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Abstract

The use of artificial intelligence (AI) in healthcare comes with opportunities but also

numerous challenges. A specific challenge that remains underexplored is the lack of clear

and distinct definitions of the concepts used in and/or produced by these algorithms, and

how their real world meaning is translated into machine language and vice versa, how

their output is understood by the end user. This “semantic” black box adds to the

“mathematical” black box present in many AI systems in which the underlying “reasoning”

process is often opaque. In this way, whereas it is often claimed that the use of AI in

medical applications will deliver “objective” information, the true relevance or meaning to

the end‐user is frequently obscured. This is highly problematic as AI devices are used not

only for diagnostic and decision support by healthcare professionals, but also can be used

to deliver information to patients, for example to create visual aids for use in shared

decision‐making. This paper provides an examination of the range and extent of this

problem and its implications, on the basis of cases from the field of intensive care ne-

phrology. We explore how the problematic terminology used in human communication

about the detection, diagnosis, treatment, and prognosis of concepts of intensive care

nephrology becomes a much more complicated affair when deployed in the form of

algorithmic automation, with implications extending throughout clinical care, affecting

norms and practices long considered fundamental to good clinical care.
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1 | INTRODUCTION

The introduction of artificial intelligence (AI) into healthcare to im-

prove outcomes holds out considerable promise. The possibility of

automated processes that can facilitate preventive care, early de-

tection, and more effective treatment is worthy of careful and serious

consideration. However, with medical innovation, the purported

benefits are almost invariably accompanied by drawbacks, challenges,

and unanticipated consequences. A specific challenge that remains

underexplored in the emerging literature on the ethics of the use of

AI in healthcare is the lack of clear and distinct definitions of the

concepts used to develop the algorithms, and how their real world

meaning, when translated into machine language and the subsequent

interpretation of their output by physicians, can alter the outcomes in
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clinically significant ways. Such semantic confusion can arise as a

result of different mechanisms: (a) the assumptions and metrics used

to translate the definition of a concept into an algorithm are unclear

(e.g., the concept of acute kidney injury [AKI] can be translated into

an algorithm in many different ways, each referring to distinct clinical

conditions); (b) dichotomization or categorization of continuous

variables into classes; (c) framing—qualitative rather than quantitative

output, for example, using terms like “better” or “more”; (d) mixing up

different conceptual constructs (e.g., the comparison of “early” versus

“late” start of renal replacement therapy, where words with a time

connotation are used to describe a decision in fact based on renal

function level. Of note, in this case, there is also framing as “late” has

a negative connotation per se).

The “semantic” confusion present in many medical AI systems

can have considerable implications and consequences for clinical care

also because the underlying “reasoning” process is frequently opaque,

essentially converting the process and its output into semantic as

well as mathematical black boxes. Rather than being more objective

or precise, the true relevance or meaning of an AI output to the end‐

user is frequently obscure. This problem also exists in the “normal”

medical decision‐making process, but is further aggravated and mul-

tiplied by the use of algorithms. Indeed, whereas in normal medical

decision‐making, each physician will decide individually using her

own judgment, and the impact of mistakes is thus limited, im-

plementation of one single algorithm can corrupt the decision pro-

cess for multiple users, all of whom will make the same incorrect

interpretation. AI devices are used not only for diagnostic support by

healthcare professionals, but also to inform treatment decisions to

patients, and thus affect the practice of shared decision‐making, in-

formed consent, and the doctor–patient relationship, in general. This

paper explores the ethical implications of this phenomenon through

the lens of cases from intensive care nephrology where algorithms

are being developed to detect, diagnose, and inform treatment

decisions regarding conditions such as AKI.

2 | BACKGROUND

2.1 | Automated monitoring and detection

“Narrow” AI applications, operating within strictly delineated settings

and aimed at solving well‐defined problems such as classification and

prediction tasks for diagnosis or prognosis,1 can be a breakthrough

for medicine.2 Following a nearly 70‐year trajectory of interest in

machine learning, AI appears to have turned a corner with the tran-

sition from “knowledge‐engineering” to a more optimized data‐driven

technology predicting and deriving new insights.3 However, it is still

uncertain to what extent AI will prove useful in actual clinical prac-

tice, and clinical embedding and ability to ascertain clinical efficacy

remain challenging.

There is expanding interest in AI‐based automated alerts and

prediction. Trained on vast amounts of data from registries or elec-

tronic health records (EHRs), AI holds out the promise to enhance

timely detection and diagnosis, and facilitate earlier treatment. AI

based automated systems that calculate the crossing of “thresholds”

for medical conditions or generate predictions of mortality rates have

tremendous appeal in over‐burdened and under‐staffed healthcare

settings and in low resource conditions. However, such systems often

lack transparency about the exact nature of the medical construct

that is identified.

Researchers have long acknowledged the complexity of the

promises and limitations of the use of computer aids in medicine,

particularly for diagnosis. In 1959, Ledley and Lusted declared the

practical necessity of standardization of nomenclature (and test in-

terpretations), observing that “while the computer can be made to

recognize different words as denoting the same idea, it obviously

cannot distinguish between different ideas denoted by the same

word.”4 The multiple levels of complexity that are involved in trans-

ferring language to automated digital systems should not be under-

estimated. Some of these challenges have been acknowledged and

addressed to varying degrees, while others remain unrecognized or

under‐explored.

One problem that has been neglected until now regards the lack

of exact and transparent definitions of many clinical, radiological, and

biochemical constructs within AI algorithms. In cases where a sharp

definition does exist, problems can emerge with how the terms are

translated into the mathematical language of algorithms. Without

clear and traceable definitions, users cannot discern the exact

meaning of the labels produced by the algorithm. For many medical

conditions, the absence of strict and clear definitions is one of the

many wrinkles that are accepted and tolerated as part of routine

medical practice.5 The problem of semantic confusion in machine

learning and AI is different from other digital formats because most

learning systems “upgrade” themselves as new cases come in. At a

certain moment, a self‐perpetuating event arises in which the com-

puter just becomes more and more confident of the diagnosis made

based on new cases when a correct diagnosis was made based on

what was learned before. This problem has so far mainly been re-

cognized and deemed relevant for epidemiology6 and randomized

clinical studies. However, with the advent of EHRs, algorithms to

automatically diagnose and predict medical conditions are

1Hernán, M. A., Hsu, J., & Healy, B. (2019). A second chance to get causal inference right:

A classification of data science tasks. Chance, 32(1), 42–49.
2Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key chal-

lenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195;

Beam, A. L., Manrai, A. K., & Ghassemi, M. (2020). Challenges to the reproducibility of

machine learning models in health care. Journal of American Medical Association, 323(4),

305–306.

3Natarajan, P., Frenzel, J., & Smaltz, D. (2017). Demystifying big data and machine learning for

healthcare. CRC Press, p. 79.
4Ledley, R. S., & Lusted, L. B. (1959). The use of electronic computers to aid in medical

diagnosis. Proceedings of the IRE, 47(11), 1970–1977.
5See for example, Hernán et al., op. cit. note 1; Payne, L. C. (1964). The role of the computer

in refining diagnosis. The Lancet, 284(7349), 32–35.
6Lameire, N., Van Biesen, W., & Vanholder, R. (2006). The rise of prevalence and the fall of

mortality of patients with acute renal failure: What the analysis of two databases does and

does not tell us. Journal of the American Society of Nephrology, 17(4), 923–925.
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increasingly being developed and implemented in the care of pa-

tients.7 The use of automated risk prediction models in the EHRs of

ICUs for early recognition of different acute medical conditions, such

as AKI,8 brings the problem of the lack of accurate and precise de-

finitions of medical constructs to a different level. Indeed, whereas

the attention and action span of an individual physician is limited to

some patients and at a limited frequency, an algorithm can be used to

supervise thousands of patients in hundreds of hospitals on an on-

going basis. This alters the total picture of patient monitoring yet the

meaning of the reported condition remains obscure.

2.2 | The semantic black box in the case of AKI

A universally accepted standardized definition exists for AKI, based

on the so‐called Kidney Disease Improving Global Outcome (KDIGO)

criteria. However, in reality, AKI remains a largely opaque medical

construct. This opacity is further exacerbated by algorithmic auto-

mation. Essential components of algorithms may not be available

within local data sets according to uniform definitions. This may

negatively impact clinical usefulness and relevance of these systems

and threaten performance.9 Further, lack of harmonization and inter‐

operability may exacerbate concerns of poor generalizability from

training to validation settings due to center‐related differences in

patient case mix and clinical practice. The emergence of algorithmic

software purporting to operationalize the KDIGO criteria thus opens

the door for a widely diverging range of quality in the accuracy,

effectiveness, and usefulness of the technology if deployed in the

clinical setting. Using marginally different instructions to oper-

ationalize computer algorithms for AKI diagnosis in critically ill pa-

tients, even when still compliant with the uniform and standardized

KDIGO definition, will have a substantial impact on the incidence of

AKI and its association with short‐term mortality. Moreover, these

semantically rooted challenges compromise the prognostic value of

algorithms meant to predict ICU mortality of AKI patients.

The semantic black box in the case of AKI is particularly inter-

esting and illustrative because the phenomenon does not necessarily

stem from the use of AI per se, but is inflated by its use. Indeed, the

semantic black box is already present in the nonautomated KDIGO

criteria. But the automation of this semantic confusion and the pro-

liferation of varying quality of algorithms and widespread uptake by

insufficiently trained personnel can be expected to lead to a Pan-

dora's Box of undesirable clinical sequelae. The absence of adequate

and appropriate regulation and governance of algorithmic systems

and a means of ensuring that terms translated into models carry a

more precise meaning will have considerable consequences when

deployed at scale. In the next section, we will explore the specific

nature of the definitional conflation of AKI and, thereafter, examine

the multiple ways that translation of this semantic black box

exacerbates the opacity and carries significant implications for

clinical care.

3 | THE BLACK BOX OF MEDICAL
CONSTRUCTS

Medical practice is steeped in jargon, acronyms, and amorphous

terms, leading to confusing and misleading communication. Ne-

phrology is no exception. For example, the question of whether to

administer dialysis “early or late” is impossibly vague, setting up a

frame that can influence treatment decisions, but doing so on a highly

imprecise basis. The use of the terms “early” and “late” creates the

impression of timing, which in reality is not present. The concept of

starting dialysis is based on serum levels of toxins that accumulate in

the blood of patients whose kidney function progressively fails, not

on a time dimension. Moreover, these terms are not neutral, as “late”

carries a negative connotation. The terminology used is thus likely to

influence a patient's decision, but conveys remarkably little relevant

information. Definitions and clinical diagnoses potentially pose a

considerably greater problem. Amorphous terminology may be suf-

ficient in some settings to communicate (e.g., “hanging in” conveying

that the patient is not dead yet), but the precision with which a

particular term, characterization, or diagnostic label identifies the

status, condition, likelihood of survival or other clinically relevant

attributes, can sometimes be seriously problematic.

The complexities, variations, and alternative interpretations

contained in (diagnostic or prognostic) categories give rise to con-

cerns and dilemmas for even the most skilled clinical practitioners.

For example, a paper on the management of hyponatraemia (too low

salt level), may state that this is a frequent condition with a high

mortality. However, the reference to underpin that the condition is

frequent refers to a very subtle degree of hyponatraemia in ambu-

latory patients, whereas the reference on the high mortality refers to

very pronounced hyponatraemia in patients in intensive care. The

ensuing conclusion is thus at best misleading, as the construct hy-

ponatraemia clearly has a different implication in both contexts.

When data scientists try to translate terms, definitions, and diagnoses

that are amorphous and subject to considerable variation in usage

into computer language, what was complex and conflated in human

communication becomes even more so due to the opacity of the

processes and the training data, which may or may not be relevant for

the patient being treated.

7Sutherland, S. M., Chawla, L. S., Kane‐Gill, S. L., Hsu, R. K., Kramer, A. A., Goldstein, S. L.,

Ronco, C., & Bagshaw, S. M., on behalf of the 15 ADQI Consensus Group. (2016). Utilizing

electronic health records to predict acute kidney injury risk and outcomes: Workgroup

statements from the 15th ADQI Consensus Conference. Canadian Journal of Kidney Health

and Disease, 3, 11; Sutherland, S. M., Goldstein, S. L., & Bagshaw, S. M. (2018). Acute kidney

injury and big data. In X. Ding, M. H. Rosner, & C. Ronco (Eds.), Acute kidney injury ‐ Basic

research and clinical practice (Vol. 193, pp. 55–67). Karger Publishers.
8Park, S., Baek, S. H., Ahn, S., Lee, K. H., Hwang, H., Ryu, J., Ahn, S. Y., Chin, H. J., Na, K. Y.,

Chae, D.‐W., & Kim, S. (2018). Impact of electronic acute kidney injury (AKI) alerts with

automated nephrologist consultation on detection and severity of AKI: A quality improve-

ment study. American Journal of Kidney Diseases, 71(1), 9–19; Kate, R. J., Perez, R. M.,

Mazumdar, D., Pasupathy, K. S., & Nilakantan, V. (2016). Prediction and detection models for

acute kidney injury in hospitalized older adults. BMC Medical Informatics and Decision Making,

16(1), 39.
9Van Biesen, W., Vanmassenhove, J., & Decruyenaere, J. (2020). Prediction of acute kidney

injury using artificial intelligence: Are we there yet? Nephrology, Dialysis, Transplantation,

35(2), 204–205.

PIERCE ET AL. | 3



3.1 | Detecting AKI: Criteria, communication,
and confusion

The clinical practice of using the same term to describe a range of

conditions may be efficient for some practical reasons but can be-

come problematic in cases requiring well‐chosen clinical interven-

tions. In the literature published before the year 2000, the term

“acute kidney failure” was used. However, the term lacked sufficient

precision. Accordingly, there was much confusion regarding the in-

terpretation of for example, epidemiological data, or the effective-

ness of therapeutic interventions, as it was difficult to find out what

exactly was understood by “acute renal failure.”10 AKI as defined by

the widely accepted KDIGO criteria may seem to be more precise

than “kidney failure,” but in fact, this is not necessarily the case. Two

measures are essential for an AKI diagnosis—creatinine (SCrea) and

urinary output (UO). However, the manner and timing of these

measurements can vary considerably. A systematic review has re-

vealed that in different publications on automated detection of AKI,

44 different interpretations have been used.11 This feature becomes

particularly important when assembling the training data for an al-

gorithm that will aim to detect AKI. That is, when developers oper-

ationalize SCrea and UO criteria into an algorithm to automatically

identify patients with AKI, the result is a high variability of both AKI

incidence and its prognostic value for ICU mortality. Yet all inter-

pretations remain strictly in line with the standardized KDIGO‐AKI

definition, and differences are merely a result of decisions made

when operationalizing the criteria to the algorithm. In addition, it is

often claimed that KDIGO criteria are used, but, in reality, only a

truncated version is used. This is because laboratory data such as

serum creatinine are easily available in electronic databases, whereas

clinical data such as UO are much more difficult to obtain. In reality,

95% of studies on automated AKI detection only used SCrea and not

the UO criteria. As a result, most of these seemingly objective and

robust automated AKI detection systems are profoundly opaque

black boxes that can generate a positive or negative AKI label for a

particular patient with significantly different clinical consequences.

These decisions are rarely available to the end‐user, so she also

cannot know exactly which type of AKI is detected. In this case, the

“black box” is not only mathematical (the end‐user does not know

how input leads to the output mathematically), or logical (which

reasoning process is followed by the AI), but also semantic (the output

can, despite appearing unequivocal, signify a variety of conditions).

3.2 | Multiple metrics of KDIGO: A history

Building on decades of scientific and clinical research, the KDIGO AKI

definition12 emerged in 2012 as a an integration of previous

definitions13 as an intentionally broadly constructed definition of

acute kidney damage, allowing for, among other things, a wide range

of tests, procedures, and interventions to be classified and re-

imbursed accordingly. As a result, AKI according to KDIGO criteria

can include measurements of some of the following five baseline

metrics for creatinine: (a) obtained before hospitalization; (b) a back‐

calculation; (c) measurement from ICU blood; (d) the lowest pre‐ICU

measurement from current hospitalization; and (e) immediate pre‐ICU

measurement. Additionally, UO is also informative, but is measured in

one of two ways: (a) measured for a total of 12 hr; or (b) measured

each hour for 12 hr.

When these diverse metrics related to measuring kidney func-

tion, but indicative of different problems, are bundled into a single

definition, the medical construct of AKI becomes, itself, a black box.

Operationalization into an algorithmic model essentially places the

black box of the medical construct within another, faster, algor-

ithmically driven automated black box that generates outputs in-

dicating that some threshold for kidney dysfunction has been

reached. As a set of measures of convenience, for example, in hos-

pital measurement versus available historical levels, the resulting

calculations are not and cannot truly be commensurate. The clinical

encounter with a knowledgeable nephrologist familiar with the pa-

tient and her clinical history most likely will yield a better under-

standing of how to interpret the measurements within the general

context. Once automated, knowledge arising from the clinical en-

counter with this particular patient falls away, but the automated

device will still produce a result that the clinician has difficulty in-

terpreting but for which both rejection and acceptance have legal and

ethical consequences. In addition, if the clinician would have to check

all results for their credibility, the whole purpose of having the au-

tomated devices becomes pointless. While massive big data may

fill some of the void, the scale and exacerbated opacity of an

AI‐generated label of AKI renders the output less clinically helpful in

some very disturbing ways.

3.3 | Clinical consequences

Although formal medical practice has lived with imperfection since its

inception, the automation of these imperfections can have multiple

small cumulative impacts affecting life or death. The possible reach of

an automated flawed medical construct is long, with consequences

for patient care and the practice of medicine, including the

patient–doctor relationship, professional and moral responsibility,

and even what constitutes medical knowledge.

Among the foreseeable general impacts of automated AKI de-

tection is a tendency toward over‐diagnosis. Given that the KDIGO

criteria are so broad and all‐encompassing and, even in human hands,

10Lameire et al., op. cit. note 6.
11Van Acker, P., Van Biesen, W., Nagler, E., Koobasi, M., Veys, N., & Van Massenhove, J.

(2021). Risk prediction models for acute kidney injury in adults: An overview of systematic

reviews. PLoSOne, 16(4), e0248899. https://doi.org/10.1371/journal.pone.0248899

12Khwaja, A. (2012). KDIGO clinical practice guidelines for acute kidney injury. Nephron

Clinical Practice, 120(4), c179–c184.
13Gameiro, J., Agapito Fonseca, J., Jorge, S., & Lopes, J. A. (2018). Acute kidney injury

definition and diagnosis: A narrative review. Journal of Clinical Medicine, 7(10), 307.
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result in a widely acknowledged over‐diagnosis of AKI, it is important

to note that the fact of automation itself and the use of EHRs to

inform e‐alerts amplifies this by the speed, efficiency, and scale that

AI‐driven systems can achieve. So, while the clumsy AKI label gen-

erates a certain number of false positives on its own, when auto-

mated, that number increases, conceivably exponentially. The

consequences of false positives can be quite serious as the man-

agement of this patient may change substantially, for example by

additional volume loading or by reducing dose or simply withholding

certain medications that are necessary but potentially toxic to the

kidneys. As such, an incorrect AKI label could worsen the patient's

condition.

AI based e‐alerts to facilitate treatment of kidney patients have

considerable appeal. E‐alerts are used to monitor patients in ICU for

detection of a change of condition that meets the modeled criteria for

AKI and to signal this to clinical staff. It is easy to understand the appeal of

this monitoring technology for such a critical signal. In principle, over‐

burdened care institutions can provide better and more timely monitoring

for acute changes for more patients with fewer highly skilled staff. This is

a deceptively problematic aspect of what is purported to be a benefit of

the algorithmic e‐alert. First, while an e‐alert signals that a patient has AKI,

it does not tell the attending staff what the cause is or which intervention

is required to effectively respond to a particular patient's condition. Thus,

while the e‐alert seems a significant advance in timely detection of AKI, it

can lead to many negative consequences due to the automated flawed

medical construct, ranging from over‐diagnosis and insufficient informa-

tion for attending staff to identify the most appropriate intervention to

alert fatigue.

Even more concerning are the possible clinical consequences of

false positives—the triggering of an AKI e‐alert when the patient

does not actually have AKI. This could be because of a mismatch

between the patient's metrics and those on which the algorithm was

trained, stemming in no small part from variable interpretations of

the KDIGO criteria that have been applied to the training data.

Furthermore, the e‐alert is of only limited benefit if it merely signals

a detection of AKI, without any explanation of why a particular pa-

tient has triggered that alert. For example, the most common reason

to get an e‐alert is oliguria (decreased urine production). The most

frequent treatment is fluid. However, if there is another problem

that has caused the decrease in urine production, a fluid treatment

can have devastating consequences. Moreover, because of the di-

chotomous nature of AI outputs—either AKI or not‐AKI—the con-

ditions on the continuum designating “at risk” are essentially being

ignored, thus resulting in a missed opportunity for personalized,

adapted intervention.

4 | “MEDICAL KNOWLEDGE” :
WHAT DO WE REALLY KNOW?

There is also impact on what we generally consider to be “medical

knowledge.” Indeed, if the diagnosis (AKI) represents a collection of

metrics known to be related to the onset of AKI, but does not

distinguish between baseline measurements in generating the out-

puts (assessment) and cannot identify the cause of AKI in a specific

patient, this calls into question what exactly is known by the appli-

cation of the KDIGO criteria in the first place, and by an algorithmic

model operationalized to calculate thresholds based on the KDIGO

criteria in the second.

With implementation of nonautomated KDIGO criteria, the

medical knowledge that is produced by evaluating the results of one

or more of the criteria described above (different times of mea-

surements of creatinine and urine output levels [UO]) allows a phy-

sician to know which criteria were applied and which were not. For

example, the UO measure has proven to be much more informative

of prognosis than the creatinine levels. Thus, a nephrologist relying

on a prognosis from KDIGO criteria can presumably check whether

UO levels were included in order to assess prognostic value of

the AKI diagnosis or to request that those measurements be taken.

The operationalization of KDIGO in an automated system renders the

calculation of the constituent criteria (in both content and degree)

largely a mystery.

This also leads to generalizability problems. Given that if it is

unknown on what the AKI e‐alert is based, it is difficult to say what

the data that were generated from inclusion of a particular AKI pa-

tient group (and how those data were obtained) signify for other

patients. In this way, in the case of deep learning, the black box, as

both collector and generator of data, compounds the opacity that

may result in incrementally more accurate alerts but also increasingly

obscures what the e‐alert actually means. Moreover, the general

practice of medicine across locations employs different definitions in

different studies. Consequently, automating the collective “knowl-

edge” resulting from these studies can generate confusing outcomes

because the definition, used to determine eligibility and diagnostic

status, as well as the implementation of the criteria across the stu-

dies, were different.

The amplified imprecision brought about as part of the transla-

tion to algorithmically‐driven automated alerts also amplifies

the causation problem. As with randomized controlled trials (RCTs),

the knowledge gained largely regards correlation. Yet, with RCTs, the

results allow for an understanding of specific correlations of patient

subsets that contribute to the overall correlative conclusions. No

such illumination of specific correlations regarding the patient's

specific characteristics are available from automated alerts, which are

both opaque and dichotomous in their output. Presumably, some

stratification takes place in the development of the algorithm, but

there is no way to know this or with what result. This general practice

of making knowledge available through compact conclusions can

often be disassembled and broken down in RCTs by examining cor-

relations regarding patient subgroups and effects of sample size,

which does allow for some degree of ascertaining the extent to which

overall results may be applicable to a particular patient or patient

group. The automated production of an AKI e‐alert based on huge

amounts of data and modeled using a nontransparent algorithm al-

lows for no such insights into applicability of the outcome to a par-

ticular patient nor the direction of any unobserved variable bias.
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Instead of supporting decisions, large‐scale adoption of AKI e‐

alerts may actually make treatment decisions and assessments more

difficult because of the conflation of indicators. The impact on

medical knowledge is multifold. First, knowledge derived from the

automated model about a detected case of AKI only indicates the

symptom, most often decreased urine production, and nothing about

the underlying cause or the impact of any aggravating co‐morbidities.

Instead of increasing our knowledge about this patient, the alert

alone, particularly in the hands of a nonspecialist, may actually result

in information that leads to harmful treatment decisions, ultimately

causing more problems for the patient than a slower assessment

made by a trained clinician. Second, if the data in each EHR (derived

using different metrics and elements of the definition) contribute to

the database that drives the output of the algorithmic e‐alert model,

the opaque insight that the patient is likely to develop AKI may then

be fed back into the database and the “more accurate by way of more

data” process perpetuates and increases its uselessness.

5 | THE DOCTOR–PATIENT
RELATIONSHIP: IMPLICATIONS FOR
CLINICAL NORMS

The doctor–patient relationship is foundational to clinical practice

and adheres to multiple long‐standing norms. Shared decision‐

making, informed consent, and moral responsibility are some of

the most fundamental aspects of the doctor–patient relationship

that are likely to be affected by the operationalization of the

definition of clinical conditions into algorithmic models. These

aspects of the doctor–patient relationship all involve the delivery

of accurate information that is understandable by the patient

in a way that allows meaningful participation in decisions about

treatment.

Nowhere is this more prominent than in shared decision‐making.

Shared decision‐making can be viewed as having three pillars:

(a) scientific evidence; (b) how the available scientific evidence trans-

lates to the clinical condition of the patient; and (c) knowledge about

the patient's expectations, goals, preferences, and values. The first two

pillars are invariably the domain of physician responsibility. The third is

fully within the domain of the patient. Interaction between patient and

physician is needed to ensure the patient's expectations are met as

much as possible by realistic translation of (theoretical) scientific

evidence to the real‐world condition of the patient.14 As the medical

construct of AKI as defined by KDIGO is muddy, the meaning of the

scientific evidence (first pillar) for knowledge generation becomes

unclear, as AKI might have a different meaning in each study. This also

prohibits aggregation of studies into a meta‐analysis, further down-

playing the possibility that this research may generate relevant evi-

dence. In this way, the first pillar of scientific evidence loses footing.

When AKI is automatically detected by an algorithm, the problem is

even further enhanced, as then the physician does not even know

what kind of AKI her patient has. The second pillar (the patient's con-

dition) also becomes something of a black box because the algorithm

has “detected” AKI in a patient, but generates no information about

what the source is, which complicating factors may be contributing to

the threshold being reached, or even what exactly these thresholds

might be in that specific algorithm. For these reasons, the “knowledge”

about the patient's condition produced by an automated e‐alert is

problematic on many levels and can lead to poor decision‐making by

the care team seeking to honor the patient's goals. While the patient in

circumstances of an AKI diagnosis in the ICU is rarely in a position to

deliberate about treatment alternatives, the possibility for in-

appropriate interventions deployed with the intent of honoring

the patient's previously expressed wishes is increased because of this

muddied knowledge about the patient's condition. Because of the

opacity of the rationale behind the output, which treatment is likely to

produce that result may be more difficult to ascertain. The third pillar

can remain largely unaffected if there has been an opportunity to

confer with the patient prior to acute illness, but the ability of the care

team to honor the patient's wishes may be affected by the black box

nature of the automation. An automated e‐alert of AKI could, for

example, trigger an upgrade of the do‐not‐resuscitate code of a patient

who has indicated before that she did not want to have renal re-

placement therapy. Such a decision would be fair if AKI was defined as

“imminent need for renal replacement therapy,” but completely out-

rageous if AKI was simply defined based on a (temporary and re-

versible) decrease of UO. This also runs counter to the much discussed

ethical AI principles of explainability and transparency.15 In the clinical

context, the inability to explain the basis for treatment decisions calls

many other clinical norms into question.

The moral responsibility of the attending clinician is paramount.

Both beneficence and nonmalevolence mandate that the physician

act responsibly regarding the patient's welfare and well‐being.

Advocates of automated detection systems for AKI argue that they

require less clinical expertise among staff to produce an AKI alert or

diagnosis in a timely manner. This purported benefit is misleading,

however. The implementation of AKI alerts is mainly intended to

address issues with clinical staff shortages rather than to im-

prove care.

Furthermore, a nonspecialized staff person needing to respond

to an AKI e‐alert will know that there is a problem, but will not know

what to do about it nor what the risks will be in choosing one course

of action over another. As a consequence, either incorrect actions

might ensue, or availability of appropriately trained staff may be

unnecessarily solicited. The illusion that e‐alerts appear to afford of

“being on top” of patient vital signs and “in control,” may actually

result in the opposite outcome as a result of understaffing, incorrect

allocation of staffing and opaque false positive signaling of life‐

threatening conditions.

14See for example, Brock, D. W. (1991). The ideal of shared decision making between

physicians and patients. Kennedy Institute of Ethics Journal, 1(1), 28–47.

15See European Commission. (2020). White paper on artificial intelligence – A European

approach to excellence and trust. European Commission.
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This points to a moral responsibility to ensure that the patient

receives timely and appropriate care in cases of an acute condition

developing in the ICU. The extent to which a physician can properly

abdicate responsibility for patient monitoring and evaluation to an

automated system is de facto limited without a range of com-

plementary systems and adaptations to the current model of care. A

nephrologist who leaves nontrained staff to respond to AKI e‐alerts

may be violating the two fundamental clinical norms of non-

malevolence and beneficence by both leaving response to a critical

condition to personnel who are not able to assess appropriate

treatment strategies in a timely manner and by missing the oppor-

tunity to intervene effectively in a timely manner, respectively. This

suggests a clear need to ensure that the development and translation

of criteria like KDIGO are sufficiently transparent so that attending

staff can know with some degree of precision what the AKI alert is

based on, what factors were not calculated (e.g., UO), and some in-

formation about patient characteristics that the model was trained on

in order to make assessments about generalizability.

The remaining imprecisions in definitions of medical conditions

can be easily handled by the capacity of the human mind for

contextualization, but can lead to serious problems when handled

by algorithms that completely lack such “common sense.” This is an

intrinsic problem that cannot conceivably be solved by requiring

greater uniformity in definitions and metrics used to diagnose AKI.

The existing semantic confusion and variable implementation of

criteria in the available body of evidence moreover prohibit that

creating one single sharp definition of AKI would solve this con-

undrum, as this would imply just another definition for AKI that

does not match available evidence. The only way out is to use

human expertise and common sense, neither of which are attri-

butes of AI.

6 | POLICY CONCERNS

The promise of AI in medical treatment and care can only be suc-

cessfully realized if careful attention is paid to the ways in which

medical constructs are operationalized and the manner of embedding

them in clinical practice. Failure to attend to predictable con-

sequences arising from both the way in which the model is developed

as well as the way in which the applications are used and embedded

in clinical practice can lead to a multitude of problems.

One of the concerns about bringing AI into the clinic pertains to

bias and the potential differential impact on patients. The case of op-

erationalization of KDIGO for algorithmic systems shows how even

semantic idiosyncrasies found in medical constructs can contribute to

the existence and persistence of health disparities. A seemingly in-

nocent translation of a relatively longstanding set of criteria (in one

form or another) when automated and deployed in a growing number

of hospitals can ultimately result in exacerbating health disparities.

Specifically, the culprit here is found, at least partly, in the estab-

lishment of the all‐important baseline levels of creatinine. As ex-

plained earlier, the different metrics contained in the KDIGO criteria

use different methods to arrive at a baseline. For creatinine, the

baseline level that informs all subsequent evaluations is determined

either by a level determined during pre‐ICU hospital visits (EHR

history) or by the level determined upon admission to ICU hospita-

lization. The systematic application of these two baseline criteria will

create two categories of patients—those with frequent access to

healthcare and those without.

Access to healthcare in many jurisdictions is dependent on fi-

nancial resources. People do not seek routine healthcare or none-

mergency healthcare if they cannot afford it. Consequently, poorer

patients are less likely to have historical data that can establish their

baseline. Since a diagnosis of AKI is made relative to a baseline, these

differing metrics of establishing the baseline can have clinical con-

sequences that result in perpetuation of health disparities. A “physical

physician” might notice this disparity and adjust for it, whereas an

automated algorithm will simply produce the output AKI or no AKI,

but it will not be obvious on which criterion exactly this decision was

based. As a consequence, the inequity might remain unnoticed, and

the impression will be given that all patients received treatment

based on “objective grounds,” whereas in reality, they did not.

The lack of transparency and physician responsibility also have

policy ramifications. Shifting the monitoring, evaluation, and detec-

tion tasks once performed by trained, experienced clinical staff to an

opaque algorithm will necessarily affect skills of staff over time.

Further, there are concerns about problematic ML models being

adopted by clinical staff who are not equipped to assess them.16 This

conceivably has short and long term implications for the task‐shifting

that is expected to accompany AI. The possibility of complementary

tasks being taken over by less skilled staff will seem more efficient

and economical. Increasing reliance on automated systems will alter

what are regarded as clinically necessary skills, and training will be

adapted accordingly.

Initially, the meaning of the construct AKI might be different

when produced by an AI from what the staff have been taught while

in training or what is intended by the term in medical literature, but it

will not be transparent for them that there actually is a difference and

that their response to the AKI should therefore be different. In the

long run, new members of staff will simply lack the skills to correct or

supplement the AI decisions. The meaning (if any) of the AI output

will then only be transparent for the algorithm itself.

Moral responsibility for patient care arguably cannot be shifted

to an automated system. For this reason, medical malpractice and

medical negligence can still occur with the use of even the most

sophisticated technologies. Delegation of moral responsibility in the

case of automated alert systems to manufacturers, developers, hos-

pitals adopting the systems, or others in the loop ignores the moral

nature inherent in assuming an obligation for clinical care. Once this

obligation is assumed, for example, by oath, employment, or

16Wilkinson, J., Arnold, K. F., Murray, E. J., van Smeden, M., Carr, K., Sippy, R., de Kamps, M.,

Beam, A., Konigorski, S., Lippert, C., Gilthorpe, M. S., & Tennant, P. W. (2020). Time to reality

check the promises of machine learning‐powered precision medicine. The Lancet Digital

Health, 2(12), E677–E680.
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profession, the moral responsibility to act in ways that will reasonably

ensure good clinical care and not be harmful cannot be delegated.

This places the responsibility in the hands of clinical staff not only to

provide this level of care and caution, but also to only deploy algo-

rithmic systems that facilitate rather than hinder clinical staff's ability

to exercise this responsibility.

7 | CONCLUDING REMARKS

It is a matter of debate whether the solution to the spectrum of

dilemmas, diversions, and drawbacks of the semantic black box that is

fed into automated algorithmic systems lies in a more refined and

transparent translation of KDIGO criteria into the model, adequate

regulation and governance, or ensuring appropriate and adequate

personnel and processes in the embedding into clinical practice. It is

reasonable to suggest that it will take a combination of all of these.

While much attention is devoted to the workings of the technology as

the source of many of the ethical and legal challenges brought about

by AI, communication still remains at the heart of clinical care.

Effective communication is necessary throughout the clinical en-

counter and increasingly involves technological outputs. Consider the

scenario of a patient asking the doctor “Am I going to die?” where the

doctor merely responds, “Yes.” The outcome is accurate but tells us

so little that we may be inclined to consider it useless or even

harmful. While the KDIGO criteria do not set up a scenario quite so

extreme, automation of this black box construct compounds an al-

ready flawed diagnostic concept that becomes increasingly less

useful. When technology interferes with proper understanding and

effective communication and hinders the ability to provide reason-

able levels of care, then this must be addressed before wide im-

plementation can be considered.
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