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Abstract

In this thesis, we present a simple proof of Selberg’s Central Limit Theorem for
appropriate families of L-functions. As conjectured by Selberg, his central limit
theorem can only be proven for the L-functions belonging to the Selberg Class.

First, we prove Selberg’s central limit theorem for classical automorphic L-
functions of degree 2 associated with holomorphic cusp forms. We prove this
result in the t aspect.

In Chapter 4, we prove Selberg’s central limit theorem for Dirichlet L-functions
and quadratic Dirichlet L-functions associated with primitive Dirichlet characters
and twisted Hecke-Maass cusp forms respectively. We prove these results in the
q-aspect, i.e., instead of integrating we average over Dirichlet characters.

Finally, in Chapter 5, we prove that a sequence of degree 2 automorphic L-
functions attached to a sequence of primitive holomorphic cusp forms form a
Gaussian process. Also, any two elements from this sequence of L-functions are
pair-wise independent. Additionally, we construct a random matrix that general-
izes the notion of independence of the families of automorphic L-functions.
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1. Introduction

The Riemann zeta function (denoted by ζ(s)) encodes information about prime
numbers. The study of the behaviour of the Riemann zeta function is an inter-
esting topic in analytic number theory. In 1859, Riemann proposed that every
non-trivial zero of ζ(s) is located at the critical line with <(s) = 1

2 . This problem is
known as the Riemann Hypothesis. It has been open for more than a hundred
and fifty years and is one of the most difficult problems in mathematics. There
are many applications of the Riemann Hypothesis. In particular, the error term
in the prime number theorem is closely related to the position of the zeros. H.
V. Koch [Koc01] proved that the Riemann hypothesis implies the “best possible”
bound for the error of the prime number theorem. Also, the Riemann hypothesis
implies strong bounds on the growth of many other arithmetic functions. For ex-
ample, the Möbius function µ has Dirichlet series 1

ζ(s) =
∑∞

n=1
µ(n)
ns . This relation

is valid for every s with real part greater than 1
2 . It is known (see Theorem 14.25

of [Tit86]) that a necessary and sufficient condition for the truth of the Riemann
hypothesis is that M(x) = O(x

1
2+ε), for all ε > 0, where M(x) =

∑
n≤x µ(x). The

condition would be true if the Möbius sequence {µ(n)} were a random sequence,
taking the values−1, 0, and 1, with specified probabilities, those of−1 and 1 being
equal.

Hardy and Littlewood [HL16] studied the moments of the Riemann zeta func-
tion

Mk(T ) =

∫ T

0
|ζ(1/2 + it)|2kdt

for k = 1. The Lindelöf Hypothesis1 tells us about the growth rate of the Riemann
zeta function, also, it implies that Mk(T ) = O(T 1+ε) for all natural number k.
Even though the last decades have seen tremendous progress on this topic, the
asymptotic behaviour of Mk(T ) still remains unknown. The moment conjecture
of the Riemann zeta function states that Mk(T ) ∼ CkT (log T )k

2
, for all positive

real numbers k. Keating and Snaith [KS00a] conjectured a formula for Ck using
random matrix theory.

Suppose X = X(T ) ≤ log T is a parameter tending slowly to infinity with T (to
fix ideas one can think of X(T ) =

√
(log T )). Then for typical t ∈ [T, 2T ] (by which

1Lindelöf hypothesis, which is implied by the Riemann hypothesis, states that for any ε > 0,
ζ( 1

2 + it) = O(tε) as t tends to infinity.
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we mean t lying outside a set of measure o(T )) one has

ζ(σ + it) ∼
∏
p≤X

(
1− 1

pσ+it

)−1

(for σ > 1),

In other words, ζ(σ + it) has an almost periodic structure and its value can be
usually extracted from knowledge of pit for small primes p.

The value distribution of ζ(s) on the critical line (for <(s) = 1
2 ) is different

because ζ(s) does not behave like an almost periodic function and it is hard to
determine these values only with the knowledge of pit at small primes. In 1946,
Selberg studied the statistical behaviour of the Riemann zeta function. He man-
aged to estimate some integrals involving log ζ(s). In the 1940s Selberg made a
major contribution on estimating the argument of the Riemann zeta function on
the critical line [Sel46b; Sel44]. Selberg [Sel92; Sel46b] established a fundamen-

tal theorem that as t ∈ [T, 2T ], the quantity log ζ(1
2 +it)/

√
1
2 log log t behaves like a

standard complex random variable which means its real and imaginary parts are
distributed like independent normal random variables with mean 0 and variance
1. This result is known as Selberg’s central limit theorem (SCLT).

For any σ > 1 and t ∈ R, we have

log |ζ(σ + it)| =
∑
p

∞∑
k=1

1

k

cos (kt log p)

pkσ
. (1.1)

For the proof of (1.1) see Lemma 13.1 of [Har15a]. Considering the Euler product
expression for the Riemann zeta function, we have

log ζ(σ + it) = −
∑
p

log

(
1− 1

pσ+it

)
, σ > 1, t ∈ R.

Inserting the Taylor series expression of log
(

1− 1
pσ+it

)
and taking the real

parts of <(p−ikt) = cos (−kt log p) = cos (kt log p), we conclude (1.1). Consider
the imaginary part t ∈ [T, 2T ], the almost independence arises because of the
values log p are linearly independent over Q (which is basically a restatement of
the uniqueness of prime factorization). So, the terms cos (kt log p) vary “almost
independently” for distinct primes p. We can consider

{∑
p

∑∞
k=1

1
k

cos (kt log p)

pkσ

}
p∈P

as the sequence of “almost independent” random variable with suitable mean
and variance. Then as T → ∞ for t ∈ [T, 2T ] the almost random variables-{∑

p

∑∞
k=1

1
k

cos (kt log p)

pkσ

}
p∈P

converge in distribution to normal N (0, 1
2 log log T ).

Hence, we call log |ζ(σ + it)| has “approximate normal” distribution with mean
0 and variance 1

2 log log T .2. Now we write the precise definition.

Definition. If X(t) is approximately normally distributed with mean m and vari-
ance ν2, if, for any fixed positive real number V , as T →∞, we have

1

T
meas

{
t ∈ [T, 2T ] :

X(t)−m
ν

≥ v

}
∼ 1√

2π

∫ ∞
v

e−
x2

2 dx (1.2)

2Similar argument works for classical automorphic L-functions. In this case we have
L(f, σ + it) =

∑
p

∑∞
k=1

1
k
<(λf (p)) cos (kt log p)

pkσ
.
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uniformly for v ∈ [−V, V ].

Now we write the precise statement of Selberg’s central limit theorem for the
real part of the logarithm of the Riemann zeta function.

Theorem (Selberg). Let V be a fixed positive real number. Then as T → ∞,
uniformly for all v ∈ [−V, V ],

1

T
meas

{
T ≤ t ≤ 2T : log |ζ(

1

2
+ it)| ≥ v

√
1

2
log log T

}
∼ 1√

2π

∫ ∞
v

e−u
2/2du.

Let N(T ) denote the number of non-trivial zeros ρ of ζ(s) inside the critical
strip up to height T . Then one can write

N(T ) =#{ρ = β + iγ : 0 < γ ≤ T}

=
T

2π
log

T

2πe
+

7

8
+ S(T ) +O(T−1),

where S(T ) = 1
π arg ζ(1

2 + it).
To study the statistical behaviour of log |ζ(1

2 + it)| Selberg observed the be-
haviour of S1(T ) on the critical line, where S1(T ) is the integrated function given
by

S1(T ) =

∫ T

0
S(t)dt.

It is known that

S1(T ) =
1

π

∫ ∞
1
2

log |ζ(σ + it)|dσ − 1

π

∫ ∞
1
2

log |ζ(σ)|dσ.

To study the behaviour of S1(T ), Selberg needed a delicate estimate for the
non-trivial zeros of the Riemann zeta function. We give an informal overview of
Selberg’s argument by using T. Tao’s [Tao09] survey on Selberg’s proof. Selberg’s
proof has three main steps. In the first step, he established a formula for log |ζ(s)|.
From the Euler product formula and the zeros of the Riemann zeta function, one
can write

log |ζ(s)| =
∑
p≤Tε

<(1/ps) +O

 ∑
ρ=s+O(1/ log T )

1 +

∣∣∣∣log
|s− ρ|
1/ log T

∣∣∣∣
+ · · · (1.3)

where ρ denotes the zeros of the Riemann zeta function for s = 1
2 + it and t =

O(T ), for ε > 0. Notice that (1.3) is a localization of the prime sum to the primes
p of size O(T o(1)), and the sum of zeros at a distance of O(1/ log T ) from s. Note
that all the expression in (1.3) can be controlled. The error term (denoted by · · · )
has the size O(1) for most values of t, so are a lower order term. The main term
contribution is coming from the primes. Let Xp := <(1/ps) = 1/

√
p cos (t log p) for

t ∈ [T, 2T ], is a random variable with mean 0 and variance approximately 1/2p (if
p ≤ T ε for ε > 0).
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Let us assume thatXp behaves as if they were independent then by the central
limit theorem, the sum

∑
p≤Tε Xp behaves like a normal distribution with mean 0

and variance
∑

p≤Tε 1/2p. Then by Merten’s theorem, one has

∑
p≤X

1

p
= log logX +O(1).

To establish a formula for (1.3), Selberg started with

∫
R

log

∣∣∣∣ζ (s+
iy

log T ε

)∣∣∣∣ψ(y)dy (1.4)

where ψ is a bump function with total mass 1. The formula is averaged out for
log |ζ(s)| in the vertical direction at scale O(1/ log T ε) = O(1/ log T ), where the
implied constant depends on ε.

One can express (1.4) in two different ways. For the first case consider

− log |ζ(s)| = log |s− 1| −
∑
ρ

log |s− ρ|+ · · · . (1.5)

If one modifies s by O(1/ log T ) then the fluctuation of the quantity log |s − ρ|
is not much unless ρ is within O(1/ log T ) of s. In that case it will move by about
O
(

1 + log |s−ρ|
1/ log T

)
. As a result, one has∫

R
log

∣∣∣∣s+
iy

log T ε
− ρ
∣∣∣∣ψ(y)dy ≈ log |s− ρ|

where |ρ− s| � 1/ log T , and

∫
R

log

∣∣∣∣s+
iy

log T ε
− ρ
∣∣∣∣ψ(y)dy = log |s− ρ|+O

(
1 + log

|s− ρ|
1/ log T

)
.

Assuming the imaginary part of s to be large, the quantity log |s− 1| does not
move very much by this shift. Inserting these facts to (1.5), once sees that (1.4)
(heuristically) equals to

log |ζ(s)|+
∑

ρ=s+O(1/ log T )

O

(
1 + log

|s− ρ|
1/ log T

)
+ · · · . (1.6)

Now we compute (1.4), using

log |ζ(s)| =
∑
p

< 1

ps
+ · · · . (1.7)

Write s = 1/2 + it, one can express (1.4) as∑
p

<(1/ps)

∫
R
e−iy log p/ log Tεψ(y)dy + · · · .

4



Let ψ̂(ξ) :=
∫
R e
−iyξψ(y)dy be the Fourier transformation of ψ, then one can

write the above equation as
∑

p<(1/ps)
∫
R ψ̂(log p/ log T ε) + · · · .

Since ψ is a bump function, its Fourier transformation is also a bump function
(or a Schwartz function). As a first approximation one can think ψ̂ as a smoothed
truncation to the region {ξ : ξ = O(1)}, thus the ψ̂(log p/ log T ε) weight is restrict-
ing primes to the region p ≤ T ε. Thus one can express (1.4) as∑

p≤Tε
<(1/ps) + · · · .

Comparing this with (1.6), that we have for (1.4), one can obtain (1.3) (for-
mally).

The next step is about the controlling of zeros to take care of the error term
of (1.3). Precisely, in this step Selberg showed that

∑
ρ=s+O(1/ log T ) 1+

∣∣∣log |s−ρ|
1/ log T

∣∣∣
is O(1) on the average, for s = 1/2 + it and t ∈ [T, 2T ]. In this step, he has used
the first moment method. Let Iρ = 1+

∣∣∣log |s−ρ|
1/ log T

∣∣∣ be the random variable for each
zero ρ = s + O(1/ log T ) and zero otherwise. Thus the target here is to control
the expectation of

∑
ρ Iρ. The only relevant zeros are those which have the size

of O(T ) and we know that there are O(T log T ) zeros of this kind. On the other
hand, if one chooses s randomly then, it has a probability O(1/T log T ) of falling
within O(1/ log T ) of ρ. So, one can expect that each Iρ have an expected value
of O(1/T log T ). By the linearity of expectation one can conclude that

∑
ρ Iρ has

expectation O(T log T )×O(1/T log T ) = O(1), and the claim follows.
In the last step, Selberg showed that

∑
p≤Tε Xp has normal distribution by

showing that Xp behaves as if they are jointly independent. To show that Xp has
mean 0, one can show that the product Xp1 · · ·Xpk

have a negligible expectation
as long as at least one of the primes occurs at most once. After having this (a
similar formula can be computed for the case when all primes occurred twice) one
can compute the k-th moment of (

∑
p≤Tε Xp)

k and can verify that it matches with
the answer as predicted in the central limit theorem, which by standard arguments
is enough to establish the distribution law 3.

By expanding the product, one can get

XP1
· · ·XPk

=
1

√
p1 · · ·

√
pk

cos (t log p1) · · · cos (t log pk).

Using the product formula for cosines, the product here can be expressed as
a linear combination of cosines cos (tξ) where the frequency ξ takes from

ξ = ± log p1 ± log p2 · · · ± log pk.

Observe that if each of the pj ’s is at most T ε then the numerator and the de-
nominator are at most T kε. Also, ξ is the logarithm of a rational number. By the
Fundamental theorem of Arithmetic if one of the primes p1, . . . , pk appears only
once then the numerator and the denominator do not cancel. Then ξ can not be

3Note that to get close to the normal distribution by a fixed amount of accuracy, it suffices to
control a bounded number of moments, which ultimately means that one can treat k as being
bounded, k = O(1).
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0. Since we know that the denominator is at most 1/T kε, the ξ must stay away
from 0 at a distant of 1/T kε or more. So, cos (tξ) have a wavelength of at most
O(T kε), for t ∈ [T, 2T ]. If k is fixed and ε is smaller than 1/k then one can see
that the average values of cos (tξ) is close to 0 for t ∈ [T, 2T ]. Then the product
Xp1 · · ·Xpk

have negligible expectation. Similarly, Selberg computed the expec-
tation of Xp1 · · ·Xpk

for all primes appear twice at least.

In 2017, Radziwiłł and Soundararajan [RS17] gave a new proof of Selberg’s
central limit theorem. As the first step of the proof, they have taken away the
problem from the critical line4. Selberg’s original proof is more complicated com-
pared to Radziwiłł and Soundararajan’s method because of the interference of the
non-trivial zeros of the Riemann zeta function. We have given a simplified version
of log |ζ(s)|. There is a “tail” in (1.3) coming from the zeros of the Riemann zeta
function that are more distant from s thanO(1/ log T ). Also, one has to smooth out
the sum in primes p a little bit and allow the implied constant depends on ε inside
the big-O term. Controlling these zeros (coming from the tail) is making Selberg’s
argument more complicated. While Radziwiłł and Soundararajan’s method is not
studying the actual problem on the critical line, just to take away the problem,
only a standard zero estimate is needed, not a crucial one like Selberg needed to
study the problem on the critical line. This reason makes their proof easier and
more elegant.

The rest of the method developed by Radziwiłł and Soundararajan only needs
very basic facts about the Riemann zeta function. In the second step, they have
introduced an auxiliary series involving the logarithmic derivative of the Riemann
zeta function. By restricting the auxiliary series to primes, they have proved that
it has approximate Gaussian distribution with mean 0 and variance 1

2 log log |t|.
Finally, they have taken the help of mollifiers to connect the zeta function with the
auxiliary series.

Although Selberg’s method is more complicated compared to Radziwiłł and
Soundararajan’s method to prove SCLT for log |ζ(1

2 + it)|, but for arg ζ(1
2 + it) Sel-

berg’s technique is better. In fact, Radziwiłł and Soundararajan’s method can only
be used to prove the result for the real part of the logarithm of the Riemann zeta
function because the mollification technique can not be applied for arg ζ(1

2 + it).

Selberg’s work provides a good understanding of zeta and L-functions on the
critical line. It shows that typical values of |ζ(1

2 + it)| are either very small (say
1
A for any A with logA = o(

√
log log T )) or large (> A with A as before), and that

intermediate values appear only on a set of measure o(T ). It has contrast with
the fact that |ζ(σ + it)| (with σ > 1

2 ) is typically of constant size. Some similar
results are known for ζ(σ + it) with 1

2 < σ ≤ 1 but Selberg’s result indicates why
the problem for σ = 1

2 has an entirely different flavour.

4The tail of the Riemann zeta function is defined as ζn(s) =
∑∞
k=n

1
ks , for <(s) > 1. Since

Radziwiłł and Soundararajan have proved the result for the real part of log |ζ(s)|, during the calcu-
lations, they have obtained the sums involving 1

n2<(s) . If <(s) = 1
2 , because of the tail distribution

of the Riemann zeta function, the sums involving these terms will not be controllable. So, for the
sake of the calculations, it is necessary to take away the problem from the critical line.
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We know that the ζ-function can be considered as an archetype of all L-
functions. It is believed that for each L-function there exists a Riemann Hypoth-
esis. So, the behaviour of L-functions in the critical strip encodes valuable in-
formation like ζ(s). The Grand Riemann Hypothesis is a much stronger version
of the Riemann Hypothesis. From these facts, we can say that logL(s) has its
own arithmetical significance. Further results were obtained by Selberg on this
subject [Sel92; Sel46a]. In these papers, Selberg introduced the properties of a
general class of the Dirichlet series, now referred to as the Selberg class. Selberg
showed that his theory, originally devised for the Riemann zeta-function, carries
over to the Selberg class with remarkably few changes.

Keating and Snaith [KS00b] conjectured that the logarithm of the central val-
ues of L-functions in families have a normal distribution with suitable mean and
variance. In this thesis we prove Selberg’s central limit theorem for classical au-
tomorphic L-functions and Dirichlet L-functions in t-aspect and q-aspect respec-
tively. In the third chapter, we prove Selberg’s theorem for the classical automor-
phic L-functions (attached with primitive holomorphic cusp form f ) given by the
Dirichlet series

L(f, s) =
∞∑
n=1

λf (n)

ns
.

We prove this result in t-aspect. In the fourth chapter, we prove Selberg’s
theorem for GL(3) Dirichlet L-functions attached to the Hecke-Maass cusp form
f and twisted by the primitive Dirichlet character χ, which is given by the Dirichlet
series

L(f ⊗ χ, s) =
∞∑
n=1

λf (1, n)χ(s)

ns
.

We give a conjectural proof of this result in the q-aspect using the asymptotic
Large Sieve. Further, using a similar method we prove Selberg’s theorem for
GL(1) Dirichlet L-function attached to primitive Dirichlet character χ5.

We use the proof technique established by Radziwiłł and Soundararajan [RS17].
But we need a few modifications in their method since we will be working with the
L-functions. As we have discussed earlier in the proof given in [RS17], the au-
thors have used the mollification technique to connect the zeta function with the
auxiliary series. To establish that connection they evaluated the mean square es-
timate of the zeta function. We also need such an estimate for our proof but we
do not use their method. Since we have the Hecke-eigenvalues of the cusp form
(or Maass form) attached to the L-series we require the shifted convolution sum
while we are evaluating the integral mean value estimate of the L-function. While
working with the q-aspect we need to consider the shifted convolution problem in
order to treat the approximate functional equation of the L-function, otherwise, for
the mean square estimate, we use a different technique.

Our work is limited to GL(2) and GL(3) L-functions because we don’t have
much information on the shifted convolution problem for higher degree L-functions.

5A detailed information on these families of L-functions has given in the next chapter.
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In fact, for GL(3) L-functions, only some hybrid results are possible.

Selberg also introduced the concept of independence of automorphic L-functi-
ons attached to distinct cusp forms or Maass forms (for Dirichlet L-function it is as-
sociated with distinct Dirichlet characters). Although it was not well defined in Sel-
berg’s paper, we get a generalized idea from it. In 2019, Hsu and Wong [HW20]
proved this result for families of Dirichlet L-functions associated with the set of
distinct primitive Dirichlet characters. We prove this result for families of auto-
morphic L-functions of degree 2 associated with the set of distinct primitive cusp
forms. Further, we consider a generalized notion on the independence of the
automorphic L-function with the help of the work of Hughes et al [HNY07].
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2. Notation and Preliminaries

2.1 Notation

Most of the following notation is standard in Analytic Number Theory.

• For the given functions f(x) and g(x) we write f(x) = O(g(x)) or, f(x) �
g(x) if there exists a constant c > 0 such that

|f(x)| ≤ cg(x)

for all x, where c is the implied constant. The notation f(x) � g(x) means
g(x)� f(x).

• For the given functions f(x) and g(x), f(x) = o(g(x)) as x→ x0 if

lim
x→x0

f(x)

g(x)
= 0.

• For the given functions f(x) and g(x) we denote f(x) ∼ g(x) which means

f(x)

g(x)
→ 1 as x→∞.

• We write f(x) � g(x) to mean that there exist constants 0 < c < C such that

cg(x) ≤ f(x) ≤ Cg(x)

for all x of interest. This notation roughly means that the functions f(x) and
g(x) have the same size.

• The Von Mangoldt function is the function defined by

Λ(n) =

{
log p if n = pk for prime p and integer k ≥ 1

0 otherwise.

• The Möbius function is denoted as µ given by

µ(n) =

{
(−1)r if n is the product of r distinct primes
0 otherwise.
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• Euler phi function denoted as φ(n) is the number of non-negative integers
less than n that are relatively prime to n. The Euler product formula for the
φ(n) is given by

φ(n) = n
∏
p|n

(
1− 1

p

)
where the product is over the distinct prime numbers dividing n. Note that
φ∗(q) denotes the number of primitive Dirichlet characters modulo q and
φ∗(q) = 0 if 2||q.

• The prime-omega function is denoted as Ω(n) which denote the number of
prime divisors of n counted with multiplicity.

• For s = σ + it with t 6= 0 we have the Stirling estimate (see 5.113 of [IK04])
asserting that for any fixed σ,

Γ(σ + it) =
√

2π(it)σ−
1
2 e−

1
2π|t|

(
|t|
e

)it(
1 +O

(
1

|t|

))
.

• As an application of the Stirling’s approximation [ET51] it can be shown that
for fixed δ > 0 (which is sufficiently small)

Γ(z + α)

Γ(z + β)
= zα−β

(
1 +O

(
|(α− β)(α + β − 1)|

|z|

))
,

where α and β are arbitrary constants and | arg(z)| ≤ π − δ.

• The exponential function is a mathematical function denoted by f(x) =
exp(x) = ex, with exp(0) = 1.It has the Taylor expansion,

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · .

It satisfies the following identity

exp (x+ y) = exp(x) · exp(y) for x, y ∈ C.

Moreover, this function is equal to its own derivative. Note that e(x) = e2πix

for all x.

2.2 Basic notion of the L-functions

The main topic of this dissertation is to prove Selberg’s central limit theorem for
some particular families of L-functions. First, we give a brief overview about the
Selberg Class then we recall some basic properties of the families of L-functions
we will be working on. All the families of L-functions we have considered in the
later chapters of this thesis belong to the Selberg Class. Note that for a primi-
tive L-function in the Selberg class (or for a cuspidal automorphic L-function for
GLn(Q)),one expects that logL(f, 1

2 + it) with T ≤ t ≤ 2T is distributed like a
complex Gaussian with mean 0 and variance 1

2 log log T .
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2.2.1 Selberg Class

In this section, we define the Selberg Class and discuss some of its properties.

Definition 2.2.1 (Selberg Class). The Selberg class S consists of meromorphic
functions L(s) satisfying the following properties.

• Dirichlet Series: It can be expressed as a Dirichlet series

L(s) =
∞∑
n=1

an
ns

which is absolutely convergent in the region <(s) > 1. One can normalize
the leading coefficient as an(1) = 1.

• Analytic continuation: There exists a non-negative integer k, such that
(s− 1)kL(s) is an entire function of finite order.

• Functional equation: There is a number ε with |ε| = 1, and a function γL(s)
of the form

γL(s) = P (s)Qs
w∏
j=1

Γ(wjs+ µj)

where Q > 0, wj > 0, <(µj) ≥ 0 and P is a polynomial whose only zeros in
σ > 0 are at the poles of L(s), such that

ξL(s) := γL(s)L(s)

is entire, and

ξL(s) = εξ̄L(1− s)

where ξ̄L(s) = ξL(s̄) and s̄ denotes the complex conjugate of s. The number
2
∑w

j=1wj is called the degree of the L-function, and this is conjectured to
be an integer. The asymmetric form of the functional equation can be written
as

L(s) = εXL(s)L̄(1− s)

where XL(s) =
γ̄L(1−s)
γL(s) .

• Euler product: There is an Euler product of the form

L(s) =
∏
p

Lp(s)

where the product is over primes and

Lp(s) =
∞∑
k=0

a
pk

pks
= exp

( ∞∑
k=1

b
pk

pks

)

where bn � nθ with θ < 1
2 .
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• Ramanujan-Petersson Conjecture: For any ε > 0

|an| = O(nε). (2.1)

The Euler product implies that the coefficients an are multiplicative, i.e., amn =
aman when (m,n) = 1.

Generalized Riemann hypothesis (GRH): Let L(s) ∈ S. If L(s) = 0 for
0 < <(s) < 1, then <(s) = 1

2 .
The families of L-functions we have considered in the thesis belong to the Sel-

berg class. So, we study some standard results on it.

Selberg’s Conjectures: In [Sel92], Selberg made the following conjectures.
Conjecture A (Regularity of distribution). Let L(s) ∈ S. There exists a constant
cL ≥ 0, such that as X →∞,

∑
p≤X

|ap|2

p
= cL log logX +O(1).

Conjecture B (Orthonormality). Let L1(s), L2(s) ∈ S be primitive elements (it
means Li(s) cannot be factored into the product of two or more non-trivial mem-
bers of S). Then

∑
p≤X

a1,pā2,p

p
=

{
log logX +O(1) if L1(s) = L2(s)

O(1) otherwise

Hypothesis H (Rudnick-Sarnak). For any fixed k ≥ 2

∑
p

|(log p)a
pk
|2

p2
<∞.

From (2.24) of [RS96] we know that

∑
n≤X

(log n)Λ(n)|an|2

n
∼ log2X

2
.

By partial summation, we get

∑
n≤X

Λ(n)|an|2

n log n
∼ log logX. (2.2)

If Hypothesis H holds, the contribution on powers of primes can be neglected.
This further implies Conjecture A, for any fixed GL(n) L-function.

As we have discussed in the introduction, we will be using very basic results
of L-functions to prove our main theorems. We work with Dirichlet L-functions
and automorphic L-functions of degrees 2 and 3.

12



2.2.2 Dirichlet L-functions

In this section we study about the Dirichlet L-functions attached to primitive Dirich-
let characters χ.

We start with the definition of Dirichlet characters.

Definition 2.2.2 (Dirichlet Characters). Let q be a positive integer. A Dirichlet
character modulo q is an arithmetic function χ with the following properties:

• χ is periodic modulo q i.e., χ(n+ q) = χ(n) for all n ∈ N.

• χ is completely multiplicative, i.e., χ(mn) = χ(m)χ(n) for all m,n ∈ N and
χ(1) = 1.

• χ(n) 6= 0 if and only if (n, q) = 1.

Associated with each character χ, in addition to its modulus q, is a natural
number q?, its conductor. The conductor is the smallest divisor of q such that χ
may be written as χ = χ0χ

? where χ0 is the principal character1 modulo q and
χ? is a character modulo q?. For some characters the conductor is equal to the
modulus. Such characters are called primitive.

Definition 2.2.3 (Dirichlet L-function). The Dirichlet L-function L(s, χ) is an L-
function of degree 1 given by the Dirichlet series

L(s, χ) =
∑
n

χ(n)

ns

for <(s) > 1 with conductor q, gamma factor

γ(s) = π−s/2Γ

(
s+ a

2

)
(2.3)

where a = 0 if χ(−1) = 1 and a = 1 if χ(−1) = −1. They are called even
characters and odd characters respectively.

Then ξ(f, s) has analytic continuation to the entire complex plane and satisfies
the functional equation

ξ(1− s, χ̄) = ε̄(χ)ξ(s, χ) (2.4)

where ξ(s, χ) denotes the complete L-function followed by the formula given
above, and ε(f) is the complex number of absolute value 1 called the root number
of L(s, χ).

Since we need to deal with the Dirichlet L-functions it is good to recall a few
properties of the Dirichlet characters.

We begin with the orthogonality relations of the Dirichlet characters which say
that

1The arithmetic function χ0 = χ0,q defined by χ0(n) = 1 if (n, q) = 1 and χ0(n) = 0 otherwise
(i.e., the characteristic function of the integers co-prime with q) is called the principal character
modulo q.
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∑
χ( mod q)

χ(a) =

{
φ(q) if a ≡ 1(modq)

0 otherwise.
(2.5)

We apply this result in later chapters to average some particular sums over
the Dirichlet characters.

The root number of L(s, χ) is given by ε(χ) = τ(χ)/
√
q, where

τ(χ) =
∑

b( mod q)

χ(b)e

(
b

q

)

is the Gauss sum associated with characters on residue classes modulo q. If χ
is non-trivial, then L(s, χ) is entire, otherwise it has a simple pole at s = 1 with
residue 1. The approximation of the Gauss sum is given by the next Lemma.

Lemma 2.2.4. If χ(modq) is primitive, then

|τ(χ)| = √q.

For the proof of this lemma see Lemma 3.1 of [IK04].
We prove next following lemmas, which we will use in the later chapter.

Lemma 2.2.5 (Euler product expression for L(s, χ)). If <(s) > 1, then

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

,

where (for the primitive Dirichlet characters χ) the finite product is defined to be

lim
P→∞

∏
p≤P

(
1− χ(p)

ps

)−1

.

Proof. For any prime p, (
1− χ(p)

ps

)−1

=
∞∑
k=0

χ(pk)

pks
.

The above series is absolutely convergent for <(s) > 0. If we restrict the Euler
product of L(s, χ) upto P and rearrange the term, then we have

∏
p≤P

(
1− χ(p)

ps

)−1

=
∏
p≤P

∞∑
k=0

χ(pk)

pks
=
∞∑
n=1

cP (n)

ns
,

where

cP (n) =

{
χ(n) if all prime factors of n are ≤ P ,
0 otherwise.

14



Note that each Dirichlet character are multiplicative and for n = p
a1
1 p

a2
2 · · · parr ,

each pair (pi, pj) = 1 for i 6= j. Then we write∣∣∣∣∣∣L(s, χ)−
∏
p≤P

(
1− χ(p)

ps

)−1
∣∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

χ(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

cP (n)=0

|χ(n)|
n<(s)

.

Since by definition cP (n) = χ(n) for n ≤ P , the right hand side of the above
equation is

≤
∞∑

n=P+1

|χ(n)|
n<(s)

.

If <(s) > 1, the above expression tends to 0 as P → ∞, concluding the lemma.

Lemma 2.2.6. For any σ > 1 and any t ∈ R and primitive Dirichlet characters χ,
we have

logL(σ + it, χ) =
∑
p

∞∑
k=1

1

k

χ(pk)

pk(σ+it)

and

log |L(σ + it, χ)| =
∑
p

∞∑
k=1

1

k

|χ(pk)| cos(kt log p)

pkσ
.

The double series on the right are absolutely convergent.

Proof. From Lemma 2.2.5, we have

logL(σ + it, χ) = −
∑
p

log

(
1− χ(p)

pσ+it

)
, σ > 1, t ∈ R.

Inserting the Taylor series expansion of log
(

1− χ(p)

pσ+it

)
and taking the real

parts and noting that <(p−ikt) = cos(kt log p), we conclude the lemma.

Remark 2.2.7. Note that the proof of Lemma 2.2.5 and Lemma 2.2.6 follows the
proof of Lemma 10.2 of [Har15b] and Lemma 13.1 of [Har15a] respectively.

2.2.3 Classical automorphic L-functions

In a few books classical automorphic L-functions usually refers to the GL(2) L-
functions associated with holomorphic or eigenfunctions of the Laplace operator.
In this thesis, we deal with the L-functions attached to primitive holomorphic cusp
forms and Hecke-Maass cusp forms.

Let H = {x+ iy : x ∈ R, y > 0}. A modular form of weight k and level q for the
congruence subgroup

Γ0(q) =

{(
a b
c d

)
∈ SL(2,Z)|c ≡ 0 mod q

}
is a complex valued function f : H→ C such that:
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• f is holomorphic;

• (f |kγ(z)) := (cz + d)−kf(γz) = f(z) for each γ ∈ Γ0(q);

• f is holomorphic at all cusps of Γ0(q) which means that the Fourier series
at those cusps is a Taylor series (or q-series) in q := e2πiz. The cusps are
given by γ(∞) = a

c where

γ =

(
a b
c d

)
is an element of Γ0(q)\SL(2,Z).

Furthermore, f is a cusp form if it is a modular form and if it vanishes at all
cusps of Γ0(q). Let Sk(q) denote the vector space of weight k cusp forms on Γ0(q)
with trivial character. For the cusp form f ∈ Sk(q) is not “primitive” if one of the
following holds (see 145-146, 173-174, 176-184, 213, 216, 238 of [Kob84]).

• f ∈ Sk(q/d) for some divisor d > 1 of q.

• f(z) = g(dz) and g ∈ Sk(q/d) for some divisor d > 1 of q.

Definition 2.2.8 (Classical automorphic L-functions). Let f be primitive holomor-
phic cusp form of weight k ≥ 1 and level q, with nebentypus2 ψ. Then f has the
Fourier expansion

f(z) =
∞∑
n=1

n
k−1

2 λf (n)e(nz)

Then an L-series attached to f is defined as

L(f, s) =
∑
n

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
− ψ(p)

p2s

)−1

where λf (n) is the nth Hecke eigenvalue3 of f , with conductor q and gamma factor

γ(f, s) = π−sΓ

(
s+ k−1

2

2

)
Γ

(
s+ k+1

2

2

)
= ck(2π)−sΓ

(
s+

k − 1

2

)

where ck = 2(3−k)/2√π by Legendre duplication formula.

2Let q ≥ 1 be an integer, and ψ a Dirichlet character modulo q (not necessarily primitive).

Clearly ψ induces a character of the modular group Γ0(q) by ψ(g) = ψ(d) for g =

(
a b
c d

)
. A

modular form of weight k, level q and nebentypus (or character) ψ is a holomorphic function f on
the upper-half plane H which satisfies f |kγ = ψ(γ)f , for all γ ∈ Γ0(q).

3For each n ∈ N, Tnf(z) := 1
n

∑
ad=n a

k
∑

0≤b<d f
(
az+b
d

)
= λf (n)f(z), where Tn is the n-th

Hecke operator and λf (n) is the n-th Hecke eigenvalue.
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Definition 2.2.8 is taken from section 5.11 of [IK04].
Λ(f, s) has analytic continuation to the entire complex plane and satisfies the

functional equation

Λ(f, s) = qs/2γ(f, s)L(f, s) = ε(f)Λ(f̄ , 1− s) (2.6)

where Λ(f, s) denotes the complete L-function followed by the formula given
above and f̄ is an object associated with f (the dual of f ) for which λf̄ (n) = λ̄f (n)
and ε(f) is the complex number of absolute value 1 called the root number of
L(f, s). The dual form f̄ satisfies

λf (n) = χ(n)λf (n) if (n, q) = 1.

Now we recall some standard results on the Hecke-eigenvalues of L(f, s). It
is known that L(f, s) satisfies the Ramanujan-Petersson Conjecture by work of
Deligne [Del74] for k ≥ 2 and Deligne-Serre [DS74] for k = 1.

Ramanujan-Petersson Conjecture: For a modular form f(z) in SL(2,Z) with
the weight k ≥ 2 if its Dirichlet series converges in <(s) > 1 then the coefficient
λf (n) = O(nε).

Recall that λf (n) is a real multiplicative function. Then we have [Li10]

λf (n)λf (m) =
∑

d|(m,n)
(d,q)=1

λf

(mn
d2

)
for m,n ≥ 1. (2.7)

and

λf (mn) =
∑

d|(m,n)
(d,q)=1

µ(d)λf

(m
d

)
λf

(n
d

)
for m,n ≥ 1. (2.8)

2.2.4 Dirichlet L-functions attached to twisted form

In this section, we define the Dirichlet L-functions associated with a twisted Maass
form.

Let n = 3 and let ν = (ν1, ν2) ∈ C2. A Maass form for SL(3,Z) of type ν is
smooth function f ∈ L2(SL(3,Z)\h3) which satisfies4

• f(γz) = f(z), for all γ ∈ SL(3,Z), z ∈ h3.

• Df(z) = λDf(z), for all D ∈ D3 with DIν(z) = λD · Iν(z) and

Iν(z) =
∏

i,j=1,2

ybi,jνj , bi,j =

{
ij if i+ j ≤ 3;
(2− i)(2− j) if i+ j ≥ 3,

and z = x · y, where x, y ∈ R>0.
4We define a Maass form as a smooth complex valued cuspidal function on h3 =

GL(3,R)/(O(n,R)) · R× which is invariant under the discrete subgroup SL(3,Z) and which is
also an eigen-function of every invariant differential operator in D3. Let gl(n,R) is the additive
vector space (over R) of all n× n matrices with coefficient in R. The differential operator Dα with
α ∈ gl(n,R) generate an associative algebra Dn over R. Then Dn is the center of Dn. Recall that
λD is the Harish-Chandra character.
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•
∫

(SL(3,Z)∩U)\U f(uz)du = 0, for all upper triangular groups U of the form

Ir1

Ir2 ∗
. . .

Irb


, with r1 + r2 + · · · + rb = 3. Here Ir denotes the

r×r identity matrix, and ∗ denotes arbitrary real entries (see Definition 5.1.3
of [Gol06]).

Definition 2.2.9 (Twisted Dirichlet L-functions). Let f be a primitive Hecke-Maass
cusp form of type ν = (ν1, ν2) for SL(3,Z) with nebentypus5 ψ. Let λ(m1,m2) (with
λ(1, 1) = 1) be the normalized Fourier coefficients of f . Then f has the Fourier
expansion

f(z) =
√
y
∑
n6=0

λf (1, n)Kir(2π|n|y)e(nx) (2.9)

where Kν(·) is the K-Bessel function [FL05].
Let χ be a primitive Dirichlet character modulo q. Then the L-function associ-

ated with the twisted form f ⊗ χ is given by the Dirichlet series

L(f ⊗ χ, s) =
∞∑
n=1

λf (1, n)χ(n)

ns

in domain <(s) > 1.

The gamma factor is given by

γ(f, s) =
3∏
i=1

ΓR (s− αi) (2.10)

where ΓR(s) := π−s/2Γ(s/2).

Since f is a Hecke-Maass cusp form of type (ν1, ν2). Then the Langlands
parameters (α1, α2, α3) associated with f are defined as

α1 = −ν1 − 2ν2 + 1

α2 = −ν1 + ν2

α3 = 2ν1 + ν2 − 1 (2.11)

Then the functional equation of L(f ⊗ χ, s) is given by

Λ(f ⊗ χ, s) = εχΛ(f̄ ⊗ χ̄, 1− s) (2.12)

where

Λ(f ⊗ χ, s) = q3s/2γ(f, s)L(f ⊗ χ, s)
5which is an eigenfunction of all the Hecke operators with eigenvalue λ = 1

4 + r2, where
0 ≤ r < 1

2 .
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is the complete L-function. The sign of the L-function εχ is given by

εχ = g(χ)3/q3/2,

where g(χ) is the Gauss sum.

The Ramanujan-Selberg conjecture predicts that <(αi) = 0. The bound of the
Ramanujan conjecture onGL(3) gives (recently proved by Huang and Zu [HX21]),

λ(m,n)� (mn)δ. (2.13)

where δ = κ + ε and κ ≤ 5/14. Note that Hypothesis H was proved by Rudnick-
Sarnak (see Proposition 2.4 of [RS96]) for GL(3) L-functions. We can conclude
Conjecture A holds for GL(3) L-functions. From the Rankin-Selberg theory the
following average holds.

∑
n≤x
|λf (1, n)|2 � x. (2.14)

2.2.5 Approximate functional equation

In the proof of the main result, we use approximate functional equation for L-
functions.

Lemma 2.2.10. Let L(f, s) be an L-function belonging to the Selberg Class. Let
G(u) be any function which is holomorphic and bounded in the strip −4 < <(u) <
4, even, and normalized by G(0) = 1. Let X > 0. Then for s in the strip 0 ≤ σ ≤ 1
we have

L(f, s) =
∑
n

λf (n)

ns
Vs

(
n

X
√
q

)
+ ε(f, s)

∑
n

λ̄f (n)

n1−s V1−s

(
nX
√
q

)
+R (2.15)

where the function Vs(y) is a smooth function given by

Vs(y) =
1

2πi

∫
(3)
y−uG(u)

γ(f, s+ u)

γ(f, s)

du

u

and

ε(f, s) = ε(f)q(f)
1
2−s

γ(f, 1− s)
γ(f, s)

The last term R = 0 if Λ(f, s) is entire, otherwise

R = (resu=1−s + resu=−s)
Λ(f, s+ u)

qs/2γ(f, s)

G(u)

u
Xu.

For small y we can shift the contour to the left up to −1/10 + ε. We get the
asymptotic expansion

Vs(y) = 1 +O(y1/10−ε).

For large y we use the bound V (y) = Oj(y
−j) which holds for any j ≥ 1. For the

proof of this lemma, see Theorem 5.3 of [IK04].
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2.2.6 Miscellaneous

In this section, we state few standard results of L-functions that apply to all de-
grees of automorphic L-functions.

Lemma 2.2.11. Let L(f, s) be an L-function. There exist constants a = a(f) and
b = b(f) such that

(s(1− s))Λ(f, s) = ea+bs
∏
ρ 6=0,1

(
1− s

ρ

)
e
s
ρ ,

where ρ ranges over all zeros of Λ(f, s) different from 0,1.

For the proof of Lemma 2.2.11 see Theorem 5.6 of [IK04].

We denote

−L
′

L
(f, s) =

∑
n≥1

Λf (s)

ns
,

the expansion of the logarithmic derivative of an L-function in Dirichlet series
supported on prime powers. In terms of the local roots αi(p) of the Euler product
we have

Λf (pk) =
d∑
j=1

αj(p)
k log p.

We remark that for Dirichlet characters Λχ(n) = χ(n)Λ(n), where Λ(n) denotes
the Von Mangoldt function. For GL(2) L-functions in the case k = 1 we have
Λf (p) = λf (p) log p and in the case m = 2 we have Λf (p2) = (λf (p2)− ψ(p)) log p
for prime p. Otherwise |Λf (n)| ≤ 2Λ(n) holds for every positive integer n where
Λ(n) denotes von Mangoldt’s function. In general Λf (p) = λf (p) log p. Note that
Λf̄ (n) = Λf (n).

We require the following estimates [RS17]. For any m,n ∈ N, one has∫ 2T

T

(m
n

)it
dt =

{
T if m = n;

O
(

min{T, 1
| log(m/n)|}

)
if m 6= n.

(2.16)

For m 6= n one further has

1

| log(m/n)|
�


1 if m ≥ 2n, or m ≤ n/2;
m
|m−n| if n/2 < m < 2n;
√
mn for all m 6= n.

(2.17)

Rankin-Selberg L-function: Recall the Rankin-Selberg L-function L(f×f, s)
is defined as

L(f × f, s) =
∞∑
n=1

λf×f (n)

ns
= ζ(q)(2s)

∞∑
n=1

λf (n)2

ns

for <(s) > 1.
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2.3 Shifted Convolution Problem

Let f be a primitive modular form of level q and nebentypus ψ. Let λf (n) be the
Hecke-eigenvalues of f . Then the shifted convolution problem (SCP) consist to
estimate the non-trivial bound of the following sum:∑

(f, l1, l2, h) =
∑

l1m−l2n=h

λf (n)λ̄f (m)V (m,n) (2.18)

where l1, l2 ≥ 1 and V is a compactly supported nice function in [M, 2M ]×[N, 2N ].
The trivial bound of the sum is∑

(f, l1, l2, h)�ε (MN)ε max(M,N).

Find δ > 0 s.t. ∑
(f, l1, l2, h) = Main term(h) +O(M1−δ)

when M and N has almost same size. The Main term(h) is the main term and
the remaining term is the error term. We can only have a non-zero main term if f
is an Eisenstein series [Mic07].

Remark 2.3.1. If h = 0 then the sum is a Rankin-Selberg type partial sum which
can be evaluated by shifting the contour. The problem is interesting when h 6= 0.

The non-trivial bound of this type of problem is often used in the sub-convexity
problem. In fact, in analytic number theory, the most useful application of SCP is
to obtain the sub-convexity bound for the Riemann zeta function and L-functions.
But we don’t need any deeper knowledge of these types of problems. We only
use the non-trivial upper bound of the sum given in (2.18).

From the approximate functional equation of the L-function (see (2.15)), we
can obtain the sum

ΣV (f ;h, l1, l2) =
∑

l1m−l2n=h

λf (n)λ̄f (m)
V (mq )V (nq )

(mn)
1
2

.

The sum is like a partial sum of Rankin-Selberg type but with an additive shift
given by h. As we have stated before that for h = 0 the sum is trivial. For h 6= 0
the additive shift is non-trivial and one expects some cancellation during the time
of averaging the Hecke-eigenvalues λf (n), λf (m). Due to Ramanujan-Petersson
conjecture we know that λf (n) � qε (where n ∼ q) the non-trivial bound for
ΣV (f ;h, l1, l2) is

ΣV (f ;h, l1, l2)�ε,f (qL)εL3/4q−1/4, (2.19)

where l1, l2 ≤ L.
For the proof of (2.19) see section 4.3.1 and section 4.4 of [Mic07]
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2.4 Random Variables and their properties

The main topic of this thesis is to prove Selberg’s central limit theorem for L-
functions in families for both t-aspect and q-aspect. From the statement of the
result stated in the introduction, it is obvious that we need to deal with some basic
probabilistic results. Since we are proving the central limit theorem we have to
deal with random variables. We prove the main results of this thesis using the
method of moments. In this chapter, we recall some standard results on it.

2.4.1 Gaussian random variable

In this section, we go through some basic facts about the Gaussian random vari-
able.

Definition 2.4.1 (Normal random variable). A continuous random variable Z is
said to be a standard normal (standard Gaussian) random variable, denoted as
Z ∼ N (0, 1), if its probability density function (or PDF) is given by

fZ(z) =
1√
2π

exp

{
−z

2

2

}
, for all z ∈ R.

If Z is a standard normal random variable and Z = X−µ
σ , then X is a normal

random variable with mean µ and variance σ2 and we write X ∼ N (µ, σ2).

Definition 2.4.2 (Normal distribution). A normal (or Gaussian) distribution is a
type of continuous probability distribution for a real-valued random variable. The
probability density function is given by

f(X) =
1

σ
√

2π
e
−1

2

(
X−µ
σ

)2

.

We recall some facts regarding normal random variables. Let X be a normal
random variable with mean 0 and variance σ2. The n-th moment of X satisfies

E[Xn] =

{
0 if n is odd;

(1 · 3 · · · (n− 1))σn if n is even,
(2.20)

where E[Xn] denotes the mean of Xn for positive integer n.
Let X1 and X2 be two random variables. Then X1 and X2 are independent if

their probability distribution

P (X1 < x1, X2 < x2) = P (X1 < x1)P (X2 < x2),

for all x1, x2. The co-variance of X1 and X2 in terms of expectation is given by

Cov(X1, X2) := E[X1X2]− E[X1]E[X2].

Recall that X1, X2 is said to be uncorrelated if their co-variance is 0. That
means

Cov(X1, X2) = 0⇐⇒ E[X1X2] = E[X1]E[X2]
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The co-variance coefficient defined by

ρ(X1, X2) :=
Cov(X1, X2)√

Var(X1)Var(X2)
.

IfX1 andX2 are uncorrelated then the co-variance coefficient ρ(X1, X2) is 0. Note
that two independent random variables are always uncorrelated, but the converse
is not necessarily true. That is, if X1 and X2 are uncorrelated, then X1 and X2

may or may not be independent.

From the variance of a sum we know that for random variables X1, X2 and for
real numbers a, b ∈ R we write

Var(aX1 + bX2) = a2Var(X1) + b2Var(X2) + 2abCov(X1, X2)

From this equation it is clear that if X1 and X2 are uncorrelated then

Var(X + Y ) = Var(X) + Var(Y ) (2.21)

Until now we have only looked at the uni-variate (or one-variable) normal dis-
tribution. Now let us recall n-variate (or multivariate) normal distribution.

Let X = (X1, X2, . . . , Xn) be a random vector (or multivariate random variable)
in Rn. Let E(Xi) = mi and Var(Xi) = σ2

i for all i = 1, . . . , n. Then X is called an
n-variate normal distribution with probability density function given by

fX(x) =
1

(2π)
n
2
√

det(K)
e−

1
2(x−m)TK−1(x−m)

where m = (m1, . . . ,mn), (x − m)T denotes the transpose vector (x − m) and
K = (σij) is an n × n symmetric positive definitive matrix of real numbers with
σii = σ2

i and σij = ρ(Xi, Xj)σiσj .

We have the following properties for an n-variate normal distribution.

• Let Y be a random variable given by

Y = X1 +X2 + . . .+Xn

then the linearity of expectation tells us that

E[Y ] = E[X1] + E[X2] + . . .+ E[Xn]

• The variance of Y is given as

Var(Y ) = Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov (Xi, Xj)

• If the Xi’s are independent then the Cov(Xi, Xj) = 0 for i 6= j. In this case
one has

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).
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Lemma 2.4.3. Let (Xi)
n
i=1 be a sequence of normal distributions. Then (Xi)

n
i=1 is

an n-variate normal distribution if and only if any linear combination of Xj ’s is a
normal distribution.

Suppose, further, that (Xi, Xj) is a bi-variate normal distribution. Then Xi and
Xj are independent if and only if they are uncorrelated.

For the proof of Lemma 2.4.3, see Theorem 5.5.33 of [DM88].

Lemma 2.4.4 (Cramér-Wold Theorem). Let

X̄n = (Xn1 , Xn2) and X̄ = (X1, X2)

be random vectors. Then X̄n converges to X̄ in distribution if and only if

2∑
i=1

aiXni

D−−−→
n→∞

2∑
i=1

aiXi

for each (a1, a2) ∈ R2, that is, if every linear combination of the coordinates of X̄n

converges in distribution to the correspondent linear combination of coordinates
of X̄.

For the proof of this lemma see p.383 of [Bil95].

Corollary 2.4.5. Let

X̄n(t, ω) = (Xn1(t, ω), Xn2(t, ω)) and X̄(t, ω) = (X1(t, ω), X2(t, ω))

be random vectors, where ω is a random parameter and t is the time parameter.
Then X̄n(t, ω) parameter wise converges to X̄(t, ω) in distribution if and only if

2∑
i=1

aiXni
(t) −−−→

t→∞

2∑
i=1

aiXi(t) and
2∑
i=1

aiXni
(ω) −−−→

n→∞

2∑
i=1

aiXi(ω)

for each (a1, a2) ∈ R2, that is, if every linear combination of the coordinates of
X̄n(t, ω) parameter wise converges6 in distribution to the correspondent linear
combination of coordinates of X̄(t, ω).

Remark 2.4.6. Let (X1, X2) are approximate bi-variate normal distribution and
converges to (Y1, Y2) in distribution, where (Y1, Y2) is a bi-variate normal distribu-
tion. Then as an application of Lemma 2.4.3 and Corollary 2.4.5, we can deduce
that X1 and X2 are asymptotically independent if and only if Y1 and Y2 are inde-
pendent.

In a later chapter, we prove that a finite sequence of L-functions associated
with distinct cusp forms (or Maass forms) forms a Gaussian process [Lif12].

Definition 2.4.7 (Gaussian process). A stochastic process (Xi) is called a Gaus-
sian process if every finite sub-sequence of (Xi)i∈J has a multivariate normal
distribution.

6“parameter wise converges” indicates that we fix one parameter (either t or ω) and X̄n(t, ω)
converges in distribution as the other parameter varies.
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2.4.2 Method of moments

We prove our main results by studying the moments of the auxiliary series (which
we define in later chapters). We need very basic results on the method of mo-
ments.

For some distributions, one can not trace the characteristic function but the
moments can be calculated for those distributions. In these cases, one can prove
the weak convergence of the distribution by establishing the moment convergence
under the condition in which the moments are uniquely determined.

Lemma 2.4.8. Let (S,F,P) be a complete probability space. We say that (Xn)
converges to X in distribution if limn→∞P(s ∈ S : Xn(s) ≤ x) = P(s ∈ S :
X(s) ≤ x) for every x such that P(s ∈ S : X(s) = x) = 0.

Suppose that the distribution of X is determined by its moments of all orders,
and that limn→∞ E[Xr

n] = E[Xr] for r = 1, 2, . . .. Then Xn ⇒ X which means Xn

converges to X in distribution.

For the proof of Lemma 2.4.8 see Theorem 30.2 of [Bil95]. The method of
moments plays an important role to determine the central limit theorems and it
has several applications in Number Theory as well. For example, see Theorem
30.3 of [Bil95].

25



3. SCLT for automorphic
L-functions in the t-aspect

3.1 Introduction

In this chapter, we present a simple proof of Selberg’s central limit theorem for
automorphic L-functions of degree 2 associated with primitive holomorphic cusp
forms1 under the assumption of GRH. As we have discussed in the introduction,
we follow the method established in [RS17].

As discussed in the introduction, Radziwiłł and Soundararajan’s [RS17] method
can be extended for higher degree L-functions, but the computations do not fol-
low immediately. To prove SCLT for the families of L-functions with degree d ≥ 3,
one needs to follow the mollification technique, which requires one to prove the
second mollified moment of the L-functions. Note that one needs information on
the shifted convolution problem to compute the second mollified moment of the
L-functions. Due to the limited information on the shifted convolution problem
for higher degree L-functions (for degree d ≥ 3), Radziwiłł and Soundararajan’s
proof (in t-aspect) can not be extended at the moment. Selberg mentioned that
his central limit theorem can be proved for all L-functions belonging to the Selberg
class [Sel46a]2.

In this chapter, we have proved SCLT in the t-aspect, for which we have in-
tegrated over t ∈ [T, 2T ] for sufficiently large T . Since we are dealing with the
L-functions, some modifications are needed in our proof.

Our main result has stated below.

Theorem 3.1.1. Let V be a fixed positive real number and f is a primitive holo-
morphic cusp form of weight k ≥ 1, level q. Then as T → ∞, uniformly for all
v ∈ [−V, V ],

1

T
meas

{
T ≤ t ≤ 2T : log |L(f,

1

2
+ it)| ≥ v

√
1

2
log log T

}
∼ 1√

2π

∫ ∞
v

e−u
2/2du,

1Throughout this chapter, we have considered L-functions as defined in Definition 2.2.8.
2Selberg has proved his central limit theorem for the Riemann zeta function and Dirichlet L-

functions [Sel46b; Sel46a].
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3.2 The Setup

In this section, we write the sketch of the proof of Theorem 3.1.1 for GL(2) L-
functions.

Our proof can be broken into four main steps. In the first step, we take away
the problem from the critical line. In the next step, we introduce an auxiliary series
involving the Hecke-eigenvalues of f . We prove that it has normal distribution by
studying its moments. Finally, we use the mollification technique to connect the
L-functions with the introduced auxiliary series.

The following proposition proves that log |L(f, 1
2 + it)| is typically close to

log |L(σ + it)| for suitable σ near 1
2 .

Proposition 3.2.1. Let T be large and suppose T ≤ t ≤ 2T . Then for any σ > 1/2
we have ∫ t+1

t−1

∣∣∣∣log |L(f,
1

2
+ iy)| − log |L(f, σ + iy)|

∣∣∣∣ dy � (σ − 1

2
) log T.

Remark 3.2.2. In the first step, we take away the problem from the critical line.
If we choose to move 1/ log T distance from the 1

2 line (as T → ∞ the density
of zeros of L(f, s) increases), then we might stay very close to 1

2 line for large
enough T . We wish to stay away from the critical line but not too far away. So, we
can not choose a large parameter W . That is why we choose W = o(

√
log log T ).

Further, we want to approximate L(f, s) by an Euler product, where the product
is going up to X. In order to approximate, we need to consider that X would be
going up to a small power of T .

We fix the parameters

W = (log log log T )4, X = T 1/(log log log T )2 , Y = T (1/ log log T )2 , σ0 =
1

2
+

W

log T
,

where T > 0 is sufficiently large so that W ≥ 3.

From Proposition 3.2.1, we can see that the difference between log |L(f, 1
2+it)|

and log |L(f, σ0 + it)| is negligible3. So from now on we need to study the be-
haviour of log |L(f, σ0 + it)| which is a much easier problem since the zeros of the
L-functions won’t interfere anymore.

As the second step, consider the auxiliary series

P(f, s) = P(f, s;X) =
∑

2≤n≤X

Λf (n)

ns log n

By computing moments we determine the distribution of P(f, s).
3Using Proposition 3.2.1 we can say that log |L(f, 1

2 + it)| and log |L(f, σ0 + it)| differ by at most
AW except on a set of measureO(T/A), where logA = o(

√
log log T ). IfAW is small compared to√

log log T , the difference is negligible and log |L(f, s)| has almost same distribution at s = σ0 + it
and s = 1

2 + it.
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Proposition 3.2.3. As t varies in T ≤ t ≤ 2T , the distribution of <(P(f, σ0 + it))
is approximately normal4 with mean 0 and variance ∼ 1

2 log log T . Precisely, let V
be a fixed positive real number then as T →∞, uniformly for all v ∈ [−V, V ],

1

T
meas

{
T ≤ t ≤ 2T : <(P(f, σ0 + it)) ≥ v

√
1

2
log log T

}
∼ 1√

2π

∫ ∞
v

e−u
2/2du.

By the definition of the Fourier coefficient of the cusp form λf (1) 6= 0. Then
we can define the convolution inverse (µf (n)) of the sequence (λf (n)). This is an
arithmetic multiplicative function, which satisfies for a prime number p

µf (1) = 1, µf (p) = −λf (p), µf (p2) = λf (p)2 − λf (p2) =

{
1 if p - q
0 otherwise

and if j ≥ 3, µf (pj) = 0.

Now it remains to connect <(P(f, σ0 + it)) with log |L(f, σ0 + it)| for most val-
ues of t to prove Theorem 3.1.1. For this, we use the mollification technique.
Introducing the Dirichlet polynomial M(f, s) given by

M(f, s) =
∑
n

µf (n)a(n)

ns

where a(n) is defined by

a(n) =


1 if n is composed only by primes below X and has at most 100 log log T ,

primes below Y , and at most 100 log log log T primes between Y and X.
0 otherwise .

By the definition of a(n) it takes the value 0 except when
n ≤ Y 100 log log TX100 log log log T < T ε. It is now evident that M(f, s) is a short
Dirichlet polynomial. Our target is to show that M(f, s) can be approximated by
e−P(f,s).

Proposition 3.2.4. For T ≤ t ≤ 2T

M(f, σ0 + it) = (1 + o(1)) exp(−P(f, σ0 + it))

except perhaps on a subset of measure o(T ).

Now it remains to connect the L-functions with the Dirichlet polynomialM(f, s)
to prove the theorem. Roughly speaking from the definition of M(f, s) we can see
that L(f, s) and M(f, s) are inverse to each other, which we are going to prove as
our final step.

Proposition 3.2.5. For T ≤ t ≤ 2T ,

1

T

∫ 2T

T
|1− L(f, σ0 + it)M(f, σ0 + it)|2 dt = o(1).

4see (1.2), introduction.
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So that for T ≤ t ≤ 2T we have

L(f, σ0 + it)M(f, σ0 + it) = 1 + o(1),

except perhaps on a set of measure o(T ).

Now we are ready to prove Theorem 3.1.1.
Proof of Theorem 3.1.1: Recalling Proposition 3.2.5, it says that for all t ∈

[T, 2T ] (outside of a set of measure o(T )) we have

L(f, σ0 + it) = (1 + o(1))M(f, σ0 + it)−1.

By Proposition 3.2.4, for all t ∈ [T, 2T ] (outside of a set of measure o(T )) we know
that

|L(f, σ0 + it)| = (1 + o(1)) exp(<P(f, σ0 + it))

and by Proposition 3.2.3 we can conclude that log |L(f, σ0 + it)| is normally dis-
tributed with mean 0 and variance 1

2 log log T . Finally with the help of Proposi-
tion 3.2.1 we deduce that∫ 2T

T

∣∣∣∣log |L(f,
1

2
+ it)| − log |L(f, σ0 + it)|

∣∣∣∣ dt� T (σ0 −
1

2
) log T = WT,

So outside of a set of measure O(T/W ) = o(T ) we have

log |L(f,
1

2
+ it)| = log |L(f, σ0 + it)|+O(W 2).

Since W 2 = o(
√

log log T ) it follows that similarly like log |L(f, σ0 + it)|,
log |L(f, 1

2 + it)| has the normal distribution with mean 0 and variance 1
2 log log T ,

which completes the proof of Theorem 3.1.1.

3.3 Proof for GL(2) L-functions

In this section, we give the detail of the proof of Theorem 3.1.1 by proving the
Propositions.

3.3.1 Proof of Proposition 3.2.1

Let f be a primitive holomorphic cusp form (as defined in Definition 2.2.8) of
weight k ≥ 1 and level q.

Set

G(f, s) = qs/2γ(f, s) = qs/2ck(2π)−sΓ

(
s+

k − 1

2

)
(3.1)

where γ(f, s) is the gamma factor of L(f, s) with ck = 2(3−k)/2√π. If t is sufficiently
large and y ∈ [t− 1, t+ 1], then by Stirling’s formula we will show that∣∣∣∣log

G(f, σ + iy)

G(f, 1/2 + iy)

∣∣∣∣� (
σ − 1

2

)
log t.
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Note that

arg

(
G(f, σ + iy)

G(f, 1/2 + iy)

)
= arg (G(f, σ + iy))− arg (G(f, 1/2 + iy)) .

Now, applying the formula for the argument of the gamma function we have

arg (G(f, σ + iy)) = arg

(
q(σ+iy)/2ck(2π)−(σ+iy)Γ

(
σ + iy +

k − 1

2

))
= arg(q(σ+iy)/2) + arg(ck(2π)−(σ+iy)) + arg

(
Γ

(
σ + iy +

k − 1

2

))
=y/2 log q + y log 2π + (y log y − y) +

(
σ − 1

2

)
π

2
+O

(
1

|y|

)
.

Similarly,

arg (G(f, 1/2 + iy)) = y/2 log q + y log 2π + (y log y − y) +O

(
1

|y|

)
.

Expanding the complex logarithm and putting Stirling’s approximation5 for Gamma
function in (3.1) we have,

log
G(f, σ + iy)

G(f, 1/2 + iy)

= log

∣∣∣∣ G(f, σ + iy)

G(f, 1/2 + iy)

∣∣∣∣+ i arg

(
G(f, σ + iy)

G(f, 1/2 + iy)

)
= log

q
σ
2 ck(2π)−σ|Γ(σ + iy + k−1

2 )|

q
(1/2)

2 ck(2π)−1/2|Γ(1/2 + iy + k−1
2 )|

+ i (arg (G(f, σ + iy))− arg (G(f, 1/2 + iy)))

= log

(
q
σ−1/2

2 (2π)−(σ−1/2)

√
2πyσ−1/2e−

π
2 |y|

√
2πe−

π
2 |y|

)
+O

(
|y|σ−

3
4 e−

π
2 |y|
)

+O
(
|y|−1e−

π
2 |y|
)

+ i

((
σ − 1

2

)
π

2
+O

(
1

|y|

))
= log

(
q
σ−1/2

2 (2π)−(σ−1/2)y(σ−1
2)

)
+O

(
e−

π
2 |y|

|y|

)
+ i

((
σ − 1

2

)
π

2
+O

(
1

|y|

))
.

Since, t is large enough and y ∈ [t− 1, t+ 1], and q is fixed (which means the
implicit constant will depend on q), we write6

∣∣∣∣log
G(f, σ + iy)

G(f, 1/2 + iy)

∣∣∣∣� ∣∣∣log t(σ−
1
2)
∣∣∣� (

σ − 1

2

)
log t.

5Consider the Stirling formula given in notation. We can separate the real and the argument
part. For the real part we can write |Γ(σ + it)| =

√
2π|t|σ− 1

2 e−
π
2 |t|
(

1 +O
(

1
|t|

))
. The argument

can be written as arg(Γ(σ + it)) = t log t− t+
(
σ − 1

2

)
π
2 +O

(
1
|t|

)
.

6Note that the error term coming from the logarithm of the Gamma function is very small. Since
we only need the upper-bound, the error will be subsumed by the main term.
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Recall the functional equation of the complete L-function (as given in (2.6))

Λ(f, s) = G(f, s)L(f, s).

To prove Proposition 3.2.1 it is enough to prove that

∫ t+1

t−1

∣∣∣∣log

∣∣∣∣Λ(f, 1/2 + iy)

Λ(f, σ + iy)

∣∣∣∣∣∣∣∣ dy � (
σ − 1

2

)
log T.

Recalling Hadamard’s factorization formula (see e.g. Lemma 2.2.11), there exist
constants a = a(f) and b = b(f) (where b(f) = −

∑
ρ<(1/ρ)) such that

(s(1− s))Λ(f, s) = ea+bs
∏
ρ 6=0,1

(
1− s

ρ

)
es/ρ,

where ρ ranges over all zeros of Λ(f, s) different from 0,1. The product on the left
hand side of the above equation is over all non-trivial zeros of L(f, s), all of which
lie in the region 0 ≤ <(ρ) ≤ 1.

Assuming that y is not the ordinate of a zero of L(f, s) we can write

log

∣∣∣∣Λ(f, 1/2 + iy)

Λ(f, σ + iy)

∣∣∣∣ =
∑
ρ

log

∣∣∣∣(1/2 + iy)− ρ
(σ + iy)− ρ

∣∣∣∣ .
Suppose ρ = β + iγ is a non-trivial zero of L(f, s). Integrating over

y ∈ [t− 1, t+ 1] we get

∫ t+1

t−1

∣∣∣∣∣log

∣∣∣∣∣Λ(f, 1
2 + iy)

Λ(f, σ + iy)

∣∣∣∣∣
∣∣∣∣∣ dy ≤∑

ρ

∫ t+1

t−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + iy − ρ
σ + iy − ρ

∣∣∣∣∣
∣∣∣∣∣ dy (3.2)

=
1

2

∑
ρ

∫ t+1

t−1

∣∣∣∣∣log
(β − 1

2)2 + (y − γ)2

(β − σ)2 + (y − γ)2

∣∣∣∣∣ dy.
If |t− γ| ≥ 2 then for any y ∈ [t− 1, t+ 1] we have

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + iy − ρ
σ + iy − ρ

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣< log

(
1−

σ − 1
2

σ + iy − ρ

)∣∣∣∣∣ =

∣∣∣∣∣< σ − 1
2

σ + iy − ρ

∣∣∣∣∣+O

(
(σ − 1

2)2

(y − γ)2

)

=O

(
(σ − 1

2)

(y − γ)2

)
.

So we can write

∫ t+1

t−1

∣∣∣∣log

∣∣∣∣(1/2 + iy)− ρ
(σ + iy)− ρ

∣∣∣∣∣∣∣∣ dy � (σ − 1/2)

(t− γ)2
.
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Then contribution of these zeros give

∑
ρ

|t−γ|≥2

(σ − 1
2)

(t− γ)2
� (σ − 1

2
) log T.

Now consider the range |t − γ| ≤ 2 (which is basically the zeros near t) we
have ∫ t+1

t−1

∣∣∣∣log

∣∣∣∣1/2 + iy − ρ
σ + iy − ρ

∣∣∣∣∣∣∣∣ dy =
1

2

∫ t+1

t−1

∣∣∣∣∣log
(β − 1

2)2 + (y − γ)2

(β − σ)2 + (y − γ)2

∣∣∣∣∣ dy
≤1

2

∫ ∞
−∞

∣∣∣∣∣log

∣∣∣∣∣(β − 1
2)2 + x2

(β − σ)2 + x2

∣∣∣∣∣
∣∣∣∣∣ dx

=π

(
σ − 1

2

)
.

So in this case the contribution of zeros is� (σ − 1
2) log T .

Thus in either case∫ t+1

t−1

∣∣∣∣log

∣∣∣∣1/2 + iy − ρ
σ + iy − ρ

∣∣∣∣∣∣∣∣ dy � (σ − 1
2)

1 + (t− γ)2
.

Inserting this in (3.2) and noting that there are log(t+ k′) zeros with k′ ≤ |t− γ| <
k′ + 1 (from Theorem 5.38 of [IK04]), we can conclude

∫ t+1

t−1

∣∣∣∣log

∣∣∣∣L(f, 1/2 + iy)

L(f, σ + iy)

∣∣∣∣∣∣∣∣ dy =

∫ t+1

t−1

∣∣∣∣log

∣∣∣∣Λ(f, 1/2 + iy)

Λ(f, σ + iy)

∣∣∣∣∣∣∣∣ dy +O

(
σ − 1

2

)
log T

�
(
σ − 1

2

)
log T,

which completes the proof.

3.3.2 Proof of Proposition 3.2.3

To prove this proposition we restrict the sum P(f, s) to primes and compute mo-
ments. We know that Gaussian distribution can uniquely be determined by its
moments.

For the terms involving higher power of primes i.e. pk (with k ≥ 3) we have7∣∣∣∣∣∣∣∣∣
∑

2≤pk≤X
k≥3

Λf (pk)

pks(k log p)

∣∣∣∣∣∣∣∣∣ ≤
∑

2≤pk≤X
k≥3

1

3pkσ0
= O(1).

7Note that Λf (pk) = (α1(p)k + α2(p)k) log p with |α1(p)|, |α2(p)| = 1, if (p, q) = 1 (see Theorem
8.2 of [Del74]).
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where <(s) = σ0 > 1
2 . As argued in Section 3 of [MN14] (recall that ψ is the

nebentypus of L(f, s), see Definition 2.2.8),

|λf (p2)− ψ(p)|2 =

∣∣∣∣Λf (p2)

log p

∣∣∣∣ ≤ ∣∣∣∣2Λ(p2)

log p

∣∣∣∣2 =

∣∣∣∣2Λ(p)

log p

∣∣∣∣2 = 4.

By expanding out and using (2.16) and (2.17) contribution of the terms involv-
ing prime squares give

∫ 2T

T

∣∣∣∣∣∣
∑

2≤p2≤X

λf (p2)− ψ(p)

p2(σ0+it) · 2

∣∣∣∣∣∣
2

dt ≤
∑

p1,p2≤
√
X

∫ 2T

T

1

p
2(σ0+it)
1 p

2(σ0−it)
2

dt (3.3)

� T
∑
p≤
√
X

1

p4σ0
+

∑
p1,p2≤

√
X

p1 6=p2

1

p
2σ0
1 p

2σ0
2

√
p1p2 � T.

Let A(t;X) = A(t) =
∑

2≤p≤X
λf (p2)−ψ(p)

2p2σ0
, from (3.3) and Chebyshev’s in-

equality we have

meas{T ≤ t ≤ 2T : |A(t)| > L} ≤ 1

L2

∫ 2T

T
|A(t)|2dt� T/L2

In other words, we can say that the square of primes in P(f, s) contribute mea-
sure at most O(T/L2). With a similar explanation of Remark 3.2.2, L can goes up
to a small power of T. Then we choose L = o(log log log T ).

Now we restrict P(f, s) to primes. Since we know that Λf (p) = λf (p) log p for
all prime p, we can write

P0(f, σ0 + it) = P0(f, σ0 + it,X) =
∑
p≤X

λf (p)

pσ0+it
.

Let us begin by computing the moments of P0(f, σ0 + it) (see Lemma 2.4.8).

Lemma 3.3.1. Suppose that k and ` are non-negative integers with Xk+` � T .
Then if k 6= ` ∫ 2T

T
P0(f, σ0 + it)kP0(f, σ0 + it)

`
dt� T.

If k = `, for ε > 0 we have∫ 2T

T
|P0(f, σ0 + it)|2k dt = k!T (log log T )k +Ok(T (log log T )k−1+ε).

Proof. Write P0(f, s)k =
∑

n

ak(n)λf (n)

ns where

ak(n) =

{
k!

α1!···αr! if n =
∏r
j=1 pj

αj , p1 < . . . < pr < X,
∑r

j=1 αj = k.

0 otherwise.
(3.4)

33



Therefore (using (2.16)),∫ 2T

T
P0(σ0 + it)kP0(σ0 + it)

`
dt

=

∫ 2T

T

∑
n

ak(n)λf (n)

ns

∑
m

a`(m)λ̄f (m)

ms̄
dt

=
∑
n

ak(n)λf (n)

nσ0

∑
m

a`(m)λ̄f (m)

mσ0

∫ 2T

T

(m
n

)it
dt

=T
∑
n

ak(n)a`(n)λf (n)λ̄f (n)

n2σ0
+O

∑
m6=n

ak(n)a`(m)λf (n)λ̄f (m)

(mn)σ0

1

log |m/n|

 .

Notice that if k 6= ` then ak(n)a`(n) is 0 by definition. So we don’t have to
worry about the diagonal term contribution. For the off-diagonal term from (2.17)
we can see that the contribution of the denominator is negligible since σ0 is close
to 1

2 (see Lemma 1 of [Sel46b]). Applying Ramanujan-Petersson conjecture, with
m 6= n we have the off-diagonal term contribution given by∑

m6=n
m≤Xk

n≤X`

ak(n)a`(m)λf (n)λ̄f (m)� Xk+`+ε � T.

We conclude the first part of the Lemma.

For the second part of the lemma (which is the case for k = `) the diagonal

term contributes T
∑

n

ak(n)2|λf (n)|2

n2σ0
. By the definition for the given positive inte-

gers α1, . . . , αr with
∑r

i=1 αi = k, the contribution of n of the form p
α1
1 , . . . , pαrr is

given by

� T
r∏
i=1

 ∑
p≤X

(p,q)=1

|λf (p)|2

p2σ0αi

� T (log log T )r+ε.

The terms with n not being square free contributes (where r ≤ k−1)Ok((log log T )k−1+ε).
The square free terms n give (see section 3, of [Lü14] and (63) of [MN14]),

k!
∑

p1,...,pk≤X
all pj ’s are distinct,(pj,q)=1

|λf (p1 · · · pk)|2

(p1 · · · pk)2σ0
=k!

 ∑
p≤X

(p,q)=1

|λf (p)|2

p2σ0


k

+Ok

(
(log log T )k−1+ε

)

=k! (log log T )k +Ok

(
(log log T )k−1+ε

)
.

Recalling the definition of X, we conclude the proof.
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Proof of Proposition 3.2.3: Using Lemma 3.3.1 for any odd k,

∫ 2T

T
(< (P0(f, σ0 + it)))k dt =

∫ 2T

T

1

2k

(
P0(f, σ0 + it) + P0(f, σ0 + it)

)k
dt

=
1

2k

k∑
`=0

(
k

`

)∫ 2T

T
(P0(f, σ0 + it))` (P0(f, σ0 + it))k−`dt

� T,

as it is impossible to have ` = k − ` for any odd k. If k is even, then we apply
Lemma 3.3.1 with ` = k − ` = k/2 to obtain,

1

T

∫ 2T

T
(< (P0(f, σ0 + it)))k dt = 2−k

(
k

k/2

)(
k

2

)
!(log log T )

k
2 +Ok

(
(log log T )

k
2−1+ε

)
.

The above equation matches with the distribution of the Gaussian random
variable (see (2.20)) with mean 0 and variance∼ 1

2 log log T , completing the proof.

3.3.3 Proof of Proposition 3.2.4

To prove this proposition let us first decompose P(f, s) as P1(f, s) and P2(f, s)
where

P1(f, s) =
∑

2≤n≤Y

Λf (n)

ns log n
,

P2(f, s) =
∑

Y <n≤X

Λf (n)

ns log n
.

Set

M1(f, s) =
∑

0≤k≤100 log log T

(−1)k

k!
P1(f, s)k,

M2(f, s) =
∑

0≤k≤100 log log log T

(−1)k

k!
P2(f, s)k.

Now we state the next lemma.

Lemma 3.3.2. For T ≤ t ≤ 2T we have

|P1(f, σ0 + it)| ≤ log log T, (3.5)
|P2(f, σ0 + it)| ≤ log log log T.

except perhaps for a set of measure T
log log log T . We also have

M1(f, σ0 + it) = exp(−P1(f, σ0 + it))(1 +O(log T )−99), (3.6)

M2(f, σ0 + it) = exp(−P2(f, σ0 + it))(1 +O(log log T )−99).
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Proof. Starting with the integration, from (2.16) and (2.17) we write,

∫ 2T

T
|P1(f, σ0 + it)|2dt

� T
∑

2≤n1=n2≤Y

Λf (n1)Λf (n2)

(n1n2)σ0 log n1 log n2
+

∑
2≤n1 6=n2≤Y

Λf (n1)Λf (n2)

(n1n2)σ0 log n1 log n2

√
n1n2.

Recall that Λf (n) is supported only on prime powers. For the higher order of
prime powers pk (for k ≥ 3) the contribution is negligible as argued in the proof of
Proposition 3.2.38. The terms involving prime squares contribute

� T
∑

2≤p21=p22≤Y

|λf (p1)− ψ(p)|2|λf (p2)− ψ(p)|2 log p1 log p2

(p1p2)2σ04 log p1 log p2

+
∑

2≤p21 6=p
2
2≤Y

|λf (p1)− ψ(p)|2|λf (p2)− ψ(p)|2 log p1 log p2

(p1p2)2(σ0−1/2)4 log p1 log p2

� T
∑

p1=p2≤
√
Y

1

(p1p2)2σ0
+

∑
2≤p21 6=p

2
2≤Y

1

(p1p2)2(σ0−1/2)
� T

∑
p≤
√
Y

p1=p2=p

1

p4σ0
� T.

(3.7)

Note that the denominator in the second term of (3.7) is negligible because
σ0 is close to 1

2 (see Lemma 1 of [Sel46b]). With a similar argument the terms
involving primes contribute

� T
∑

2≤p1=p2≤Y

λf (p1) log p1λf (p2) log p2

(p1p2)σ0 log p1 log p2
+

∑
2≤p1 6=p2≤Y

λf (p1)λf (p2) log p1 log p2

(p1p2)σ0−1/2 log p1 log p2

� T
∑

2≤p1=p2≤Y

λf (p1)λf (p2)

(p1p2)σ0
+

∑
2≤p1 6=p2≤Y

λf (p1)λf (p2)

� T
∑

2≤p≤Y
p1=p2=p

λf (p)2

p2σ0

� T log log T. (3.8)

Combining (3.7) and (3.8) we can write∫ 2T

T
|P1(f, σ0 + it)|2dt� T log log T.

8Recall that Λf (n) is the coefficient of the logarithmic derivative of the L-function in Dirichlet
series supported on prime powers. Since the argument we have given in the proof of Proposi-
tion 3.2.3, we know that the primes with higher power (i.e. pk with k ≥ 2) contribute negligible
amount so we can write 1

T

∫ 2T

T
|P1(f, σ0 + it)|2 ≈

∑
2≤n≤Y

Λf (n)2

n2σ0 (logn)2
≈
∑
p≤Y

λf (p)2

p2σ0
� log log T .

Similarly 1
T

∫ 2T

T
|P2(f, σ0 + it)|2 ≈

∑
Y≤p≤X

λf (p)2

p2σ0
� log

(
logX
log Y

)
� log log log T .
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Similarly, we have∫ 2T

T
|P2(f, σ0 + it)|2dt� T

∑
Y <p≤X

λf (p)2

p2σ0
+ T � T log

(
logX

log Y

)
� T log log log T.

and the first assertion follows.

Suppose K ≥ 1 is a real number. If |z| ≤ K then, using that k! ≥ (k/e)k, we
write ∑

0≤k≤K

zk

k!
= ez +O

( ∑
k>100K

Kk

k!

)
=ez +O

( ∑
k>100K

(
eK

k

)k)
=ez +O(e−100K).

Since |z| ≤ K, we may also write the right side above is ez(1 +O(e−99K)).
Take z = −P1(f, σ0 + it) and K = log log T and (3.6) holds.

As we have decomposed P(f, s) similarly, we decompose M(f, s) as M1(f, s)
and M2(f, s). By the definition of M(f, s) we need to decompose a(n) first.

Set

a1(n) =

{
1 if n has at most 100 log log T prime factors with all p ≤ Y ,
0 otherwise .

a2(n) =

{
1 if n has at most 100 log log log T prime factors with all Y < p ≤ X,
0 otherwise .

Therefore,

M(f, s) = M1(f, s)M2(f, s),

M1(f, s) =
∑
n

µf (n)a1(n)

ns
,

M2(f, s) =
∑
n

µf (n)a2(n)

ns
.

Lemma 3.3.3. We have∫ 2T

T
|M1(f, σ0 + it)−M1(f, σ0 + it)|2dt� T (log T )−60,

and ∫ 2T

T
|M2(f, σ0 + it)−M2(f, σ0 + it)|2dt� T (log log T )−60.

Proof. ExpandingM1(f, s) into Dirichlet series we write

M1(f, s) =
∑
n

b(n)λf (n)

ns
,

where b(n) satisfies the following properties.
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1. |b(n)| ≤ 1 for all n.

2. b(n) = 0 unless n ≤ Y 100 log log T has only prime factors below Y .

3. b(n) = µf (n)a1(n) unless Ω(n) > 100 log log T or, p ≤ Y s.t pk|n with pk > Y .

Set c(n) = b(n)λf (n)− µf (n)a1(n), then by (2.16) and (2.17) we have∫ 2T

T
|M1(f, σ0 + it)−M1(f, σ0 + it)|2dt

� T
∑
n1=n2

|c(n1)c(n2)|
(n1n2)σ0

+
∑
n1 6=n2

|c(n1)c(n2)|
(n1n2)σ0

√
n1n2

� T (log T )−60.

We note that our a1(n), a2(n) are exactly the same as given in Radziwiłł and
Soundarajan’s paper [RS17]. The only difference is that instead of Möbius func-
tion we have the convolution inverse |µf (n)| ≤ d(n) � nε, where d(n) is the divi-
sor function. Since we know that σ0 is close to 1

2 , the off-diagonal terms (hence
the denominator is negligible due to Lemma 1 of [Sel46b]) with n1 6= n2 (by the
Ramanujan-Petersson Conjecture) contribute

�
∑

n1 6=n2≤Y 100 log log T

(n1n2)ε � T ε.

By recalling property (3) we can say that the diagonal terms (with n1 = n2) con-
tributes

� T
∑

p|n =⇒ p≤Y
Ω(n)>100 log log T

1

n
+ T

∑
p≤Y
p>Y k

1

pk


 ∑
p|n =⇒ p≤Y

1

n

 .

A small calculation shows that the second term above contribute� T (log Y )/
√
Y �

T (log T )−60. For the first term above, note that for 1 < r < 2 the quantity
rΩ(n)−100 log log T is always non-negative, in fact it is ≥ 1 for those n with Ω(n) >
100 log log T . Therefore,

T
∑

p|n =⇒ p≤Y
Ω(n)>100 log log T

1

n
� Tr−100 log log T

∏
p≤Y

(
1 +

r

p
+
r2

p2
+ · · ·

)

� T (log T )−100 log r(log T )r.

Choosing r = e2/3, the above estimate becomes � T (log T )−60, completing the
proof of this lemma.

Remark 3.3.4. From the definition ofMj(f, s) (for j = 1, 2) the properties of b(n)
can be proved by adopting the argument of Hsu and Wong (see page 696-697
of [HW20]).
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Proof of Proposition 3.2.4: It follows from (3.6) that we have

M1(f, σ0 + it) = exp(−P1(f, σ0 + it))(1 +O((log T )−99))

and by (3.5) we have

(log T )−1 � |M1(f, σ0 + it)| � log T,

except on a set of measure o(T ), so, we can conclude that

M1(f, σ0 + it) =M1(f, σ0 + it) +O((log T )−25)

= exp(−P1(f, σ0 + it))(1 +O((log T )−20)).

Similarly, except on a set of measure o(T ), we have

M2(f, σ0 + it) = exp(−P2(f, σ0 + it))(1 +O((log log T )−20)).

Recalling the decomposition ofM(f, s) and P(f, s), by multiplying these estimates
we obtain

M(f, σ0 + it) = exp(−P(f, σ0 + it))(1 +O((log log T )−20)),

which completes the proof.

3.3.4 Proof of Proposition 3.2.5

In this section, we prove that the mollifier M(f, s) and the L-function are inverse
to each other. As we have followed the method established in [RS17] to prove the
other propositions of this chapter, this one is an exception. We need to calculate
the second mollified moment of L(f, s). For that, we use the method established
by Bernard [Ber15] and Hughes-Young [HY10]. First, we explain why the fourth
moment of the Riemann zeta function roughly corresponds to the second moment
of the GL(2) L-functions, then we set our parameter to complete the proof. We
give brief details of the error term calculations since it is already given in [Ber15;
KRZ19].

Expanding the integration as given in Proposition 3.2.5, we get

∫ 2T

T
|1− L(f, σ0 + it)M(f, σ0 + it)|2dt

=

∫ 2T

T
|L(f, σ0 + it)M(f, σ0 + it)|2dt− 2

∫ 2T

T
<(L(f, σ0 + it)M(f, σ0 + it))dt+ T

=S1 − 2S2 + S3.

First we compute S2. From the approximate functional equation of L(f, s) we
write (see (2.15)).

L(f, σ0 + it) =
∑
n

λf (n)

nσ0+it
Vσ0+it

(
n

q

)
+ ε(f, σ0 + it)

∑
n

λ̄f (n)

n1−σ0−it
V1−σ0−it(nq)

(3.9)
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where Vσ0+it(y) is a smooth function defined by

Vσ0+it(y) =
1

2πi

∫
(3)
y−sG(s)

γ(f, σ0 + it+ s)

γ(f, σ0 + it)

ds

s
,

ε(f) is the root number and

ε(f, σ0 + it) = ε(f)
γ(f, 1− σ0 − it)
γ(f, σ0 + it)

.

For small y we can shift the contour to the left up to <(s) + σ0 = −δ + ε (for
small δ > ε > 0), to get an asymptotic expansion

Vσ0+it(y) = 1 +O(yδ−ε).

Then implied constant depends on ε. For large y, we use the bound V (y) =
Oj(y

−j), which holds for any j ≥ 1. We have

ε(f, σ0 + it) =ε(f)
ck(2π)−(1−(σ0+it))Γ

(
1− (σ0 + it) + k−1

2

)
ck(2π)−(σ0+it)Γ

(
σ0 + it+ k−1

2

)
=ε(f)(2π)2σ0−1|t|1−2σ0ei(π/2(1−k)−2t log

|t|
2πe )(1 +O(|t|−1))

is obtained by Stirling’s formula. Since σ0 = 1
2 + W

log T and k is fixed, for t ∈ [T, 2T ]

ε(f, σ0 + it) tends to 0 as T →∞.

Therefore,

S2 =

∫ 2T

T
<(L(f, σ0 + it)M(f, σ0 + it))dt

=
∑
n

λf (n)

nσ0

∑
m<Tε

a(m)µf (m)

mσ0

∫ 2T

T
<
(
Vσ0+it

(
n

q

)
(mn)−it

)
dt

+
∑
n

λf (n)

n1−σ0

∑
m<Tε

a(m)µf (m)

m1−σ0

∫ 2T

T
<
(
V1−σ0+it (nq) ε(f, σ0 + it)(mn)−it

)
dt

=T +O(T 1−ε).

The main term of the above equation is coming from mn = 1. For mn 6= 1,
note that by the definition of a(m) if m ≥ T ε the terms in the above equation
vanishes. Then we can write

∑∑
n≤T,m<Tε
mn6=1

a(m)λf (n)µf (m)

(mn)σ0

∫ 2T

T
<
(
Vσ0+it

(
n

q

)
(mn)−it

)
dt

Due the oscillation the integral on the first term of S2 is bounded by

∑
n≤T,m<Tε
mn6=1

∫ 2T

T
<
(
Vσ0+it

(
n

q

)
(mn)−it

)
dt� 1.
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Then for mn 6= 1, the first term of S2 is bounded by

�
∑∑
n≤T,m<Tε
mn6=1

a(m)λf (n)µf (m)

(mn)
1
2

· 1

log |mn|
�

∑∑
n≤T,m<Tε
mn6=1

1

(mn)
1
2

� T 1/2+ε.

First we bound the following integral using integration by parts. Then we bound
the second term of S2 for mn 6= 1. Let

f(t) = −2it log
|t|

2πe
, then f ′(t) = −2it log

|t|
2π

and dv = f ′(t)ef(t) and u =
(mn)−itV1−σ0+it(nq)

f ′(t)
.

Using integration by parts we can bound the following integral by∫ 2T

T
V1−σ0+it(nq)(mn)−ite−2it log

|t|
2πedt

=

∫ 2T

T

V1−σ0+it(nq)(mn)−it(−2it log |t|2π )

−2it log |t|2π

e−2it log
|t|

2πedt

�

∣∣∣∣∣V1−σ0+it(nq)(mn)−it

−2i log |t|2π

e−2it log
|t|

2πe

∣∣∣∣∣
∣∣∣∣∣
2T

T

+

∫ 2T

T
e−2it log

|t|
2πe

(−2it log |t|2π (V ′/(mn)it + V ′/(mn)2it)) + (V 2i
t + log(mn)/(mn)it)

(mn)2it(−2i log |t|2π )2
dt

� 1

log 2T
− 1

log T
+ logmn

(
1 +

nq

T 2

)−A
� logmn

(
1 +

nq

T 2

)−A
, (3.10)

where recalling that tj ∂
j

∂tj
Vσ+it(y) =

(
1 + |y|

t2

)−A
for any real number A > 0, and

taking j = 1, we bound the integral by∫ 2T

T
e−2it log

|t|
2πe

(−2it log |t|2π (V ′/(mn)it + V ′/(mn)2it)) + (V 2i
t + log(mn)/(mn)it)

(mn)2it(−2i log |t|2π )2
dt

=

∫ 2T

T
e−2it log

|t|
2πe
−2it log |t|2π (V ′1−σ0+it(nq)/(mn)it + V ′1−σ0+it(nq)/(mn)2it

(mn)2it(−2i log |t|2π )2
dt

+

∫ 2T

T
e−2it log

|t|
2πe

(V1−σ0+it(nq)
2i
t + log(mn)/(mn)it)

(mn)2it(−2i log |t|2π )2
dt

� logmn
(

1 +
nq

T 2

)−A
.

Therefore, for mn 6= 1, the integral of the second term of S2 is

8Note that for the sake of simplicity of the notation we have written V1−σ0+it(nq) = V in (3.10).
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∫ 2T

T
<
(
V1−σ0+it(nq)(mn)−itε(f, σ0 + it)

)
dt

=

∫ 2T

T
<
(
V1−σ0+it(nq)ε(f)(mn)−it(2π)2σ0−1|t|1−2σ0ei(π/2(1−k)−2t log

|t|
2πe )

(1 +O(|t|−1))

)
dt

�T−ε
′
∫ 2T

T
<
(
V1−σ0+it(nq)(mn)−ite−2it log

|t|
2πe

)
dt

�T−ε
′
logmn

(
1 +

nq

T 2

)−A
� T−ε

′
logmn.

Note that the term<((2π)2σ0−1|t|1−2σ0eπi/2(1−k)) in the above integral is bounded
by T−ε

′
because (1− 2σ0 = −ε′ (for some ε′ > 0) and <(eπi/2(1−k)))� 1.

From the approximation of (3.10), and with a similar argument (like the error
term of the first term of S2) the error term of second sum of S2 is bounded by

∑∑
n≤T,m<Tε
mn6=1

a(m)λf (n)µf (m)

(mn)1−σ0

∫ 2T

T
<
(
V1−σ0+it (nq) ε(f, σ0 + it)(mn)−it

)
dt

� T−ε
′ ∑∑
n≤T,m<Tε
mn6=1

a(m)λf (n)µf (m)

(mn)1−σ0
logmn

� T−ε
′ ∑∑
n≤T,m<Tε
mn6=1

a(m)λf (n)µf (m)

(mn)1−σ0−ε′′
�

∑∑
n≤T,m<Tε
mn6=1

1

(mn)1−σ0−ε′′
� T 1−ε,

completing the computation of S2.

In order to prove Proposition 3.2.5, we need the mean value estimate of the
L-function. Recall the functional equation of L-function (see (2.6)),

Λ(f, s) = ε(f)Λ(f̄ , 1− s),

where f̄ is an object associated with f (the dual of f ) for which λf̄ (n) = λ̄f (n) and
ε(f) is the complex number of absolute value 1 called the root number of L(f, s).

Now we explain that how are the fourth moments of the Riemann zeta function
and the second moment of the GL(2) L-functions correspond to each other.

We know that ζk(s) =
∑∞

n=1
dk(n)
ns and λf (n) � d(n) where d(n) is the divisor

function. As argued in [Hea79] we can see that to study the fourth moments of
ζ(s) one needs to study the problem∑

n≤X
d(n)d(n+ h)
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for suitable ranges of h. Similarly, to study the second moment of L(f, s) we need
to study the problem ∑

n≤X
λf (n)λf (n+ h)

for suitable ranges of h.

In order to prove this proposition we need compute,∫ 2T

T
|L(f, σ0 + it)M(f, σ0 + it)|2. (3.11)

As mentioned in Section 2 of [You10], to simplify the upcoming arguments, we
smooth the integral in (3.11).

Let w(t) be a smooth function satisfy the following properties:

1. 0 ≤ w ≤ 1 for all t ∈ R.

2. w has compact support in [T/4, 2T ].

3. w(j) �j T
−j
0 for each j = 0, 1, 2 . . . where T0 = T/ log T .

Then we reduce to study the following problem

I(α, β) =
∑
h,k

µf (h)µf (k)a(h)a(k)

h1/2+αk1/2+β

∫ ∞
−∞

(
h

k

)−it
w(t)L(

1

2
+ α + it)L(

1

2
+ β − it)dt

where α, β = W
log T .

Lemma 3.3.5. Let G be any entire function which decays rapidly in vertical strips,
even and normalized by G(0) = 1. Then for α, β equals to W

log T , we have

L(f,
1

2
+ α + it)L(f,

1

2
+ β − it) =

∑
m,n≥1

λf (m)λf (n)

m1/2+αn1/2+β

(m
n

)−it
Vα,β(mn, t)

+Xα,β,t

∑
m,n≥1

λf (m)λf (n)

m1/2−αn1/2−β

(m
n

)−it
V−β,−α(mn, t)

where

gα,β(s, t) =
γ(f, 1

2 + α + s+ it)γ(f, 1
2 + β + s− it)

γ(f, 1
2 + α + it)γ(f, 1

2 + β − it)
,

Vα,β(x, t) =
1

2πi

∫
(1)

G(s)

s
gα,β(s, t)x−sds

and

Xα,β,t =
γ(f, 1

2 − α− it)γ(f, 1
2 − β + it)

γ(f, 1
2 + α + it)γ(f, 1

2 + β − it)
.
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The proof of this lemma is the same as Lemma 1 of [Ber15] or see Theorem
5.3 of [IK04].

We start with the approximation of Xα,β,t. By Stirling’s approximation, we can
write

Xα,β,t =

(√
q

2π

)−2(α+β)
Γ(k/2− α− it)Γ(k/2− β + it)

Γ(k/2 + α + it)Γ(k/2 + β − it)

=

(
t
√
q

2π

)−2(α+β)(
1 +

i(α2 − β2)

t
+O

(
1

t2

))
.

and

gα,β(s, t) =

(√
q

2π

)2s
Γ(k/2 + α + s+ it)Γ(k/2 + β + s− it)

Γ(k/2 + α + it)Γ(k/2 + β − it)

=

(
t
√
q

2π

)2s(
1 +O

(
|s|2

t

))
.

Additionally, for each integer j ≥ 0 and for all real number A > 0, we have

tj
∂j

∂tj
Vα,β(x, t)� Aj

(
1 +
|x|
t2

)−A
where G(s) be an even entire function with rapid decay as |s| → ∞.

Note that the Fourier transformation of w we have ŵ(0) = T/2 + O(T0). Sup-
pose that w(t) satisfies the conditions (1),(2) and (3). By Lemma 3.3.5 we have

I(h, k) =

∫ ∞
−∞

w(t)

(
h

k

)−it
L(f,

1

2
+ α + it)L(f,

1

2
+ β − it)dt (3.12)

=
∑

hm=kn

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

w(t)Vα,β(mn, t)dt

+
∑

hm=kn

λf (m)λf (n)

m1/2−αn1/2−β

∫ ∞
−∞

w(t)V−β,−α(mn, t)Xα,β,tdt

+
∑

hm 6=kn

λf (m)λf (n)

m1/2+αn1/2+β

∫ ∞
−∞

(
hm

kn

)−it
w(t)Vα,β(mn, t)dt

+
∑

hm 6=kn

λf (m)λf (n)

m1/2−αn1/2−β

∫ ∞
−∞

(
hm

kn

)−it
w(t)V−β,−α(mn, t)Xα,β,tdt

=I
(1)
D (h, k) + I

(2)
D (h, k) + I

(1)
O (h, k) + I

(2)
O (h, k).

First, we show the diagonal term calculation then we give a brief overview of
the off-diagonal term calculations.

ID(α, β) =
∑
h,k

µf (h)µf (k)a(h)a(k)

h1/2+αk1/2+β
[I

(1)
D (h, k) + I

(2)
D (h, k)] (3.13)
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In order to simplify, we set

S =
∑

hm=kn

λf (m)λf (n)µf (h)µf (k)a(h)a(k)

m1/2+αn1/2+βh1/2+αk1/2+β
.

Choose h = h1h2, where h1 is composed only on primes below Y and h2 is
composed only on primes between Y and X. Then a(h) = a1(h1)a2(h2) with the
same notation of Section 3.3.3. Similarly we can write a(k) = a1(k1)a2(k2) In a
similar manner we set m = m1m2 and n = n1n2.

We start by dividing the summation

S =
∑

h1m1=k1n1

λf (m1)λf (n1)µf (h1)µf (k1)a(h1)a(k1)

m1
1/2+αn1

1/2+βh1
1/2+αk1

1/2+β

×
∑

h2m2=k2n2

λf (m2)λf (n2)µf (h2)µf (k2)a(h2)a(k2)

m2
1/2+αn2

1/2+βh2
1/2+αk2

1/2+β
.

Consider the first factor of the above equation. If we ignore the fact that h1

and k1 must have 100 log log T prime factors, then the resulting sum is simply

∑
h1m1=k1n1

p|h1k1m1n1 =⇒ p≤Y

λf (m1)λf (n1)µf (h1)µf (k1)

m1
1/2+αn1

1/2+βh1
1/2+αk1

1/2+β

=
∏
p≤Y

Lp(f × f, 1 + α + β)

(
1 +

λf (p)2

p1+α+β
−
λf (p)2

p1+2α
−
λf (p)2

p1+2β
+ ψ0Ep

)
Let us assume the above relation for now and we will establish this later9.

Moving on to approximating the first factor by the product above, we incur an
error term which is at most

�
∑

h1m1=k1n1
p|h1k1m1n1 =⇒ p≤Y

Ω(h1)>100 log log T

|λf (m1)λf (n1)µf (h1)µf (k1)|
m1

1/2+αn1
1/2+βh1

1/2+αk1
1/2+β

,

where we used symmetry to assume that h1 has many prime factors. For Ω(h1) ≥
100 log log T the factor eΩ(h1)−100 log log T ≥ 1 and non-negative. Then the above
sum may be bounded by

�e−100 log log T
∑

h1m1=k1n1
p|h1k1m1n1 =⇒ p≤Y

Ω(h1)>100 log log T

|λf (m1)λf (n1)µf (h1)µf (k1)|
m1

1/2+αn1
1/2+βh1

1/2+αk1
1/2+β

eΩ(h1)

�e−100 log log T
∑

h1m1=k1n1
p|h1k1m1n1 =⇒ p≤Y

Ω(h1)>100 log log T

d(m1)d(n1)d(h1)d(k1)

m1
1/2+αn1

1/2+βh1
1/2+αk1

1/2+β
, eΩ(h1)

9We have defined Ep later.
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where d(n) is the divisor function. Observe that k1|h1m1 and n1|h1m1. Then
d(k1) ≤ d(h1m1) and d(n1) ≤ d(h1m1). Let ` = m1h1, then m1|` and h1|`. There-
fore, d(m1)d(n1)d(h1)d(k1) � d5(`). Note that eΩ(h1) ≤ eΩ(`). Then for α = β the
above equation is bounded by

�(log T )−100
∑

` =⇒ p≤Y
Ω(h1)>100 log log T

d5(`)

`2+4α
eΩ(`)

�(log T )−100
∏
p≤Y

(
1 +

32e

p

)
� (log T )−13.

Similarly, one can obtain that the error term contribution of second factor of S
is bounded by

�(log log T )−100
∑

h2m2=k2n2
p|h2k2m2n2 =⇒ Y <p≤X

Ω(h2)>100 log log log T

|λf (m2)λf (n2)µf (h2)µf (k2)|
m2

1/2+αn2
1/2+βh2

1/2+αk2
1/2+β

eΩ(h2) � (log log T )−13.

Then we can write S as

S =

 ∑
h1m1=k1n1
p|h1m1k1n1

λf (m1)λf (n1)µf (h1)µf (k1)

m1
1/2+αn1

1/2+βh1
1/2+αk1

1/2+β
+O

(
(log T )−13

)


×

 ∑
h2m2=k2n2
p|h2m2k2n2

λf (m2)λf (n2)µf (h2)µf (k2)

m2
1/2+αn2

1/2+βh2
1/2+αk2

1/2+β
+O

(
(log log T )−13

)
 .

Using (2.8), for any prime p such that p - q, we have (see (22), (23) of [Ber15])

∑
`≥0

λf (p`)λf (p(`+1)

p`s
= λf (p)

(
1 +

1

ps

)−1∑
`≥0

λf (p`)2

p`s
(3.14)

∑
`≥0

λf (p`)λf (p(`+2)

p`s
=

(
1 +

1

ps

)−1(
λf (p2)− 1

ps

)∑
`≥0

λf (p`)2

p`s
. (3.15)

Writing the Euler product for the first term of S, we get

∏
p≤Y

 ∑
`1,`2,`3,`4≥0
`1+`3=`2+`4

µf (p`1)µf (p`2)λf (p`3)λf (p`4)

p`1(1/2+α)p`2(1/2+β)p`3(1/2+α+s)p`4(1/2+β+s)


46



By (2.8) the above equation becomes

∏
p≤Y
p-q

((
1 +

λf (p)2

p
+

1

p2

)∑
`≥0

λf (p`)2

p`(1+α+β+2s)

−λf (p)

(
1

p1+β+s
+

1

p1+α+s

)(
1 +

1

p

)∑
`≥0

λf (p`)λf (p`+1)

p`(1+α+β+2s)

+

(
1

p2(1+β+s)
+

1

p2(1+α+s)

)∑
`≥0

λf (p`)λf (p`+2)

p`(1+α+β+2s)

)

×
∏
p≤Y
p|q

(1 +
λf (p2)

p
−
λf (p2)

p1+α+s
−
λf (p2)

p1+β+s

)∑
`≥0

λf (p`)2

p`(1+α+β+2s)

 . (3.16)

For the second summation of S, we get a similar equation like (3.16) for Y <
p ≤ X.

By (3.14), (3.15) and (3.16) we write

L(f × f, 1 + α + β + 2s)
∏
p|q

((
1 +

λf (p)2

p1+α+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s

))

×
∏
p-q

((
1 +

λf (p)2

p1+α+β
+

1

p2(1+α+β)

)(
1− 1

p2(1+α+β+2s)

)
− λf (p)2

(
1− 1

p1+α+β+2s

)
(

1

p1+2β+s
+

1

p1+2α+s

)(
1 +

1

p1+α+β

)
+

(
1− 1

p1+α+β+2s

)(
λf (p2)− 1

p1+α+β+2s

)
(

1

p2(1+2β+s)
+

1

p2(1+2α+s)

))

=L(f × f, 1 + α + β + 2s)
∏
p

(
1 +

λf (p)2

p1+α+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s
+ ψ0Ep

)
∏
p>X

((
1−

λf (p)2

p1+α+β+2s
+ ψ0(p)E′p

)(
1 +

λf (p)2

p1+α+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s
+ ψ0Ep

)−1
)
.

where ψ0 is the trivial character modulo q and

Ep =
1

p2

(
1

p2(α+β)
− 1

p2(α+β+2s)
−
λf (p)2

ps

(
1

p2α
+

1

p2β

)(
1

pα+β
− 1

pα+β+2s

)

+
λf (p2)

p2s

(
1

p4α
+

1

p4β

))
+

λf (p)2

p3+α+β+3s

(
1

pα+β

(
1

p2α
+

1

p2β

)
− 1

ps

(
1

p4α
+

1

p4β

)
− 1

p2α+2β+s

)
+

1

p4+2(α+β+2s)

(
1

p2(2α+s)
+

1

p2(2β+s)
− 1

p2(α+β)

)
and
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E′p =
2 + λf (p)2

p2(1+α+β+2s)
−

λf (p)2

p3(1+α+β+2s)
+

1

p4(1+α+β+2s)
.

The Rankin-Selberg L-function L(f × f, s) has the Euler product

L(f × f, s) =
∏
p

Lp(f × f, s)

where

Lp(f × f, s) =

(
1−

λf (p)2

ps
+ ψ0(p)

(
2 + λf (p)2

p2s
−
λf (p)2

p3s
+

1

p4s

))
,

for <(s) > 1.

Lemma 3.3.6. For α = β = W
log T and <(s) = 1

log T ,

∏
p>X

((
1−

λf (p)2

p1+α+β+2s
+ ψ0(p)E′p

)(
1 +

λf (p)2

p1+α+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s
+ ψ0Ep

)−1
)

= 1 + o(1).

Proof. Note that(
1 +

λf (p)2

p1+α+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s
+ ψ0Ep

)−1

=1−
λf (p)2

p1+α+β
+

λf (p)2

p1+2α+s
+

λf (p)2

p1+2β+s
− ψ0Ep

+O

(
1

p2

)
=1−

λf (p)2

p1+α+β
+

λf (p)2

p1+2α+s
+

λf (p)2

p1+2β+s
+O

(
1

p2

)
.

The Sato-Tate conjecture [Bar+11] implies that (see (1.18), (1.19) of [Ran85])

∑
p≤x
|λf (p)|2ϕ ∼ θϕ

x

log x
where θϕ =

4ϕΓ
(
ϕ+ 1

2

)
√
πΓ(ϕ+ 2)

.

Putting ϕ = 1, we get θϕ = 1.

We have to compute the contribution of exp

(∑
p>X

λf (p)2

p1+α

)
. For the dyadic

interval [P, 2P ] we write

∑
P<p≤2P
P>X

λf (p)2

p1+α
� 1

P 1+α

∑
P<p≤2P
P>X

λf (p)2 � 1

P 1+α

∑
p≤2P
P>X

λf (p)2 � 2P

P 1+α log(2P )
� 1

Pα logP
.

Adding the dyadic intervals we obtain the bound∑
p>X

λf (p)2

p1+α
� 1

Xα(logX)
.
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Recall that α = β = W
log T and X = T 1/(log log log T )2 and W = (log log log T )4. By

definition, α > 0 because W is a small power of T 10. Therefore, the above series
converges for the choice of the parameter α, but the above relation does not hold
for general cases, such as α = 0.

Then

Xα(logX) = logX · exp(α logX)

= log T exp

(
W

(log log log T )2

)
= log T exp

(
(log log log T )4

(log log log T )2

)
= log T exp((log log log T )2).

Hence, exp

(∑
p>X

λf (p)2

p1+α

)
� exp

(
1

Xα(logX)

)
= 1 + o(1) as T →∞.

For the terms involving ps, if, <(s) = 1
log T , then p

1
log T = exp

(
log p
log T

)
. Recall

that p ∼ X and X = T o(1). Hence, p
1

log T = exp(o(1)), completing the proof of the
lemma.

We write(
1 +

λf (p)2

pα+β
−

λf (p)2

p1+2α+s
−

λf (p)2

p1+2β+s
+ ψ0Ep

)
=

Lp(f × f, α + β)

Lp(f × f, 1 + 2α + s)Lp(f × f, 1 + 2β + s)

×

(
1 + Lp(f × f, 1 + 2α + s)Lp(f × f, 1 + 2β + s)

4∑
r=2

∑
`

ar,`(p)

p
r+Zr,`(α, β, s)

)

where the sum over ` is finite, Zr,` are linear forms in α, β, s and ar,`(p) are com-
plex numbers with |ar,`(p)| � 1. Then we set

Aα,β(s) =
∏
p

1 +
∑
r,`

O

(
1

p
r+Zr,`(<α,<β,<s)

) .
Then Aα,β(s) is an absolutely convergent Euler product in {<(α + s) > −1} ∩
{<(β + s) > −1} ∩r,` {Zr,`(<(α),<(β),<(s)) > 1− r}.

Therefore,

S ∼ L(f × f, 1 + α + β + 2s)L(f × f, 1 + α + β)

L(f × f, 1 + 2α + s)L(f × f, 1 + 2β + s)
Aα,β(s)

Lemma 3.3.7. For α = β, we have

Aα,β(0) = 1.

10The choice of the parameter α comes from the choice of σ0. As described in Remark 3.2.2,
to take away the problem from the critical line, α must be greater than 0 and not equal to 0.
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Proof. Recall the definition of S. For α = β, we write

Aα,β(s) =
∑

hm=kn

µf (h)µf (k)λf (m)λf (n)

(hm)1/2+α+s(kn)1/2+β+s
=
∑
h,m

µf (h)λf (m)

(hm)(1+2α+2s)

∑
n|hm

µf (hm/n)λf (n).

Since
(
µf (n)

)
is the convolution inverse of

(
λf (n)

)
, we have∑

n|d
µf (n/d)λf (n) = δ(d).

Thus

Aα,β(s) = µf (1)λf (1) = 1.

To conclude, we extend this relation to s = 0 by continuity in the half plane <(s) >
0.

The diagonal term Calculations: From Lemma 3.3.5 and the first term of (3.13)
we can write

I
(1)
D (α, β) =

∑
hm=kn

λf (m)λf (n)µf (h)µf (k)a(h)a(k)

m1/2+αn1/2+βh1/2+αk1/2+β

∫ ∞
−∞

w(t)Vα,β(mn, t)dt

=

∫
R
w(t)

1

2πi

∫
(1)

G(s)

s
gα,β(s, t)

∑
hm=kn

λf (m)λf (n)µf (h)µf (k)a(h)a(k)

m1/2+α+sn1/2+β+sh1/2+αk1/2+β
dsdt.

We have −L
′(f×f,s)
L(f×f,s) =

∑
n≥1

Λf (n)

ns with Λf (n) ≥ 0, we deduce (see part 5.3
of [IK04])

1

L(f × f, σ + it)
� ln |t|.

By the standard zero-free region of L(f × f, s), we move the line of integration
from <(s) = 1 to <(s) = −(α + β) + 1

log T crossing a pole at s = 0 and a pole at

s = −α+β
2 . By the choice of our parameter α = β and the simplification of S and

t ∈ [T, 2T ] and gα,β � T 2s, we can bound∫
R
w(t)

1

2πi

∫
1/
(
−(α+β)+ 1

log T

) G(s)

s
gα,β(s, t)

∑
hm=kn

λf (m)λf (n)µf (h)µf (k)a(h)a(k)

m1/2+αn1/2+βh1/2+αk1/2+β
dsdt

=

∫
R
w(t)

1

2πi

∫
1/
(
−(α+β)+ 1

log T

) G(s)

s
gα,β(s, t)

L(f × f, 1 + α + β + 2s)L(f × f, 1 + α + β)

L(f × f, 1 + 2α + s)L(f × f, 1 + 2β + s)
Aα,β(s)dsdt

�
∫
R
|w(t)|dtT 2(−(α+β)+1/log T ) � T 1−o(1).
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By our choice of parameters α + β 6= 0. We specialize

G(s) = es
2 (α + β)2 − (2s)2

(α + β)2

to ensure that G(−α+β
2 ) = 0.

Our next step is to check the pole contribution at s = 0. Since G(0) = 1, by
Lemma 3.3.7 we have

∫
R
w(t)Ress=0

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α + β + 2s)L(f × f, 1 + α + β)

L(f × f, 1 + 2α + s)L(f × f, 1 + 2β + s)
Aα,β(s)

]
dt

+O(T 1−o(1))

=
L(f × f, 1 + α + β)L(f × f, 1 + α + β)

L(f × f, 1 + 2α)L(f × f, 1 + 2β)
ŵ(0) +O(T 1−o(1)).

We have the diagonal term contribution given by

I
(1)
D (α, β) = ŵ(0)

L(f × f, 1 + α + β)L(f × f, 1 + α + β)

L(f × f, 1 + 2α)L(f × f, 1 + 2β)
+O(T 1−o(1))

The pole s = 0 is called the simple pole case which contributes in the main
term. For s = −α+β

2 we have the double pole case. The pole at s = −α+β
2 gives

P
(1)
α,β = Res

s=−α+β
2

[
G(s)

s
gα,β(s, t)

L(f × f, 1 + α + β + 2s)L(f × f, 1 + α + β)

L(f × f, 1 + 2α + s)L(f × f, 1 + 2β + s)
Aα,β(s)

]

By our choice of G and the fact that α = β, P (1)
α,β does not contribute to

I
(1)
D (α, β).

A similar calculation gives

I
(2)
D (α, β) =− T−2(α+β)I

(1)
D (α, β) +O(T 1−o(1))

=− T−2(α+β)L(f × f, 1 + α + β)L(f × f, 1 + α + β)

L(f × f, 1 + 2α)L(f × f, 1 + 2β)
ŵ(0) +O(T 1−o(1)).

With a similar argument P (2)
α,β does not contribute in the main term. So the

diagonal term contribution gives

ID(α, β) = ŵ(0)
L(f × f, 1 + α + β)L(f × f, 1 + α + β)

L(f × f, 1 + 2α)L(f × f, 1 + 2β)
(1− T−2(α+β)) +O(T 1−o(1)).

Recall that by the choice of our parameter α = β, hence the fraction involving
Rankin-Selberg L-functions cancel out. As T →∞, we conclude

ID(α, β) ∼ ŵ(0) +O(T 1−o(1)).

In the next step we use the smoothing argument (see section 2 of [You10]) to
complete the proof of the proposition. By choosing the smooth function w which
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satisfies (1),(2),(3), and additionally to be an upper bound for the characteristic
function of the interval [3T/2, 2T ], with support in [3T/2− T0, 2T + T0], we get∫ 2T

3T/2
|L(f, σ0 + it)M(f, σ0 + it)|2 ≤ ŵ(0) +O(T 1−o(1)).

Note that ŵ(0) = T/2 +O(T0). Similarly, we get a lower bound. By summing over
the dyadic segments we conclude

1

T

∫ 2T

T
|L(f, σ0 + it)M(f, σ0 + it)|2 = 1 + o(1).

Next we briefly explain the off-diagonal term computation.

The off-diagonal term Calculations: In this paragraph we give an overview
of the off-diagonal term calculations, since it is already given in [Ber15; KRZ19].

Lemma 3.3.8. Let ε > 0, 0 < γ < 1, α, β = W
log T and h, k ≤ T ν be positive

integers. Then for all real number A > 0 we have

I
(1)
O (h, k) =

∑
hm 6=kn

mn�T2+ε∣∣∣hmkn −1
∣∣∣�Tγ

λf (m)λf (n)

m
1
2+αn

1
2+β

∫ ∞
−∞

w(t)

(
hm

kn

)−it
Vα,β(mn, t)dt+O(T−A).

For the proof of this lemma see Lemma 3 of [Ber15].

Remark 3.3.9. Note that the choice of parameters α, β � 1/ log T in [Ber15]. The
proof still holds for our choice of parameters α, β because the properties used in
the proof of Lemma 3 and Lemma 4 of [Ber15] is 0 ≤ |<(α)|, |<(β)| ≤ 1

2 , which is
satisfied by the choice of our parameters.

Let us fix an arbitrary smooth function ρ :]0,∞[→ R which is compactly sup-
ported in [1, 2] and satisfies

∞∑
`=−∞

ρ
(

2−`/2x
)

= 1

To build such a function see section 5 of [Har03]. For each integer ` we define

ρ`(x) = ρ

(
x

A`

)
with A` = 2`/2T γ .

Then by Lemma 4 of [Ber15], one has

I
(1)
O (h, k) =

∑
A`1

A`1
�hkT2+ε

A`1
�A`2

A`1
,A`2

�Tγ

∑
0<|h|�T−γ

√
A`1

A`2

∑
hm−kn=r

λf (m)λf (n)Fr;`1,`2(hm, kn) +O(T−A)
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where

Fr;`1,`2(x, y) =
h

1
2+αk

1
2+β

x
1
2+αy

1
2+β

∫ ∞
−∞

w(t)

(
1 +

r

y

)−it
Vα,β

(xy
hk
, t
)
dt× ρ`1(x)ρ`2(y)

with positive integers h, k ≤ T ν and 0 < γ < 1. The key ingredient of the proof
of this lemma depends on a strong result of shifted convolution sums on average
due to Blomer (see Theorem 2 of [Blo05]). A straightforward adaption of Blomer’s
result and the argument given by Bernard prove the following lemma.

Lemma 3.3.10 (Bernard). Let `1, `2, H and h1 be positive integers. LetM1,M2, P1, P2

be real numbers greater than 1. Let {gr} be a family of smooth functions, sup-
ported on [M1, 2M1] × [M2, 2M2] such that |g(ij)

h |∞ �i,j (p1/M1)i(P2/M2)j for all
i, j ≥ 0. Let (a(r)) be sequence of complex numbers such that

a(r) 6= 0 =⇒ r ≤ H, h1|r and

(
h1,

r

h1

)
= 1.

If `1M1 � `2M2 � A and if there exists ε > 0 such that

H � A

max{P1, P2}
1

(`1`2M1M2P1P2)ε
,

then, for all real numbers ε > 0, we have

H∑
r=1

a(r)
∑

m1m2≥1
`1m1−`2m2=r

λf (m1)λ̄f (m2)g1(m1,m2)� A
1
2hθ1||a||2(P1 + P2)

3
2

×

[√
P1 + P2 +

(
A

max{P1, P2}

)θ(
1 +

√
(h1, `1`2)H

h1, `1`2

)]
(`1`2M1M2P1P2)ε.

where θ is the exponent in the Ramanujan-Petersson conjecture.

The next step is to determined the required bound for the test function. Let
α, β = W

log T and let σ > 0 be any positive real number. For all non-negative
integers i, j one has

xiyj
∂i+jFr;`1,`2
∂xi∂yj

(x, y)�i,j

(
a

A`1

)1
2+<α+σ(

b

A`2

)1
2+<β+σ

T 1+2σ(lnT )j (3.17)

where the implicit constant does not depend on r. The trivial bound for shifted
convolution sums can yield∑

`1−m1`2m2=r

λf (m1)λf (m2)�ε min{M1,M2}(M1M2)ε.

This trivial bound together with (3.17) proves the following:

I
(1)
O (h, k)�ε min{h, k}T 1+ε
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which is not very useful for us. As argued in [Ber15] using Theorem 6.3 of [Ric06]
we get

I
(1)
O (h, k)�ε min(hk)3/4+θ/2T 3/2+2ε.

Instead of using the trivial bound if we use Theorem 1.3 of [Blo04] along with (3.17)
then we have

I
(1)
O (h, k)�ε min(hk)3/4+θ/2T 1/2+2ε.

By Lemma 3.3.10 with H = T−γ
√
A`1A`2, h1 = 1 and a(r) =

{
1 if r ≤ H

0 otherwise.
Therefore, from Lemma 3.3.8 we get

I
(1)
O (h, k)�ε (hk)(1+θ)/2T 1/2+θ+ε.

With a similar argument and from Corollary 5 of [Ber15] one has

I
(2)
O (h, k)�ε (hk)(1+θ)/2T 1/2+θ+ε.

Then we can trivially bound the off-diagonal term by∑
h,k≤Tε

µf (h)µf (k)a(h)a(k)√
hk

[
I

(1)
O (h, k) + I

(2)
O (h, k)

]
�T 1/2+3θ+ε

∑
h,k≤Tε

(hk)(1+θ)/2−1/2

�T 1−ε = o(T ).

We can use Kim and Sarnak’s (see Appendix 2 of [KRS03]) bound, where θ = 7
64 .

The calculation of the diagonal and the off-diagonal term, which completes
the proof of this proposition.
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4. SCLT for Dirichlet L-functions in
the q-aspect

4.1 Introduction

In this chapter, we prove Selberg’s central limit theorem for Dirichlet L-functions
in the q-aspect. First, we prove this result for the Dirichlet L-function associated
with the primitive Dirichlet characters χ modulo q. Later, we conditionally extend
this result for twisted Dirichlet L-functions associated with SL(3,Z) Hecke-Maass
cusp form and twisted by the primitive Dirichlet characters χ. Although the key
idea of the proof of main theorems of this chapter has been taken from [RS17],
since we are proving this result for q-aspect we need the help of asymptotic Large
Sieve to compute the mollified second moment for GL(3) L-functions. We give a
brief overview of how can one prove the second mollified moment of L(f ⊗ χ, s)
using asymptotic Large Sieve. We prove Theorem 4.4.1 conditionally, under the
assumption of the moment conjecture for L(f ⊗ χ, s). 1

Before going into the more details of the proof we describe the notion of “al-
most normal” distribution for q-aspect (particularly for our setup). For primitive
Dirichlet characters χ modulo q, any σ > 1 and t ∈ R, we have

log |L(σ + it, χ)| =
∑
p

∞∑
k=1

1

k

|χ(pk)| cos(kt log p)

pkσ
.

Consider the imaginary part t ∈ [−1, 1], the almost independence arises be-
cause of the values χ(pk) are linearly independent (orthogonality relation of the
primitive Dirichlet characters) over the unit circle for sufficiently large q. So, the
terms |χ(pk)| cos (kt log p) varies “almost independently” for distinct primes p. We

can consider
{∑

p

∑∞
k=1

1
k
|χ(pk)| cos(kt log p)

pkσ

}
p∈P

as the sequence of “almost inde-

pendent” random variable with suitable mean and variance. Then as q → ∞

for t ∈ [−1, 1] the almost random variables
{∑

p

∑∞
k=1

1
k
|χ(pk)| cos(kt log p)

pkσ

}
p∈P

con-

verge in distribution to normalN (0, 1
2 log log q). Hence we call log |L(σ+ it, χ)| has

“approximate normal” distribution with mean 0 and variance 1
2 log log q. Now we

write the precise definition.

1Throughout this chapter
∑∗

χ( mod q)
denotes the summation over primitive Dirichlet charac-

ters.
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Definition. If Xχ,p is approximately normally distributed with mean m and vari-
ance ν2, then for any fixed positive real number V , as q →∞, we have

1

2φ∗(q)

∑∗

χ( mod q)

meas

{
t ∈ [−1, 1] :

Xχ,p −m
ν

≥ v

}
∼ 1√

2π

∫ ∞
v

e−
x2

2 dx

uniformly for v ∈ [−V, V ].

We prove the main result of this chapter into four steps. We give a brief
overview of the proof of second mollified moment for GL(3) L-functions under the
assumption of moment conjecture. Since we will be working with the q-aspect,
we average over the Dirichlet characters and the moduli2. Furthermore, notice
that we are not proving this result for the hybrid aspect so we fix our t in the range
[−1, 1].

4.2 Setup for Dirichlet L-functions

In this section, we prove Selberg’s central limit theorem for Dirichlet L-functions
as defined in Definition 2.2.3. We need to keep in mind that we will be handling
the character sums so the orthogonality relations of the Dirichlet character is a
very useful tool here.

Theorem 4.2.1. Let φ∗(q) denotes the total number of primitive Dirichlet charac-
ters modulo q. Let V be a fixed positive real number. Then as q → ∞, uniformly
for all v ∈ [−V, V ]

1

2φ∗(q)

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 : log |L(

1

2
+ it, χ)| ≥ v

√
1

2
log log q

}

∼ 1√
2π

∫ ∞
v

e−u
2/2du.

We start with the setup of the proof then we will get into the details. In the
first step, let us take away the problem from the critical line by proving that for a
suitable choice of σ > 1

2 , L(1
2 + it, χ) and L(σ + it, χ) are typically close to each

other.

Proposition 4.2.2. Let χ be the primitive Dirichlet character modulo q. Then for
any σ > 1

2 we have

∫ 1

−1

∣∣∣∣log |L(
1

2
+ it, χ)| − log |L(σ + it, χ)|

∣∣∣∣ dt� (
σ − 1

2

)
log q.

Remark 4.2.3. Similarly like the t-aspect in the first step, we take away the prob-
lem from the critical line. If we choose to move 1/ log q distance from the 1

2 line (as
q → ∞ the density of zeros of L(s, χ) increases), then we might stay very close

2Note that we have only considered the primitive Dirichlet characters throughout the chapter.
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to 1
2 line for large enough q. We wish to stay away from the critical line but not too

far away. So, we can not choose a large parameter W . That is why we choose
W = o(

√
log log q). Further, we want to approximate L(s, χ) by an Euler product,

where the product is going up to X. In order to approximate, we need to consider
that X would be going up to a small power of q.

Fix the parameters

W = (log log log q)4, X = q1/(log log log q)2 , Y = q(1/ log log q)2 , σ0 =
1

2
+

W

log q
.

where q is sufficiently large so W ≥ 3.

In the next step we consider the auxiliary series given by

P(s, χ) = P(s, χ;X) =
∑

2≤n≤X

Λ(n)χ(n)

ns log n

where Λ(n) is the Von-Mangoldt function. We determine the distribution of the
auxiliary series P(s, χ) by computing its moments.

Proposition 4.2.4. For the primitive Dirichlet characters χ(modq), the distribu-
tion of <(P(σ0 + it)) is approximately normal with mean 0 and variance 1

2 log log q.
Precisely, let V be a fixed positive real number then as q → ∞, uniformly for all
v ∈ [−V, V ]

1

2φ∗(q)

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 : <(P(σ0 + it, χ)) ≥ v

√
1

2
log log q

}

∼ 1√
2π

∫ ∞
v

e−u
2/2du.

It is now obvious that if we can connect the L-function with the auxiliary series
P(s, χ) that will prove Theorem 4.2.1.

To establish this connection we use the mollification technique. Consider the
Dirichlet polynomial M(s, χ) given by

M(s, χ) =
∑
n

µ(n)a(n)χ(n)

ns

where a(n) is given by

a(n) =


1 if n is composed only of primes below X and has at most 100 log log q

primes below Y and at most 100 log log log q primes between Y and X.
0 otherwise .

By the definition of a(n) it takes the value 0 except when n ≤ Y 100 log log qX100 log log log q <
qε. It is now evident that M(s, χ) is a short Dirichlet polynomial. In the next step,
we establish the connection between M(s, χ) and P(s, χ).
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Proposition 4.2.5. Given ε > 0 and δ > 0, there is some Q so that for all q > Q
we have

1

2φ∗(q)

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 :

∣∣∣∣ M(σ0 + it, χ)

exp(−P(σ0 + it, χ))
− 1

∣∣∣∣ < δ

}
< ε.

It remains to prove that the mollifier and the L-function are inverse to each
other.

Proposition 4.2.6. Let −1 ≤ t ≤ 1,

1

φ∗(q)

∑∗

χ( mod q)

∫ 1

−1
|1− L(σ0 + it, χ)M(σ0 + it, χ)|2 dt = o(1). (4.1)

Given ε > 0 and δ > 0, there is some Q so that for all q > Q we have

1

2φ∗(q)

∑∗

χ( mod q)

meas {−1 ≤ t ≤ 1 : |L(σ0 + it, χ)M(σ0 + it, χ)− 1| < δ} < ε.

Now we prove our main theorem. We prove the propositions in later sections.

Proof of Theorem 4.2.1: Recalling Proposition 4.2.6, it means that for all t ∈
[−1, 1] and primitive Dirichlet characters χ(modq), (for most χ and t) we have

L(σ0 + it, χ) = (1 + o(1))M(σ0 + it, χ)−1.

By Proposition 4.2.5 (for most χ and t) we know that

|L(σ0 + it, χ)| = (1 + o(1)) exp(<P(σ0 + it, χ))

and by Proposition 4.2.4 we can conclude that log |L(σ0 + it, χ)| is normally dis-
tributed with mean 0 and variance 1

2 log log q. Finally with the help of Proposi-
tion 4.2.2 we deduce that∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣log |L(
1

2
+ it, χ)| − log |L(σ0 + it, χ)|

∣∣∣∣ dt� φ∗(q)(σ0 −
1

2
) log q = φ∗(q)W.

So for most χ and t, we have

log |L(
1

2
+ it, χ)| = log |L(σ0 + it, χ)|+O(W 2).

SinceW 2 = o(
√

log log q) it follows that similarly like log |L(σ0+it, χ)|, log |L(1
2 +

it, χ)| has the normal distribution with mean 0 and variance 1
2 log log q, which com-

pletes the proof of Theorem 4.2.1.

4.3 Proof of Theorem 4.2.1

In this section, we prove the propositions to complete the proof of Theorem 4.2.1.
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4.3.1 Proof of Proposition 4.2.2

Let χ be primitive Dirichlet characters modulo q.

Set

G(s, χ) =

(
π

q

)−(s+a)/2

Γ

(
s+ a

2

)
, (4.2)

where

a = a(χ) =

{
0 if χ(−1) = 1

1 if χ(−1) = −1.

We will show that ∣∣∣∣∣log
G(σ + it, χ)

G(1
2 + it, χ)

∣∣∣∣∣�
(
σ − 1

2

)
log q.

Consider the Taylor expansion of the Gamma function we get

Γ(s+ δ) =Γ(s) + δΓ′(z) +
δ2

2!
Γ′′(z) + · · ·

=Γ(s) +O(δ)

where s = 1
2 + it and δ = W

log q , with |t| ≤ 1.

Note that

arg

(
G(σ + it, χ)

G(1
2 + it, χ)

)
= arg (G(σ + it, χ)− arg (G(1/2 + it, χ)) .

Now, applying the Taylor expansion for the argument of the gamma function
we have

arg (G(σ + it, χ)) = arg

((
π

q

)−(σ+it+a)/2

Γ

(
σ + it+ a

2

))

=t/2 log q + arg

(
Γ

(
1/2 + it+ a

2

))
+O(δ).

Similarly,

arg (G(1/2 + it, χ)) = t/2 log q + arg

(
Γ

(
1/2 + it+ a

2

))
.

Expanding the complex logarithm and putting Taylor expansion for Gamma
function in (4.2) we have,
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log
G(σ + it, χ)

G(1
2 + it, χ)

= log

∣∣∣∣∣G(σ + it, χ)

G(1
2 + it, χ)

∣∣∣∣∣+ i arg

(
G(σ + it, χ)

G(1
2 + it, χ)

)

= log

(
π
q

)−(σ+a)/2 ∣∣Γ (σ+it+a
2

)∣∣(
π
q

)−(1/2+a)/2 ∣∣∣Γ(1/2+it+a
2

)∣∣∣ + i

(
t/2 log q + arg

(
Γ

(
1/2 + it+ a

2

))
+O(δ)

− t/2 log q − arg

(
Γ

(
1/2 + it+ a

2

)))

= log
( q
π

)(σ−1/2)/2
+ log

∣∣∣∣Γ(1/2 + it+ a

2

)∣∣∣∣− log

∣∣∣∣Γ(1/2 + it+ a

2

)∣∣∣∣+O(δ).

Since, q is large enough3 and |t| ≤ 1, we write

∣∣∣∣∣log
G(σ + it, χ)

G(1
2 + it, χ)

∣∣∣∣∣� ∣∣∣log q(σ−1
2)
∣∣∣� (

σ − 1

2

)
log q.

Recall the functional equation of the complete L-function

ξ(s, χ) = G(s, χ)L(s, χ).

To prove Proposition 4.2.2 it is enough to prove that

∫ 1

−1

∣∣∣∣log

∣∣∣∣ξ(1/2 + it, χ)

ξ(σ + it, χ)

∣∣∣∣∣∣∣∣ dt� (
σ − 1

2

)
log q.

Recalling Hadamard’s factorization formula (see e.g. Lemma 2.2.11), there
exist constants a = a(χ) and b = b(χ) (where b(χ) = −

∑
ρ<(1/ρ)) such that

ξ(s, χ) = ea+bs
∏
ρ∈Zχ

(
1− s

ρ

)
es/ρ,

where ρ = β + iγχ ∈ Zχ, where Zχ denotes the set of all non-trivial zeros of
L(s, χ) for Dirichlet characters χ modulo q.

Assuming that t is not the ordinate of a zero of L(s, χ) we can write

log

∣∣∣∣ξ(1/2 + it, χ)

ξ(σ + it, χ)

∣∣∣∣ =
∑
ρ∈Zχ

log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣ .
Suppose ρ = β + iγχ ∈ Zχ, where Zχ denotes the set of all non-trivial zeros

of L(s, χ) for Dirichlet characters χ modulo q. Integrating over t ∈ [−1, 1] we get
3Notice that as q →∞, δ → 0
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∫ 1

−1

∣∣∣∣log

∣∣∣∣ξ(1/2 + it, χ)

ξ(σ + it, χ)

∣∣∣∣∣∣∣∣ dt ≤ ∑
ρ∈Zχ

∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt

=
1

2

∑
ρ∈Zχ

∫ 1

−1

∣∣∣∣∣log
(β − 1

2)2 + (t− γχ)2

(β − σ)2 + (t− γχ)2

∣∣∣∣∣ dt. (4.3)

If |t− γχ| ≥ 2, then we have

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣< log

(
1−

σ − 1
2

σ + it− ρ

)∣∣∣∣∣ =

∣∣∣∣∣< σ − 1
2

σ + it− ρ

∣∣∣∣∣+O

(
(σ − 1

2)2

(t− γχ)2

)

=O

(
(σ − 1

2)

(t− γχ)2

)

So for |t| ≤ 1, we can write∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt� (σ − 1/2)

(1± γχ)2
.

Then contribution of these zeros give

∑
γχ

(σ − 1
2)

(1± γχ)2
� (σ − 1/2) log q.

Now consider the range |t− γχ| ≤ 2 (which is basically the zeros near the real
axis) we have

∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt =

1

2

∫ 1

−1

∣∣∣∣∣log
(β − 1

2)2 + (t− γχ)2

(β − σ)2 + (t− γχ)2

∣∣∣∣∣ dt
≤1

2

∫ ∞
−∞

∣∣∣∣∣log

∣∣∣∣∣(β − 1
2)2 + x2

(β − σ)2 + x2

∣∣∣∣∣
∣∣∣∣∣ dx

=π

(
σ − 1

2

)
.

So in this case the contribution of zeros is� (σ − 1
2) log q.

Thus in either case∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt� (σ − 1

2)

1 + (1± γχ)2
.

Remark 4.3.1. Note that the sum (σ − 1
2)
∑

γχ
1

1+(1±γχ)2
is convergent hence it

is finite. In the t-aspect, we have studied the contribution of the non-trivial zeros
of the L-functions in two cases (for zeros near t and the zeros far from t). In the
q-aspect, we study the problem for the contribution of the zeros near the real axis
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and far from the real axis. Note that the number of zeros in a window of length
2 around a given point t is given by � log q + log(2 + |t|) (see Proposition 5.7
of [IK04]). Similarly, like the t-aspect, we compute the contribution of the zeros for
each of these small windows, which will lead us to the total contribution, ultimately
the desired bound. Also, note that as q gets bigger the corresponding L-function
has more zeros.

Inserting this in (4.3), from Theorem 5.24 of [IK04] we can conclude

∫ 1

−1

∣∣∣∣log

∣∣∣∣L(1/2 + it, χ)

L(σ + it, χ)

∣∣∣∣∣∣∣∣ dt =

∫ 1

−1

∣∣∣∣log

∣∣∣∣ξ(1/2 + it, χ)

ξ(σ + it, χ)

∣∣∣∣∣∣∣∣ dt+O

(
σ − 1

2

)
log q

�
(
σ − 1

2

)
log q,

which completes the proof.

4.3.2 Proof of Proposition 4.2.4

Before going into the detail of the proof of Proposition 4.2.4, we prove a general
lemma. We use this lemma in later sections as well.

Let φ∗(q) and φ+(q) be the number of primitive and even primitive Dirichlet
characters modulo q respectively. Recall that φ+(q) = φ∗(q)

2 +O(1) (see section 1
of [CIS12]).

Lemma 4.3.2. Let φ∗(q) be the number of primitive Dirichlet characters modulo q.
Recall that X = q(1/ log log q)2. Then for ε > 0 and complex numbers {an}n∈N, we
have

∑∗

χ( mod q)

∣∣∣∣∣∣
∑
n≤X

anχ(n)

nσ0

∣∣∣∣∣∣
2

= φ∗(q)
∑
n≤X

|an|2

n2σ0
+O(qε). (4.4)

Proof. Expanding (4.4), we have

∑∗

χ( mod q)

∣∣∣∣∣∣
∑
n≤X

anχ(n)

nσ0

∣∣∣∣∣∣
2

=
∑

m,n≤X

amān
(mn)σ0

∑∗

χ( mod q)

χ(m)χ̄(n). (4.5)

Let φ+(q) be the number of even primitive Dirichlet characters modulo q. Note

that
∑+

denote the summation over the even primitive characters modulo q.
Then we have (see section 3 of [IS12]),∑+

χ( mod q)

χ(n) =
1

2

∑∗

χ( mod q)

(χ(m) + χ(−m)). (4.6)

From Lemma 4.1 of [BM11] for (mn, q) = 1, we can write∑+

χ( mod q)

χ(m)χ̄(n) =
1

2

∑
dr=q
d|m±n

µ(r)φ(d).
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In order to prove the lemma, we compute equation (4.5) for even and odd
primitive Dirichlet characters. We show the computation for even primitive Dirich-
let characters, and a similar computation for odd primitive Dirichlet characters
follows similarly.

For even primitive Dirichlet characters χ(−1) = 1, inserting the above equation
to (4.5), we have ∑

m,n≤X

amān
(mn)σ0

·
∑+

χ( mod q)

χ(m)χ̄(n)

=
∑

m,n≤X

amān
(mn)σ0

· 1

2

∑
dr=q
d|m±n

µ(r)φ(d)

=
1

2

∑
dr=q

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

We have two cases for the above equation. For the first case, if d > X, then
m ≡ ±n(modd), which implies m = n. Therefore, the second case arises for
d ≤ X. Then the above equation equals to

1

2

∑
dr=q
d>X

µ(r)φ(d)
∑
n≤X

|an|2

n2σ0
+

1

2

∑
dr=q
d≤X

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

.

Observe that in the second term of the above summation, for d ≤ X, and
m 6= n is very small. Then the error term can be bounded by

1

2

∑
dr=q
d≤X

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

� X(o(1)) � qε.

Thus, the main term for m = n equals to

∑
n≤X

|an|2

n2σ0

1

2

∑
dr=q

µ(r)φ(d) +O

∑
d≤X

µ2(r)φ(d)

 =
1

2
φ∗(q)

∑
n≤X

|an|2

n2σ0
+O(qε),

recalling the definition of X we conclude the above bound.

Note that a similar computation can be done for odd primitive characters
χ(−1) = −1. In that case, instead of (4.6), we have∑−

χ( mod q)

χ(m) =
1

2

∑∗

χ( mod q)

(χ(m)− χ(−m)). (4.7)

Combining for the cases of even and odd primitive Dirichlet characters and
recalling the definition of X, we conclude the proof.
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We prove this proposition by restricting the sum to primes and then compute
moments. For primes pk with k ≥ 3, contributes∣∣∣∣∣∣∣∣∣

∑
2≤pk≤X
k≥3

(log p)χ(pk)

pks(k log p)

∣∣∣∣∣∣∣∣∣ ≤
∑

2≤pk≤X
k≥3

1

3pσ0
= O(1).

where <(s) = σ0. For the prime square contribution we have

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣∣∣∣
∑
p2≤X

(p,q)=1

χ(p2)

p2(σ0+it) · 2

∣∣∣∣∣∣∣∣∣
2

dt =
∑∗

χ( mod q)

∫ 1

−1

∑
p1,p2≤

√
X

(p1p2,q)=1

χ(p2
1)χ̄(p2

2)

p
2(σ0+it)
1 p

2(σ0+it)
2

dt.

(4.8)

First we will show the off-diagonal term treatment for (4.8), then we show the
main term computation. As shown in the proof of Lemma 4.3.2, for d ≤

√
X and

p2
1 6= p2

2, for the even primitive Dirichlet characters, applying (2.16) and (2.17), the
off-diagonal term of (4.8) is bounded by

�
∑
p1 6=p2

p1,p2≤
√
X

(p1p2,q)=1

1

(p1p2)2σ0−
1
2

∑+

χ( mod q)

χ(p2
1)χ̄(p2

2)�1

2

∑
dr=q

d≤
√
X

µ(r)φ(d)
∑

p21≡±p
2
2

p21,p
2
2≤X

1

(p1p2)2σ0−
1
2

�(
√
X)(o(1)) � qε.

Applying Lemma 4.3.2 and by (2.16) and (2.17), for even primitive Dirichlet
characters (4.8) is bounded by

�φ∗(q)
∑
p≤
√
X

1

p4σ0
+ qε � φ∗(q).

Note that a similar computation can be done for odd primitive Dirichlet char-
acters. Adding their contributions and by the definition of X we conclude

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣∣∣∣
∑
p2≤X

(p,q)=1

χ(p2)

p2(σ0+it) · 2

∣∣∣∣∣∣∣∣∣
2

dt� φ∗(q). (4.9)

Let A(q) = A(q;X) :=
∑

2≤p≤X
χ(p2)

p2σ0
, from (4.9) and Chebyshev’s inequality

we have
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1

2φ∗(q)

∑∗

χ( mod q)

meas{−1 ≤ t ≤ 1 : |A(q)| > L}

≤ 1

L2

∑∗

χ( mod q)

∫ 1

−1
|A(q)|2dt� φ∗(q)/L2,

for any positive real number L > 1. In other words we can say that the square
of primes in P(s, χ) contribute a measure at most O(φ∗(q)/L2). With the Same
argument given in Remark 4.2.3 we choose L = o(log log log q).

Now it is evident that we can restrict the auxiliary series P(s, χ) to primes.
Consider the auxiliary series

P0(σ0 + it, χ) = P0(σ0 + it, χ;X) =
∑
p≤X

χ(p)

pσ0+it
.

We study the moments by obtaining a mean value estimate to prove Proposi-
tion 4.2.4.

Lemma 4.3.3. Suppose that k and ` are non-negative integers with Xk+` � q.
Then if k 6= `, ∑∗

χ( mod q)

∫ 1

−1
P0(σ0 + it, χ)kP0(σ0 + it, χ)

`
dt� φ∗(q).

If k = `, for ε > 0,

∑∗

χ( mod q)

∫ 1

−1
|P0(σ0 + it, χ)|2k dt = k!φ∗(q)(log logQ)k +Ok(φ

∗(q)(log logQ)k−1+ε).

Proof. Write P0(s)k =
∑

n
ak(n)χ(n)

ns where

ak(n) =

{
k!

α1!···αr! if n =
∏r
j=1 p

αj
j , p1 < . . . < pr < X,

∑r
j=1 αj = k.

0 otherwise .

Therefore, ∑∗

χ( mod q)

∫ 1

−1
P0(σ0 + it, χ)kP0(σ0 + it, χ)

`
dt

=
∑∗

χ( mod q)

∫ 1

−1

{∑
n

ak(n)χ(n)

ns

∑
m

a`(m)χ̄(m)

ms̄

}
dt

=
∑
m,n

ak(n)a`(m)

(mn)σ0

∑∗

χ( mod q)

χ(m)χ̄(n)

∫ 1

−1

(m
n

)it
dt
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First we compute the sum for even Dirichlet characters. From (4.6), we write∑
m,n

ak(n)a`(m)

(mn)σ0

∑+

χ( mod q)

χ(m)χ̄(n)

∫ 1

−1

(m
n

)it
dt

=
∑
m,n

ak(n)a`(m)

(mn)σ0
· 1

2

∑
dr=q
d|m±n

µ(r)φ(d)

∫ 1

−1

(m
n

)it
dt

=
1

2

∑
dr=q

µ(r)φ(d)
∑

m≡±n( mod d)

∑
m,n

ak(n)a`(m)

(mn)σ0

∫ 1

−1

(m
n

)it
dt.

Similarly, like the proof of Lemma 4.3.2 and applying (2.16) and (2.17), we
have

1

2

∑
dr=q

d>Xk+`

µ(r)φ(d)
∑

n≤Xk+`

ak(n)a`(n)

n2σ0
+O


∑
dr=q

d≤Xk+`

µ(r)φ(d)
∑

m≡±n( mod d)

m≤Xk,n≤X`
m6=n

ak(n)a`(m)

(mn)σ0−
1
2


For the diagonal term ak(n)a`(n) is 0 by definition for k 6= `. We compute

the off-diagonal term of the above equation for d ≤ Xk+` with m 6= n. Then the
off-diagonal term is bounded by

�
∑
dr=q

d≤Xk+`

µ(r)φ(d)
∑

m≡±n( mod d)

m≤Xk,n≤X`
m6=n

ak(n)a`(m)

(mn)σ0−
1
2

� (Xk+`)(o(1)) � qε.

A similar computation can be done for the odd primitive Dirichlet characters.
Then we have the off-diagonal term contribution given by

�
∑∗

χ( mod q)

∑
m6=n

m≤Xk,n≤X`

ak(m)a`(n)

(mn)σ0−
1
2

� (Xk+`)(o(1)) � qε � φ∗(q).

For the off-diagonal term from (2.17) we can see that the contribution of the
denominator is negligible since σ0 is close to 1

2 (see Lemma 1 of [Sel46b]).
We conclude the first part of the lemma.

For k = ` the diagonal term contributes
∑

n
ak(n)2

n2σ0
. By the definition for the

given positive integers α1, . . . , αr with
∑r

i=1 αi = k the contribution of the term of
n of the form p

α1
1 · · · pαrr is given by

� φ∗(q)
r∏
i=1

 ∑
p≤X

(p,q)=1

1

p2σ0αi

� φ∗(q)(log log q)r+ε.
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The terms with n not being square free contributes (with r ≤ k−1)Ok((log log q)k−1+ε).
The square free n terms contribute

k!
∑

p1,...,pr≤X
(pj,q)=1

1

(p1 · · · pk)2σ0
=k!

 ∑
p≤X

(p,q)=1

1

p2σ0


k

+Ok((log log q)k−1+ε)

=k!(log log q)k +Ok((log log q)k−1+ε).

Recalling the definition of X we conclude the proof.

Proof of Proposition 4.2.4: By Lemma 4.3.3 for any odd k we have

∑∗

χ( mod q)

∫ 1

−1
(<(P0(σ0 + it, χ)))k dt

=
∑∗

χ( mod q)

∫ 1

−1

1

2k

(
P0(σ0 + it, χ) + P0(σ0 + it, χ)

)k
dt

=
1

2k

k∑
`=0

(
k

`

) ∑∗

χ( mod q)

∫ 1

−1
(P0(σ0 + it, χ))`(P0(σ0 + it, χ)

k−`
dt

� φ∗(q).

Observe that it is impossible to have ` = k − ` for any odd k. For all even k,
` = k − ` = k/2 and again with the help of Lemma 4.3.3 we obtain,

1

φ∗(q)

∑∗

χ( mod q)

∫ 1

−1
(<(P0(σ0 + it, χ)))k dt

=
1

2k

(
k

k/2

)(
k

2

)
!(log log q)

k
2 +Ok

(
(log log q)

k
2−1+ε

)
.

The above equation matches with the Gaussian distribution (see (2.20)) with
mean 0 and variance 1

2 log log q.

4.3.3 Proof of Proposition 4.2.5

As we have decomposed P(s, χ) in previous chapter, we are going to use the
same technique here as well. So we have

P1(s, χ) =
∑

2≤n≤Y

Λ(n)χ(n)

ns log n
,

P2(s, χ) =
∑

Y <n≤X

Λ(n)χ(n)

ns log n
.

We further set
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M1(s, χ) =
∑

0≤k≤100 log log q

(−1)k

k!
P1(s, χ)k,

M2(s, χ) =
∑

0≤k≤100 log log log q

(−1)k

k!
P2(s, χ)k.

Lemma 4.3.4. For the primitive Dirichlet character χ modulo q,

|P1(σ0 + it, χ)| ≤ log log q,

|P2(σ0 + it, χ)| ≤ log log log q. (4.10)

holds for most χ and t. Moreover,

M1(σ0 + it, χ) = exp(−P1(σ0 + it, χ))(1 +O(log q)−99),

M2(σ0 + it, χ) = exp(−P2(σ0 + it, χ))(1 +O(log log q)−99). (4.11)

Proof. For the first assertion of the lemma4, with a similar argument of Sec-
tion 4.3.2 (that the auxiliary series P1 and P2 supports only on prime powers)
and Lemma 4.3.25, we have6

4As argued in the proof of (3.5),
∑
n≤Y

Λ(n)2

n2σ0 (logn)2
≈
∑
p≤Y

1
p2σ0

� log log q. Similarly,∑
Y≤n≤X

Λ(n)2

n2σ0 (logn)2
≈
∑
Y≤p≤X

1
p2σ0
� log

(
logX
log Y

)
� log log log q.

5The off-diagonal term treatment is same as (4.8). Note that if we add the contribution of even
and odd primitive Dirichlet characters, it will only change the implicit constant which will not make
any difference for our result because we are only interested in the upper bound.

6We know that Λ(n) supported only on prime powers. In the proof of Proposition 4.2.4, we
have already showed that the terms of P(s, χ) involving higher power of primes pk (with k ≥ 3),
contributes negligible amount.
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∑∗

χ( mod q)

∫ 1

−1
|P1(σ0 + it, χ)|2dt

=
∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣
∑

2≤n≤Y

Λ(n)χ(n)

nσ0+it log n

∣∣∣∣∣∣
2

dt

=
∑
p,r≤Y
(p,q)=1

1

(pr)σ0

∑∗

χ( mod q)

χ(p)χ̄(r)

∫ 1

−1

(p
r

)it
dt+

∑
p2,r2≤Y
(p,q)=1

1

(pr)2σ0

∑∗

χ( mod q)

χ(p2)χ̄(r2)

∫ 1

−1

(p
r

)2it
dt

=2φ∗(q)
∑
p≤Y

(p,q)=1

1

p2σ0
+O

∑
dr=q
d≤Y

µ(r)φ(d)
∑

p≡±r( mod d)
p,r≤Y

1

(pr)σ0−
1
2



+ 2φ∗(q)
∑
p≤
√
Y

(p,q)=1

1

p4σ0
+O

 ∑
dr=q

d≤
√
Y

µ(r)φ(d)
∑

p≡±r( mod d)

p,r≤
√
Y

1

(pr)2(σ0−
1
2)


�2φ∗(q)

∑
p≤Y

(p,q)=1

1

p2σ0
+ 2φ∗(q)

�2φ∗(q) log log q.

Similarly, we have

∑∗

χ( mod q)

∫ 1

−1
|P2(σ0 + it, χ)|2dt� 2φ∗(q) log log log q.

and the first part of the lemma follows.
Suppose K ≥ 1 is a real number. If |z| ≤ K then, using that k! ≥ (k/e)k,

∑
0≤k≤K

zk

k!
= ez +O

( ∑
k>100K

Kk

k!

)
=ez +O

( ∑
k>100K

(
eK

k

)k)
=ez +O(e−100K).

Since |z| ≤ K, we may also write the right side above is ez(1 +O(e−99K)).
Taking z = −P1(σ0 + it, χ) and K = log log q, (4.11) holds.

Now it remains to establish the connection between M(s, χ) and P(s, χ). To
do so in a similar way we decompose M(s, χ) as well. But if we observe the
definition of M(s, χ) we see that we need to decompose a(n) first.
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a1(n) =

{
1 if n has at most 100 log log q prime factors with all p ≤ Y

0 otherwise .

a2(n) =

{
1 if n has at most 100 log log log q prime factors with all Y < p ≤ X

0 otherwise .

Therefore we have

M(s, χ) = M1(s, χ)M2(s, χ),

M1(s, χ) =
∑
n

µ(n)a1(n)χ(n)

ns
,

M2(s, χ) =
∑
n

µ(n)a2(n)χ(n)

ns
.

Lemma 4.3.5. For the primitive Dirichlet character χ modulo q, we have∑∗

χ( mod q)

∫ 1

−1
|M1(σ0 + it, χ)−M1(σ0 + it, χ)|2dt� φ∗(q)(log q)−60,

∑∗

χ( mod q)

∫ 1

−1
|M2(σ0 + it, χ)−M2(σ0 + it, χ)|2dt� φ∗(q)(log log q)−60.

Proof. First we write

M1(s, χ) =
∑
n

b(n)χ(n)

ns

where b(n) satisfies the following properties.

1. |b(n)| ≤ 1 for all n.

2. b(n) = 0 unless n ≤ Y 100 log log q has only prime factors below Y .

3. b(n) = µ(n)a1(n) unless Ω(n) > 100 log log q or, p ≤ Y s.t pk|n with pk > Y .

Set c(n) = (b(n)− µ(n)a1(n)), applying Lemma 4.3.2, we have∑∗

χ( mod q)

∫ 1

−1
|M1(σ0 + it, χ)−M1(σ0 + it, χ)|2dt

=
∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣
∑

n≤Y 100 log log q

c(n)χ(n)

nσ0+it

∣∣∣∣∣∣
2

dt

=2φ∗(q)
∑

n1=n2≤Y 100 log logQ

c(n1)c(n2)

(n1n2)σ0

+O


∑
dr=q

d≤Y 100 log log q

µ(r)φ(d)
∑

n1≡±n2( mod d)

n1,n2≤Y
100 log log q

c(n1)c(n2)

(n1n2)σ0−
1
2


�φ∗(q)(log q)−60.
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Note that our a1(n), a2(n), b(n) are exactly the same as given in Radziwiłł and
Soundarajan’s paper [RS17]. The only difference is that now we have a further
twisting by primitive Dirichlet characters |χ(n)| ≤ 1.

The off-diagonal term with n1 6= n2 contributes

�
∑
dr=q

d≤Y 100 log log q

µ(r)φ(d)
∑

n1≡±n2( mod d)

n1,n2≤Y
100 log log q

c(n1)c(n2)

(n1n2)σ0−
1
2

�
∑

n1 6=n2≤Y 100 log log q

1� qε
′
,

for ε′ > 0. The diagonal terms n1 = n2 contribute (recall the property (3)
above),

φ∗(q)
∑

p|n =⇒ p≤Y
Ω(n)>100 log log q

1

n
+ φ∗(q)

∑
p≤Y
pk>Y

1

pk

+

 ∑
p|n =⇒ p≤Y

1

n

 .

A small calculation can show that the second term above is� φ∗(q) log Y/
√
Y �

φ∗(q)(log q)−60. Note that for any 1 < r < 2 the quantity rΩ(n)−100 log log q is always
non-negative and is ≥ 1 with Ω(n) > 100 log log q. Therefore the first term above
become

φ∗(q)
∑

p|n =⇒ p≤Y
Ω(n)>100 log log q

1

n
� φ∗(q)r−100 log log q

∏
p≤Y

(
1 +

r

p
+
r2

p2
+ · · ·

)
.

Choose r = e2/3 (say), the above estimate is � φ∗(q)(log q)−60, completing
our proof.

Similarly, the second assertion of the lemma follows.

Proof of Proposition 4.2.5: It follows from (4.11) that

M1(σ0 + it, χ) = exp(−P1(σ0 + it, χ))(1 +O(log q)−99)

and by (4.10) we can write

(log q)−1 � |M1(σ0 + it, χ)| � log q.

for most χ and t. Combining these two equations we get

M1(σ0 + it, χ) =M1(σ0 + it, χ) +O((log q)−25)

= exp(−P1(σ0 + it, χ))(1 +O(log q)−20)

Similarly for most χ and t, we have

M2(σ0 + it, χ) =M2(σ0 + it, χ) +O((log log q)−25)

= exp(−P2(σ0 + it, χ))(1 +O(log log q)−20).

Recall the decomposition of M(s, χ) and P(s, χ), by multiplying these esti-
mates we obtain

M(σ0 + it, χ) = exp(−P(σ0 + it, χ))(1 +O(log log q)−20),

completing the proof of the proposition.
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4.3.4 Proof of Proposition 4.2.6

We prove this proposition using Radziwiłł and Soundararajan’s [RS17] method.
Expanding (4.1) we get

∑∗

χ( mod q)

∫ 1

−1
|1− L(σ0 + it, χ)M(σ0 + it, χ)|2dt

=
∑∗

χ( mod q)

∫ 1

−1
|L(σ0 + it, χ)M(σ0 + it, χ)|2dt− 2

∫ 1

−1
<(L(σ0 + it, χ)M(σ0 + it, χ))dt+ 2φ∗(q)

(4.12)
=S1 − 2S2 + S3.

We compute S1 and S2 for even primitive Dirichlet characters, a similar com-
putation can be done for odd primitive Dirichlet characters.

The Dirichlet L-function at s = σ0 + it is given by

L(σ0 + it, χ) =
∑
n≥1

χ(n)

nσ0+it

converges conditionally. We want to truncate the Dirichlet series for n ≤ q1+δ,
where δ > 0 is a small constant. Using partial summation we can write that

∑
Y<n≤X

χ(n)

nσ0+it
=

∑
n≤X χ(n)

X σ0+it
−
∑

n≤Y χ(n)

Yσ0+it
+ (σ0 + it)

∫ X
Y

∑
n≤u χ(n)

uσ0+it
du.

Using Pólya-Vinogradov [Pól18; Vin18] inequality we have∑
n≤X χ(n)

X σ0+it
� q1/2 log q√

X
.

The right hand side of the above equation tends to 0 as X → ∞. Similarly, we
have ∑

n≤Y χ(n)

Yσ0+it
� q1/2 log q√

Y
� log q

qδ/2
� q−δ/4.

If Y = q1+δ, then7∫ X
Y

∑
n≤u χ(n)

uσ0+it
du�

∫ X
Y

q1/2 log q

u3/2
du� q1/2 log q

Y1/2
� q−δ/4.

Then we have the approximation,

L(σ0 + it, χ) =
∑

n≤q1+δ

χ(n)

nσ0+it
+O(q−δ/4).

7Note that σ0 + it = O(1)
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Now for the summation S2, we write∫ 1

−1

∑+

χ( mod q)

L(σ0 + it)M(σ0 + it)dt

=

∫ 1

−1

∑
n≤q1+δ

(n,q)=1

1

nσ0+it

∑
m≤X

(m,q)=1

a(m)

mσ0+it

∑+

χ( mod q)

χ(mn)

From (3.2) of [IS12], for even primitive Dirichlet characters and (mn, q) = 1,
we have ∑+

χ( mod q)

χ(mn) =
∑
vw=q

mn≡1( mod q)

µ(v)φ(w).

Therefore,

∑
vw=q

µ(v)φ(w)
∑∑

m≤X,n≤q1+δ

(mn,q)=1
mn≡1( mod q)

a(m)

(mn)σ0+it
.

To compute S2, we have two following cases. For the first case we have
w ≤ q1/3,

∑
vw=q

w≤q1/3

φ(w)
∑∑

m≤X,n≤q1+δ

1

(mn)1/2
� q5/6+δ/2+ε = o(φ∗(q)),

which is our desired estimate. For the second case we have w > q1/3

∑
vw=q

w>q1/3

φ(w)
∑∑

m≤X,n≤q1+δ

1

(mn)σ0
,

We have the main term contribution φ∗(q) + O(q1/3) for mn = 1. For the
off-diagonal term contribution we have mn 6= 1. Since we have the condition
mn ≡ 1(modw), we can write mn = 1 + kw for k ≥ 1. Note that kw ≤ 1 + kw =

mn ≤ q1+δX ≤ q1+δ+ε. Then k ≤ q1+δ+ε

W . Then the off-diagonal term contributes

∑
vw=q

w>q1/3

φ(w)
∑

1≤k≤q
1+δ+ε

W

1

(1 + kw)1/2
�qε

∑
vw=q

w>q1/3

φ(w)

w1/2

∑
1≤k≤q

1+δ+ε

W

1

k1/2

�q1/2+δ/2+2ε
∑
vw=q

w>q1/3

φ(w)

w
.
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Note that
∑

vw=q

w>q1/3

φ(w)
w ≤ d(q) ≤ qε, where d(q) is the divisor function. Hence the

off-diagonal term contributes q1/2+δ/2+ε.
A similar computation shows that for odd primitive characters we have the

main term contribution φ∗(q) for mn = 1. Therefore,

S2 = 2φ∗(q) + (q1/2+δ/2+ε).

To prove Proposition 4.2.6 we have to show that S1 ∼ 2φ∗(q). We start with
the approximate functional equation of the L-functions. Recall the complete func-
tional equation of L-functions (see (2.4))

ξ(1− s, χ̄) = ε̄(χ)ξ(s, χ)

Applying (2.15) we write

I =
1

2πi

∫
(1)
ξ(σ0 + it+ s, χ)ξ(σ0 − it+ s, χ̄)

G(s)

s
ds

where G(s) is even and G(0) = 1. We move the line integration to <(s) = −1,
picking up the contribution of the simple pole at s = 08. The contribution of the
pole is given by

ξ(σ0 + it, χ)ξ(σ0 − it, χ̄) =
( q
π

)σ0
∣∣∣∣Γ(σ0 + it

2

)∣∣∣∣2 |L(σ0 + it, χ)|2.

Since G(s) is an even function, on the new line of integration we change the
variable from s→ −s and use the functional equation twice to get

1

2πi

∫
(−1)

ξ(σ0 + it+ s, χ)ξ(σ0 − it+ s, χ̄)
G(s)

s
ds

=− 1

2πi

∫
(1)
ξ(σ0 + it− s, χ)ξ(σ0 − it− s, χ̄)

G(s)

s
ds

=− 1

2πi

∫
(1)
ξ(1− σ0 + it− s, χ)ξ(1− σ0 + it+ s, χ̄)

G(s)

s
ds

Let the above equation be I1 without the negative sign. Then we can write

( q
π

)σ0
∣∣∣∣Γ(σ0 + it

2

)∣∣∣∣2 |L(σ0 + it, χ)|2 = I + I1.

We can expand I and I1, as Dirichlet series, since we are in the region of
absolute convergence for the L-functions.

8Note that Γ(s/2) also has a pole at s = 0 but that will cancel by the trivial zero of L(s, χ) at
s = 0.
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I =
1

2πi

∫
(1)
ξ(σ0 + it+ s, χ)ξ(σ0 − it+ s, χ̄)

G(s)

s
ds

=
∑∑
m,n≥1

χ(m)χ̄(n)

(mn)σ0

(m
n

)−it
1

2πi

∫
(1)

( q
π

)σ0+s
(mn)−sΓ

(
σ0 + it+ s

2

)
Γ

(
σ0 − it+ s

2

)
G(s)

s
ds.

Similarly, we expand I1 to get

I1 =
1

2πi

∫
(1)
ξ(σ0 + it+ s, χ)ξ(σ0 − it+ s, χ̄)

G(s)

s
ds

=
∑∑
m,n≥1

χ̄(m)χ(n)

(mn)1−σ0

(m
n

)it
1

2πi

∫
(1)

( q
π

)1−σ0+s
(mn)−sΓ

(
1− σ0 − it+ s

2

)
Γ

(
1− σ0 + it+ s

2

)
G(s)

s
ds.

It follows that∑+

χ( mod q)

∫ 1

−1
|L(σ0 + it, χ)|2dt =

∑
m,n≥1

1

(mn)σ0

∑+

χ( mod q)

χ(m)χ̄(n)

∫ 1

−1

( n
m

)it
dtV+

(
mn

q/π

)

+
∑
m,n≥1

1

(mn)1−σ0

∑+

χ( mod q)

χ̄(m)χ(n)

∫ 1

−1

(m
n

)it
dtV−

(
mn

q/π

)
,

(4.13)

where

V+(x) =
1

2πi

∫
(1)
x−s

Γ
(
σ0+it+s

2

)
Γ
(
σ0−it+s

2

)
∣∣∣Γ(σ0+it

2

)∣∣∣2
G(s)

s
ds.

V−(x) =
1

2πi

∫
(1)
x−s

Γ
(

1−σ0−it+s
2

)
Γ
(

1−σ0+it+s
2

)
∣∣∣Γ(σ0+it

2

)∣∣∣2
G(s)

s
ds.

The Vi functions are smooth and has rapid decay as x→∞. Moving the con-
tour to −1/4+ε, applying Lemma 4.3.2, for the even primitive Dirichlet characters,
for the first term of (4.13), the pole at s = 0 contributes

Ress=0

[
φ∗(q)

∑
m,n≥1

1

(mn)σ0

(
mnπ

q

)−s Γ
(
σ0+it+s

2

)
Γ
(
σ0−it+s

2

)
∣∣∣Γ(σ0+it

2

)∣∣∣2
G(s)

s
ds
]

=φ∗(q)
∑
n≥1

1

n2σ0

Γ
(
σ0+it

2

)
Γ
(
σ0−it

2

)
∣∣∣Γ(σ0+it

2

)∣∣∣2 G(0) +O(q1/2+ε)

=φ∗(q)ζ(2σ0) +O(q1/2+ε). (4.14)
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With G(s) =
(1
2−σ0)2−s2

(1
2−σ0)2

, the pole at s = 1
2 − σ0 contributes

Res
s=1

2−σ0

[ ∑
m,n≥1

1

(mn)σ0

(
mnπ

q

)−s Γ
(
σ0+it+s

2

)
Γ
(
σ0−it+s

2

)
∣∣∣Γ(σ0+it

2

)∣∣∣2
G(s)

s
ds
]
� q1/2+ε.

(4.15)

A similar computation can be done for the odd primitive Dirichlet characters.
Similarly, for the second term of (4.13), we shift the contour to−1/4+ε crossing

a pole at s = 0 and a pole at s = −1/2−σ0, we get 2φ∗(q)ζ(2(1−σ0)) +O(q1/2+ε).

Now we compute the mollified second moments using Radziwiłł and Soundarara-
jan’s mehhod. Using (4.13) we get

S1 =
∑+

χ( mod q)

∫ 1

−1
|L(σ0 + it, χ)M(σ0 + it, χ)|2dt

=
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)σ0

∑+

χ( mod q)

χ(h)χ̄(k)

∫ 1

−1

(
h

k

)it
|L(σ0 + it, χ)|2dt

=
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)σ0

∑+

χ( mod q)

χ(h)χ̄(k)

∫ 1

−1

(
hm

kn

)it ∑
m,n≥1

χ(m)χ̄(n)

(mn)σ0
dtV+

(
mn

q/π

)

+
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)1−σ0

∑+

χ( mod q)

χ(h)χ̄(k)

∫ 1

−1

(
hm

kn

)it ∑
m,n≥1

χ(m)χ̄(n)

(mn)1−σ0
dtV−

(
mn

q/π

)

=
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)σ0

∑
m,n≥1

1

(mn)σ0

∑+

χ( mod q)

χ(hm)χ̄(kn)

∫ 1

−1

(
hm

kn

)it
dtV+

(
mn

q/π

)

+
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)1−σ0

∑
m,n≥1

1

(mn)1−σ0

∑+

χ( mod q)

χ(hm)χ̄(kn)

∫ 1

−1

(
hm

kn

)it
dtV−

(
mn

q/π

)
.

Changing the variable with m = Nk/(h, k) and n = Nh/(h, k), we obtain∑
m,n≥1

χ(m)χ̄(n)

(mn)σ0
= ζ(σ0)χ(h)χ̄(k)

(
(h, k)2

hk

)σ0

.

Then by (4.14) and (4.15), the sum S1 becomes

S1 =2φ∗(q)ζ(2σ0)
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)2σ0
(h, k)2σ0

+ 2φ∗(q)ζ(2(1− σ0))
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)2(1−σ0)
(h, k)2(1−σ0) +O(q1/2+ε).

Let h = h1h2, where h1 is composed only of primes below Y , and h2 is com-
posed of primes between Y and X, and then a(h) = a(h1)a(h2), as given in
Section 4.3.3. Similarly we write a(k) = a(k1)a(k2), we get
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2φ∗(q)ζ(2σ0)
∑
h,k≥1

µ(h)µ(k)a(h)a(k)

(hk)2σ0
(h, k)2σ0 (4.16)

=2φ∗(q)ζ(2σ0)

∑
h1,k1

µ(h1)µ(k1)a(h1)a(k1)

(h1k1)2σ0
(h1, k1)2σ0

∑
h2,k2

µ(h2)µ(k2)a(h2)a(k2)

(h2k2)2σ0
(h2, k2)2σ0


(4.17)

Consider the first factor in (4.16), ignoring the condition that h1, k1 must have
at most 100 log log q prime factors, the resulting sum gives

∑
h1,k1

p|h1k1 =⇒ p≤Y

µ(h1)µ(k1)

(h1k1)2σ0
(h1, k1)2σ0 =

∏
p≤Y

(
1− 1

p2σ0

)
.

Approximating the first factor by the product above, we incur an error term
which is at most

�
∑
h1,k1

p|h1k1 =⇒ p≤Y
Ω(h1)>100 log log q

|µ(h1)µ(k1)|
(h1k1)2σ0

(h1, k1)2σ0 ,

where we used symmetry to assume that h1 has many prime factors. Since
eΩ(h1)−100 log log q is always non-negative, and is ≥ 1 for those h1 with Ω(h1) ≥
100 log log q, the above may be bounded by

�e−100 log log q
∑
h1,k1

p|h1k1 =⇒ p≤Y

|µ(h1)µ(k1)|
(h1k1)2σ0

(h1, k1)2σ0eΩ(h1)

� (log q)−100
∏
p≤Y

(
1 +

1 + 2e

p

)
� (log q)−90.

Thus the first factor in (4.16) is

∏
p≤Y

(
1− 1

p2σ0

)
+O((log q)−90) ∼

∏
p≤Y

(
1− 1

p2σ0

)
.

With a similar computation we can obtain that the second term in (4.16) is

∏
Y <p≤X

(
1− 1

p2σ0

)
+O((log log q)−90) ∼

∏
Y <p≤X

(
1− 1

p2σ0

)
.

Using these above estimates (4.16) becomes
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∼ 2φ∗(q)ζ(2σ0)
∏
p≤X

(
1− 1

p2σ0

)
∼ 2φ∗(q)

∏
p>X

(
1− 1

p2σ0

)−1

∼ 2φ∗(q).

Recalling the definition of X,W and σ0, and using the prime number theorem
and partial summation we write

∑
p>X

1

p2σ0
�
∫ ∞
X

1

t2σ0

dt

log t
� X1−2σ0

(2σ0 − 1) logX
= o(1).

In the same way the second term of (4.13) is

2φ∗(q)ζ(2− 2σ0)

∑
h,k

µ(h)µ(k)a(h)a(k)

hk
(h, k)2−2σ0


∼

2φ∗(q)ζ(2− 2σ0)
∏
p≤X

(
1− 2

p
+

1

p2σ0

)
�φ∗(q)

∏
p≤X

(
1− 1

p

)
= o(φ∗(q)).

Hence, we complete the proof of this proposition.

4.4 Dirichlet L-function attached to twisted form

In this section, we extend the result of the previous section (under the assump-
tion of GRH) by considering the twisted Dirichlet L-function associated with the
GL(3) Hecke-Maass cusp form twisted by the primitive Dirichlet characters χ, as
defined in Definition 2.2.9. We prove the following theorem conditionally, under
the assumption of the moment conjecture. Note that by the end of this chapter we
give a brief overview of how to compute second mollified moment of L(f ⊗ χ, s)
under the assumption of the moment conjecture.

We prove our next theorem conditionally for a special choice of the parameter
Q. Let q := q1q2 such that q1, q2 are prime numbers. For q � Q and q1 � Q1

and q2 � Q2 we may write Q = Q1Q2 where Q1 = Q3/4−δ and Q2 = Q1/4+δ for
δ = 1/100. Since χ is a primitive Dirichlet character χ modulo all q � Q, it can be
split as χ = χ1χ2 with primitive χi modulo all qi � Qi for i = 1, 2. We set

N(Q) = #{χ modulo all q � Q : χ primitive}.

Theorem 4.4.1. Let f is a Hecke-Maass cusp form of type ν = (ν1, ν2) and N(Q)
denote the total number of primitive Dirichlet characters modulo all q � Q, for the
special choice of parameter Q as defined above. Let V be a fixed positive real
number. Then as Q→∞, uniformly for all v ∈ [−V, V ]
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1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 : log |L(f ⊗ χ, 1

2
+ it)| ≥ v

√
1

2
log logQ

}

∼ 1√
2π

∫ ∞
v

e−u
2/2du.

First, we give the idea of the proof of Theorem 4.4.1. Then we prove Theo-
rem 4.4.1 in four steps. First, we take away the problem from the critical line. Then
we introduce an auxiliary series and prove that it has approximate normal distri-
bution with mean 0 and variance 1

2 log logQ. Finally, we connect the L-function
with the auxiliary series by adapting the mollification technique.

In the first step, we take away the problem from the critical line by counting the
zeros of L-functions.

Proposition 4.4.2. Let χ be primitive Dirichlet characters modulo all q � Q, where
the choice of parameters q and Q holds the conditions stated above. Then for any
σ > 1

2 we have∫ 1

−1

∣∣∣∣log |L(f ⊗ χ, 1

2
+ it)| − log |L(f ⊗ χ, σ + it)|

∣∣∣∣ dt� (
σ − 1

2

)
logQ,

where t ranges over [−1, 1].

We fix the parameters (with a similar reason given in Remark 4.2.3)

W = (log log logQ)4, X = Q1/(log log logQ)2 , Y = Q(1/ log logQ)2 , σ0 =
1

2
+

W

logQ
,

where Q is sufficiently large so that W ≥ 3.
Next we introduce the auxiliary series given by

P(f ⊗ χ, s) = P(f ⊗ χ, s;X) =
∑

2≤n≤X

Λf (n)χ(n)

ns log n
.

We compute the moments to determine the distribution of the auxiliary series.

Proposition 4.4.3. Let us assume Ramanujan-Petersson conjecture. Let χ be
primitive Dirichlet characters modulo all q � Q, then the distribution of <(P(f ⊗
χ, s)) is approximately normal with mean 0 and variance ∼ 1

2 log logQ. Precisely,
let V be a fixed positive real number then as Q→∞, uniformly for all v ∈ [−V, V ]

1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 : <(P(f ⊗ χ, σ0 + it)) ≥ v

√
1

2
log logQ

}

∼ 1√
2π

∫ ∞
v

e−u
2/2du.
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By the definition of the Fourier coefficient of the Hecke-maass cusp form
λf (1, 1) 6= 0. Then we define the convolution inverse (µf (1, n)) of the sequence
(λf (1, n)). This is an arithmetic multiplicative function, for a prime number p which
satisfies

µf (1, 1) = 1, µf (1, p) = −λf (1, p), µf (1, p2) = λf (p, 1),

µf (1, p3) = λf (1, p3) + λf (p, p2) =

{
−1 if p - q
0 otherwise

and if j ≥ 4, µf (1, pj) = 0.

In the next step, we introduce the mollifier to connect the L-function with the
auxiliary series. Let M(f ⊗ χ, s) be a Dirichlet polynomial defined as

M(f ⊗ χ, s) =
∑
n

µf (1, n)a(n)χ(n)

ns
,

where a(n) is given by

a(n) =


1 if n is composed only of primes below X and has at most 100 log logQ

primes below Y and at most 100 log log logQ primes between Y and X.
0 otherwise .

Notice that a(n) takes the value 0 except when n ≤ Y 100 log logQX100 log log logQ <
Qε. So, it can be easily seen that M(f, s) is a short Dirichlet polynomial.

Proposition 4.4.4. Let χ be primitive Dirichlet characters modulo all q � Q. Given
ε > 0 and δ > 0, there is some R so that for all q > R, under the assumption of
Ramanujan-Petersson conjecture we have

1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

meas

{
−1 ≤ t ≤ 1 :

∣∣∣∣ M(f ⊗ χ, σ0 + it)

exp(−P(f ⊗ χ, σ0 + it))
− 1

∣∣∣∣ < δ

}
< ε.

As the final step, we connect the mollifier with the L-function in order to com-
plete the proof of Theorem 4.4.1.

Proposition 4.4.5. Let χ be primitive Dirichlet characters modulo all q � Q. Given
ε > 0 and δ > 0, there is some R so that for all q > R, under the assumption of
Ramanujan-Petersson conjecture we have

1

N(Q)

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|1− L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)|2 dt = o(1). (4.18)

So that for t ∈ [−1, 1],

1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

meas {−1 ≤ t ≤ 1 : |L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)− 1| < δ} < ε.
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We prove these propositions in the later sections. Let us connect them to write
the complete proof for Theorem 4.4.1.

Proof of Theorem 4.4.1: Recalling Proposition 4.4.5, it typically says that for
the primitive Dirichlet characters χ modulo all q � Q (for most χ and t), we have

L(f ⊗ χ, σ0 + it) = (1 + o(1))M(f ⊗ χ, σ0 + it)−1.

By Proposition 4.4.4 (for most χ and t) we know that

|L(f ⊗ χ, σ0 + it)| = (1 + o(1)) exp(<P(f ⊗ χ, σ0 + it))

and by Proposition 4.4.3 we can conclude that log |L(f ⊗ χ, σ0 + it)| is normally
distributed with mean 0 and variance 1

2 log logQ. Finally, with the help of Proposi-
tion 4.4.2 we deduce that

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣log |L(f ⊗ χ, 1

2
+ it)| − log |L(f ⊗ χ, σ0 + it)|

∣∣∣∣ dt
� N(Q)(σ0 −

1

2
) logQ = N(Q)W.

So for most χ and t, we have

log |L(f ⊗ χ, 1

2
+ it)| = log |L(f ⊗ χ, σ0 + it)|+O(W 2).

Since W 2 = o(
√

log logQ) it follows that similarly like log |L(f ⊗ χ, σ0 + it)|,
log |L(f⊗χ, 1

2+it)| has the normal distribution with mean 0 and variance 1
2 log logQ,

which completes the proof of Theorem 4.4.1.

4.4.1 Proof of Proposition 4.4.2

In this section, we give the proof of Proposition 4.4.2 and this proof is similar as
the prove given in Proposition 4.2.2. Let αi’s are the Langlands parameter as
defined in (2.11).

Let χ be primitive Dirichlet characters modulo q for all q � Q.

Set

G(f ⊗ χ, s) = q3s/2γ(f ⊗ χ, s) = q3s/2
3∏
i=1

ΓR(s− αi)

where the αi’s are the Langlands parameter as defined in (2.11).

We show that ∣∣∣∣log
G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

∣∣∣∣� (
σ − 1

2

)
log q.
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Consider the Taylor expansion of the Gamma function we get

Γ(s+ δ) =Γ(s) + δΓ′(z) +
δ2

2!
Γ′′(z) + · · ·

=Γ(s) +O(δ)

where s = 1
2 + it and δ = W

log q , with |t| ≤ 1.

Note that

arg

(
G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

)
= arg (G(f ⊗ χ, σ + it))− arg (G(f ⊗ χ, 1/2 + it)) .

Since f is a Hecke-Maass cusp form of type (ν1, ν2) then by Ramanujan-
Selberg conjecture we know that <(αi) = 0.

Now, applying the Taylor expansion we have

arg (G(f ⊗ χ, σ + it)) = arg
(
q3(σ+it)/2γ(f ⊗ χ, (σ + it))

)
= arg

(
q3(σ+it)/2

3∏
i=1

ΓR(σ + it− αi)

)

=3t/2 log q +
3∑
i=1

arg

(
ΓR(

1

2
+ it− αi)

)
+O(δ).

Similarly,

arg (G(f ⊗ χ, 1/2 + it))) = 3t/2 log q +
3∑
i=1

arg

(
ΓR(

1

2
+ it− αi)

)
.

Expanding the complex logarithm and putting Taylor expansion for Gamma
function we have,

log
G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

= log

∣∣∣∣ G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

∣∣∣∣+ i arg

(
G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

)
= log

( q
π

)3(σ−1/2)/2
+

3∑
i=1

log

∣∣∣∣ΓR(
1

2
+ it− αi)

∣∣∣∣− 3∑
i=1

log

∣∣∣∣ΓR(
1

2
+ it− αi)

∣∣∣∣+O(δ)

+ i

(
3t/2 log q +

3∑
i=1

arg

(
ΓR(

1

2
+ it− αi)

)
+O(δ)− 3t/2 log q +

3∑
i=1

arg

(
ΓR(

1

2
+ it− αi)

))
.

Since, q is large enough and |t| ≤ 1, we write

∣∣∣∣log
G(f ⊗ χ, σ + it)

G(f ⊗ χ, 1/2 + it)

∣∣∣∣� ∣∣∣log q(σ−1
2)
∣∣∣� (

σ − 1

2

)
log q.
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Recall the functional equation of the complete L-function

Λ(f ⊗ χ, s) = G(f ⊗ χ, s)L(f ⊗ χ, s).

To prove Proposition 4.4.2 it is enough to prove that

∫ 1

−1

∣∣∣∣log

∣∣∣∣Λ(f ⊗ χ, 1/2 + it)

Λ(f ⊗ χ, σ + it)

∣∣∣∣∣∣∣∣ dt� (
σ − 1

2

)
logQ.

Recalling Hadamard’s factorization formula (see e.g. Lemma 2.2.11), there
exist constants a = a(f ⊗ χ) and b = b(f ⊗ χ) (where b(f ⊗ χ) = −

∑
ρ<(1/ρ))

such that

(s(s− 1))Λ(f ⊗ χ, s) = ea+bs
∏

ρ∈Zf⊗χ

(
1− s

ρ

)
es/ρ,

where ρ = β + iγ ∈ Zf⊗χ, where Zf⊗χ denotes the set of all non-trivial zeros
of L(f ⊗ χ, s) for Dirichlet characters χ modulo all q � Q9.

Assuming that t is not the ordinate of a zero of L(f ⊗ χ, s) we can write

log

∣∣∣∣Λ(f ⊗ χ, 1/2 + it)

Λ(f ⊗ χ, σ + it)

∣∣∣∣ =
∑

ρ∈Zf⊗χ

log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣ .
Suppose ρ = β + iγ ∈ Zf⊗χ, where Zf⊗χ denotes the set of all non-trivial

zeros of L(f ⊗ χ, s) for Dirichlet characters χ modulo all q � Q. Integrating over
|t| ≤ 1 we get

∫ 1

−1

∣∣∣∣log

∣∣∣∣Λ(f ⊗ χ, 1/2 + it)

Λ(f ⊗ χ, σ + it)

∣∣∣∣∣∣∣∣ dt ≤ ∑
ρ∈Zf⊗χ

∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt (4.19)

=
1

2

∑
ρ∈Zf⊗χ

∫ 1

−1

∣∣∣∣∣log
(β − 1

2)2 + (t− γ)2

(β − σ)2 + (t− γ)2

∣∣∣∣∣ dt.
If |t− γ| ≥ 2 then with |t| ≤ 1, we have

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣< log

(
1−

σ − 1
2

σ + it− ρ

)∣∣∣∣∣ =

∣∣∣∣∣< σ − 1
2

σ + it− ρ

∣∣∣∣∣+O

(
(σ − 1

2)2

(t− γ)2

)

=O

(
(σ − 1

2)

(t− γ)2

)
So we can write ∫ 1

−1

∣∣∣∣log

∣∣∣∣(1/2 + it)− ρ
(σ + it)− ρ

∣∣∣∣∣∣∣∣ dt� (σ − 1/2)

(t− γ)2
.

9For simplicity we denote γf⊗χ- as γ.
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Then contribution of these zeros give

∑
ρ∈Zf⊗χ
|t−γ|≥2

(σ − 1
2)

(t− γ)2
� logQ.

Now consider the range |t − γ| ≤ 2 (which is basically the zeros near t) we
have

∫ 1

−1

∣∣∣∣∣log

∣∣∣∣∣ 1
2 + it− ρ
σ + it− ρ

∣∣∣∣∣
∣∣∣∣∣ dt =

1

2

∫ t+1

t−1

∣∣∣∣∣log
(β − 1

2)2 + (t− γ)2

(β − σ)2 + (t− γ)2

∣∣∣∣∣ dt
≤1

2

∫ ∞
−∞

∣∣∣∣∣log

∣∣∣∣∣(β − 1
2)2 + x2

(β − σ)2 + x2

∣∣∣∣∣
∣∣∣∣∣ dx

=π

(
σ − 1

2

)
.

So in this case the contribution of zeros is� (σ − 1
2) logQ.

Thus in either case∫ 1

−1

∣∣∣∣log

∣∣∣∣1/2 + it− ρ
σ + it− ρ

∣∣∣∣∣∣∣∣ dt� (σ − 1
2)

1 + (t− γ)2
.

Inserting this in (4.19), from Theorem 5.8 of [IK04] we can conclude∫ 1

−1

∣∣∣∣log

∣∣∣∣L(f ⊗ χ, 1/2 + it)

L(f ⊗ χ, σ + it)

∣∣∣∣∣∣∣∣ dt =

∫ 1

−1

∣∣∣∣log

∣∣∣∣Λ(f ⊗ χ, 1/2 + it)

Λ(f ⊗ χ, σ + it)

∣∣∣∣∣∣∣∣ dt+O

(
σ − 1

2

)
logQ

�
(
σ − 1

2

)
logQ

which completes the proof.

4.4.2 Proof of Proposition 4.4.3

In this section, we study the moments of the auxiliary series P(f ⊗ χ, s) to prove
that it has normal distribution with mean 0 and variance 1

2 log logQ.

Similarly like Lemma 4.3.2, we prove the following lemma by averaging over
the Dirichlet characters and moduli.

Lemma 4.4.6. Let N(Q) be the number of primitive Dirichlet characters for all
modulo q � Q. Recall that X = Q(1/ log logQ)2. Then for ε > 0 and complex
numbers {an}n∈N, we have

∑
q�Q

∑∗

χ( mod q)

∣∣∣∣∣∣
∑
n≤X

anχ(n)

nσ0

∣∣∣∣∣∣
2

= N(Q)
∑
n≤X

|an|2

n2σ0
+O(Q1+ε). (4.20)
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Proof. Expanding (4.20), we have

∑
q�Q

∑∗

χ( mod q)

∣∣∣∣∣∣
∑
n≤X

anχ(n)

nσ0

∣∣∣∣∣∣
2

=
∑

m,n≤X

amān
(mn)σ0

∑
q�Q

∑∗

χ( mod q)

χ(m)χ̄(n). (4.21)

Let φ+(q) be the number of even primitive Dirichlet characters modulo q. Note

that
∑+

denote the summation over the even primitive characters modulo q.
From Lemma 4.1 of [BM11] for (mn, q) = 1, we can write∑+

χ( mod q)

χ(m)χ̄(n) =
1

2

∑
dr=q
d|m±n

µ(r)φ(d).

In order to prove the lemma, we compute equation (4.21) for even and odd
primitive Dirichlet characters. We show the computation for even primitive Dirich-
let characters, and a similar computation for odd primitive Dirichlet characters
follows similarly.

For even primitive Dirichlet characters χ(−1) = 1, inserting the above equation
to (4.21), we have ∑

m,n≤X

amān
(mn)σ0

·
∑+

χ( mod q)

χ(m)χ̄(n)

=
∑

m,n≤X

amān
(mn)σ0

· 1

2

∑
dr=q
d|m±n

µ(r)φ(d)

=
1

2

∑
dr=q

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

We have two cases for the above equation. For the first case, if d > X, then
m ≡ ±n(modd), which implies m = n. Therefore, the second case arises for
d ≤ X. Then the above equation equals to

1

2

∑
dr=q
d>X

µ(r)φ(d)
∑
n≤X

|an|2

n2σ0
+

1

2

∑
dr=q
d≤X

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

.

Observe that in the second term of the above summation, for d ≤ X, and
m 6= n is very small. Then the error term can be bounded by

1

2

∑
dr=q
d≤X

µ(r)φ(d)
∑

m≡±n( mod d)
m,n≤X

amān
(mn)σ0

� X(o(1)) � qε.

Thus, the main term for m = n equals to

∑
n≤X

|an|2

n2σ0

1

2

∑
dr=q

µ(r)φ(d) +O

∑
d≤X

µ2(r)φ(d)

 =
1

2
φ∗(q)

∑
n≤X

|an|2

n2σ0
+O(qε),
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recalling the definition of X we conclude the above bound.

Note that a similar computation can be done for odd primitive characters
χ(−1) = −1. Now averaging over the moduli we get

∑
q�Q

1

2
φ∗(q)

∑
n≤X

|an|2

n2σ0
+O(qε)


The summation

∑
q�Q φ

∗(q) is the number of primitive Dirichlet characters
modulo all q � Q, which is N(Q) by definition. Hence,

∑
q�Q

∑+

χ( mod q)

∣∣∣∣∣∣
∑
n≤X

anχ(n)

nσ0

∣∣∣∣∣∣
2

=
1

2
N(Q)

∑
n≤X

|an|2

n2σ0
+O(Q1+ε).

Note that a similar computation can be done for odd primitive characters
χ(−1) = −1. In that case instead of (4.6), we have (4.7).

Adding the cases of even and odd primitive Dirichlet characters and recalling
the definition of X, we conclude the proof.

We prove this proposition by restricting the sum to primes and then compute
moments. For primes pk with k ≥ 3 contributes∣∣∣∣∣∣∣∣∣

∑
2≤pk≤X
k≥3

Λf (pk)χ(pk)

pks(k log p)

∣∣∣∣∣∣∣∣∣�
∑

2≤pk≤X
k≥3

1

3pkσ0
= O(1).

where <(s) = σ0. For the prime square contribution we have

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣∣∣∣
∑
p2≤X

(p,q)=1

Λf (p2)χ(p2)

p2(σ0+it) · 2

∣∣∣∣∣∣∣∣∣
2

dt

=
1

4

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

∑
p1,p2≤

√
X

(p,q)=1

Λf (p2
1)Λf (p2

2)χ(p2
1)χ(p2

2)

p
2(σ0+it)
1 p

2(σ0+it)
2 log p1 log p2

dt.

Note that Λf (p2) =
∑3

i=1 γi(p)
2 log p where γi(p) are the complex roots of the

quadratic equation X− λf (1, p)X2 + λf (p, 1)X− 1 = 0. By assuming Ramanujan-
Petersson (see (2.1)) conjecture we can say that |

∑3
i=1 γi(p)

2|2 � p4ε.
First we will show the off-diagonal term treatment, then we show the main

term computation. As shown in the proof of Lemma 4.4.6, for d ≤
√
X, p2

1 ≡
±p2

2(modd) implies that p2
1 6= p2

2. Then for the even primitive Dirichlet characters,
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applying (2.16) and (2.17), the off-diagonal term of the above equation is bounded
by

�
∑
p1 6=p2

p1,p2≤
√
X

(p1p2,q)=1

1

(p1p2)2σ0−
1
2

∑
q�Q

∑+

χ( mod q)

χ(p2
1)χ̄(p2

2)

�1

2

∑
q�Q

∑
dr=q

d≤
√
X

µ(r)φ(d)
∑

p21≡±p
2
2

p21,p
2
2≤X

1

(p1p2)2σ0−
1
2

� Q1+ε.

Applying Lemma 4.4.6 and by (2.16) and (2.17), the above integration is
bounded by

� N(Q)
∑
p≤
√
X

1

p4σ0
+Q1+ε � N(Q). (4.22)

Let A(Q;X) = A(Q) =
∑

2≤p≤
√
X

∑3
i=1 γi(p)

2

p2σ0
, from (4.22) and Chebyshev’s

inequality we have

1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

meas{−1 ≤ t ≤ 1 : |A(Q)| > L}

≤ 1

L2

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|A(Q)|2dt� N(Q)/L2

for any positive real number L > 1. In other words we can say that the square of
primes in P(f ⊗ χ, s) contribute a measure at most O(N(Q)/L2). With the same
argument given in Remark 4.2.3, we choose L = o(log log logQ).

Now we restrict the sum P(f ⊗ χ, s) to primes and define

P0(f ⊗ χ, s) = P0(f ⊗ χ, s;X) =
∑
p≤X

λf (1, p)χ(p)

pσ0+it
.

Next we study the moments of P0(f ⊗ χ, s).

Lemma 4.4.7. Suppose k and ` are non-negative integers with Xk+` � Q. If
k 6= ` ∑

q�Q

∑∗

χ( mod q)

∫ 1

−1
P0(f ⊗ χ, σ0 + it)kP0(f ⊗ χ, σ0 + it)

`
dt� N(Q).

If k = `, for ε > 0, we have∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|P0(f ⊗ χ, σ0 + it)|2kdt = k!2N(Q)(log logQ)k +Ok(N(Q)(log logQ)k−1+ε).
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Proof. Write

P0(f ⊗ χ, s)k =
∑
n

ak(n)λf (1, n)χ(n)

ns

where

ak(n) =

{
k!

α1!···αr! if n =
∏r
j=1 p

αj
j , p1 < . . . < pr < X,

∑r
j=1 αj = k.

0 otherwise .

Let m,n are positive integers, then we write

∆(m,n) =
∑
q�Q

∑∗

χ( mod q)

χ(m)χ̄(n).

Therefore,

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
P0(f ⊗ χ, σ0 + it)kP0(f ⊗ χ, σ0 + it)

`
dt

=
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

{∑
n

ak(n)λf (1, n)χ(n)

ns
·
∑
m

a`(m)λ̄f (1,m)χ̄(m)

ms̄

}
dt.

∑
m,n

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0
∆(m,n)

∫ 1

−1

(m
n

)it
dt

=2
∑
n

ak(n)a`(n)λf (1, n)λ̄f (1, n)

n2σ0
∆(n, n) +

∑
m,n

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0−
1
2

∆(m,n)

First we compute the sum for even Dirichlet characters. From (4.6) and apply-
ing (2.16) and (2.17) we write

∑
m,n

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0

∑
q�Q

∑+

χ( mod q)

χ(m)χ̄(n)

∫ 1

−1

(m
n

)it
dt

=
∑
m,n

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0
· 1

2

∑
q�Q

∑+

dr=q
d|m±n

µ(r)φ(d)

∫ 1

−1

(m
n

)it
dt

=
1

2

∑
q�Q

∑+

dr=q
d|m±n

µ(r)φ(d)
∑
m,n

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0

∫ 1

−1

(m
n

)it
dt.

Similarly, like the proof of Lemma 4.4.6 and applying (2.16) and (2.17), we
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have

1

2

∑
q�Q

∑+

dr=q

d>Xk+`

µ(r)φ(d)
∑

n≤Xk+`

ak(n)a`(n)|λf (1, n)|2

n2σ0

+O


1

2

∑
q�Q

∑+

dr=q

d≤Xk+`

µ(r)φ(d)
∑

m≡n( mod d)

m≤Xk

n≤X`

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0−
1
2


.

For the diagonal term ak(n)a`(m) is 0 by definition for k 6= `. The off-diagonal
term of the above equation is is bounded by

1

2

∑
q�Q

∑+

dr=q

d≤Xk+`

µ(r)φ(d)
∑

m≡±n( mod d)

m≤Xk

n≤X`

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0−
1
2

� Q1+ε � N(Q).

A similar computation can be done for the odd primitive Dirichlet characters.
Then the off-diagonal term is bounded by

�
∑
q�Q

∑∗

χ( mod q)

∑
m6=n
m≤Xk

n≤X`

ak(n)a`(m)λf (1, n)λ̄f (1,m)

(mn)σ0−
1
2

� N(Q).

We conclude the first part of the lemma.

For the second part, for k = ` the diagonal term contributes∑
n

ak(n)2|λf (1,n)|2|χ(n)|2

n2σ0
=
∑

n

ak(n)2|λf (1,n)|2

n2σ0
. By the definition for the given pos-

itive integers α1, . . . , αr with
∑r

i=1 αi = k the contribution of the term of n of the
form p

α1
1 · · · pαrr is given by

� N(Q)
r∏
i=1

 ∑
p≤X

(p,q)=1

|λf (1, p)|2

p2σ0αi

� N(Q)(log logQ)r+ε

The terms with n not being square free contributes (with r ≤ k−1)Ok((log logQ)k−1+ε).
The square-free n terms give (by Proposition 2.4 of [RS96] and noting that n = pk
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(for k ≥ 2) contributes O(1) in (2.2))

k!
∑

p1,...,pk≤X
all pj ’s are distinct, (pj , q) = 1

|λf (1, p1 · · · pk)|2

(p1 · · · pk)2σ0

=k!

 ∑
p≤X

(p,q)=1

|λf (1, p)|2

p2σ0


k

+Ok((log logQ)k−1+ε)

=k!(log logQ)k +Ok((log logQ)k−1+ε).

Recalling the definition of X completes the proof.

Proof of Proposition 4.4.3: By Lemma 4.4.7 for any odd k we have

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
(<(P0(f ⊗ χ, σ0 + it)))k dt

=
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

1

2k

(
P0(f ⊗ χ, σ0 + it) + P0(f ⊗ χ, σ0 + it)

)k
dt

=
1

2k

k∑
`=0

(
k

`

)∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
(P0(f ⊗ χ, σ0 + it))`(P0(f ⊗ χ, σ0 + it)

k−`
dt

� N(Q).

Observe that it is impossible to have ` = k− ` for any odd k, for all even k, we
have ` = k − ` = k/2 and again with the help of Lemma 4.4.7 we obtain,

1

2N(Q)

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
(<(P0(f ⊗ χ, σ0 + it)))k dt

=
1

2k

(
k

k/2

)(
k

2

)
!(log logQ)

k
2 +Ok

(
(log logQ)

k
2−1+ε

)
.

The above equation matches with the Gaussian distribution (see (2.20)) with
mean 0 and variance 1

2 log logQ.

4.4.3 Proof of Proposition 4.4.4

Similarly like Proposition 3.2.4 and 4.2.5 we decompose P(f ⊗ χ, s) and M(f ⊗
χ, s). Starting with the decomposition of P(f ⊗ χ, s) into P1(f ⊗ χ, s) and P2(f ⊗
χ, s) we have

P1(f ⊗ χ, s) =
∑

2≤n≤Y

Λf (n)χ(n)

ns log n
,

P2(f ⊗ χ, s) =
∑

Y <n≤X

Λf (n)χ(n)

ns log n
.
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Set

M1(f ⊗ χ, s) =
∑

0≤k≤100 log logQ

(−1)k

k!
P1(f ⊗ χ, s)k,

M2(f ⊗ χ, s) =
∑

0≤k≤100 log log logQ

(−1)k

k!
P2(f ⊗ χ, s)k.

In the next lemma we establish the connection between Pj(f ⊗ χ, s) and
Mj(f ⊗ χ, s) for j = 1, 2.

Lemma 4.4.8. Let χ be a primitive Dirichlet character modulo q with q � Q, we
have

|P1(f ⊗ χ, s)| ≤ log logQ, (4.23)
|P2(f ⊗ χ, s)| ≤ log log logQ,

is true for most χ and t. Moreover,

M1(f ⊗ χ, s) = exp(P1(f ⊗ χ, s))(1 +O(logQ)−99), (4.24)

M2(f ⊗ χ, s) = exp(P2(f ⊗ χ, s))(1 +O(log logQ)−99).

Proof. With a similar argument of Section 4.4.2 (that the auxiliary series P1 and
P2 supports only on prime powers) and from Lemma 4.4.6, we have10 (by Propo-
sition 2.4 of [RS96] and noting that n = pk (for k ≥ 2) contributes O(1) in (2.2))

10Recall that Λf (n) is the coefficient of the logarithmic derivative of the L-function in Dirich-
let series supported on prime powers. Since the argument we have given in the proof of
Proposition 4.4.3, we know that the primes with higher power (i.e. pk with k ≥ 2) contribute

negligible amount so we can write
∑
n≤Y

∣∣∣ Λf (n)

nσ0+it

∣∣∣2 ≈ ∑
n≤Y

λf (1,p)2

p2σ0
� log logQ. Similarly∑

Y≤n≤X

∣∣∣ Λf (n)

nσ0+it

∣∣∣2 ≈∑Y≤n≤X
λf (1,p)2

p2σ0
� log

(
logX
log Y

)
� log log logQ.
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∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|P1(f ⊗ χ, σ0 + it)|2dt

=
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣
∑

2≤n≤Y

Λf (n)χ(n)

nσ0+it log n

∣∣∣∣∣∣
2

dt

=
∑
p,r≤Y
(p,q)=1

λf (1, p)λf (1, r)

(pr)σ0
∆(p, r)

∫ 1

−1

(p
r

)it
dt+

∑
p2,r2≤Y
(p,q)=1

λf (1, p2)λf (1, r2)

(pr)2σ0
∆(p2, r2)

∫ 1

−1

(p
r

)2it
dt

=2N(Q)
∑
p≤Y

(p,q)=1

|λf (1, p)|2

p2σ0
+O

∑
q�Q

∑
dr=q
d≤Y

µ(r)φ(d)
∑

p≡±r( mod d)
p,r≤Y

λf (1, p)λ̄f (1, r)

(pr)σ0−
1
2



+ 2N(Q)
∑
p≤
√
Y

(p,q)=1

|λf (1, p)|2

p4σ0
+O

∑
q�Q

∑
dr=q

d≤
√
Y

µ(r)φ(d)
∑

p≡±r( mod d)

p,r≤
√
Y

λf (1, p)λ̄f (1, r)

(pr)2(σ0−
1
2)


�2N(Q)

∑
p≤Y

(p,q)=1

λf (1, p)2

p2σ0
+ 2N(Q)

�N(Q) log logQ.

Similarly, we have

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|P2(f ⊗ χ, σ0 + it)|2dt� N(Q) log log logQ,

completing the proof of (4.23).
Suppose K ≥ 1 is a real number. If |z| ≤ K then, using that k! ≥ (k/e)k, we

write

∑
0≤k≤K

zk

k!
= ez +O

( ∑
k>100K

Kk

k!

)
=ez +O

( ∑
k>100K

(
eK

k

)k)
=ez +O(e−100K).

Since |z| ≤ K, we may also write the right side above is ez(1 +O(e−99K)).
Take z = −P1(f ⊗ χ, σ0 + it) and K = log logQ, (4.24) holds.

In order to complete the proof of Proposition 4.4.4 next we establish the con-
nection between Mj(f ⊗ χ, s) andMj(f ⊗ χ, s) for j = 1, 2.

We establish this connection by decomposing M(f ⊗ χ, s).
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M(f ⊗ χ, s) = M1(f ⊗ χ, s)M2(f ⊗ χ, s),

M1(f ⊗ χ, s) =
∑
n

µf (1, n)a1(n)χ(n)

ns
,

M2(f ⊗ χ, s) =
∑
n

µf (1, n)a2(n)χ(n)

ns
,

where

a1(n) =

{
1 if n has at most 100 log logQ prime factors with all p ≤ Y

0 otherwise .

a2(n) =

{
1 if n has at most 100 log log logQ prime factors with all Y < p ≤ X

0 otherwise .

Lemma 4.4.9. Let χ be a primitive Dirichlet character modulo q with q � Q then
under the assumption of Ramanujan-Petersson conjecture we have∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|M1(f ⊗ χ, σ0 + it)−M1(f ⊗ χ, σ0 + it)|2 dt� N(Q)(logQ)−60,

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|M2(f ⊗ χ, σ0 + it)−M2(f ⊗ χ, σ0 + it)|2 dt� N(Q)(log logQ)−60.

Proof. We write

M1(f ⊗ χ, s) =
∑
n

b(n)λf (1, n)χ(n)

ns

where b(n) satisfies the following properties:

1. |b(n)| ≤ 1 for all n.

2. b(n) = 0 unless n ≤ Y 100 log logQ has only prime factors below Y .

3. b(n) = µf (1, n)a1(n) unless Ω(n) > 100 log logQ or, p ≤ Y s.t pk|n with
pk > Y .

Set c(n) = b(n)λf (1, n)− µf (1, n)a1(n), we have

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|M1(f ⊗ χ, σ0 + it)−M(f ⊗ χ, σ0 + it)|2dt

=
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1

∣∣∣∣∣∣∣
∑

n≤Y 100 log logQ

c(n)χ(n)

nσ0+it

∣∣∣∣∣∣∣
2

dt

�N(Q)(logQ)−60.
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We note that our a1(n), a2(n) are exactly the same as Radziwiłł and Soundara-
jan’s method. Instead of Möbius function we have the convolution inverse of
λf (1, n). We have a further twist by |λf (1, n)| and the primitive Dirichlet char-
acter |χ(n)| ≤ 1. The Ramanujan-Petersson conjecture (see (2.1)) asserts that
|λf (1, n)| ≤ d3(n) � nε for ε > 0, where dm(n) denotes the number of represen-
tations of n as the product of m natural numbers. Then by definition |µf (1, n)| ≤
d3(n)� nε.

Under the assumption of The Ramanujan-Petersson conjecture (see (2.1)) the
off-diagonal terms with n1 6= n2 contribute

�
∑
q�Q

∑
dr=q

d≤Y 100 log logQ

µ(r)φ(d)
∑

n1≡±n2( mod d)

n1,n2≤Y
100 log logQ

c(n1)c(n2)

(n1n2)σ0−
1
2

�
∑
q�Q

Y 100 log logQ
∑

n1 6=n2≤Y 100 log logQ

(n1n2)ε � Q1+ε′ .

As argued in the proof of Lemma 4.3.5 and under the assumption of The Ramanujan-
Petersson conjecture (see (2.1)) the diagonal terms n1 = n2 contribute� N(Q)(logQ)−60,
which completes the proof of the lemma.

Proof of Proposition 4.4.4: It follows from (4.24) that for most χ and t,

M1(f ⊗ χ, σ0 + it) = exp(−P1(f ⊗ χ, σ0 + it))(1 +O(logQ)−99)

and by (4.23) (for most χ and t) we can write

(logQ)−1 � |M1(f ⊗ χ, σ0 + it)| � logQ.

Combining these two equations we get

M1(f ⊗ χ, σ0 + it) =M1(f ⊗ χ, σ0 + it) +O((logQ)−25)

= exp(−P1(f ⊗ χ, σ0 + it))(1 +O(logQ)−20)

Similarly, for most χ and t, we have

M2(f ⊗ χ, σ0 + it) =M2(f ⊗ χ, σ0 + it) +O((log logQ)−25)

= exp(−P2(f ⊗ χ, σ0 + it))(1 +O(log logQ)−20).

Recall the decomposition ofM(f ⊗ χ, s) and P(f ⊗ χ, s), by multiplying these
estimates we obtain

M(f ⊗ χ, σ0 + it) = exp(−P(f ⊗ χ, σ0 + it))(1 +O(log logQ)−20),

completing the proof of the proposition.
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4.4.4 Proof of Proposition 4.4.5

In this chapter, we have used the method established in [RS17] to prove Theo-
rem 4.4.1. But to prove the last step of Proposition 4.4.5 we do not follow the
same method. Since we are working with the q-aspect we give a proof strategy
of this proposition using the argument given in [CIS13; CIS12].

Expanding (4.18) we get∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|1− L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)|2 dt

=
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)|2 dt

− 2
∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
<(L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it))dt+ 2N(Q)

=S1 − 2S2 + S3 (4.25)

We compute S1 and S2 for even primitive Dirichlet characters, a similar com-
putation can be done for odd primitive Dirichlet characters.

The Dirichlet L-function at s = σ0 + it,

L(f ⊗ χ, σ0 + it) =
∑
n≥1

λf (1, n)χ(n)

nσ0+it

converges conditionally. From the approximate functional equation of L-functions
(see (2.15)) we write

∑+

χ( mod q)

L(f ⊗ χ, σ0)M(f ⊗ χ, σ0)

=
∑+

χ( mod q)

∑
n≥1

λf (1, n)χ(n)

nσ0
V

(
n

q3/2

) ∑
m≤qε

µf (1,m)a(m)χ(m)

mσ0

+
∑+

χ( mod q)

g(χ)3

q3/2

∑
n≥1

λ̄f (1, n)χ̄(n)

n1−σ0
V̄

(
n

q3/2

) ∑
m≤qε

µ̄f (1,m)a(m)χ̄(m)

m1−σ0
(4.26)

For the first summation of the above equation we have∑+

χ( mod q)

∑
≤q3/2

λf (1, n)χ(n)

nσ0
V

(
n

q3/2

) ∑
m≤qε

µf (1,m)a(m)χ(m)

mσ0

=
∑

n≤q3/2,m≤qε

λf (1, n)µf (1,m)a(m)

(mn)σ0
V

(
n

q3/2

) ∑+

χ( mod q)

χ(n)χ̄(m)

=
∑

n≤q3/2,m≤qε

λf (1, n)µf (1,m)a(m)

(mn)σ0
V

(
n

q3/2

) ∑∑
vw=q

mn≡±1( mod w)

µ(v)φ(w)

=
∑∑

vw=q
µ(v)φ(w)

∑∑
mn≡±1( mod w)

λf (1, n)µf (1,m)a(m)

(mn)σ0
V

(
n

q3/2

)
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Assuming The Ramanujan-Petersson conjecture (see (2.1)), let k = mn which
means k ≤ q3/2+ε and k = ±1 + `w. Therefore the above equation is approxi-
mately

≈
∑∑
vw=q

µ2(v)φ(w)
∑

`≤q
3/2
w

1

`1/2w1/2
�
∑∑
vw=q

µ2(v)φ(w)
1

w1/2

(
q3/2

w

)1/2

� q3/2+ε
∑∑
vw=q

µ2(v)
φ(w)

w
� q3/4+ε.

By averaging over Q we get the main term of size N(Q) and error term of size

Q2−1
4+ε = Q7/4+ε. A similar computation can be done for odd primitive Dirichlet

characters.

Now we study the following

∑
q�Q

∑∗

χ( mod q)

g(χ)3χ(n)χ̄(m)

Assume that q = q1q2 where q1, q2 are primes. As q � Q, we set qi � Qi (for
i = 1, 2), where Q = Q1Q2. Since χ is a primitive Dirichlet character modulo q
then it splits as χ = χ1χ2 with χi primitive modulo qi (for i = 1, 2).

We consider the Gauss sum of the product χ1χ2 i.e., (for detailed computation
see Section 3 of [MS15])

g(χ1χ2) =
∑

a( mod q1q2)

χ1(a)χ2(a)eq1q2(a)

Each a in the above sum can be written uniquely as a = a1q2q̄2 + a2q1q̄1 with
ai(modqi) (for i = 1, 2). Consequently we get

g(χ1χ2) =
∑

a1( mod q1)

∑
a2( mod q2)

χ1(a1)χ2(a2)eq1(a1q̄2)eq2(a2q̄1)

=χ1(q2)χ2(q1)g(χ1)g(χ2).

with the above equation we consider the sum∑∗

χi( mod qi)

g3
χi
χrχ̄i(mn),

where (r, qi) = 1 for i = 1, 2. Opening the Gauss sum we get

∑∗

χi( mod qi)

 ∑
ai( mod qi)

χi(a)eqi(a)

3

χi(rabc)χ̄i(mn)

=φ∗(qi)
∑∗

a,b( mod qi)

eqi(a+ b+mnrab)− cqi(1)3.

96



Here cqi(1) stands for the Ramanujan sum modulo qi, and since we are taking
qi prime we have cqi(1) = −1. We set

Kqi
(u) =

∑∗

a,b( mod qi)

eqi(a+ b+ uab).

The above sum is a hyper-Kloosterman sum. Square-root cancellation in such
sums was proved by Deligne [Del77]:

Kqi
(u)� qi,

for any integer u.

Then by Lemma 1 of [MS15] for qi prime and qi - rmn, we have∑∗

χi( mod qi)

g(χi)
3χi(r)χ̄i(mn) = φ∗(qi)Kqi

(mnr̄) + 1

Following the computation of Section 5 of [MS15] and using the error term esti-
mate for the first term of (4.26), we conclude that the error term of the second
sum of (4.26) is bounded by

�(Q1 +Q2)
∑
q�Q

∞∑
n=1

λf (1, n)

n1−σ0

∑
m≤qε

λf (1,m)a(m)

m1−σ0

∣∣∣∣Vσ0+it

(
mn

q3/2

)∣∣∣∣
�Q1/2+7/4−1/2+ε � Q7/4+ε

This term is satisfactory for our purpose because of our choice of parameter
(Q1 +Q2)� Q1/2. Similarly like the first summation, the main term for the second
sum of (4.26) contributes N(Q).

Since t ∈ [−1, 1], by (2.16) and (2.17) we can say that integrating over t will not
have any significant contribution in the error term. For the main term with mn = 1,∫ 1
−1

(
m
n

)it
dt = 2. Then,

S2 = 2N(Q) + (Q7/4+ε).

To prove Proposition 4.4.5 we need to show that the first term of (4.25) is
∼ 2N(Q). The second mollified moment of GL(3) L-functions is an interest-
ing problem in Analytic Number Theory. We give a brief overview of the proof
technique of the following conjecture, using the methods established in [CIS13;
CIS12]11.

11Note that we only give a brief overview of how can one prove Conjecture 4.4.10. The proof
technique of the conjectures of this section is similar to the given references but do not follow
immediately, that’s why we state them as conjectures not theorems.
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Conjecture 4.4.10. Let f be a Hecke-Maass cusp form of type ν = (ν1, ν2) and
N(Q) denote the total number of primitive Dirichlet character modulo all q � Q.

∑
q�Q

∑∗

χ( mod q)

∫ 1

−1
|L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)|2dt ∼ 2N(Q).

Let α = β = W
logQ . Then we consider the mollified integral

If⊗χ(α, β) =

∫ ∞
−∞

L(f ⊗ χ, 1/2 + α + it)L(f̄ ⊗ χ̄, 1/2 + β − it)|M(f ⊗ χ, 1

2
+ it)|2w(t)dt

(4.27)

We assume that w(t) is smooth, w(t) ≥ 0 with

ŵ(1) =

∫ ∞
−∞

w(t)dt > 0

and

(1 + |t|)jw(j)(t)� (1 + |t|)−A

for any j ≥ 0 and any A ≥ 0, the implied constant depending on j and A. Since
t ∈ [−1, 1] the smoothing factor in (4.27) can be easily replaced by the sharp cut
|t| ≤ 1 by exploiting the positivity features. In this case ŵ(t) = 2, while in general
ŵ(t) � 1.

Opening up the mollifier we write

|M(f ⊗ χ, 1

2
+ it)|2 =

∑
h,k≤Tε

µf (1, h)µ̄f (1, k)a(h)a(k)

h1/2+αk1/2+β
χ(h)χ̄(k)

(
h

k

)−it
Applying (4.27) we get

If⊗χ(α, β) =
∑

h,k≤Tε

µf (1, h)µ̄f (1, k)a(h)a(k)

h1/2+αk1/2+β
If⊗χ(α, β;h, k)

where

If⊗χ(α, β;h, k) = χ(h)χ̄(k)

∫ ∞
−∞

w(t)

(
h

k

)−it
L(f ⊗ χ, 1/2 + α + it)L(f̄ ⊗ χ̄, 1/2 + β − it)dt.

Using the proof technique of [CIS13; CIS12] we will reach to a similar version
of Corollary 1 of [CIS12] but we have an extra twist by the mollifer so the expres-
sion would be similar like Theorem 2 of [CIS13]. Also we have to take care of the
terms a(h)a(k) coming from the mollifier.

Conjecture 4.4.11. Let f be a Hecke-Maass cusp form of type ν = (ν1, ν2) and
N(Q) denote the total number of primitive Dirichlet character modulo all q � Q.∑

q�Q

∑∗

χ( mod q)

If⊗χ(α, β)dt ∼ ŵ(1)N(Q) = 2N(Q).
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Now we give a brief overview of how to prove Conjecture 4.4.11 to complete
the explanation of the proof of Proposition 4.4.5.

Lemma 4.4.12 (Soundararajan [Sou09]). Let h > 0 and ∆ > 0 be given. Let
χ[−h,h] denote the characteristic function of the interval [−h, h]. There exist even
analytic functions F−(u), and F+(u) satisfying the following properties.

1. F−(u) ≤ χ[−h,h](u) ≤ F+(u) for real u.

2. We have ∫ ∞
−∞
|F±(u)− χ[−h,h](u)|du ≤ 1

∆
.

3. F̂±(x) = 0 for |x| ≥ ∆ where F̂±(x) =
∫∞
−∞ F±(u)e−2πixudu denotes the

Fourier transform. Also,

F̂±(x) =
sin (2πhx)

πx
+O

(
1

∆

)
.

Such functions were constructed by Selberg (see [Sel89]), using Beurling’s ap-
proximation to the signum function. We use Beurling-Selberg function to change
the integral. Set

χ[−1,1](x) :=

{
1 if − 1 ≤ x ≤ 1

0 otherwise .

Then by the second condition of Lemma 4.4.12 we can write∫ ∞
−∞

(
χ[−1,1](x)− F±(x)

)
dx ≤ 1

∆
.

Note that F̂±(y) is supported in [−∆,∆]. In order to prove Conjecture 4.4.11
one can choose w(t) to be the Beurling-Selberg function in (4.27). In that case

F±(y) is supported in [−1, 1] and |F±(s)| � e2π∆|t|
∆|s|2 .

Conjecture 4.4.13. Let F±(t) be a Beurling-Selberg function. Then∑
h,k≤Tε

µf (1, h)µ̄f (1, k)a(h)a(k)

h1/2+αk1/2+β
χ(h)χ̄(k)×

∑
q�Q

∑∗

χ( mod q)

∫ ∞
−∞

F±(t) exp

(
−it log

(
h

k

))
L(f ⊗ χ, 1/2 + α + it)L(f ⊗ χ, 1/2 + β − it)dt ∼ N(Q).

Remark 4.4.14. One can start with∫ ∞
−∞

F±(t)|L(f ⊗ χ, σ0 + it)M(f ⊗ χ, σ0 + it)|2dt

=
∑

h,k≤Tε

µf (1, h)µ̄f (1, k)a(h)a(k)

h1/2+αk1/2+β
χ(h)χ̄(k)

∫ ∞
−∞

F±(t)

(
h

k

)−it
L(f ⊗ χ, 1/2 + α + it)L(f ⊗ χ, 1/2 + β − it)dt.
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Then one may have the Fourier transform∫ ∞
−∞

F±(t)

(
h

k

)−it
L(f ⊗ χ, 1/2 + α + it)L(f ⊗ χ, 1/2 + β − it)dt

=

∫ ∞
−∞

F±(t) exp

(
−it log

(
h

k

))
L(f ⊗ χ, 1/2 + α + it)L(f ⊗ χ, 1/2 + β − it)dt.

Note that we do not want h and k to be far away from each other. So we set

∣∣∣∣log

(
h

k

)∣∣∣∣ ≤ ∆ =⇒ e−∆ ≤
(
h

k

)
≤ e∆,

where ∆ = o(log T )1/2.

From Conjecture 4.4.13, one can deduce Conjecture 4.4.11.
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5. Independence of automorphic
L-functions

5.1 Overview of the Problem

After the derivation of the central limit theorem, Selberg [Sel92] mentioned his
orthogonality conjecture, following from which he further remarked that the prim-
itive L-functions belonging to the Selberg class are statistically independent. Al-
though, Selberg did not give any precise description of independence. In the pa-
per [HW20], P. Hsu and P. Wong, proved the same result for the multiple Dirichlet
L-functions associated with the primitive Dirichlet characters. In this chapter by
following the method established in Chapter 3, we prove the following theorems.

Theorem 5.1.1. Let f1 and f2 be two distinct primitive holomorphic cusp forms.
For sufficiently large T and t ∈ [T, 2T ], the random vector(

log

∣∣∣∣L(f1,
1

2
+ it

)∣∣∣∣ , log

∣∣∣∣L(f2,
1

2
+ it

)∣∣∣∣)
is approximately a bi-variate normal distribution with mean vector 02 and co-
variance matrix 1

2(log log T )I2.
More precisely, let V be a fixed real number. Then as T → ∞, uniformly for all
v1, v2 ∈ [−V, V ]

1

T
meas

t ∈ [T, 2T ] :
log |L(fi,

1
2 + it)|√

1
2 log log T

≥ vi : i = 1, 2


∼ 1√

2π

∫ ∞
v1

e−x
2
1/2dx1

∫ ∞
v2

e−x
2
2/2dx2.

Consequently, log
∣∣L (f1,

1
2 + it

)∣∣ and log
∣∣L (f2,

1
2 + it

)∣∣ are asymptotically inde-
pendent.

As a more generalized version of this theorem, we further prove that the real
part of logarithm of the automorphic L-functions form a Gaussian process. Since
we intend to prove Theorem 5.1.1 by the method established in Chapter 3, we
need to prove our next theorem by studying the joint distribution of these L-
functions.

Theorem 5.1.2. Let (fj)
n
j=1 be a sequence of distinct primitive holomorphic cusp

forms. Then for all large T and t ∈ [T, 2T ] the random vector(
log

∣∣∣∣L(f1,
1

2
+ it

)∣∣∣∣ , . . . , log

∣∣∣∣L(fj , 1

2
+ it

)∣∣∣∣)
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is approximately n-variate normal distribution with mean vector 0n and co-variance
matrix 1

2(log log T )In, where 0n is the zero vector and In is the n×n identity matrix.
More precisely, let V be a fixed real number. Then as T → ∞, uniformly for all
v1, . . . , vn ∈ [−V, V ]

1

T
meas

t ∈ [T, 2T ] :
log |L(fi,

1
2 + it)|√

1
2 log log T

≥ vi : i = 1, 2, . . . , n


∼ 1√

2π

∫ ∞
v1

e−x1
2/2dx1 · · ·

∫ ∞
vn

e−xn
2/2dxn.

Consequently, the random variables log |L(fj ,
1
2 + it)|’s (for j = 1, . . . , n) are

asymptotically independent and log |L(fj ,
1
2 + it)|fj∈J forms a Gaussian process

(see Definition 2.4.7) for any totally ordered set J of distinct primitive holomorphic
cusp forms.

Let X1, X2, . . . , Xn be a n-variate normal distribution with mean vector 0n and
co-variance matrix approximately ν2In. Each term Xj = log |L(fj ,

1
2 + it)| (for

j = 1, . . . , n). As argued in the Definition (see introduction), with a similar argu-
ment each entry Xj (for j = 1, . . . , n) of the random vector varies “almost inde-
pendently” for distinct primes p. We also know that each Xj (for j = 1, . . . , n)
is “approximately normally” distributed. Every linear combination of Xj (for j =
1, . . . , n), of its component is “approximately normally” distributed.

Definition. IfX1, X2, . . . , Xn is an approximately n-variate normal distribution with
mean 0n and variance ν2In, for any fixed positive real number V , as T → ∞, we
have

1

T
meas

{
t ∈ [T, 2T ] :

Xi

ν
≥ vi : i = 1, 2, . . . , n

}
∼ 1√

2π

∫ ∞
v1

e−x1
2/2dx1 · · ·

∫ ∞
vn

e−xn
2/2dxn,

uniformly for all vi ∈ [−V, V ], where i = 1, 2, . . . , n.

We prove these theorems in the next section. Moreover, we propose a more
generalized problem on the statistical independence of the families of L-functions.

5.2 Gaussian Process for automorphic L-functions

In this section, we prove Theorem 5.1.1 and 5.1.2. For the sake of the calculations
we start with the proof of Theorem 5.1.1, the computation for the next theorem is
rather complicated.

5.2.1 Proof of Theorem 5.1.1

Theorem 5.2.1. Let f1 and f2 be distinct primitive holomorphic cusp forms. Let
V be a fixed real number. As T → ∞, for a1, a2 ∈ R, (with a1, a2 6= 0) for all
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v ∈ [−V, V ],

1

T
meas

{
t ∈ [T, 2T ] : log |La1,a2

(
1

2
+ it

)
| ≥ v

√
a1

2 + a2
2

2
log log T

}

∼ 1√
2π

∫ ∞
v

e−
x2

2 dx,

where

La1,a2(s) = L(f1, f2, s; a1, a2) := |L(f1, s)|a1|L(f2, s)|a2 .

The proof of this theorem is similar to the proof of Theorem 3.1.1. As in that
proof we define the auxiliary series1,

Pa1,a2,0(s) = P0(f1, f2, s;X) :=
∑
p≤X

a1λf1(p) + a2λf2(p)

ps
,

where λf1 , λf2 are the Fourier coefficients of the primitive holomorphic cusp forms
f1, f2 respectively. Similarly to the proof of Theorem 3.1.1, we need moment
calculation for Pa1,a2,0(s).

Lemma 5.2.2. Let f1, f2 be distinct primitive holomorphic cusp forms. Suppose,
k, ` are non-negative integers with Xk+` � T . Then for any real numbers a1, a2

(with a1, a2 6= 0), we have,∫ 2T

T
Pa1,a2,0

(σ0 + it)kPa1,a2,0(σ0 + it)`dt�|a1|,|a2| T,

for k 6= `, and∫ 2T

T
|Pa1,a2,0(σ0 + it)|2kdt = k!T ((a2

1 + a2
2) log log T )k +Ok(T (log log T )k−1+ε).

Proof. Set

ψ(p) = ψa1,a2
(p) := a1λf1(p) + a2λf2(p)

and

Ψk(n) :=
r∏
j=1

ψ(pj)
αj

where n = p
α1
1 · · · pαrr with α1 + · · ·+ αr = k, we can write

Pa1,a2,0(σ0 + it)k =
∑
n

ak(n)Ψk(n)

nσ0+it
,

where ak(n) is same as defined in (3.4). Therefore using (2.16) and (2.17) we
write,

1For the convenience of the reader we write Pa1,a2,0(s) instead of Pa1,a2,0(f1, f2, s).
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∫ 2T

T
Pa1,a2,0(σ0 + it)kPa1,a2,0(σ0 + it)`dt (5.1)

=

∫ 2T

T

∑
n

ak(n)Ψk(n)

ns

∑
m

a`(m)Ψ̄`(m)

ms̄
dt

=T
∑
n

ak(n)a`(n)Ψk(n)Ψ`(n)

n2σ0
+O

∑
n6=m

ak(n)a`(m)|Ψk(n)Ψ`(m)|

(nm)σ0−
1
2

 .

Using Lemma 1 of [Sel46b] since σ0 is close to 1
2 , we can see the the de-

nominator in the error term of (5.1) is negligible. From the definition of Ψk(n), for
n =

∏r
j=1 p

αj
j , by the Ramanujan-Petersson conjecture (due to Deligne [Del74])

we know that λfj (n)� nε for ε > 0 (and j = 1, 2). Then we write2

|Ψk(n)| =
r∏
j=1

|ψ(pj)|αj ≤
r∏
j=1

(|a1λf1(pj)|+ |a2λf2(pj)|)αj � Xkε(|a1|+ |a2|)k.

Thus, the big-O term is at most

X(k+`)ε(|a1|+ |a2|)k+`
∑
n6=m
m≤Xk

n≤X`

ak(n)a`(m)�|a1|,|a2| X
(k+`)(1+ε) �|a1|,|a2| T.

By the definition ak(n)a`(n) = 0 if k 6= `, we conclude the first assertion of
Lemma 5.2.2. It remains to prove the lemma for k = `.
For n =

∏r
j=1 p

αj
j , we write

Ψk(n)Ψk(n) =
r∏
j=1

(
a2

1|λf1(pj)|2 + a2
2|λf2(pj)|2 + a1a2λf (pj) + a1a2λ̄f (pj)

)αj ,
where λf := λf1λ̄f2. From the above equation and the fact that

∑
j αj = k, for the

second part of the lemma we have

∣∣∣∣∣∣
∑

n non square free

ak(n)ak(n)Ψk(n)Ψk(n)

n2σ0

∣∣∣∣∣∣ ≤ T ε(|a1|+ |a2|)2k
∑

n non square free

ak(n)2λf (n)2

n2σ0
.

Therefore as argued in the proof of Lemma 3.3.1 the non-square free term
contributes a quantity of order O((log log T )k−1+ε). For n square free we can
express Ψ(n)Ψ̄(n) as

2Note that each pj < X from which we can write n ≤ Xk andm ≤ X`. Then
∏r
j=1(|a1λf1(pj)|+

|a2λf2(pj)|)αj ≤
∏r
j=1(|a1|+|a2|)αj (|λf1(pj)|+|λf2(pj)|)αj . Then for each j = 1, . . . , r, (|λf1(pj)|+

|λf2(pj))
αj | < |λf1(pj)|αj · |λf2(pj)|αj . Then

∏r
j=1 |λf1(pj)|αj · |λf2(pj)|αj � Xkε, for ε > 0.
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∑ β∑
i=0

a1
2ia2

2(β−i)|λf1(p1 · · · pi)|2|λf2(p1 · · · pβ−i)|2
 (a1a2)k−βλf (m)λ̄f (m′)

where the sum is over β + Ω(m) + Ω(m′) = k such that 0 ≤ β ≤ k and
n = n′mm′ where n has the prime composition of p1, . . . , pk.

For i = 0 and i = β, the above equation can be written as

∑
a1

2β|λf1(n′)|2(a1a2)k−βλf (m)λ̄f (m′) +
∑

a2
2β|λf2(n′)|2(a1a2)k−βλf (m)λ̄f (m′)

+
∑β−1∑

i=1

a1
2ia2

2(β−i)|λf1(p1 · · · pi)|2|λf2(p1 · · · pβ−i)|2
 (a1a2)k−βλf (m)λ̄f (m′)

(5.2)

We can express the first term of (5.2) as

∑
0≤β≤k

a1
2β(a1a2)k−β

∑
n

ak(n)2|λf1(n′)|2λf (m)λ̄f (m′)

n2σ0

where the inner sum runs over n = n′mm′ (with n′,m,m′ pair-wise co-prime)
and β + Ω(m) + Ω(m′) = k. Since λf1(n) is real multiplicative function we have

k!
∑

0≤γ≤k−β

k!

β!γ!(k − β − γ)!

·
∑

p1,...,pk≤X
all pj ’s are distinct

(pj,q)=1

|λf1(p1 · · · pβ)|2λf (pβ+1 · · · pβγ))λ̄f (pβγ+1 · · · pk)
(p1 · · · pk)2σ0

which is

k!
∑

0≤γ≤k−β

k!

β!γ!(k − β − γ)!

 ∑
p≤X

(p,q=1)

|λf1(p)|2

p2σ0


β ∑

p≤X
(p,q=1)

λf (p)

p2σ0


γ ∑

p≤X
(p,q=1)

λ̄f (p)

p2σ0


k−β−γ

.

(5.3)

Similarly, for the second term of (5.2) gives

k!
∑

0≤γ≤k−β

k!

β!γ!(k − β − γ)!

 ∑
p≤X

(p,q=1)

|λf2(p)|2

p2σ0


β ∑

p≤X
(p,q=1)

λf (p)

p2σ0


γ ∑

p≤X
(p,q=1)

λ̄f (p)

p2σ0


k−β−γ

.

(5.4)
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With a similar computation we get contributions from the third term of (5.2).
Note that the sum in (5.1) has its main contribution for β = k. Taking β = k in (5.3)
and (5.4) and adding up the contribution coming from the third term of (5.2), from
section 3 of [Lü14] and (63) of [MN14] we conclude

k!
(

(a2
1 log log T )k + (a2

2 log log T )k
)

+ k!

(
k−1∑
i=1

(
k − 1

i

)
ai1a

(k−1)−i
2 (log log T )k−1

)
+Ok((log log T )k−1+ε)

=k!
(
(a2

1 + a2
2) log log T

)k − k!

(
k−1∑
i=1

(
k − 1

i

)
ai1a

(k−1)−i
2 (log log T )k−1

)

+ k!

(
k−1∑
i=1

(
k − 1

i

)
ai1a

(k−1)−i
2 (log log T )k−1

)
+Ok((log log T )k−1+ε)

=k!
(
(a2

1 + a2
2) log log T

)k
+Ok((log log T )k−1+ε)

completing the proof.

Let Xj = log |L(fj , σ0 + it)| for j = 1, 2. We are now ready to prove Theo-
rem 5.2.1.

Proof of Theorem 5.2.1: Observe that log |La1,a2(s)| = a1X1 + a2X2 (where
Xj = log |L(fj ,

1
2 + it)| for j = 1, 2). Like a similar argument of Proposition 3.2.1

we have

∫ t+1

t−1

∣∣∣∣log |L
a1,a2(1

2+iy)
| − |La1,a2(σ0+iy)|

∣∣∣∣ dy � (
σ0 −

1

2

)
log T. (5.5)

However, we can study the function log |La1,a2(σ0 + it)| away from the critical line
<(s) = 1

2 .

Define Pa1,a2(s) := a1P(f1, s) + a2P(f2, s) where P(fj , s)’s (for j = 1, 2) are
defined as the auxiliary series P(f, s). Similarly, the contribution of the higher
order terms of the primes is at most O(1). For the terms involving p2 as shown in
the proof of Proposition 3.2.3, it contributes O(T/L2), for any real number L > 1.
Now by Lemma 5.2.2 for Xk � T and odd k,

∫ 2T

T
(<(Pa1,a2,0(σ0 + it)))kdt

=
1

2k

k∑
`=0

(
k

`

)∫ 2T

T
Pa1,a2,0

(σ0 + it)`Pa1,a2,0
(σ0 + it)k−`dt� T.

Also, by Lemma 5.2.2, for even k,
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∫ 2T

T
(<(Pa1,a2,0(σ0 + it)))kdt

=2−k
(
k

k/2

)(
k

2

)
!

(
a2

1 + a2
2

2
log log T

)k
2

+Ok((log log T )
k
2−1+ε).

By (2.20) we conclude that <(Pa1,a2
(σ0 + it)) has an approximately normal distri-

bution with mean 0 and variance a2
1+a2

2
2 log log T .

Now it remains to connect La1,a2(σ0 + it) with Pa1,a2(σ0 + it). From the sim-
ilar argument of Proposition 3.2.4 and Proposition 3.2.5, |L(fj , σ0 + it)| = (1 +
o(1)) exp(<(Pa1,a2(σ0 + it))), except for a possible set of measure o(T ), for each
j. Since, La1,a2

(s) = |L(f1, s)|a1|L(f2, s)|a2 and Pa1,a2(s) = a1P(f1, s)+a2P(f2, s),
we have

La1,a2(σ0 + it) = (1 + o(1)) exp(<(Pa1,a2(σ0 + it))).

It shows log |La1,a2(σ0 + it)| has Gaussian distribution with mean 0 and vari-

ance a2
1+a2

2
2 log log T , combining with (5.5) we conclude the proof.

Finally, we are ready to prove Theorem 5.1.1.

Proof of Theorem 5.1.1: Let X := (Xj)
2
j=1 = log |L(fj ,

1
2 + it)|2j=1. By Theo-

rem 3.1.1, we have X1 and X2 both are approximately normally distributed with
mean 0 and variance 1

2 log log T . By applying Theorem 5.2.1 and Lemma 2.4.5,
we have that the linear combination of X1 and X2 an approximate bi-variate nor-
mal distribution.

Putting a1 = a2 = 1 in Theorem 5.2.1, we get ρ(X1, X2)→ 0 as T →∞ and

Var(X1 +X2) =
1 + 1

2
log log T = Var(X1) + Var(X2).

Let Y1 and Y2 be normally distributed with mean 0 and variance 1
2 log log T and

X1 and X2 converges to Y1 and Y2 respectively, in distribution. Therefore, Y1 and
Y2 are independent. Hence, by Remark 2.4.6, we conclude that X1 and X2 are
asymptotically independent.

5.2.2 Proof of Theorem 5.1.2

In this section, we prove Theorem 5.1.2. The proof follows similarly to the proof
of Theorem 5.1.2. Since we are proving a more generalized version of it we need
to face more complicated computations.
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For (aj)
N
j=1 ⊂ RN we consider,

Pa1,a2,...,aN ,0
(s) =

∑
p≤X

a1λf1(p) + · · ·+ aNλfN (p)

ps
.

Following the tradition to prove Theorem 5.1.2 we need the next lemma.

Lemma 5.2.3. Let (fj)
N
j=1 be a sequence of distinct primitive holomorphic cusp

forms. Assume that k, ` are non-negative integers with Xk+` ≤ T . Then for any
real numbers (aj)

N
j=1 (with aj 6= 0, for j = 1, . . . , N ), we have for k 6= `∫ 2T

T
Pa1,a2,...,aN ,0

(σ0 + it)kPa1,a2,...,aN ,0
(σ0 + it)` �

(|aj |)Nj=1
T.

For k = ` and ε > 0,

∫ 2T

T
|Pa1,a2,...,aN ,0

(σ0 + it)|2kdt = k!T

 N∑
j=1

a2
j

 log log T

k

+Ok(T (log log T )k−1+ε).

Proof. Similarly like the proof of Lemma 5.2.2 we start the proof by setting

ψ(p) :=
N∑
j=1

ajλfj (p)

and

Ψk(n) :=
r∏
j=1

ψ(pj)
αj

where n = p
α1
1 · · · pαrr and α1 + · · ·+ αr = k. Then we define

Pa1,a2,...,aN ,0
(σ0 + it)k =

∑
n

ak(n)Ψk(n)

nσ0+it

where ak(n) is defined in (3.4). Therefore,

∫ 2T

T
Pa1,a2,...,aN ,0

(σ0 + it)kPa1,a2,...,aN ,0
(σ0 + it)`dt (5.6)

=

∫ 2T

T

∑
n

ak(n)Ψ(n)

ns

∑
m

a`(m)(Ψ̄(m))

ms̄

=T
∑
n

ak(n)a`(n)Ψk(n)Ψ`(n)

n2σ0
+O

∑
n6=m

ak(n)a`(m)|Ψk(n)Ψ`(m)|

(nm)σ0−
1
2

 .

From the definition of Ψk(n) for n =
∏r
j=1 we have (with a similar argument

given for the proof of Lemma 5.2.2)

|Ψk(n)| =
r∏
j=1

|ψ(pj)|αj ≤
r∏
j=1

(|a1λf1(pj)|+ · · ·+ |aNλfN (pj)|)αj � Xkε(|a1|+ · · ·+ |aN |)k.
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Thus the big-O term in (5.6) contributes

X(k+`)ε(|a1|+ · · ·+ |aN |)k+`
∑
n6=m
m≤Xk

n≤X`

ak(n)a`(m)�
(|aj |)Nj=1

X(k+`)(1+ε) �
(|aj |)Nj=1

T.

As we know that by the definition ak(n)a`(n) is 0 if k 6= `, we conclude the first
assertion of the lemma.

Now we need to prove the next part of the lemma which is the case for k = `.
For n =

∏r
j=1 p

αj
j we write

Ψk(n)Ψk(n) =
r∏
j=1

 N∑
j=1

a2
j |λfj (pj)|

2

+
N∑
i=1

∑
i6=i′

aiai′(λfiλ̄fi′
(pj) + λfi′

λ̄fi(pj))

αj

.

(5.7)

We set λf (n) =
∑N

i,i′=1

∑
i6=i′ λfiλ̄fi′

. By (5.7) and the fact that
∑

j αj = k we
have

∣∣∣∣∣∣
∑

n non square free

ak(n)ak(n)Ψk(n)Ψk(n)

n2σ0

∣∣∣∣∣∣ ≤ T ε

 N∑
j=1

|aj |

2k ∑
n non square free

ak(n)2λf (n)2

n2σ0
.

As argued in the proof of Lemma 5.2.2 the non square free n terms in (5.7)
give Ok((log log T )k−1+ε). Similarly like (5.2) for square free n we write

∑
 ∑
i1+···+iN=β
i1,...,iN≥1

(
β

i1, . . . , iN

) N∏
t=1

at
2it |λft(pi1 · · · pit)|

2


· (a1a2)Ω(m1)+Ω(m′1) · · · (aN−1aN )

Ω(m(N−1)N/2)+Ω(m′(N−1)N/2)

· λf1λ̄f2(m1)λf2λ̄f1(m′1) · · ·λfN λ̄fN−1
(m′(N−1)N/2))

where the sum runs over β +
∑(N−1)N/2

j=1 (Ω(mj) + Ω(m′j)) = k such that

0 ≤ β ≤ k and n = n′
∏(N−1)N/2
j=1 mjm

′
j , where n has the prime composition

of p1, . . . , pk.

For the terms involving aj2β (for j = 1, 2, . . . , N ) the above expression can be
written as
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∑ N∑
j=1

aj
2β|λfj (n

′)|2
 (a1a2)Ω(m1)+Ω(m′1) · · · (aN−1aN )

Ω(m(N−1)N/2)+Ω(m′(N−1)N/2)

· λf1λ̄f2(m1)λf2λ̄f1(m′1) · · ·λfN λ̄fN−1
(m′(N−1)N/2))

+
∑

 ∑
i1+···+iN=β−1
i1,...,iN≥1

(
β − 1

i1, . . . , iN

) N∏
t=1

at
2it |λft(pi1 · · · pit)|

2


· (a1a2)Ω(m1)+Ω(m′1) · · · (aN−1aN )

Ω(m(N−1)N/2)+Ω(m′(N−1)N/2)

· λf1λ̄f2(m1)λf2λ̄f1(m′1) · · ·λfN λ̄fN−1
(m′(N−1)N/2)).

(5.8)

For each j, we can express j-th term of the first sum of (5.8) as∑
0≤β≤k

aj
2β(a1a2)Ω(m1)+Ω(m′1) · · · (aN−1aN )

Ω(m(N−1)N/2)+Ω(m′(N−1)N/2)

·
∑
n

|λfj (n
′)|2λf1λ̄f2(m1)λf2λ̄f1(m′1) · · ·λfN λ̄fN−1

(m′(N−1)N/2))

n2σ0

(5.9)

where the second sum is over n = n′
∏(N−1)N/2
j=1 mjm

′
j and n′,mj ,m

′
j are pair-

wise co-prime for all j = 1, . . . , N . Also,

β +

(N−1)N/2∑
j=1

(Ω(mj) + Ω(m′j)) = k.

Since each λfj (n
′) is a real multiplicative function and by the change of vari-

ables Ω(mj) 7→ γ2j−1, Ω(m′j) 7→ γ2j we can write the inner sum of (5.9) as

k!
∑

0≤γ1,...,γ(N−1)N≤k−β

k!

β!γ1! · · · γ(N−1)N !(k − γ1!− · · · − γ(N−1)N )!

·
∑

p1,...,pk≤X
pj ’s are distinct

(pj,q)=1

|λfj (p1 · · · pβ)|2 · · ·λfN λ̄fN−1
(pβ+γ1+···+γ(N−1)+1 · · · pβ+γ1+···+γN(N−1)

)

(p1 · · · pk)2σ0

= k!
∑

0≤γ1,...,γ(N−1)N≤k−β

k!

β!γ1! · · · γ(N−1)N !(k − γ1!− · · · − γ(N−1)N )!

·

∑
p≤X

|λfj (p)|
2

p2σ0

β∑
p≤X

λf1λ̄f2(p)

p2σ0

γ1

· · ·

∑
p≤X

λfN λ̄fN−1
(p)

p2σ0

γ(N−1)N

.

(5.10)
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For each j = 1, . . . , N we get a term like (5.10). Similarly, we can compute
the contribution of the second sum of (5.8). Adding up for all j = 1, . . . , N and the
similar argument of the proof of Lemma 5.2.2, the first sum of in (5.6) is mainly
contributed by k = β which is

k!

 N∑
j=1

a2
j

 log log T

k

− k!

 ∑
i1+···+iN=k−1

i1,...,i1≥1

(
k − 1

i1, . . . , iN

) N∏
t=1

at
it(log log T )k−1



+ k!

 ∑
i1+···+iN=k−1

i1,...,i1≥1

(
k − 1

i1, . . . , iN

) N∏
t=1

at
it(log log T )k−1

+Ok((log log T )k−1+ε)

where
( k
i1,...,iN

)
= k!

i1!···iN ! . The terms involving (log log T )k−1 will be subsumed
by the error term. We conclude that the above sum equals

k!

 N∑
j=1

a2
j

 log log T

k

+Ok((log log T )k−1+ε),

completing the proof of the lemma.

In Lemma 5.2.3, we have computed the moments of the auxiliary series
Pa1,...,aN ,0

(s), with this calculation in hand in the next theorem we study the joint
distribution of the automorphic L-functions.

Theorem 5.2.4. Let (fj)
N
j=1 be a sequence of distinct primitive holomorphic cusp

forms. Let V be a fixed positive real number. As T → ∞, for any non-zero real
numbers (aj)

N
j=1, for all v ∈ [−V, V ]

1

T
meas

{
t ∈ [T, 2T ] : log |La1,...,aN

(
1

2
+ it)| ≥ v

√
a2

1 + · · ·+ a2
N

2
log log T

}
∼ 1√

2π

∫ ∞
v

e−
x2

2 dx,

where

La1,...,aN
(s) = L(f1, . . . , fN , a1, . . . , aN , s) := |L(f1, s)|a1 · · · |L(fN , s)|aN .

Proof. The proof of this theorem is the same as the proof of Theorem 5.2.1,
instead of Lemma 5.2.2 we have to consider Lemma 5.2.3, that’s why we can
omit it without repeating the same steps.

Now we are ready to prove Theorem 5.1.2.
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Proof of Theorem 5.1.2: Let J denotes a totally ordered set of distinct primi-
tive holomorphic cusp forms. For any finite ordered subset {f1, . . . , fN} of J we
consider X := (log |L(fj ,

1
2 + it)|)Nj=1. From Theorem 5.2.4 and Lemma 2.4.3 it

follows that X is an approximate N -variate normal distribution. Thus, we see that
any finite linear combination of elements in (log |L(f, 1

2 + it)|)f∈J is a multivariate
normal distribution. Hence, (log |L(f, 1

2 + it)|)f∈J forms a Gaussian process.

Let Y1, Y2, . . . YN be normally distributed with mean 0 and variance 1
2 log log T

and X1, X2, . . . , XN converges to Y1, Y2, . . . YN respectively, in distribution. There-
fore, Y1, Y2, . . . YN are independent. Hence, by Remark 2.4.6, we conclude that
X1, X2, . . . , XN are asymptotically independent.

Moreover, the components in X are mutually asymptotically independent since
they are pair-wise independent by Theorem 5.1.1.

5.3 Extension to a generalized notion

In this section, we generalize the notion of the independence of the families of
L-functions. This chapter focuses on the independence of the automorphic L-
functions. In the previous section, we have seen that distinct primitive holomor-
phic cusp forms associated with the L-functions form the Gaussian process and
they are jointly independent. The notion we are going to study in this chapter is
slightly different from the previous one. By the end of this section, we combine
both of them and remark on their statistical behaviour.

Recall the concept introduced by Selberg, the purpose of studying the be-
haviour of logarithm of the Riemann zeta function in the critical strip. Since L-
function is a generalized concept of ζ-function and the main focus of this thesis
is to study the behaviour of the logarithm of the L-function but we first look at the
independence of the Riemann zeta function.

We know that if we take the L-functions associated with two (or more) prim-
itive cusp forms (or Maass forms) is statistically independent at 1

2 + it for t ∈ R.
Then the question arises that how do we study the independence of the Riemann
zeta function because the Fourier coefficient of the Riemann zeta function in the
Dirichlet series is 1. Well, we study the independence of ζ(s) on the critical line
when t varies which means we study the behaviour of ζ(1

2 + it1) and ζ(1
2 + it2) for

t1 6= t2 and t1, t2 are real numbers. Selberg’s central limit theorem provides a lot
of information in this context.

In other terms, Selberg central limit theorem can be written as

lim
T→∞

1

T

∫ 2T

T
I

 log ζ(1
2 + it)√

1
2 log log T

∈ Γ

 dt =
1

2π

∫
Γ
e−

x2+y2

2 dxdy,

where Γ is a regular Borel measurable subset of C and I is the indicator function,
and regular means that the boundary of Γ has zero Lebesgue measure.
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In 2007, C. P. Hughes et al. [HNY07] convert the “static” concept of Selberg’s
central limit theorem into a more “dynamic” probabilistic result. This concept can
be generalized for the families of L-functions belonging to the Selberg class.

If one let

Lµ(N, u) :=
log ζ(1

2 + iueN
µ

)
√

logN

then Selberg’s central limit theorem3 implies that

lim
N→∞

∫ 2

1
I{Lµ(N, u) ∈ Γ}du = P{Gµ ∈ Γ}

where I is the indicator function and Gµ = G
(1)
µ +iG

(2)
µ is complex valued Gaussian

random variable with mean 0 and variance µ/2 which means G
(1)
µ and G

(2)
µ are

independent, centered and E[(G
(1)
µ )2] = E[(G

(2)
µ )2] = µ

2 . The next theorem studies
the asymptotic behaviour of Lµ(N, u) for different µ.

Theorem 5.3.1 (Hughes-Nikeghbali-Yor). For µ1 > µ2 > · · · > µk > 0, for every
(Γi, i ≤ k) regular

lim
N→∞

∫ 2

1
I
{
Lµ1(N, u) ∈ Γ1, . . . ,Lµk(N, u) ∈ Γk

}
du =

k∏
j=1

P{Gµj
∈ Γj}.

Now we generalize Theorem 5.3.1 for the families of L-functions belonging to
the Selberg class.

Let f be a primitive holomorphic cusp form. Then

Lκ(f ;N, u) :=
logL(f, 1

2 + iueN
κ
)

√
logN

Then Theorem 3.1.1 implies that

lim
N→∞

∫ 2

1
I {Lκ(f ;N, u) ∈ Γ} du = P{Gκ ∈ Γ}

where Gκ = G
(1)
κ + iG

(2)
κ is complex valued Gaussian random variable with mean

0 and variance κ/2 which means G
(1)
κ and G

(2)
κ are independent, centered and

E[(G
(2)
κ )2] = Gκ = κ

2 . So Theorem 5.3.1 becomes

Theorem 5.3.2. For κ1 > κ2 > · · · > κk > 0, for every (Γi, i ≤ k) regular

lim
N→∞

∫ 2

1
I
{
Lκ1

(f ;N, u) ∈ Γ1, . . . ,Lκk(f ;N, u) ∈ Γk
}
du =

k∏
j=1

P{Gκj
∈ Γj}.

3If we take N = log T and u has uniform distribution then Lµ(N, u) gives
{

log ζ( 1
2 +it)√

log log T

}
.
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As remarked in [HNY07] the result of this theorem can be obtained with the
help of the proof given in [HNY07].

Now let us think of the concept introduced in the previous section of this chap-
ter in Theorem 5.1.2. Let (fj)

k
j=1 be sequence of distinct holomorphic cusp forms.

Consider the matrix

 Lκ11(f1;N, u) · · · Lκ1k
(f1;N, u)

... . . . ...
Lκk1

(fk;N, u) · · · Lκkk(fk;N, u)

 (5.11)

with ij-th entry Lκij (fi;N, u). From the definition of Lκ(f1;N, u) the matrix
given in (5.11) is a random matrix. If we look at the row vectors of (5.11) it led us
to Theorem 5.3.2 and if we look at the column vector then it is similar to Theo-
rem 5.1.2. Observe that the ij-th entry is not equal to ji-th entry for i 6= j. So this
is not a symmetric matrix.

The interesting thing about this matrix is if we choose two-elements from the
same row (or from the same column) they are pair-wise independent. But if we
choose two elements of the matrix randomly such that they do not lie in the same
row (or in the same column) then we can study their joint distribution. Also, we can
study the eigenvalues of this matrix and their connection with the pair correlation
conjecture.
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6. Conclusion

In chapter 3, we have estimated the mean square L-function using Hughes and
Young’s method. Also, we have taken the help of P. Kühn et al result. It is possi-
ble to obtain a better error term that we have obtained. But the main focus of this
thesis concerns the proof of Selberg’s central limit theorem for L-functions. Any
improvement on the error term for the mean square estimate of L-function will not
effect our result. The most important fact we have relied on is the Ramanujan-
Peterson conjecture and the upper bound of the shifted convolution sum.

We have proved the main result for t and q-aspect. For the proof in t-aspect,
we fix the cusp form f attached to the L-function and integrate over the interval
[T, 2T ]. In the q-aspect we fix the range of t ∈ [−1, 1] and average over the Dirich-
let characters. One can prove Selberg’s central limit theorem on weight aspect.
For such calculations Lau’s [Lau05] work might be helpful.

As we have mentioned earlier that due to the lack of information on the shifted
convolution problem we can not prove the result for higher degree L-functions.
A recent work by G. Hu and G. Lü [HL20] might be applicable to obtain a mean
value estimate for the higher degree L-functions. If one obtains such an estimate
then it not only prove Selberg’s central limit theorem for all L-functions belonging
to Selberg class but also it will help to calculate the upper and lower bound of the
moments of the L-functions.

Note that we have proved Selberg’s central limit theorem for the real part of
the L-functions not for the imaginary part. As mentioned in [RS17] the method
we have used in this thesis can not be used to prove the result for the imaginary
part. We have used the mollification technique here, for the imaginary part, the
L-function and the mollifier is not inverse to each other. In fact, they differ with a
substantial integer multiple of 2π.

Additionally, we have proved the independence of the automorphic L-functions
associated with the sequence of primitive holomorphic cusp forms. Such a result
can be proved for q-aspect as well by fixing the range of t. But hybrid aspect is
not possible for the same reason we have mentioned earlier. Further, we have
described a generalized notion of independence with the help of C. P. Hughes et
al’s work. They have explored the independence of the Riemann zeta function on
the critical line for the different values of t. Such an idea can also be extended
for the families of L-function as well. But when we combine these two ideas
we get the random matrix (5.11). The study of the joint distribution of any two
random elements (not chosen from the same row or column) of this matrix will be
interesting.
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