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Abstract 

Diagnostic tests are used to determine whether a disease or condition is present or 

absent in a patient, who will typically be suspected of having the disease or condition 

due to symptoms or clinical signs. Economic evaluations of diagnostic tests (e.g., cost-

effectiveness analyses) can be used to determine whether a test produces sufficient 

benefit to justify its cost. Evidence on the benefits conferred by a test is often restricted 

to its accuracy, which means mathematical models are required to estimate the impact 

of a test on outcomes which matter to patients and health payers. It is important to 

realise the case for introducing a new test may not be restricted to its accuracy, but 

extend to factors such as time to diagnosis and acceptability for patients. These and 

other considerations may mean the common modelling approach, the decision tree, is 

inappropriate for underpinning an economic evaluation. There are no consensus 

guidelines on how economic evaluations of diagnostic tests should be conducted – this 

article attempts to explore the common challenges encountered in economic 

evaluations, suggests solutions to those challenges, and identifies some areas where 

further methodological work may be necessary. 

mailto:t.m.snowsill@exeter.ac.uk
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Key Points for Decision Makers 

• Economic evaluation of diagnostic tests typically requires economic modelling 

with significant structural assumptions 

• The methodological approach adopted in economic models for diagnostics 

may vary according to the value proposition for the diagnostic 

• Public and patient preferences for characteristics of diagnostics may not be 

captured by standard QALY calculations, and flexibility may be required to 

make optimal resource allocation decisions 

1. Background 

Medical tests are used extensively in healthcare to determine the presence or absence 

of a disease, the extent of a disease, the response to treatment, the presence of risk 

factors, the likelihood the disease will respond to a particular treatment (e.g., precision 

medicine), and other uses besides. Some medical tests require minimal equipment or 

consumables, such as the capillary refill test, auscultation and the Mini-Mental State 

Examination, while other medical tests require extremely expensive equipment, such as 

magnetic resonance imaging. Some tests require invasive procedures, such as biopsies 

and colonoscopies. Almost universally, the patient derives no benefit from the test, but 

the information obtained by the test is expected to lead to some change in how the 

patient is managed (e.g., initiating treatment). If a test does not change clinical 

management, it will have no clinical utility or economic value. 

Diagnostic tests support clinicians to decide whether a particular disease or 

condition is present (or likely to be present) in a presenting patient, who will typically be 
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symptomatic. This is distinguished from population and targeted screening, where 

individuals are invited to have a test for a disease without any indication they have the 

disease; they are simply at risk for the disease. A single test may be used for diagnosis, 

screening, surveillance, monitoring, etc., so clarity about the population receiving the 

test is important, since test performance can be affected by setting and population. 

When it is proposed that a test should be introduced into healthcare, this may 

prompt an investigation of how effective the test will be and whether it will represent 

good value for money. In some cases a new test can be demonstrated to dominate (be 

better in every way and less costly than) an existing test used in a diagnostic pathway, 

and the new test can be introduced as a like-for-like replacement. But often new tests 

can be more expensive, can require changes to pathways, or can be better in some 

ways but worse in others. In this case, a clear value proposition for the test is necessary 

so that decision makers understand why it may be worthwhile to introduce the test, and 

an accurate assessment of the value can be undertaken. 

Evidence for the effectiveness of diagnostic tests is frequently limited to the 

clinical validity of the test, i.e., how good is it at categorising patients as having or not 

having the disease (sensitivity, specificity, and related measures), or measuring some 

quantity relevant to the disease. The test (or set of tests) which define the “true” disease 

status in clinical validity tests is called the reference standard, while the test being 

evaluated is called the index test. Evidence rarely extends to a controlled assessment of 

how good the test is at producing meaningful benefits to the patient [1] (such studies are 

referred to as test-treatment or end-to-end studies), so it is impossible to estimate the 

full effect of a test on costs and health without the use of some modelling assumptions. 
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This approach of evidence linkage based on clinical validity studies and modelling 

(sometimes referred to as indirect evidence for the clinical effectiveness of a test) is 

embraced by some, but not all, health technology assessment organisations [2]. If a 

test-treatment study does exist, it may be possible to use it as the basis for an economic 

evaluation after due consideration of risks of bias and whether follow-up is sufficiently 

long to capture all differences in costs and health consequences. 

In England, the National Institute for Health and Care Excellence (NICE) 

Diagnostics Assessment Programme invites clinicians and sponsors to submit 

diagnostic technologies for assessment, including economic evaluation by an 

independent technology assessment group (usually in the form of a model-based cost-

utility analysis). Decisions by the committee are generally consistent with the application 

of a £20,000 per quality-adjusted life year (QALY) cost-effectiveness threshold, but with 

certain decision-modifying factors, such as uncertainty [3].  In Canada, the Canadian 

Agency for Drugs and Technologies in Health (CADTH) has undertaken health 

technology assessments of diagnostics, including cost-utility analyses. 

Van der Pol et al. [4] have produced guidance on the design and reporting of 

economic evaluations of diagnostics, focusing rightly on the importance of having a very 

clear research question. This includes being clear about the population being tested – in 

which setting have they been identified? what symptoms do they have? Analysts should 

also ensure their economic evaluations comply with the Consolidated Health Economic 

Evaluation Reporting Standards (CHEERS) [5]. 

The main purposes of this article are to describe the methodology commonly 

used in economic evaluations of diagnostics (particularly modelling methodologies), 
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align these methodologies with common value propositions for diagnostics, highlight 

issues which may arise in the economic evaluation of diagnostics, and act as a tutorial 

paper for those interested in model-based economic evaluation of diagnostics. 

Occasionally the article touches on other uses of tests, e.g., surveillance and prognostic 

testing. 

2. Common methodological approaches for economic evaluations of 
diagnostics 

This section presents three methodological approaches for the economic evaluation of 

diagnostics. These are focussed on modelling the diagnostic pathway, i.e., determining 

which patients have a disease, whether there is a timely, correct diagnosis, how the 

patient will be managed in the future. They do not cover the long-term modelling of the 

disease (conditional on the outcome of the diagnostic pathway) because this will 

depend greatly on the nature of the disease, treatments, and the availability of data. 

Markov models are frequently employed and general best practice for modelling will 

apply. 

2.1 Decision tree 

The decision tree has long been used in economic evaluations. It calculates the 

expected costs and benefits of different competing options as a weighted average of the 

costs and benefits for different outcomes, where the weights correspond to the 

probabilities of those outcomes being realised. Decision trees include “chance nodes” 

which reflect things which are subject to chance, e.g., whether a patient responds to a 

treatment, receives an organ transplant, or in the case of diagnostics whether a test 

gives a positive or negative result. 
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When using a decision tree for an economic evaluation of a diagnostic, there will 

typically be at least four possible outcomes, corresponding to the combinations of the 

true disease status and the test result. The best modelling approach is to branch (split) 

first by true disease status and then by test result, as shown in Figure 1. Note that it 

does not need to be feasible in real life for patients to be split by true disease status – it 

is only important that the costs and outcomes can be appropriately modelled based on 

the true disease status and the results of testing. The key parameters to be modelled 

then are the prevalence (the probability the patient truly has the disease), sensitivity (the 

probability of a positive test result in a patient with the disease) and specificity (the 

probability of a negative test result in a patient without the disease). When modelling 

multiple competing tests the prevalence will be a common parameter across the 

different options, while each test will have its own estimates of sensitivity and specificity. 

 

Figure 1: Decision tree for evaluating a diagnostic test 

The decision tree component is fairly simple, but a model will also need to 

estimate the costs and benefits for the different outcomes so that these can be 
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combined. For true positive and true negative results it may be possible to estimate 

these empirically, but generally assumptions will be required for incorrect test results 

and a modelling approach should be used. 

If two or more tests are used in combination then errors can be introduced if 

sensitivity and specificity estimates are naively combined, i.e., assuming that the 

sensitivity and specificity measured in the whole population will also give the probability 

of a correct test result when another test has excluded some of that population [6]. Best 

practice in this case is to estimate the sensitivity and specificity of tests in populations 

which have been stratified according to prior test results. There are approaches for 

meta-analysis which allow the synthesis of studies which evaluate individual tests along 

with studies evaluating tests in combination [7]. 

Consider a simulated example where the true disease status can be defined by 

the true values of two characteristics, 𝑋1 and 𝑋2 (e.g., systolic and diastolic blood 

pressure). Tests 1 and 2 are imperfect measurements of 𝑋1 (i.e., subject to some 

measurement error) which use different thresholds and Test 3 is an imperfect 

measurement of 𝑋2, as shown in Figure 2. 
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Figure 2: Results of tests in the simulated example 

 

The sensitivity and specificity of each test will depend on whether any previous 

tests have already been used to stratify the population, as shown in Table 1. Tests 1 

and 2 are highly correlated because they rely on measurement of the same 

characteristic, 𝑋1. Note that even though Test 3 measures a different characteristic to 

Tests 1 and 2, its sensitivity and specificity are still affected by stratifying on the results 

of those tests. The sensitivity and specificity of particular combinations of tests are 

shown in Figure 3. Combining Tests 1 and 2 is pointless unless it results in reduced 

costs of testing. Combinations of Test 3 with one of Test 1 or Test 2 are particularly 
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effective because Test 3 is measuring the characteristic 𝑋2 and providing significant 

additional information. 

Table 1: Sensitivity and specificity in the simulated example with stratification 

 

 Test 1 Test 2 Test 3 

Full population +ve -ve +ve -ve +ve -ve 

Test 1 

Sens. 0.712 --- --- 0.766 0.009 0.642 0.934 

Spec. 0.886 --- --- 0.665 0.999 0.985 0.870 

Test 2 

Sens. 0.929 0.999 0.754 --- --- 0.906 0.999 

Spec. 0.663 0.006 0.747 --- --- 0.788 0.642 

Test 3 

Sens. 0.760 0.685 0.945 0.742 0.997 --- --- 

Spec. 0.858 0.981 0.843 0.911 0.832 --- --- 

 

 

Figure 3: Summary receiver operating characteristic (ROC) plot. 

Note: ∨ and ∧ mean OR and AND respectively in the Boolean logic sense, so that the 
combination T1 ∧ T2 gives a test positive result only if both T1 and T2 give a positive 
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result. The same symbol is used for T1 as for T1 ∧ T2 because the sensitivity and 
specificity are indistinguishable in the plot (likewise for T2 and T1 ∨ T2). 

 

Decision trees are ideal when the value proposition for the new test does not 

involve changes to timeframes and clinical pathways because future costs and health 

outcomes can be assumed to depend only on the result of testing (true positive, false 

positive, false negative, true negative), and not also contingent on the testing strategy. 

2.2 Discrete event simulation 

Here we refer specifically to models where the diagnosis is modelled using discrete 

event simulation, not when discrete event simulation is used to forecast future costs and 

health outcomes which are then combined using a decision tree. A single discrete event 

simulation can incorporate the diagnostic pathway and long-term outcomes, or another 

modelling methodology can be used to estimate long-term outcomes. 

Discrete event simulations are particularly valuable if diagnosis is time critical or 

if new technologies may disrupt service pathways. 

An instructive example is stroke patients. The management of stroke depends on 

what has caused it, so determining whether it is an ischaemic stroke (caused by a clot 

preventing bloodflow to the brain) or a haemorrhagic stroke (caused by bleeding in the 

brain) is important and must be done in a timely fashion. In England, suspected stroke 

patients are taken by ambulance to the nearest comprehensive stroke unit or acute 

stroke unit. If brain imaging suggests that thrombectomy (surgical removal of a clot) is 

needed, a patient will be transferred to a comprehensive stroke unit if they are not 

already at one. An alternative strategy, which may reduce the length of time between 

stroke and thrombectomy (improving outcomes) is to use mobile stroke units 
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(ambulances with onboard CT scanners) to determine whether thrombectomy is 

indicated on-scene [8] – an economic evaluation of this strategy would likely involve 

discrete event simulation, since outcomes are so dependent on the time between onset 

of symptoms and initiation of treatment. 

Discrete event simulation is also likely to be important if the use of the test is not 

diagnostic, but instead testing over time in an at-risk population, e.g., colorectal cancer 

patients at risk of a second colorectal cancer [9], or screening for cancer in the 

asymptomatic general population. In this case the discrete event simulation 

simultaneously allows for the disease state to evolve over time and for the health 

service to attempt to intercept disease as early as possible. 

2.3 Patient-level analysis 

If patient-level data are available from a diagnostic accuracy study, and there are no 

other accuracy studies which could contribute to a meta-analysis, the best approach to 

economic evaluation may be to base it on patient-level data [10]. 

Consider the study design shown in Figure 4; for each participant we have the 

results of index test 1 and index test 2 (two tests which we are considering introducing 

to clinical practice), and we have the results of the reference standard for any 

participants with at least one index test positive and a random subsample of participants 

with both index tests negative. While it would be preferable to have the reference test 

for all participants, this may not be feasible if the prevalence of the disease is low and 

the reference standard is costly and/or invasive. 
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Figure 4: A diagnostic accuracy study design which can underpin an economic 
evaluation; participants who test negative by both index tests are randomly assigned 
to receive the reference standard or not 

For each participant, we can forecast their future costs and health outcomes 

based on the results of the reference standard and whether or not they are 

appropriately diagnosed. If the participant truly has the disease (according to the 

reference standard) then we forecast the future costs and health outcomes for a true 

positive and a false negative outcome of testing (and the relevant costs and health 

outcomes are selected for each strategy based on the test outcomes); if the participant 

truly does not have the disease we forecast for a true negative or false positive 

outcome; if the participant did not undergo the reference standard then we can impute 

the probability they have the disease and proceed accordingly. We can also link the 
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forecasts of future costs and health outcomes to participant characteristics, e.g., age, 

sex, comorbidities. 

Finally, we estimate the costs and health outcomes for each participant under 

each testing strategy and add the costs of the technologies themselves. 

A key advantage of doing the study like this is that associations between 

participant characteristics, disease characteristics and test outcomes will carry through 

to associations with costs and health consequences (e.g., QALYs) without us needing 

to even be aware of them. For example, Lynch syndrome (a hereditary cancer 

syndrome) is more likely to be present in a younger cancer patient, younger patients 

have greater potential to benefit from life-long preventive measures, and the specificity 

of tumour tests for Lynch syndrome decrease with increasing age [10]. 

3. Value propositions 

It is essential that the value proposition for a new technology is understood. Diagnostics 

can have a wide variety of different value propositions [11], and in some cases (e.g., 

when conducting an early economic evaluation) this value proposition may not yet be 

clearly articulated by its sponsors. Healthcare payers may also identify the 

characteristics of tests they wish to see developed using target product profiles [12]. 

It is also important to bear in mind that a holistic view of the benefits and risks or 

harms of a technology is necessary. The sales pitch for a technology may omit the 

downsides – it is essential that the economic evaluation does not. 

The following sections outline a variety of value propositions and how these 

influence the methods of economic evaluation. 
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3.1 Replacing a test with a cheaper, better test 

If the test is intended to replace an existing test, but it is cheaper than the existing test 

and better (i.e., has better sensitivity and specificity), then it is generally not necessary 

to do a full cost-effectiveness analysis where future costs and health outcomes are 

forecast. If these conditions can be demonstrated to hold (at least on the balance of 

probabilities), then the new technology is dominant. Attention should be focused on 

whether the new test is superior in all patients, since if the new test is inferior in certain 

populations (e.g., tests for gynaecological malignancy can be less accurate in 

premenopausal women), dominance will not hold. 

3.2 Replacing a test with a more expensive test 

If the new test is intended to replace an existing test, but it is more expensive than the 

existing test, then a full cost-effectiveness analysis where future costs and health 

outcomes are forecast is necessary. The new test does not need to have superior 

sensitivity and specificity, but it should be superior on at least one of those measures. A 

decision tree approach will generally be appropriate. 

3.3 Replacing a slow test with a faster test 

If the new test is intended to replace an existing test, but it generates results quicker, 

then it is important to consider what value this actually adds. Some cases where a 

quicker test may add significant value (to justify a potentially greater cost) are: 

• Acute conditions where a diagnosis is needed urgently as the patient’s condition 

may deteriorate 

• Tests used during operations where surgery is paused while test results are 

produced, since quicker results will reduce operative time 
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• Point-of-care testing where quicker results can avoid the need for additional 

consultations or operations (e.g., rapid diagnostics to detect lymph node 

involvement during breast cancer surgery [13]) 

• Conditions where current testing times mean patients are left highly anxious for 

several weeks and this time can be brought down substantially 

It is important to remember that the new test may, for example, sacrifice accuracy in 

favour of speed. An economic evaluation of a test or tests should generally include 

accuracy and the costs and consequences of diagnostic errors unless there is absolute 

certainty that tests have totally equivalent accuracy. 

3.4 Replacing a test with a more acceptable test 

There is no doubt that some medical tests are painful, uncomfortable, or inconvenient. A 

new diagnostic test may be more acceptable to patients because it is less painful or 

uncomfortable, or it takes less time out of their day (which would not appear as a cost 

using the common third-party payer perspective). 

If a new test is less painful or uncomfortable, how should this difference in 

acceptability be incorporated into an economic evaluation? Traditional cost-utility 

analyses will attempt to estimate a health state utility value for undergoing the test [14–

16] and will apply this utility value for the length of the test. However, even if a test leads 

to a health state utility value worse than death (e.g., −0.865, the lowest utility value in 

the Indonesian EQ-5D-5L value set [17]), if it only lasts for one hour then it will at most 

lead to a loss of 0.00032 QALYs, with a monetary value of $15.97 implied by a cost-

effectiveness threshold of $50,000 per QALY. Is this a remotely sensible value to assign 

in an economic evaluation? Craig et al. [18] found significant violations of the constant 
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proportionalilty assumption underpinning QALYs, lending credence to the idea that short 

term impacts on health-related quality of life may have an outsized influence on 

preferences. It has been specifically argued that QALYs are not appropriate when the 

health condition is acute, and argued instead that an alternative methodology such as 

willingness-to-pay should be employed [19]. There is evidence that for acute conditions, 

QALYs are not predictive of willingness-to-pay [20], but QALYs are accepted by many 

policymakers while willingness-to-pay is generally not. 

It is likely that when the value proposition for a new diagnostic is that it reduces 

pain or discomfort, health economists will need to present economic evaluations using 

QALYs, but should supplement these with analyses incorporating willingness-to-pay. 

3.5 Inserting a triage test 

Sometimes a new test is not intended to replace an existing test, but to be used before 

the existing test in a sequence in order to rule out the disease in some patients. 

Typically this is because the existing test is expensive, invasive or time-consuming. A 

triage test should be highly sensitive so that the rate of false negatives is controlled. 

Provided the triage test is rapid a decision tree is likely to be appropriate. The analyst 

should check that there is no risk of patients “falling out” of the diagnostic pathway 

because of the addition of an extra test. 

3.6 Companion diagnostics 

If the sole purpose of a test is to identify patients who can receive a single targeted 

treatment, the test should be viewed as a companion diagnostic and the economic 

evaluation should include both the test and the treatment. The population for the 
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economic evaluation should be everybody who would receive the test, not just those 

who get selected for treatment. 

Things get more complicated if one test can determine eligibility for multiple 

targeted treatments (e.g., DNA mismatch repair deficiency testing to determine eligibility 

for immunotherapy). If the different targeted treatments are appraised individually (as is 

often the case with reimbursement agencies), then each of them will have to bear the 

cost of the companion diagnostic until one of the treatments is reimbursed, at which 

point the companion diagnostic becomes standard care. From that point on, further 

treatments being appraised (including treatments once rejected being reappraised) will 

arguably not have to bear the cost of the companion diagnostic. In order to ensure 

fairness, the population for these subsequent economic evaluations should be only 

those selected for treatment (provided the selection criteria are identical for all 

treatments), all treatments should be included in a single fully incremental analysis, and 

the cost of the companion diagnostic can be ignored. 

3.7 Expanding the population that can be tested 

Perhaps the existing test for a disease is so expensive, invasive, or otherwise 

deleterious that some patients never receive the test. If the patients are symptomatic, 

they may have their symptoms managed, rather than the definitive cause of those 

symptoms identified and treated. If the test is instead for a risk factor (e.g., a hereditary 

predisposition to cancer) then perhaps only individuals with a high chance of having the 

risk factor undergo testing. 

A novel test may mean that the population being tested expands; it is critically 

important that when conducting an economic evaluation the population should not differ 
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between the study arms at baseline. Figure 5 shows how such economic evaluations 

should be approached – any characteristics which were previously used to determine 

who gets testing at present should also be present when estimating costs and outcomes 

with the novel test. For example, if patients are not currently getting tested because they 

are at high risk of dying from a comorbidity before they could benefit from treatment of 

the disease of interest, those patients should still be modelled as at high risk of dying 

from that comorbidity after having the novel test. 

 

Figure 5: Decision tree when we expand the population being tested 

3.8 Lowering the rate of test failures 

In this value proposition, the novel test promises fewer test failures. By test failures, we 

do not mean when a test gives a false positive or false negative result, but when the test 

fails to give a result at all. The consequences of a test failure can vary substantially. The 

analyst should consider: can the test even be repeated (or did the test destroy the only 

  isting approach
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available sample)? does repeating the test require the patient to be recalled? is the test 

very likely to fail again if it already failed once? will a different test be used in the event 

of a test failure? 

3.9 Replacing a test with a cheaper, worse test 

If the existing test is very expensive, it may be worth replacing it with a much cheaper 

test, even if the cheaper test results in worse health outcomes on average. In this case, 

the new technology is in the south-west quadrant of the cost-effectiveness plane (less 

costly and less effective). Economic evaluation proceeds as normal, but some thought 

should be given to whether healthcare professionals will adopt the new test if the 

existing test continues to be reimbursed. 

3.10 Prognostication or prediction 

The results of a test may be highly informative for the prognosis for a patient already 

affected by disease or may indicate their risk of developing future disease. There is 

evidence that patients are willing to pay for a test which predicts their future risk of 

disease, even if there is no intervention which can modify that risk, i.e., they are willing 

to pay for the information alone [21]. 

As we discussed earlier (Replacing a test with a more acceptable test), just 

because patients are willing to pay for something does not mean that healthcare payers 

will, particularly if the effect on QALYs is negligible or even negative (e.g., being told 

one is at risk of developing a disease in the future may lead to long-term mental health 

consequences). 
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4. Populating diagnostic models 

The component of a diagnostic model which estimates long-term costs and health 

outcomes will need to be populated (parameterised) just like any other health economic 

model, so here we focus on the diagnostic component of the model. We consider the 

diagnostic accuracy parameters, the pre-test probability, and costs associated with the 

diagnostic test. 

4.1 Diagnostic accuracy 

The key diagnostic accuracy parameters will be the sensitivity and specificity of the test, 

the accuracy of the test among diseased and non-diseased populations respectively. 

These parameters are usually sufficiently important to justify conducting a systematic 

review, and a meta-analysis if this is appropriate after studies have been identified. The 

Cochrane Screening and Diagnostic Tests Methods Group has published a handbook 

for conducting systematic reviews and meta-analyses of diagnostic tests [22]. Particular 

attention should be paid to the risk of bias in diagnostic studies. 

In an economic evaluation we may be particularly interested in the comparative 

accuracy of two or more tests, and if there are studies which have evaluated those tests 

simultaneously then our estimates of the accuracy of each test will not be statistically 

independent. Our economic evaluation should include the statistical dependence of 

accuracy estimates because it may have a significant effect on the results, particularly 

the amount of uncertainty in results. The second edition of the handbook (in draft at the 

time of writing) contains sections on meta-analysis of comparative accuracy studies but 

this is an area of active methodological development. 
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4.2 Pre-test probability 

The pre-test probability that a patient has a disease is an essential factor in cost-

effectiveness. The pre-test probability of disease across a population is often referred to 

as the prevalence, although this can be confusing since prevalence has a related but 

different interpretation in epidemiology. 

The pre-test probability can be heterogeneous and depend on the presence or 

absence of particular symptoms and risk factors. If these factors resulting in 

heterogeneity in pre-test probability have no influence on the performance of the test or 

the future costs and health consequences conditional on the test outcomes, then they 

can be ignored, but this is a strong assumption unlikely to hold. We show, in the 

Electronic Supplementary Material (a simple decision tree model built in Microsoft 

Excel®), that it is possible a test appears to be cost-effective when heterogeneity is 

ignored, when in fact it is not cost-effective in either of the subgroups considered. 

If the economic evaluation is for use of a test in the same setting as its diagnostic 

accuracy has been evaluated, then the prevalence of the disease (according to the 

reference standard) in that study (or those studies) is a suitable estimate for the pre-test 

probability. This should be stratified where possible according to known risk factors. If 

no such studies exist (e.g., if the diagnostic accuracy was estimated using a case-

control or two-gate design), then expert elicitation may be an appropriate alternative 

[23]. 

4.3 Costs 

When assigning costs to resources, it is of course important that these reflect 

opportunity costs, where possible, and that they follow the economic perspective on 
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costs (e.g., third-party payer, societal). If a diagnostic technology requires very high 

fixed costs, an approach to allocating those fixed costs to each use of the technology 

should be adopted [24]. 

5. Challenges in economic evaluation of tests 

5.1 What if there are more than two disease states? 

Often diagnostic tests are intended to determine whether a disease is present or absent 

(two options). But in some cases the disease state may not be binary. For example, 

pathologists will aim to determine the histotype, stage and grade of lung cancers 

because these inform prognosis and the most appropriate treatment. Histotype is a 

categorical classification while stage and grade are ordinal (lower stages and grades 

are less advanced and less aggressive respectively). 

This does not make economic evaluation impossible, but it is important to be able 

to estimate future costs and health outcomes according to the different disease states 

(even if with significant uncertainty) and what happens if the healthcare system 

misclassifies the patient. Once this has been achieved, a decision tree approach is still 

viable – the population is split initially into the different disease states and then the 

probabilities of different test results (according to the technology used) determine how 

patients are ultimately classified and treated. 

5.2 What if there are more than two possible test results? 

Even if it is agreed that the objective is to determine whether a disease is present or 

absent, it is possible that the test technology can produce something other than positive 

or negative. For example, a urine dipstick test can have different strips which indicate 
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the concentration of an analyte is within a particular range, or a test may be fully 

quantitative, or it may be an imaging test. 

A key role for the health economist is to understand how test results are, or could 

be, used in clinical practice. What test result will lead to a disease being ruled out with 

no further testing? What test result will lead to commencement of treatment? What test 

result will lead to further testing? If the pre-test probability of having a disease is 

heterogeneous (e.g., some patients have more specific symptoms than others, or the 

disease is associated with age) or the consequences of mistakes are heterogeneous 

then there may not be a simple answer to these questions, and we may instead need to 

simulate how test results are interpreted and acted upon. 

If we are interested in simulating the interpretation of a test result,  ayes’ 

theorem tells us how to correctly update our belief that a patient has the disease 

according to the results of a test (though it may not correlate well with how physicians in 

fact interpret those results [25]). Bayesian interpretation of test results using likelihood 

ratios is mathematically convenient. The likelihood ratio, 𝐿𝑅⋆, for a particular test result, 

𝑇⋆, is given by 

𝐿𝑅⋆ =
Pr(𝑇⋆ ∣ 𝐷+)

Pr(𝑇⋆ ∣ 𝐷−)
 

where Pr(𝑇⋆ ∣ 𝐷+) and Pr(𝑇⋆ ∣ 𝐷−) are respectively the probability of getting the result 

𝑇⋆ in a diseased and non-diseased patient. Then if we have estimated the pre-test 

probability of the disease as 𝑝, the post-test probability of the disease, 𝑝′, is given by 

𝑝′

1 − 𝑝′
= 𝐿𝑅⋆ ⋅

𝑝

1 − 𝑝
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Note that this works regardless of whether 𝑇⋆ is positive, negative, takes a semi-

quantitative or fully quantitative value. 

Even if physicians would not naturally interpret test results using Bayes’ rule, it 

may be feasible to construct and populate a simple model of physician behaviour, or to 

produce a simple decision aid to accompany the test which correctly applies  ayes’ 

rule. 

5.3 Optimising test thresholds 

If a test is quantitative (producing a single continuous value, e.g., the concentration of 

an analyte) then the threshold can be optimised from an economic perspective, by 

identifying the threshold which leads to the maximum net benefit [26]. Net benefit is the 

value of health benefits (B) offset by costs (C), and is calculated based on the 

willingness-to-pay for a unit of health benefit (𝜆). The net health benefit (NHB) is 

expressed in units of health benefit, while the net monetary benefit (NMB) is expressed 

in monetary units: 

NHB = B −
1

𝜆
⋅ C

NMB = 𝜆 ⋅ B − C

 

A test cannot change the true disease status of a patient, it can only change whether 

the diagnosis is correct or not, i.e., changing the threshold of a test can only turn true 

positives into false negatives (or vice versa) and true negatives into false positives (or 

vice versa). What matter, therefore, are the net benefit gained by converting a false 

positive into a true negative (𝛥NB𝐷−) and the net benefit gained by converting a false 

negative into a true positive (𝛥NB𝐷+). Then if sensitivity and specificity are functions of 



Modelling the cost-effectiveness of diagnostic tests Tristan Snowsill 

the threshold, 𝜃, denoted 𝛼(𝜃) and 𝛽(𝜃), and the disease prevalence is 𝜋, then the 

optimal threshold (𝜃⋆) will be determined by 

𝜃⋆ = argmax𝜃{𝛥NB𝐷+ ⋅ 𝜋 ⋅ 𝛼(𝜃) + 𝛥NB𝐷− ⋅ (1 − 𝜋) ⋅ 𝛽(𝜃)} 

In a health technology assessment of different technologies to detect preterm labour, 

one technology was fully quantitative (quantitative fetal fibronectin, qfFN) [27]. The 

economic evaluation considered the use of qfFN at thresholds of 10, 50, 200 and 500 

ng/ml, but we can use the approach above to estimate the economically optimal 

threshold. Using linear regression on costs (minus the cost of each test) and QALYs we 

can estimate that 𝛥NB𝐷+ ⋅ 𝜋 ≈ 1340 and 𝛥NB𝐷− ⋅ (1 − 𝜋) ≈ 1040. We use maximum 

likelihood estimation to estimate the distribution of the analyte conditional on the true 

disease status and therefore the sensitivity and specificity depending on the threshold: 

𝛼(𝜃) = 1 − Φ(
log𝜃 − 5.99

1.71
)

𝛽(𝜃) = Φ(
log𝜃 − 2.83

2.29
)

 

where Φ(⋅) is the standard normal cumulative distribution function. Based on these 

assumptions, the optimal threshold is 98.5 ng/ml, as shown in Figure 6. Of course, we 

have (for the sake of simplicity) ignored uncertainty in the various estimates – the aim 

should be to select the threshold which gives the greatest expected net benefit, taking 

the expectation across the distributions representing uncertainty in all parameters. 
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Figure 6: Optimising the threshold for a test based on net-benefit 

5.4 What if there is no reference standard? 

Soares et al. [28] considered the case of evaluating a test for which there is no 

reference standard, i.e., no way of knowing whether a patient truly had the disease or 

not at the time of receiving the test under consideration. They considered prognostic 

tests (where the test is intended to predict a future outcome rather than the current 

disease state) to be a special case of this problem. 

Their solution to such problems was to abandon modelling the true disease state 

and for the outcomes to be based only on the test result and whether the patient 

undergoes treatment. If a test-treatment study happens to exist where patients are 

randomly assigned to receive a test or not, and lifetime health outcomes and resource 

use are observed, this approach is entirely appropriate. But in the likely situation that no 

such study exists, we are left to attempt to model outcomes according to the results of a 
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test rather than the true disease status, which is in conflict with general best practice 

guidance on modelling [29,30]. 

An alternative approach is to have some form of latent disease state. For a test 

intending to diagnose disease now but where there is no reference standard, 

approaches exist relying on latent class modelling [31]. The results of a prognostic test 

can also be linked to a modelled latent characteristic of the patient being simulated. 

Consider, for example, a prognostic test which gives the estimated probability, 𝑝̂, 

that a patient develops a disease within the next five years, unless an intervention is put 

in place (which will happen if 𝑝̂ exceeds some threshold). A natural modelling approach 

may be to use an exponential distribution for the time to developing the disease, where 

the rate parameter, 𝜆, is taken to be the solution to 𝑝 = 𝐹(5) = 1 − 𝑒−5𝜆, and 𝑝 is the 

“true” risk for a patient with those characteristics. It is likely important to include some 

error in the transmission between 𝑝 and 𝑝̂ since the prognostic model is not perfect, and 

overestimating or underestimating the true risk for a patient could both lead to losses. 

Prognostic models can also be imperfectly calibrated [32], meaning that the 𝑝̂ are 

systematically biased (at least in some ranges) – this should be represented in a model 

also. 

6. Recommendations and areas for further research 

While we have found no consensus recommendations for modelling diagnostics, there 

is a strong argument that, when a linkage approach is adopted, the economic model 

structure should include the true disease status, and this should simultaneously drive 

test outcomes and the future course of the disease (according to whether the patient 

receives a correct diagnosis at baseline). The possible exception to this is if test-



Modelling the cost-effectiveness of diagnostic tests Tristan Snowsill 

treatment studies exist which are judged to be a superior basis for economic evaluation 

than the linkage approach. This is especially rele ant if there is no “gold standard” for 

clinical validity studies and/or the ways in which test information can lead to clinical 

benefit are highly complex or not well understood (e.g., in psychiatry). 

Analysts should consult with clinical experts and/or producers of a test to 

determine its value proposition, since different value propositions may require different 

modelling approaches. Certain value propositions (e.g., when a new test is more 

acceptable than an existing test) may not sit well within the standard economic 

evaluation methodology of cost-utility analysis, where QALYs are the measure of health 

benefit, and analysts should be prepared to investigate willingness-to-pay as an 

alternative. 

All general purpose good practice guidelines on the conduct and reporting of 

health economic modelling apply to modelling diagnostics, and the specific 

recommendations by van der Pol et al. [4] are well-made. 

Economic modelling of diagnostics touches on many areas of active research, 

including approaches to synthesising evidence from diagnostic accuracy studies. Three 

factors may yet be under-researched in the economic modelling of diagnostics: 

differential diagnoses, clinical factors, and inconsistent evidence. 

By differential diagnoses, we refer to the alternative diseases which could explain 

the symptoms (assuming that we are evaluating the use of a test in symptomatic 

patients). Analysts tend to give little thought to these, and how misclassified results are 

modelled in general. A fairly typical assumption is that a false positive result will lead to 

some attempt at managing a disease which is not there, but that the mistake will be 
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rapidly corrected, with overall fairly limited effects on costs and usually no effect on 

QALYs. Analysts should generally question whether this is an appropriate assumption, 

especially when: 

• the disease is rare and false positive findings may be quite numerous; 

• treatment for the primary disease in question carries a significant risk of harm; 

• an alternative disease which could explain the symptoms is progressive (so there 

is a risk the real disease will be made worse by the false positive finding leading 

to a diagnostic delay); or, 

• the symptoms are severe and cannot be managed without addressing their true 

cause. 

One example where a number of different diseases were potentially relevant was the 

use of reflectance confocal microscopy in suspected skin cancers, where some of the 

clinical validity studies found that technologies sometimes incorrectly diagnosed one 

type of skin lesion as another, including benign lesions being misclassified as 

melanoma [33]. 

By clinical factors, we refer to how a clinical system may not incorporate a test 

result in the way it is modelled. Frequently a model will assume that once a certain 

diagnostic pathway is completed, the patient will either be discharged or treated but this 

may not be an accurate assumption. A clinician may conduct more tests than is 

assumed, either before discharging a patient (because they perceive the patient is at 

higher than average risk of the disease or risks worse consequences than average if a 

diagnosis is missed) or initiating treatment. A clinician may conduct fewer tests than are 

assumed, e.g., incorrectly treating a triage test as a definitive test. A patient may 



Modelling the cost-effectiveness of diagnostic tests Tristan Snowsill 

become “lost in the system” if the diagnostic pathway is comple  and they are not highly 

visible (e.g., an emergency department attendee or an inpatient). Economic models can 

incorporate such possibilities, but they rarely do. 

In the case of inconsistent evidence, we note the possibility that there will be 

studies which measure only the results of tests (accuracy studies) and others which 

measure the outcomes for patients (test-treatment or end-to-end studies), and that 

these studies may give inconsistent findings. For example, diagnostic accuracy studies 

may show that a new test has improved sensitivity and specificity compared to an 

existing test, while end-to-end studies show no benefit from the new test. Health 

technology assessment agencies have not issued any guidance on how to handle such 

inconsistencies [2]. Test-treatment studies are far from immune from bias [34] and there 

are a variety of study designs with different advantages and disadvantages, as well as 

the possibility of adaptive studies [35]. In principle, a Bayesian economic model can 

incorporate evidence on the accuracy of tests as well as on the longer-term outcomes 

observed in a test-treatment trial, but this will require strong assumptions about the 

correctness of the linkage approach and it is unclear how studies at high risk of bias 

should be handled. 

7. Conclusion 

Although there have been substantial developments in how evidence for the 

effectiveness of diagnostics is appraised and synthesised, methods for the economic 

evaluation of diagnostics remain unstandardised and have not become markedly more 

sophisticated. There are a number of pitfalls to avoid when modelling the cost-
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effectiveness or cost-utility of diagnostics, and it is important to understand that not all 

diagnostics “add  alue” in the same way. 
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