; Séveno et al., 2002). Further, HGT can
result in ARGs transferring to pathogens. The three main HGT
mechanisms, conjugation, transformation, and transduction
(Gogarten et al., 2002; Zhaxybayeva & Doolittle, 2011) need to
be considered to evaluate the effects of PPCPs.

Conjugation, the direct exchange of DNA between
bacteria, is thought to be the most efficient HGT mechanism
(Guglielmini et al., 2011; Halary et al., 2010). Effects of PPCPs on
conjugation have been widely studied, evidencing that environ-
mentally relevant concentrations of antibiotics regularly increase
plasmid transfer rates within bacterial communities (Jutkina et al.,
2016, 2018; Shun‐Mei et al., 2018). In addition, this has been
described for a number of non‐antibiotic pharmaceuticals like
carbamazepine, ibuprofen, naproxen, diclofenac, gemfibrozil,
and propranolol (Y. Wang et al., 2018, 2021). The mechanism
responsible for PPCPs elevating plasmid transfer rates is their
ability to trigger the bacterial SOS stress response, increasing
reactive oxygen species and cell membrane permeability (Y.
Wang et al., 2021). Triggering the SOS response can induce

conjugation of AMR‐encoding transposons from bacterial chro-
mosomes (Seier‐Petersen et al., 2014). Non‐antibiotic pharma-
ceuticals have also been shown to trigger the bacterial stress
response (Lagadinou et al., 2020), suggesting potential effects on
transfer rates of AMR‐encoding plasmids. Evidence also exists of
metal cations (regularly used in PPCPs) altering plasmid transfer
rates in soil communities in short‐term (Klümper et al., 2017) and
long‐term (Song et al., 2020) exposures. Particularly strong ef-
fects were proven for metal nanoparticles of copper (Zhang et al.,
2019) and silver (Lu, Wang, Jin, et al., 2020), which are used in
antibacterial coatings in plasters, for example.

Transformation refers to bacterial uptake of free ex-
tracellular environmental DNA (eDNA). A small proportion of
bacteria can absorb and integrate eDNA (i.e., competent cells).
Competence occurs constitutionally or is induced by environ-
mental factors (Hanahan, 1983; Nielsen & van Elsas, 2001).
Pharmaceuticals and personal care products can induce bac-
terial competence or increase availability of free eDNA, pro-
moting spread of AMR by transformation (Winter et al., 2021),
as evidenced at environmentally relevant concentrations of
antibiotics (Charpentier et al., 2012; Prudhomme et al., 2006),
non‐antibiotic pharmaceuticals (Y. Wang et al., 2020), and
triclosan (Lu, Wang, Zhang, et al., 2020).

Finally, transduction, the indirect transfer of DNA by bac-
teriophages, relies on mistakes in viral packaging or pro-
phage excision, during which genes from the current host are
integrated into phage DNA (Watson et al., 2018). During in-
fection, phage DNA is integrated into the host chromosome,
including mispackaged former host's genes. Pharmaceuticals
and personal care products affecting transduction through
inducing prophages at environmentally relevant concen-
trations include antibiotics (Allen et al., 2011; Maiques et al.,
2006) and nonantibiotic pharmaceuticals (Sutcliffe et al.,
2021). These compounds are known to be able to cause ox-
idative stress inside the prophage hosting bacteria (Y. Wang
et al., 2021), a common trigger for up‐regulation of prophage
excision from the chromosome (Liu et al., 2015). This leads to
higher phage abundance and hence a higher transduction
likelihood.

While these laboratory studies have demonstrated that PPCPs
at environmental concentrations can influence HGT, their relative
environmental contribution needs further investigation.

FIELD‐BASED STUDIES SHOWING
EVIDENCE FOR EFFECTS OF PPCPs
ON AMR
Wastewater

Sewage treatment is necessary for sanitation (Hunt, 2006).
Large‐scale convergence of wastewater creates niches distinct
from those in nature, resulting in significant ecological impacts
at confluence points of wastewater and natural waters.
Wastewater is a complex physiochemical and biological matrix
(Newton et al., 2015) posing significant potential for selection
of AMR by PPCPs. Healthcare‐associated wastewater from
hospitals or care homes contains elevated levels of PPCPs and

Selection and HGT of AMR by PPCPs in the environment—Environmental Toxicology and Chemistry, 2022;00:1–14 5
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AMR because antibiotic/disinfectant use and carriage of AMR
are more frequent in these populations (Hocquet et al., 2016).
Hospital wastewater has significantly higher antibiotic residues
than domestic wastewater (Aydin et al., 2019; Carraro et al.,
2018; Paulus et al., 2019; Perry et al., 2021), with some con-
centrations far exceeding MSCs (Yao et al., 2021). For example,
measured ciprofloxacin concentrations of 9900 μg/L (Perry et al.,
2021) are much higher than reported MSCs (5–10.77 μg/L;
Bengtsson‐Palme & Larsson, 2016; Kraupner et al., 2018;
Stanton et al., 2020). However, concentrations vary across anti-
biotics, hospitals, and seasons. In the Pharmaceuticals in the
Environment database (UmweltBundesamt, 2021), the median
ciprofloxacin concentration from hospital wastewater (7.5 μg/L)
was lower than that seen by Perry et al. (2021) yet remained
within the MSC range.

Effluents from industry and pharmaceutical production are
known to contain highly concentrated mixtures of PPCPs, far in
excess of discharges from healthcare or domestic wastewater
(Bengtsson‐Palme & Larsson, 2016; Larsson, 2014). Domestic
wastewater contains not only large volumes of unmetabolized
antibiotics from widespread use and excretion from large pop-
ulations but also incorrectly disposed of and unused PPCPs.
Antibiotic concentrations of domestic wastewater are generally
lower than those in healthcare wastewater in direct point‐
prevalence surveys. However, several studies normalizing total
antibiotic loads in wastewater‐treatment plant (WWTP) influent
have shown that households can contribute more than point
sources such as healthcare (Aydin et al., 2019; Santos et al., 2013;
Verlicchi et al., 2012). While higher total loads do not necessarily
result in antibiotic concentrations reaching MSCs after dilution,
they may represent the accumulation of antibiotics in sewer
sediments via sorption to biofilms (Jarnheimer et al., 2004). This
is expected to attenuate temporal flux of antibiotics, maintain
supply to WWTPs, and potentially result in sewer hotspots with
locally high antibiotic concentrations reaching MSCs.

These findings highlight the importance of domestic effluents
as sources of PPCPs entering WWTPs. In addition, parabens are
often used as preservatives in PCPs, and paraben‐resistant bac-
teria have been isolated from sewage‐treatment plants in India
(Selvaraj et al., 2013). However, based on the limited research
conducted to date, parabens have not yet been definitively
linked to co‐selection of AMR (Davin‐Regli et al., 2006).

Studies have found that HGT of AMR occurs in WWTPs, with
antibiotics, polycyclic aromatic hydrocarbons, and WWTP
processes promoting stress responses and phage proliferation
(Woegerbauer et al., 2020). Bacteriophages carrying ARGs
have been isolated from urban wastewater, which, when cloned
into susceptible E. coli, rendered them resistant (Colomer‐Lluch
et al., 2014). Conjugative plasmids have also been demon-
strated to facilitate persistence of ARGs (Che et al., 2019).
Finally, Hutinel et al. (2021) found that although PPCPs
(including antibiotics, biocides, and non‐antibiotic pharma-
ceuticals) in municipal wastewater were unable to promote
HGT, PPCPs from hospital wastewater increased the proportion
of E. coli recipients of HGT (Hutinel et al., 2021).

Modern sanitation infrastructure is a closed system, which
reduces human exposure to PPCPs and AMR. However, many

low‐ and middle‐income countries lack WWTP infrastructure;
thus, populations may be exposed to untreated wastewater
from open drainage trenches or contamination of tap water
(Tong et al., 2020). High‐income countries with modern sewage
systems minimize these risks but are reliant on effective treat-
ment of waste. Failure to adequately reduce PPCP loads puts
receiving environments at risk.

Natural water environments
Natural water environments encompass marine and fresh-

water environments (including rivers, streams, lakes, coastal
water bodies, and estuaries). Often, aquatic environments are
exposed to and act as receivers of anthropogenic pollution,
including treated and untreated domestic, hospital, and in-
dustrial wastewater; agricultural and other land‐use runoff (e.g.,
landfill leachate, urban road runoff, and septic tank leakage);
and aquaculture waters. This exposure facilitates the release of
PPCPs into water bodies, allowing AMR to proliferate (Amos
et al., 2015; Cabello et al., 2016; Williams et al., 2016). The
development and spread of AMR in the environment is a result
of the exposure of microbial communities to multiple stressors
(e.g., mixed selective agents; Berendonk et al., 2015; McArthur
& Tuckfield, 2000) and changing environmental conditions
(e.g., nutrient concentrations and pH; Khan et al., 2017).

Measured environmental concentrations of PPCPs throughout
natural water bodies vary substantially, depending on pollution
inputs, sample type, and season. A common entry point of
PPCPs into water bodies is from WWTP effluent. Pharmaceuticals
are often not fully metabolized and, like some PCPs, may not be
eradicated during wastewater treatment. Pharmaceuticals and
personal care products and their degradation products are found
in complex mixtures in WWTPs (Backhaus & Faust, 2012; Brandt
et al., 2015; Marx et al., 2015). For example, 56 unique phar-
maceuticals were investigated in the effluent of 50 WWTPs, with
hydrochlorothiazide detected in every sample; metoprolol, ate-
nolol, and carbamazepine detected in 90% of samples; and an-
tibiotics on average detected 56% of the time (Kostich et al.,
2014). In a study examining sites up‐ and downstream of WWTP
outflows, Amos et al. (2018) found higher levels of Class 1 in-
tegrons downstream and showed that QACs co‐select for the
mobilization of Class 1 integrons and blaCTX‐M from environ-
mental isolates. Similarly, Middleton and Salierno (2013) showed
that triclosan‐resistant isolates from surface water near WWTP
outfalls were significantly more resistant to chloramphenicol and
nitrofurantoin.

Untreated sewage can be discharged from combined sewage
overflows (CSOs), contaminating the receiving environment. The
impact of CSOs on AMR selection is understudied but has re-
cently become a topic of public (BBC News, 2021), policy
(Department for Environment, Food & Rural Affairs, 2021; Singer
et al., 2021), and scientific (Eramo et al., 2017; Honda et al.,
2020) interest. Socioeconomic factors can amplify wastewater
contamination of water bodies. For example, some low‐ and
middle‐income countries lack wastewater‐treatment and sani-
tation processes and directly dispose of fecal waste onto land
or into water bodies (Segura et al., 2015). This can occur in
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high‐income countries, although concentrations are likely lower
because of more effective wastewater treatment, improved an-
timicrobial stewardship, and policies that reduce pollution (e.g.,
European Union Water Framework Directive; Bougnom &
Piddock, 2017; Nadimpalli et al., 2018; Vikesland et al., 2019).
Data from rivers across 104 countries found that the highest
concentrations of active pharmaceutical ingredients (APIs) in
rivers (e.g., caffeine, metformin, paracetamol, sulfamethoxazole)
were detected in lower‐middle‐income countries (categorized by
using gross national income index; Wilkinson et al., 2022). Re-
gions with less regulated access to medicines had greater vari-
ability and range of API concentrations (Wilkinson et al., 2022).

Release of PPCPs into water bodies from drug manufacturing
effluent is also of concern. Often, antibiotic concentrations in
pharmaceutical effluents far exceed MSCs (e.g., ciprofloxacin
MECs 28 000–31000 μg/L [Larsson et al., 2007] exceeding the
MSC of 10.77 μg/L [Stanton et al., 2020]), posing a high risk for
selection. This is also likely exacerbated by socioeconomic fac-
tors (e.g., in low‐ and middle‐income countries; Segura et al.,
2015). However, instances of concentrations reaching MSCs have
been reported even after wastewater treatment in high‐income
countries (Babić et al., 2006; Phillips et al., 2010).

Another route by which PPCPs enter water bodies is through
agricultural runoff. Pharmaceuticals are used in livestock
rearing, as prophylactics, therapeutics, or growth promoters
(Landers et al., 2012). This results in the transfer of PPCPs and
AMR through livestock defecation and addition of fecal waste
to farmland, inevitably ending up in water bodies (Lee et al.,
2019). Pharmaceuticals and personal care products are also
used in aquaculture and are administered in feed or directly
released into water. Of the antibiotics ingested by fish,
approximately 80% enter water and sediment via excretion
(Cabello et al., 2013), resulting in fish farms being one of the
most contaminated types of water body (Guruge et al., 2019).

There is a lack of data showing the effects of PPCP con-
centrations on selection for AMR in natural water bodies (Ebele
et al., 2017; Fu et al., 2019; Luo et al., 2014). In the absence of
realistic experiments, many studies infer risk of selection by
calculating metrics such as risk quotients (as described above
Selection). For example, risk quotients derived from MECs for
98 PPCPs in water environments in India showed that 81% and
38% of antibiotics detected in surface and groundwater, re-
spectively, were at concentrations high enough to pose a risk of
AMR selection (Sengar & Vijayanandan, 2022). That study is at
the extreme end of the scale, and concentrations of singular
PPCPs in natural water bodies are often not high enough to
select for resistance alone. However, it is likely that the net
effect of a mixture of antimicrobial compounds will exert a
greater effect than each compound would exert individually
(e.g., through additive or synergistic effects; Marx et al., 2015;
Mitosch & Bollenbach, 2014).

Soil environments
Soil represents one of the evolutionary origins of AMR

(Cytryn, 2013; Forsberg et al., 2012; Nesme & Simonet, 2015),
and soil‐associated ARGs have been suggested as the primary

reservoir for clinical ARGs (Kim & Cha, 2021). Therefore, the
contribution of PPCPs to the mobilization, maintenance, and
dissemination of AMR in soil needs elucidation.

Manure, municipal waste, and treated wastewater irrigation
are regularly input into soil environments during agricultural
processes and have been identified as critical sources of AMR
in soil (Cytryn, 2013). Biosolids and manure are valued re-
sources of nutrients for crop growth and are commonly used as
agricultural fertilizers (Case & Jensen, 2019; Subirats et al.,
2021). Reuse of treated wastewater for agricultural irrigation is
increasing in arid and semiarid regions of the world as a result
of dwindling freshwater resources, expanding agricultural sec-
tors, and the influence of climate change (Ungureanu et al.,
2020). Such resources contain PPCPs, which may enter agri-
cultural soils and elevate AMR levels. The bioavailability of
PPCPs in the soil is dependent on their sorption and soil pa-
rameters (e.g., pH; Wegst‐Uhrich et al., 2014). Soil antibiotic
concentrations are strongly linked to land‐use patterns, with
agricultural land being the main source of antibiotics entering
the soil (Zhao et al., 2020).

Antibiotic concentrations in soils amended with long‐term
manure application were significantly elevated in comparison
to non‐treated soils. Concentrations ranged from 81.50 to
178.99 µg/kg and from 60.59 to 202.37 µg/kg for tetracyclines
and sulfonamides, respectively (Rahman et al., 2018). In addi-
tion, application of pig manure increased ARG levels for up to a
year (Scott et al., 2018). A macrolide resistance gene, ermB
persisted at high levels for a decade after manure application
(Scott et al., 2018). Further, a 10 000‐fold increase of four tet-
racycline ARGs was observed for manure amended soil in
comparison to a control (Leclercq et al., 2016). Manure has
been shown to increase the HGT of sulfadiazine resistance, with
the application of manure and sulfadiazine increasing Class 1
integrons in soil (Heuer & Smalla, 2007).

Also, PPCPs can be found in soils amended with biosolids.
Gottschall et al. (2012) monitored over 80 PPCPs in soil after
application of dewatered biosolids. Dissipation of many PPCPs
in biosolid‐amended soils occurred within the first few months
after application; however, PPCPs such as miconazole, triclo-
carban, and carbamazepine were still detectable over 1‐year
post–biosolid application at concentrations of 127, 22, and
30 µg/kg, respectively (Gottschall et al., 2012).

Irrigation using reclaimed water has been shown to promote
the maintenance of antibiotics in soils (Gao et al., 2015). Soils
irrigated with treated wastewater generally have concen-
trations of antibiotics <10 µg/kg (Biel‐Maeso et al., 2018;
Christou et al., 2017). In turn, those irrigated with untreated
wastewater can contain concentrations ranging from not de-
tectable to 2160 µg/kg, with median values of 52.8 and
0.15 µg/kg and not detectable for quinolone, sulfonamide, and
macrolide antibiotics, respectively (Gao et al., 2015). Regarding
the effect of PPCPs in reclaimed wastewater on AMR in soils, a
study comparing agricultural soils irrigated with freshwater and
treated wastewater found similar levels of AMR (Negreanu
et al., 2012). However, long‐term untreated wastewater irriga-
tion had a significant impact on ARG levels in agricultural soils
(Dalkmann et al., 2012).

Selection and HGT of AMR by PPCPs in the environment—Environmental Toxicology and Chemistry, 2022;00:1–14 7
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The presence of antibiotics in the soil, even at sub‐MIC
concentrations, can select for antibiotic‐resistant bacteria and
enhance the transfer of ARGs and mobile genetic elements
(Cycoń et al., 2019). Although no MSCs have been defined in
situ in soil environments, Han et al. (2022) investigated the
direct application of erythromycin fermentation residues (a by‐
product of the production of erythromycin) to soil, which is
often used as organic fertilizer. Resulting concentrations of
erythromycin in soil ranged from 0.83 to 76 µg/kg, and a sig-
nificant increase in macrolide–lincosamide–streptogramin
ARGs was observed gradually during the 3‐year experiment
(Han et al., 2022). Similarly, Brown et al. (2022) tested long‐
term (10 years) contamination of soil at high concentrations of
three macrolides (10mg/kg) and at concentrations similar to
those detected in biosolids or manure (0.1mg/kg). No effect
was observed at 0.1mg/kg, yet at 10mg/kg, 21 clinically rele-
vant ARGs and 20 mobile genetic elements increased (Brown
et al., 2022). While this suggests that concentrations in manure
and biosolids are not high enough to select for resistance,
laboratory studies (described above) have shown that MSCs/
LOECs vary significantly based on antibiotic type (Murray et al.,
2021; Stanton et al., 2020), with macrolides having some of the
highest MSC values (Murray et al., 2020; Stanton et al., 2020).
Antibiotics with lower MSC values (such as ciprofloxacin
[Kraupner et al., 2018; Murray et al., 2020; Stanton et al., 2020])
may be more potent, potentially resulting in increased levels of
ARGs and mobile genetic elements, although MSCs for these
antibiotics have yet to be derived in soils. These laboratory‐
derived MSCs are calculated from liquid experiments and are
therefore represented in different units (i.e., micrograms per
liter as opposed to micrograms per kilogram), making soil
comparisons to these laboratory endpoints difficult. Further,
the distinct properties of soil and changing behavior of PPCPs
within soil (i.e., compound‐ and environment‐dependent
sorption and/or degradation; Chen & Akhtar, 2022) can also
make laboratory endpoint comparisons complicated.

IMPORTANCE TO HUMAN HEALTH
Increased levels of AMR driven by selection and HGT may

result in increased exposure events when humans interact with
the above environments, whether through recreational (e.g.,
swimming in designated bathing waters, swimming in natural
waters that are not monitored for bathing water quality), oc-
cupational (e.g., WWTP worker), or essential (e.g., drinking
water) activities.

A recent publication systematically compiled evidence on
transmission of AMR from the environment to humans and
found only 40 articles globally (Stanton et al., 2022). Papers
investigated the risk of exposure to AMR in natural environ-
ments by calculating the burden of AMR in a particular volume
of environmental matrix. Exposure risks were subsequently
calculated based on the volume of matrices humans are ex-
posed to (Stanton et al., 2022). For example, the number of
third‐generation cephalosporin‐resistant E. coli in coastal water
was determined, and ingestion estimates of different water

users were used to calculate exposure events during a bathing
session (Leonard et al., 2015). Further, AMR exposure based on
consumption of surface water–irrigated lettuce has been
studied (O'Flaherty et al., 2019). Finally, estimated daily intake
of ARGs via inhalation of airborne fine particles, ingestion of
drinking water, and accidental ingestion of agricultural soil has
been calculated (Xie et al., 2018).

Direct transmission of AMR from the environment to humans
has also been investigated (Stanton et al., 2022). For example,
surfers are four times more likely (following ingestion of coastal
water) to be colonized by CTX‐M‐producing E. coli than non‐
surfers (Leonard et al., 2018). Further, 32% of reclaimed water
irrigation workers were colonized by resistant Staphylococci
compared to 4% of control office workers (Goldstein et al.,
2017). While the exposure to AMR is occurring during an oc-
cupational activity, the source of the AMR is still environmental
(reclaimed water).

Finally, Stanton et al. (2022) reported studies where AMR
was transmitted from the environment following an accident
and resulted in a human health outcome. For example, a near‐
drowning event in a river resulted in a carbapenemase‐
producing Enterobacter asburiae infection (Laurens
et al., 2018).

Stanton et al. (2022) highlighted that transmission of AMR
from the environment to humans is an underresearched topic
area, with only 40 studies globally. However, within those 40
studies, water environments were studied most frequently
(n= 40 water environments, although, on occasion, the same
study investigated more than one water exposure source). In
contrast, only one study investigated the potential exposure to
AMR from soil that could result in an adverse human health
outcome (described above; Stanton et al., 2022).

Since the systematic map from Stanton et al. (2022), further
work has been published investigating human health risks of
exposure to environmental sources of AMR, with water envi-
ronments continuing to be the focus of research on exposure
risk. For example, Rodríguez‐Molina et al. (2021) found that
WWTP workers, residents who lived within 300m of WWTPs,
and residents who lived >300m from a WWTP (as a control)
carried 11%, 29%, and 7% extended‐spectrum beta‐lactamase
Enterobacterales, respectively. This suggests that proximity
and exposure to wastewater increase the risk of being colon-
ized by antibiotic‐resistant bacteria. In addition, Devi and
Chattopadhya (2022) investigated colonization by extended‐
spectrum beta‐lactamase E. coli of farmers who washed buffalo
in earth ponds (37.5% rate of colonization) in comparison to
age‐matched household members who worked with the buffalo
but did not wash them (20.7%), suggesting that transmission
could occur from animal to human via a water source.

If AMR in natural environments increases as a result of se-
lection, co‐selection, or HGT by PPCPs, there will be an ele-
vated risk to humans in contact with these environments, which
could potentially result in a human health outcome. As dem-
onstrated in the present review, selection, co‐selection, and
HGT can occur at environmentally relevant concentrations of
PPCPs in water environments; and transmission of AMR can
occur from water environments, resulting in a human health
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outcome. However, there is a significant lack of research on
selection, co‐selection, and promotion of HGT in soil environ-
ments and on transmission of AMR from soil to humans.

PRIORITY RESEARCH QUESTIONS
Below is a list of questions deemed a priority for tackling the

development of AMR as a result of selection from PPCPs in the
environment:

1. What are the MECs of PPCPs in various natural environ-
ments?

2. What are the MSCs of non‐antibiotic PPCPs?
3. What are the in situ MSCs of PPCPs in the environment, and

do these align with laboratory‐derived MSCs?
4. What are the effects of PPCP mixtures on selection and HGT

in the environment?
5. Does transmission from various underresearched natural

environments result in a human health outcome?

CONCLUSIONS
As evidenced throughout the present review, PPCPs are

present in both wastewater and natural environments. There is
a growing body of empirical evidence suggesting that envi-
ronmental concentrations of antibiotics are often high enough
to select for resistance and cause HGT, but until relatively re-
cently there had been limited laboratory studies with mixed
microbial community context. While there are limited data
defining MSCs/LOECs for non‐antibiotic PPCPs, a growing
body of research suggests that these do affect both microbial
growth and MICs. There is also evidence to suggest that non‐
antibiotic PPCPs affect HGT (e.g., by enhancing plasmid
transfer rates). There is limited evidence of the effects of PPCP
mixtures on selection and co‐selection, even in laboratory
studies, which could potentially exert a greater effect than the
constituent compounds individually (Brown et al., 2022;
Stanton, 2020; Vos et al., 2020).

Our understanding of the fate and effects of PPCPs in nat-
ural environments is incomplete (Ebele et al., 2017; Fu et al.,
2019; Luo et al., 2014) and is exacerbated by the difficulty in
performing in situ experiments because of an inability to con-
trol external factors such as exposure to a complex mix of se-
lecting and co‐selecting compounds, exposure to other
pollutants, weather events, and other biotic and abiotic factors
(Chow et al., 2015). Extensive research exists detailing corre-
lative concentrations of PPCPs and ARGs in natural environ-
ments, but knowledge gaps remain regarding selection, co‐
selection, and acquisition of AMR in these environments (Nie-
gowska et al., 2021). Often, studies report the co‐occurrence of
PPCPs and AMR, using statistical associations, predictive
modeling (Singer et al., 2019), or network analyses to infer
selection. In the absence of in situ evidence of transmission and
selection and any standardized guidelines on the environ-
mental risk assessment for selection of AMR (Ågerstrand et al.,
2015; Murray et al., 2021), many studies have taken to

calculating PNECs, MSCs and risk quotients, to give an AMR
risk context to their findings.

If AMR does increase as a result of selection, co‐selection,
and HGT by PPCPs in the environment, as suggested by lab-
oratory data, elevated PPCP concentrations in the environment
will put people who interact with the environment at increased
risk of both exposure to and transmission of AMR. There is a
growing, yet still limited, body of evidence to suggest that
transmission from the environment can occur, particularly from
water environments. Addressing the priority research questions
described in the present review will increase collective under-
standing of the effects of PPCPs on the selection of AMR in the
environment. Complementary to this, reducing PPCP load, and
therefore selection pressure, will reduce human exposure and
transmission risk to AMR.
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