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Background: IgA nephropathy (IgAN) is the commonest glomerulonephritis worldwide. Its prevalence is

difficult to estimate, as people with mild disease do not commonly receive a biopsy diagnosis. We aimed

to generate an IgA nephropathy genetic risk score (IgAN-GRS) and estimate the proportion of people with

hematuria who had IgAN in the UK Biobank (UKBB).

Methods: We calculated an IgAN-GRS using 14 single-nucleotide polymorphisms (SNPs) drawn from the

largest European Genome-Wide Association Study (GWAS) and validated the IgAN-GRS in 464 biopsy-

proven IgAN European cases from the UK Glomerulonephritis DNA Bank (UKGDB) and in 379,767 Euro-

peans in the UKBB. We used the mean of IgAN-GRS to calculate the proportion of potential IgAN in 14,181

with hematuria and other nonspecific renal phenotypes from 379,767 Europeans in the UKBB.

Results: The IgAN-GRS was higher in the IgAN cohort (4.30; 95% confidence interval [95% CI: 4.23–4.38)

than in controls (3.98; 3.97–3.98; P < 0.0001). The mean GRS in UKBB participants with hematuria (n ¼
12,858) was higher (4.04; 4.02–4.06) than UKBB controls (3.98; 3.97–3.98; P < 0.0001) and higher in those

with hematuria, hypertension, and microalbuminuria (n ¼ 1323) (4.07; 4.02–4.13) versus (3.98; 3.97–3.98;

P ¼ 0.0003). Using the difference in these means, we estimated that IgAN accounted for 19% of noncancer

hematuria and 28% with hematuria, hypertension, and microalbuminuria in UKBB.

Conclusions: We used an IgAN-GRS to estimate the prevalence of IgAN contributing to common pheno-

types that are not always biopsied. The noninvasive use of polygenic risk in this setting may have further

utility to identify likely etiology of nonspecific renal phenotypes in large population cohorts.
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I
gAN is the commonest glomerulonephritis world-
wide but its true prevalence is hard to estimate and is

confounded by differing biopsy practice across the
world.1 A systematic review of biopsy-based studies
spanning multiple countries suggests an overall inci-
dence of at least 2.5 per 100,000.2 In the United States,
Canada, and United Kingdom, renal biopsies are rarely
done to investigate microscopic hematuria.3,4 In
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contrast, Japan, Korea, and Taiwan have urine
screening programs.5 Variation in biopsy practices
alone does not account for differences in geographical
prevalence. Autopsy and donor registries data show
Lanthanic IgA deposition in 1.3% of autopsies in
trauma victims from Finland compared with 15.6% of
deceased donor candidates in Japan.6,7 The variable
phenotype of IgAN from mild persistent hematuria to
end-stage renal disease, and variable biopsy practice,
means many with mild IgAN are not diagnosed and
true prevalence is very hard to estimate.

IgAN is a polygenic disease with 15 SNPs associated
in the largest GWAS of a European cohort.8 GRSs sum
genetic risk for disease into a single continuous vari-
able are increasingly used for diagnosis, prediction,
and mechanistic investigation of common diseases.9,10

UK Biobank (UKBB) gives a unique opportunity to
study IgAN-related phenotypes in the largest
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population cohort. We recently used a Type 1 diabetes
(T1D) GRS to identify undiagnosed T1D in the popu-
lation of those older than 30 in the UKBB where
misclassification of T1D is common.9,11 We aimed to
generate and validate an IgAN-GRS and use this to
assess the excess IgAN genetic risk in people with
hematuria and IgAN-related phenotypes12,13 in UKBB,
and then estimate the proportion of potential undiag-
nosed IgAN. Given that much of our knowledge on
IgAN prevalence is derived from biopsy data, we aimed
to assess the utility of an IgAN-GRS to estimate undi-
agnosed IgAN in those without a renal biopsy.

METHODS

We generated IgAN-GRS from known SNPs associated
with IgAN and validated the score with the 464
biopsy-proven IgAN cases from the UKGDB. We then
generated the IgAN-GRS in 379,769 white European
individuals in UKBB and assessed the score in pheno-
types associated with IgAN: hematuria, hypertension,
and microalbuminuria/proteinuria.

UK Glomerulonephritis DNA Bank (UKGDB)

Individuals with biopsy-proven IgAN were genotyped
at 318,127 SNPs using the Illumina (San Diego, CA)
Sentrix HumanHap300 BeadChip, of which 302,210
passed quality control (>90% genotyping rate, minor
allele frequency >0.05, Hardy Weinberg Equilibrium
P > 0.001). After quality control for ethnicity (using
principal component analysis), genotyping rate, and
excluding cryptic relatedness, estimated from identity-
by-state information (pi-hat > 0.125),14 we genotyped
9 SNPs (rs10801555, rs6677604, rs9357155, rs2071543,
rs1883414, rs4077515, rs11150612, rs3803800,
rs241297) and imputed the remaining SNPs for 464 UK
European patients. Genotypes for the remaining SNPs
were imputed from nearby SNPs using the University
of Michigan imputation server.15

UKBiobank

UKBB recruited more than 500,000 individuals aged 37
to 73 years from 2006 to 2010 across the United
Kingdom.16 Recruitment was unselected.17 UKBB par-
ticipants were genotyped with the UKBB Affymetrix
axiom array. We studied 379,767 unrelated white Eu-
ropeans, as those who self-identified as white European
and confirmed as ancestrally “European” using prin-
cipal components analyses of genome-wide genetic
information.17

All participants completed detailed self-report health
questionnaires. We used directly measured blood
pressure and albumin creatinine ratio (ACR) from
baseline assessment. In UKBB, a continuous measure of
ACR was derived using urinary measures of albumin
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and creatinine. If albumin was <6.7 mg/l (the detection
level of the assay in UK Biobank, http://biobank.ctsu.
ox.ac.uk/crystal/docs/urine_assay.pdf), then the albu-
min was set at 6.7 mg/l before the calculation of the
ratio. Albumin was measured in the UKBB samples
using immuno-turbidimetric analysis method (Randox
Bioscience, Crumlin, UK) while creatinine was
measured using enzymatic analysis method (Beckman
Coulter, High Wycombe, UK). ACR variable was in-
verse normalized before analysis. Hypertension was
defined by use of blood pressure–lowering medication
or a systolic blood pressure of >140 or diastolic blood
pressure >90.

We used primary and secondary diagnosis codes
from hospital episodes from 1996 to 2015. Unspecified
hematuria was derived from diagnosis codes for any
hospital episode (International Classification of Dis-
eases, 10th Revision [ICD10], R31) of hematuria in a
hospitalized participant. Those with urological malig-
nancy were excluded. UKBB individuals without a re-
cord of IgAN, or associated phenotype, diagnosis of
chronic disease, and malignancy were used as controls.

Genetic Risk Score

We generated the IgAN-GRS using 14 of 15 SNPs
drawn from the largest GWAS in a European popula-
tion8 (Supplementary Table S1). We excluded 1 asso-
ciated variant (rs10086568) because of poor imputation
(r2 0.4) (Supplementary Table S2). There was no proxy
SNP to substitute the variant. It has been shown that
SNP coverage at this locus is poor because of structural
complexity, and the association signal is almost
certainly mediated by copy-number variations (CNV)
that are poorly tagged.18 Therefore, to include the full
effect of DEFA variation in a GRS, one would almost
certainly need to measure CNV at this locus, which has
not been done in UKBB.

We generated the IgAN-GRS in all UKGDB and
UKBB participants. The IgAN-GRS was calculated by
summing the number of risk-increasing alleles at each
SNP multiplied by the ln (odds ratio) for each allele
divided by the total number of alleles. This assumes
that each risk allele has a log additive effect on IgAN
risk and allows for varying weight of contribution to
IgAN dependent on the odds in GWAS.19,20

Statistical Analysis

Stata was used for statistical analysis (version 14; Sta-
taCorp, College Station, TX).

We used t tests to compare IgAN-GRS between cases
and controls and common UKBB phenotypes versus
controls.

We validated the IgAN-GRS by comparing the mean
GRS between UKBB and UKGDB IgAN cases. We
Kidney International Reports (2020) 5, 1643–1650
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Figure 1. Graph of estimated prevalence of IgA nephropathy (IgAN) in different mixture (hematuria, hypertension [HTN], microalbuminuria
[micalb]) (with 95% confidence intervals represented by error bars). Controls: UK Biobank (UKBB) healthy individuals (without IgAN, hyper-
tension, diabetes, albuminuria, renal disease). IgAN-related phenotypes: hematuria, hypertension, microalbuminuria. Cases: IgAN cases from
UKBB and UK Glomerulonephritis DNA Bank (UKGDB) combined. Red numbers represent the genetic risk score (GRS) of phenotype that could
be explained by IgAN calculated using the following formula: Proportion ¼ (phenotype GRS – control GRS) / (IgAN-GRS – control GRS).
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studied 151,103 control individuals (without hematu-
ria, hypertension, and microalbuminuria), 12,858 with
unspecified hematuria, 202,850 with hypertension, and
30,367 with microalbuminuria/proteinuria. We per-
formed sensitivity analyses comparing the IgAN across
gender and age and performed a regression of IgAN-
GRS against the principle components used to define
ethnicity. We calculated the reference mean IgAN-GRS
as the combined mean of UKGDB and UKBB IgAN
cases. We assessed the GRS in male and female in-
dividuals and different ages.

Genetic Estimates of IgAN Prevalence

The proportion of potential IgAN cases within a
phenotype was estimated from the mean GRS of the
phenotype relative to controls and cases
(Supplementary Figure S1), using the following equa-
tion: Proportion ¼ (phenotype GRS – control GRS) /
(IgAN-GRS – control GRS). The proportion of cases
with suspected IgAN was then estimated using the
preceding formula in cohorts with hematuria and he-
maturia, hypertension, and microalbuminuria/
proteinuria.

Simulated Scenarios

We first visualized estimates of suspected IgAN prev-
alence made within simulated mixtures of known
proportions of IgAN cases and controls. The mean
IgAN-GRS of artificial mixtures containing 10%, 25%,
and 50% of IgAN cases was evaluated as a phenotype
GRS in the preceding formula (Figure 1). For each
Kidney International Reports (2020) 5, 1643–1650
proportion, 1000 randomly generated mixtures were
made, allowing the mean and 95% CIs around esti-
mates21 (Supplementary Figure S2). To calculate CIs
using reference data, we bootstrapped around the point
estimates generating 10,000 mixtures of equivalent size
to the phenotype of interest.

Sensitivity Analysis

Four HLA SNPs, shown to contribute independently to
genetic risk, were in partial linkage disequilibrium
(LD) (R2: 0.65–0.92). To test their contribution to the
IgAN-GRS, we generated the IgAN-GRS using a subset
of 11 SNPs (11 SNP score) with only the top SNP from
this region included, and a 10 SNP score that excluded
the 4 SNPs in high LD and a score based only on the
strongest associated SNP.
RESULTS

Cases Versus Control

The IgAN-GRS was higher in people with an ICD-10
code of IgAN in UKBB with a mean GRS of 4.18
(95% CI: 4.01–4.35) and in UKGDB cases (mean: 4.34
[4.23–4.38]) compared with controls (3.98 [3.97–3.98],
both P < 0.0001). The GRS was similar between UKBB
cases and UKGDB cases (4.18 vs. 4.34, P ¼ 0.07). The
mean IgAN-GRS of the IgAN cases from both cohorts
combined was 4.30 (95% CI: 4.23–4.38), n ¼ 586
(Figure 1). The IgAN-GRS was a modest discriminator
of IgAN, ROC AUC of 0.6 (0.57–0.62), P < 0.0001
(Supplementary Figure S3).
1645
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Figure 2. Proof of concept. Simulated mixture of IgA nephropathy (IgAN) and UK Biobank (UKBB) control in different percentage mixture. Data
are sampled with replacement from IgAN cases (UK Glomerulonephritis DNA Bank [UKGDM] and UKBB) and UKBB control to generate these
mixtures. The mean genetic risk score (GRS) is then calculated (red) and the estimated prevalence was calculated using our equation. The
simulation mixture matches the calculated estimated prevalence.
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Age and Gender

IgAN is known to be more common in male individuals
and we observed this in UKBB IgAN cases (76% male).
Male and female IgAN-GRS in IgAN cases were similar
(4.16 vs. 4.23, P ¼ 0.7). There was no association of
IgAN with the principal components (UKBB compari-
sons, Supplementary Figures S4A and S4B) and when
we adjusted for age, gender, and 5 principal compo-
nents, the results were unchanged.

Simulated IgAN Cohorts

In the 3 artificial mixtures containing 10%, 25%, and
50% of IgAN cases, the mean GRS was 4.01, 4.05, and
4.12, respectively. These GRS values relative to the
mean GRS of controls (3.98) and cases (4.27) allowed
estimates of IgAN proportion (%) within the 3 artificial
mixtures of 10% (95% CI: 2–18), 25% (17–33), and
50% (42–58), respectively (Figure 2).

Investigation of Nonspecific Phenotypes in

UKBB

The IgAN-GRS was higher in individuals in UKBB with
an ICD-10 code for hematuria when compared with
controls, hematuria GRS was 4.04 (95% CI: 4.02–4.06)
compared with control GRS of 3.98 (3.97–3.98); P <
0.0001 (Figure 1). This gave an estimate of 19% (95%
CI: 13.7–24.3) of hematuria being accounted for by
suspected IgAN. The GRS was slightly higher when we
combined IgAN-associated phenotypes: hematuria,
hypertension, and microalbuminuria/proteinuria (n ¼
1323) GRS 4.07 (95% CI: 4.02–4.13) versus 3.98 (3.97–
3.98); P < 0.0001. This gave an estimate of 28% (95%
CI: 11.6–44.6) of hematuria hypertension and
1646
microalbuminuria/proteinuria being accounted for by
suspected IgAN (Figure 3).

A sensitivity analysis demonstrated that most of the
association of the IgAN-GRS was explained by the HLA
loci. The GRS in 11 SNP (Supplementary Figure S5) and
the 1 SNP scores (Supplementary Figure S6) were
different between cases versus controls and in hema-
turia versus controls. The IgAN-GRS in the 10 SNP
score was not different between cases versus controls.
DISCUSSION

We have generated an IgAN-GRS in UKBB, shown
excess IgAN genetic risk in people with hematuria, and
used this to estimate potential undiagnosed IgAN. We
estimated that 19% (2443) of white Europeans in UKBB
with an ICD-10 code of unspecified hematuria, have
suspected undiagnosed IgAN. Our simulated example
highlights the validity of this approach and the CI
around our estimates. Taking these findings together,
our study highlights that disease-specific genetic risk
scores may have utility at a population level to aid
understanding of prevalence and associations of dis-
ease. With the expansion of numerous large datasets of
clinical and genetic data, the utility of genetic risk
scores to study undiagnosed disease is likely to in-
crease, and the approach we have taken here could be
used for other renal diseases and phenotypes.

The prevalence and incidence of IgAN vary
geographically and estimates differ depending on
detection from either biopsy or autopsy data. Differ-
ences between estimates from autopsy studies and bi-
opsy studies suggest under-ascertainment of IgAN
Kidney International Reports (2020) 5, 1643–1650
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Figure 3. Density plot demonstrating the distribution of IgA genetic
risk scores of UK Biobank (UKBB) controls (green line, n ¼ 151,103)
and IgA nephropathy (IgAN) cases (red line, n ¼ 586) from UKBB
and the UK Glomerulonephritis DNA Bank cohort.
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cases, which fits with variable biopsy practice world-
wide and many people with mild IgAN features do not
receive a biopsy diagnosis. Autopsy and donor regis-
tries additionally support at least some geographical
variation of IgAN independent of biopsy practice. This
is further substantiated by genome-wide reporting
geospatial differences in prevalence of genetic suscep-
tibility loci.22 Our estimate of 19% of noncancer hae-
maturia being explained by suspected IgAN is specific
to the inclusion criteria of UKBB (such as age distri-
bution, ethnicity, demographics, and healthy volunteer
bias), but is still relevant to estimates of IgAN preva-
lence due to the paucity of biopsy data. Our estimate,
which is much higher than the number with an ICD-10
diagnosis of IgAN, adds to current knowledge due to
the difficulties of assessment by other means and
highlights that many with mild disease may be undi-
agnosed. In addition, it highlights that this genetic
method could be used to assess disease prevalence in a
population when the phenotype is variable, nonspe-
cific, and does not fulfill risk benefit criteria for a renal
biopsy. An important consideration in the future may
be to see if estimates of IgAN prevalence, using com-
plementary methods (GRS analyses, hospital records,
biopsy registries, public health screening strategies),
are congruent within other populations. The methods
we use here may be directly relevant to assessment of
IgAN prevalence in American and East Asian pop-
ulations that are also developing large population
cohort biobanks.

Ours is the first renal study to apply the use of a GRS
to a question of underlying disease prevalence, and a
strength of the study is the size of the population
studied. This is suited to a disease such as IgAN in
which ascertainment of cases is variable and there are
likely undiagnosed cases due to variable biopsy
Kidney International Reports (2020) 5, 1643–1650
practices. It also relies on robust genetic associations
being described in GWASs. A recent hypertension
GWAS23 of 1,000,000 people, 500,000 from UKBB,
identified 535 novel blood pressure loci with several
hits associated with renal disease, highlighting that
undiagnosed renal disease may account for a propor-
tion of hypertension and could potentially be
explained, in part by common glomerular diseases like
IgAN. The association of the 4 strongest IgAN loci with
the hypertension GWAS support this finding.

GRSs are increasingly being assessed for utility in
prediction, diagnosis, and common diseases.24 We
recently showed that GRS can identify undiagnosed
T1D in the population older than 30,10,11 and that a
T1D GRS could aid diagnosis of T1D. Common disease
GRSs such as cardiovascular disease10 and trait GRSs
such as hypercholesterolemias can confer threefold
increased risk of coronary artery disease in those with
the highest polygenic burden.25 This may have utility
to stratify individuals and groups of patients into risk
groups with the potential to target treatment to high-
risk groups26 but depends on prevalence of disease
and the ability to intervene in those with high risk. We
showed that although there was a clear difference in
mean IgAN-GRS in cases versus controls, the individ-
ual discriminative power of the IgAN-GRS generated
was modest. This is in keeping with the relatively small
amount of variance explained in IgA risk by known
IgA variants. Our study highlights that a GRS that is
not strongly discriminative at an individual level can
still have utility at a population level to aid under-
standing of prevalence and associations of disease.

IgAN cases and controls have improved under-
standing of IgAN pathogenesis, and geospatial distri-
bution. These studies have highlighted pathways
important in intestinal immunity and inflammation.
Associated loci include the HLA-DR, -DQ, and -DP
SNPs and alleles8,27 that are critical to antigen presen-
tation and adaptive immunity. IgA-associated HLA-DR
and HLA-DQ alleles, and non-HLA alleles, demonstrate
pleiotropy with a variety of autoimmune diseases, in
particular inflammatory bowel disease, but also
including T1D, rheumatoid arthritis, and ankylosing
spondylitis. Associated genes include ITGAM and
ITGAX that encode integrins marking intestinal den-
dritic cells, and DEFA genes that encode alpha defen-
sins important in mucosal defense. Associated loci also
point toward roles for NF-kB signaling (e.g., CARD928),
defense against intracellular pathogens and comple-
ment activation (e.g., CFHR3-CFHR29), and serum
nonalbumin protein and IgA levels (TNFSF13 locus).28

The association of risk allele frequency with
geographic location points toward multilocus adaption
to environment with helminth infection a potential
1647
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source of selective pressure. As larger sample of IgAN
cohorts are aggregated and as more detailed SNP array
and sequencing data become available, it is likely that
further mechanistic insights into IgAN disease will be
made using GWASs.
Limitations

UKBB is a voluntary study and participants are typi-
cally healthier and come from higher socioeconomic
background compared with the general UK popula-
tion.30 The identification of phenotypes and IgAN cases
has come from self-report questionnaire and hospital
ICD-10 codes, relying on the volunteer or the person
inputting the data to be accurate. These could lead to
an underestimation of the number of people with a
diagnosis of IgAN. We were not able to use one known
IgAN risk SNP, as it was not genotyped or imputable in
the UKBB array data. We performed an analysis of
IgAN-GRS using currently available published data; it
is likely that as case-control GWASs increase in size
and with better genome-wide coverage, newer risk loci
and possibly newer approaches to GRS generation will
be identified that could improve discriminative power
of an IgAN-GRS and the precision around estimates of
IgA disease within UKBB and other similar datasets.21

Our sensitivity analysis suggested that the IgAN-
GRS could be driven by the 4 HLA SNPs in high LD,
the remaining 10 SNPs are not shown to be associated
with hematuria. This may be due to the modest power
of our sample size of cases, and the modest effect size of
the non-HLA variants associated with IgAN. The HLA-
DR-DQ region had the greatest number of overlapping
associations and IgAN risk alleles within this locus
confer increased risk of many illnesses8; however, none
that are known to cause hematuria. It is possible that
the IgAN increasing HLA alleles may be enriched in
those with hematuria for reasons other than IgAN,
although this seems unlikely given the strong rela-
tionship with IgAN and hematuria.

It is possible that true underlying IgAN cases pre-
senting only with hematuria have lower GRSs
compared with cases with a biopsy-diagnosed IgAN,
but this is not known. As our hematuria group was
derived from ICD-10 codes and not urinalysis, it is
possible that the number of people with hematuria in
UKBB is an underestimate. However, if not all IgAN
cases have hematuria in their electronic health record,
this would lead to an underestimate of suspected IgAN
because underascertainment of hematuria would in-
crease the number with IgAN. If mild or undiagnosed
disease is associated with a low IgAN-GRS, our esti-
mates may further underestimate the true proportion of
IgAN.
1648
Conclusion

We have generated an IgAN-GRS that estimates that
between 15% and 25% of unspecified hematuria
within the UKBB population might have IgAN. This is
the group that may not usually receive a renal biopsy
or diagnosis. Our findings build on our assumption that
the prevalence of IgAN may be an underestimate,
based on biopsy registry.

This study has shown that GRS has a potential role
in disease prevalence estimation in large population-
based cohorts. With larger GWASs, the GRS and its
power can be improved. Future work could be done in
investigation of other renal diseases with genetic
component. Consideration should be taken with regard
to pleiotropy, more research is needed to refine the
method and investigate causation of IgAN.
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Table S1. SNPs used to generate IgAN genetic risk score

and their basic information.

Table S2. SNPs used to generate IgAN genetic risk score

and their imputation r2.

Figure S1. Density plot demonstrating the distribution of

controls, hematuria, and IgAN cases. The arrows
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demonstrate the use of the means method to calculate the

potential IgAN.

Figure S2. Comparison of Earth Mover’s Distance (EMD)

between distributions; a linear combination of kernel

density estimates (KDE) of distributions; a published

Excess method and Means methods (mixture population

~M). The reference and the mixture distributions are

plotted on the left (RC, shaded red, RN , shaded blue, ~M,

shaded gray, respectively). Estimated values of

prevalence pC and 95% confidence intervals (gray dots

and lines with bars at the ends) are plotted on the right.

The violin plots show the distribution of the 100,000

estimates of prevalence (p’C) in the bootstrap samples.

The proportion of individuals with IgAN is shown as a

dashed vertical line. Calculations were based on the

following participants: noncases UK Biobank, UKGDB

IgAN, ICD10 IgAN in UK Biobank.

Figure S3. ROC curve assessing the IgAN-GRS to

discriminate IgAN (from UKBB and UKGDB) from UKBB

controls. ROC AUC was 0.6 (95% CI 0.57–0.62, P < 0.0001).

Figure S4. PCA plots (PC1 V PC2). (A) PC1VPC2 between

IgAN cases and controls. (B) PC1VPC2 between UKBB

Hematuria and controls. The graphs demonstrate that

there were no differences by principal components.

Figure S5. 11 SNP IgAN-GRS. A regenerated 11 SNP score

that included 1 of 4 HLA SNPs (with 95% confidence in-

tervals represented by error bars).

Figure S6. 1 SNP IgAN-GRS in difference phenotypes. A

regenerated 1 SNP score (with 95% confidence intervals

represented by error bars).
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