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ABSTRACT

Real-time leakage detection based on pressure and flow data has become increasingly essential for water distribution systems (WDSs).

Recent data-driven leakage detection approaches have largely focused on burst detection characterised as sudden outflow or sudden

pressure drops but did not mention the ability to detect gradual leakage events that do not have sudden change and could cause more

water loss. This study proposes an online leakage detection system based on the exponential weighted moving average (EWMA)-enhanced

Tukey method to help monitor gradual leakage events of WDSs. The proposed online system comprises three main parts: data pre-proces-

sing, the online detection sub-system, and the parameter updating sub-system. The proposed online system is based on lightweight and

powerful statistical tools without complex model construction. The effectiveness of the proposed system is demonstrated on leakage data-

sets under various real-world scenarios, including gradual leakages and bursts. The results showed that the proposed EWMA-enhanced

Tukey method could detect gradual leakage events quickly while generating low false alarms. The proposed method is computationally effec-

tive and able to deal with non-stationary behaviours automatically.
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HIGHLIGHTS

• This paper proposed a leakage detection method that focused on gradual leakage events.

• The proposed leakage detection method could adapt to the time-varying characteristics of flow monitoring data, such as the demand

variation caused by weather-related issues.

• This paper proposed a method that is robust to the data noises and could successfully detect leakage events without generating many

false alarms.
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GRAPHICAL ABSTRACT

INTRODUCTION

In modern society, water is distributed within well-established water distribution networks (WDN). From the first pipes in
Crete around 3,500 years ago to today’s complex pipeline system, the water distribution system (WDS) has become one of
the inevitable parts of human life. Although the freshwater available for direct human consumption only accounts for less
than 1% of the Earth’s water resources (Romano 2012), the demand for water resources continues to grow due to urbanis-

ation, population, economic growth, etc. (Gupta & Kulat 2018). Furthermore, high financial and environmental costs are
involved in infrastructure construction, power and chemical investment for water treatment, energy costs for pumping
water, etc. (Lambert 2002). Therefore, it is becoming more and more important to reduce water loss in all aspects. The Inter-

national Water Association (IWA) (Farley 2003) has defined water loss as the sum of real and apparent losses plus unbilled
authorised consumption, and among them, leakage in pipelines was identified as the primary contributor of water loss. Fur-
thermore, UK Water Industry Research (UKWIR) has identified leakage as one of their strategic priorities and has raised the

question, ‘How will we achieve zero leakage in a sustainable way by 2050?’ Therefore, it is vital to develop methods to sup-
port this strategy and to reduce leakage as much as possible in WDSs.

In recent years, leakage detection for WDSs based on data-driven methods has received increasing attention. With the

development of hydraulic sensor technology and data acquisition system, it has become possible to monitor a WDS in
real-time using pressure and flow monitoring devices that have been permanently installed in the pipeline system. Abundant
data sources have become available to represent the complex condition of the real-world system. However, these data are
usually too numerous and complicated for humans to handle (Wu & Liu 2017). Thus, data-driven methods are needed to

automatically extract valuable information and detect patterns from the big data. Moreover, unlike model-based methods
(Mohammed et al. 2021) that require a well-calibrated hydraulic model, data-driven strategies do not require specific in-
depth knowledge about the WDS and are more suitable for online control.

Various data-driven methods have been studied and developed to detect burst events in WDSs and reduce the time to
awareness (Wan et al. 2022). With the availability of the real-time flow or pressure monitoring data collected from the Super-
visory Control and Data Acquisition (SCADA) system, data-driven methods could be used to mine the historical data and find
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a model to represent the condition of a WDS. Based on the representation of the distribution system’s normal behaviour, new

leakage events could be determined if the system’s behaviour is substantially different from its normal state. Therefore, some
prediction models could be used to learn historical flow or pressure data pattern and provide a prediction for reference.
Mounce et al. (2002, 2007) introduced a burst detection system based on an artificial neural network (ANN). In addition,

Kalman filter (KF) (Ye & Fenner 2011), nonlinear KF (Jung & Lansey 2015), support vector regression (SVR) (Mounce
et al. 2011), long short-term memory (LSTM) model (Wang et al. 2020), and other prediction models (Bakker et al. 2014;
Ye & Fenner 2014; Karray et al. 2016) have been explored for burst detection for WDSs.

Statistical process control (SPC) charts, with a set of control limits, provide intuitive and cost-effective tools to monitor and

display the unusual behaviour of a process. Claudio et al. (2015) applied an exponential weighted moving average (EWMA)
model to detect a leakage event in a DMA equipped with automated meter reading (AMR), and the awareness time is approxi-
mately 1 week after its occurrence. Borges et al. (2017) applied the Western Electric Company (WEC) rules for pipe burst

detection, but the detection probability (DP) can be as low as 40%. Jung et al. (2015) compared the performance of three uni-
variate and threemultivariate SPCmethods for burst detection inWDSswith consistent system operation. The result showed at
least one false alarmper day, which is not promising. In their later research, Ahn& Jung (2019) proposed a hybrid approach that

combined the results generated from WEC rules and the cumulative sum (CUSUM) method, but the detection time (DT) for
burst events is at least 5 h. Therefore, the accuracy and applicability of the conventional SPC method are still not promising.

It should be noted that in the previous studies, leakage detection, especially burst detection, is usually defined as outlier detection,

expressed as a single data point that significantly deviates from its predicted value.However, a leakage event should be described as
a continuous collection of data deviating from the data pattern caused by consumers’ behaviour under normal conditions. More-
over, current data-driven methods that have been proposed in the literature are mainly focused on burst detection but do not
consider gradual leakage events. Unlike burst events characterised by the sudden change in a really short time period, gradual leak-

age events developprogressively fromsmall seeps andweeps tonoticeable leakevents.As shown inFigure 1, theblue line represents
the flowmonitoring data, and the red area represents the duration that the distribution system contains a leakage event. It could be
observed that gradual leakage could be more challenging to detect due to the small amplitude and the slow increase trend in the

beginning stage. Furthermore, the seasonal trend in the flow or pressure data caused by weather change has made gradual leakage
detection even more challenging. The effectiveness of a leakage detection method depends on whether the leakage can be accu-
rately detected in a timely manner. However, rarely have studies evaluated the effectiveness of the leakage detection method for

gradual leakages. Eliades & Polycarpou (2012) proposed a Fourier analysis-based fault diagnosis framework to detect leakages
in WDSs and mentioned the ability of their method for gradual leakage events but did not provide a comprehensive study.

Figure 1 | Flow data contain different types of leakages: (a) burst; (b) gradual leakage. Please refer to the online version of this paper to see
this figure in colour: http://dx.doi.org/10.2166/hydro.2022.079.
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Traditional burst detection methods that aim to capture the sudden change in the data may not be suitable for gradual leak-

age detection. The task of detecting sudden flow increases is now transformed to detecting the trend shift. The most common
method used in literature for leakage detection is the Shewhart method, which only considers the current measurement and
does not retain any memory of the historical data (Kadri et al. 2016). Thus, the Shewhart method is not very effective when

detecting gradual leakage events that cause small or moderate process mean shifts. EWMA chart is proposed by Roberts
(2000) to mitigate the shortcomings of the Shewhart chart by incorporating the information from past measurements.
EWMA exponentially weighted the average of all prior data so that it could utilise all the available information based on
their importance to sense small changes in the process mean. Therefore, EWMA is an advanced method to monitor small

or moderate shifts in process mean (Nam et al. 2019).
In addition, Wu & Liu (2017) provided a review of the data-driven methods for burst detection, and they pointed out that

any burst detection or leakage detection method developed must be able to work in an online environment. The data come in

sequence, and a decision is also required to be made in sequence. Moreover, the information of new data should be learned by
the model in real time so that the model can adapt to the time-varying characteristic of data. For example, in the northern
hemisphere, the consumers’ demand in summer is generally higher than in winter. Thus, the control limits set in summer

should be automatically different from winter. In addition, the information that comes from leakage events should be con-
sidered separately.

To address issues mentioned above, this paper proposes an online detection framework to adapt to the time-varying con-

dition and provides an early warning system to detect gradual leak events. The proposed online system comprises three main
parts: data pre-processing, the online detection sub-system, and the parameter updating sub-system. In the step of data pre-
processing, data differencing and data de-seasonalisation are used to transform the raw monitoring data for the online detec-
tion phase. Then, a robust statistic-based approach called the EWMA-enhanced Tukey test is proposed to assess the sequential

data and detect gradual leakage events in an online manner. The proposed approach is based on lightweight and powerful
statistical tools without complex model construction. A rolling time window is used to adapt to the time-varying character-
istics of the monitoring data. The parameter updating sub-system provides an information interaction to inform the online

detection sub-system to absorb information and update parameters according to the system condition. The main contributions
of this paper are:

1. Based on the EWMA method, this paper proposed a leakage detection method that focused on gradual leakage events;
2. Based on the use of data differencing, the proposed leakage detection method could adapt to the time-varying character-

istics of flow monitoring data, such as the demand increase and decrease caused by weather-related issues;

3. Based on the use of robust statistics and the Tukey test, this paper proposed a leakage detection method that is robust to
the data noises and could successfully detect leakage events without generating many false alarms;

4. Proposed an online detection framework that could analyse data in sequential order and automatically update model par-
ameters based on the information received selectively.

Leakage datasets under various real-world scenarios are used in this research to evaluate the applicability and effectiveness
of the proposed online leakage detection method. Various real-life scenarios are considered, such as daily patterns, weekly

patterns, seasonal behaviour, etc. One year of real-time monitoring flow data has been used to detect gradual leakages
and bursts within the WDS. Leakage events with different increasing rates and amplitude have been generated from the
benchmark model to demonstrate the early warning capability and the limit of the proposed detection system.

METHODOLOGY

A diagrammatic representation of the proposed online leakage detection system is shown in Figure 2. The proposed method

contains three main parts: data pre-processing, online detection sub-system, and parameter updating sub-system.

Data pre-processing

Before the detection process, the measured data need to be pre-processed so that the data can be adapted to the requirements
for the chosen data mining algorithm. It should be noted that conventional SPC methods, such as Shewhart, CUSUM and

EWMA charts (Jung et al. 2015; Ahn & Jung 2019) are based on a fundamental assumption that the data are statistically inde-
pendent or stationary. Thus, before diving into the proposed methodology, an exploratory analysis is conducted to show the
existence of seasonality and trend in the flow monitoring dataset. Pipe flow and pressure at demand nodes in WDS have
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varying statistical characteristics (such as mean and standard deviation) due to regular human behaviour. Figure 3(a) shows a

violin plot for the data value at each time of every day across a year of flowmonitoring data. Figure 3(b) shows a violin plot for
the flow value at each day of the week. It could be observed that the data in the different times of day and different days of a
week follow different distributions, and the accuracy of the SPC method could be highly affected if it is applied to raw moni-

toring data directly. Thus, the diurnal and weekly patterns in water consumption should be considered so that dynamic
thresholds can be set according to real-time behaviour. Figure 3(c) shows the average flow value at each week of the year.
It could be observed that the flow data show an increasing trend over time, and this trend will cause additional requirement

for a leakage detection method, namely a leakage detection method should be able to adapt to this trend without generating
false alarms.

In conclusion, the trend and periodicity of the flowmonitoring data pose a great challenge, and data pre-processing is inevi-
table for the performance of the SPC-based leakage detection methods. Therefore, the identification and removal of periodic

trends and seasonal effects are conducted at this stage to prepare the data for SPC testing.
Firstly, data differencing is used to eliminate the trend in the data. It is known that water consumption varies as seasonal

changes of the year. The flow monitoring data will show a growing trend in the summer and a decreasing trend in the winter.

The seasonal change in the data can significantly affect the detection performance, especially for statistical analysis-based
detection methods, because of the non-stationary behaviour. Data differencing is known to help eliminate (or reduce) the
trend (Hyndman & Athanasopoulos 2018). According to Figure 3, diurnal pattern and weekly pattern exist in flow

Figure 2 | Framework of the proposed online leakage detection method.
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monitoring data. In order to consider both seasonality, weekly differencing is adopted to preserve the trend variation caused
by gradual leakage events while removing the influence of the gross trend in the monitoring data caused by the changing
weather condition. The differenced flow series can be written as:

xi ¼ fi � fi�m (1)

where xi is the differenced value at time i represents the difference between current value and the last week’s value for the
same time slot; fi is the measured flow value at time i; m is the lag number of one week, for example, if the flow data were
recorded every 5 min, m ¼ 7� 288 ¼ 2016.

Therefore, a normalisation process is performed after data differencing to reduce the influence of the regular pattern in the
monitoring data. The normalisation process transforms the raw data into normalised scores based on the designated period-
icity, such as one day or one week. One day of periodicity is commonly adopted in statistical-based leakage detection methods

(e.g. Jung et al. 2015; Ahn & Jung 2019; Nam et al. 2019; Wu et al. 2020). This is based on the assumption that the data at the
same time every day follow the same distribution. The normalised score zi of the measured value xi is calculated as:

zi ¼ xi � mi

si
(2)

where mi and si are the mean and the standard deviation of the data at the ith time period every day.

The traditional normalisation process uses mean and standard deviation, and these statistics could be easily influenced and
skewed by the outlier values. Thus, instead of using mean value and standard deviation, robust statistics are adopted in this
paper to reduce the influence of noises and outliers during the calculation. Moreover, one week of cyclicality is employed

based on a more realistic assumption. Therefore, at first, the differenced data at the same time every week are assumed
from the same data distribution and are grouped together. Then, the ordered grouped data are broken into four quarters,
and the boundaries of each quarter are defined as the 1st quartile, the 2nd quartile, and the 3rd quartile. The 2nd quartile

Figure 3 | Violin plot of (a) time of the day and (b) day of the week seasonal average for one of the time series; (c) the average flow of each
week of the year.
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is used to replace the mean value, and the interquartile range is used to replace the standard deviation. The interquartile range

is defined as the distance between the 1st quartile and the 3rd quartile (Wang et al. 2011). Therefore, the measured data at
time t on the kth day of the week xt,k are normalised by:

zt,k ¼ xt,k �Q2,k

Q3,t,k �Q1,t,k
(3)

where zt,k is the robust normalised score at time t in the kth day of week;Q2,k is the 2nd quartile or median of the data at time t
in the kth day of every week; Q1,t,k and Q3,t,k are the 1st and 3rd quartile of the data at time t in the kth day of every week.

Online detection based on EWMA-enhanced Tukey method

An EWMA chart assigns different weights to the historical data, with heavier weights for more recent measurements and tail-

ing off exponentially further in history (Dunn 2019). EWMA estimate of the normalised score zi obtained from pre-processing
ewmai could be calculated as:

ewmai ¼ lzi þ (1� l)ewmai�1 (4)

where l is a weighting factor and 0 , l , 1, ewma0 is the process mean of historical data.

Traditionally, the upper control limit (UCL) and lower control limit (LCL) for the EWMA are calculated in a similar way as
the Shewhart limits. However, the Shewhart method is based on the assumption that the analysed data follow Gaussian dis-
tribution. It uses statistics such as mean and standard deviation that could be easily affected by one or more outliers. In order
to solve this problem, the Tukey method uses quartiles that are less affected by outliers. For real-time monitoring, a rolling

fixed-size data window will be considered for threshold calculating, and the threshold will be updated for each newly col-
lected data. The Tukey UCL and LCL for the normalised score at time i is defined as:

UCLi ¼ Q3,i þ k(Q3,i �Q1,i) (5)

LCLi ¼ Q1,i � k(Q3,i �Q1,i) (6)

where k is an appropriately chosen scaler for threshold setting; the Q1,i and Q3,i are the 1st and 3rd quartile of data in the ith
time window {ewmai�l, ewmai�lþ1, . . . , ewmai}; l is the length of time window. In this step, threshold scaler k and window
length l are two parameters that need to be determined by the user. Threshold scaler k determines the normal range of data

value, and a rule of thumb is that k could be 2, 2.5, 3, or more (Wang et al. 2020). Window length l assumes that data within
this time window could be considered as stationary or nearly stationary, and a rule of thumb for l could be 10 days, 20 days, 30
days, or more. User could also define these parameters based on their dataset and their engineering experience.

Parameter updating

The online detection system allows for real-time information selection by parameter updating. Three parameters should be set
for this method: threshold scalar, outlier tolerance, and online window length. These parameters could be selected based on
empirical experience or intuition, and the robustness of the parameter will be discussed in the next section. The information

provided by online detection will be used for parameter updating. For every newly collected data, online detection can flag it
as if it belongs to a leakage event or not. It should be noted that a single anomaly has a high probability that caused by con-
sumers’ behaviour or noises. Thus, it may not be the best representation of the occurrence of leakage events. In this study, a
parameter called outlier tolerance N is used to provide a buffer for leakage detection, which means that the alarm will be

triggered when N consecutive outliers are being detected.
If the system remains healthy, the new information will be used to update the model, and old information outside the time

window will be abandoned. A rolling time window with length l is used to ensure the data used for statistics calculating is

stable and unbiased, and the rolling time window strategy can provide the dynamic threshold that can adapt to the time-vary-
ing behaviour of the flow monitoring data. If a leakage event is detected, the detection system will flag it and not use it for
parameter updating until there is no more alarm or the algorithm being notified that the leakage has been repaired.
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Performance evaluation

Three criteria are used in this study to evaluate the performance of the proposed leakage detection system, which are DP, the
number of false alarms (NF), and the DT.

DP is defined as:

DP ¼ number of detected leakages
number of total leakages

� 100% (7)

In order to demonstrate the capability of the proposed online detection system in dealing with the varying property of flow

data caused by weather factors, the number of false alarms is calculated on a yearly basis. A good leakage detection method
should maximise the DP while minimising the number of false detections.

The DT is also an important criterion because it reflects how quickly the method can respond to an abnormal event,
especially for gradual leakage events. The DT is defined as the elapsed time from the start of the leakage event to the time

when the event is first detected.

RESULTS AND DISCUSSION

Description of the study area

The L-TownWDS (Figure 4) is a small hypothetical town with around 10,000 people (Vrachimis et al. 2020). The distribution
network consists of 905 pipes, 782 junctions, 3 pressure reduction valves (PRV), 2 reservoirs, and 1 water tank. The distri-
bution network can be divided into three areas based on the boundary conditions. A pump and a water tank have been

installed in the higher part of town (Area C), and a PRV has been installed in the lower part of town (Area B). Two reservoirs
are used to supply water to the network, and one water tank is located at the entrance of Area C to provide enough pressure to
consumers of that area.

The monitoring system of the L-Town network contains 1 tank water level sensor, 3 flow sensors, 33 pressure sensors, and
82 automated metered readings (AMR) in Area C. It provides a dataset of pressure and flow monitoring time series and con-
tains multiple leakage scenarios under varying conditions. It should be noted that the smart meters in Area C can provide
valuable information on the consumers’ behaviour. However, because most water companies do not readily have these

measurements, the information provided by smart meters will not be used in this study. Therefore, this paper focuses on

Figure 4 | Layout of the L-Town network and the location of flow sensors.
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detecting leakage based on flow data only. Flow sensors are located downstream of water sources, as shown in Figure 4. In

addition, flow data are mainly independent of system changing operation controls (such as pump operations) and are more
related to the consumers’ behaviour (Jung & Lansey 2015). Based on the inlet and outlet flow monitoring data, leakage could
be detected by estimating subarea demands. The total number of monitoring stations is dependent on the number of inlets and

outlets of the DMA. In this paper, three flow sensors are used to detect leakages.

Dataset generation

The hydraulic model of L-Town contains 1 year of demand pattern at each node with a sampling rate of 5 min. There are three

consumer types in L-Town: residential, commercial, and industrial. Different demand patterns have been well modelled in the
network, such as daily, weekly, and seasonal behaviour. EPANET is used in this paper to model and simulate the hydraulic
condition of the L-Town distribution system. There are two types of hydraulic analysis: demand-driven analysis (DDA) and

pressure-driven analysis (PDA). The DDA simulation assumes that node demands are known and satisfied. However, this
assumption may not be valid when the system is under low-pressure conditions, such as pipe leaks or firefighting. PDA gen-
erates a more realistic representation of the pressure-leakage relationship, and many studies have reported the superiority of
PDA over DDA (Baek et al. 2010). In pressure-dependent demand simulation, the node demand is dependent on the pressure

and calculated as (Wagner et al. 1988):

qi ¼

0 pi � Pmin
i

qreqi
pi � Pmin

i

Preq
i � pi

 !1=e

Pmin
i � pi � Preq

i

qreqi pi � Preq
i

8>>>><
>>>>:

(8)

where qi is the actual supplied demand at node i, qreqi is the required demand at node i, pi is the pressure at node i, Pmin
i and

Preq
i are the minimum pressure and required pressure at node i, respectively, 1=e is the pressure exponent, usually set equal to

0.5 (Klise et al. 2017).
The leakage scenario is created using the Water Network Tool for Resilience (WNTR) (Klise et al. 2017) which is an open-

source Python package. Leakages are modelled by splitting the pipe into two sections and adding a junction, and additional

outflow is added to the leak junction. For leak scenario i, the flow rate is assumed to follow the orifice outflow formula (Crowl
& Louvar 2001) as:

qleak,i ¼ CiAi

ffiffiffiffiffiffiffiffiffiffi
2ghi

p
(9)

where qleak,i is the leak flow rate; Ci is the discharge coefficient with default value of 0.75 (assuming turbulent flow) (Lambert
2000); hi is the head; g is the acceleration of gravity; and Ai is the area of the hole. For burst events, the leak area Ai remains
constant during the leak period. For gradual leakage events, the leak area Ai will gradually increased overtime until it reaches

its maximum value Ai,max. The leak area Ai,max is defined as a circular orifice with a diameter Di. The relationship of the size
of the leak hole change with time is assumed to follow a quadratic function so that the growth rate of leakage is increased as
the leak area increases (Vrachimis et al. 2020).

Ai(t) ¼ Ai,max

T2
i

� t2 (10)

Ai,max ¼ 1
4
pD2

i (11)

where Ti is the growing duration that the ith gradual leakage needed to reach its maximum value.
A number of leakage events with different leak magnitudes and different growing durations that happened at different times

in a year have been simulated by WNTR. Dataset 0 contains six leakage events, including four gradual leakage events, and

two burst events. Figure 5(a) shows the flow monitoring dataset that contained those six leakage events, and Figure 5(b)
shows the leakage profile in the system. Detailed information about the leakages in Dataset 0 is listed in Table 1. The start
and end times are when the leakage is started and fixed in the distribution system. The peak time is defined as the time
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when the leak diameter reaches its maximum level. From Table 1, it could be observed that even though the gradual leakage
events have higher leak volume than burst events, the daily increase of leak volume is much slower than the burst events. For

example, leak number 1 is a slowly developed leakage event that reaches its peak value over about 11 days. This leak
increased by 23.55% of the average water demand, which means a daily increase of just about 2.09%. As shown in
Table 1, the daily increase of leak volume of gradual leakage events is less than 3% of the average demand, and the daily
increase of burst events is more than 20% of the average demand. The slow-developing pattern makes the gradual leakage

events more difficult to detect.
The longer the duration between the start time and the peak time, the slower the growth process of the leak, which means

that it will be more difficult to detect the leak. In order to demonstrate the limit of the proposed method, 40 other datasets

have been generated. Each dataset contains two gradual leakage events with the same leakage size and the same leakage dur-
ation, one occurred in the summer, and one occurred in the winter. Leakage with different leak diameter
{13mm, 14mm, 15mm, . . . , 22mm} is generated with different leak growing duration {10days, 15days, 20days, 25days}

for each dataset. After several leakage scenarios were inserted in the distribution network, monitoring data could be gener-
ated with a sampling interval of 5 min.

Application results

Parameter estimation

There are three parameters that need to be determined for the proposed leakage detection method, which are threshold scalar
k, outlier tolerance N, online window length l. The best value for parameters are identified based on a sensitivity analysis that

can be seen in Figure 6. Candidates of threshold scalar k are selected as k¼ 2, 2.25, 2.5, 2.75, 3. Candidates of outlier toler-
anceN are selected asN¼ 1, 2, 3, 4, 5, 6. Candidates of online window length l are selected as l¼ 10 days, 20 days, 30 days, 40
days, and 50 days. Therefore, 150 different combinations of the aforementioned parameters are used to conduct the sensitivity

analysis of the proposed EWMA-enhanced Tukey online leakage detection method.
Figure 6 shows the DP and NF (per year) of the proposed method with different parameter combinations. Threshold scalar

k determines the range of threshold, and a larger k indicates a wider range of data will be considered as normal. As shown in
Figure 6, with the same parameter setting for N and l, a larger k indicates a higher probability of undetected leakage events

but could reduce the number of false alarms. Outlier tolerance N represents the size of the buffer for raising a leakage alarm.
A larger N indicates greater tolerance for outliers, reduces the probability of false alarms but may delay the DT. Online
window length l determines the length of historical data that will be considered at each time step for the statistics calculation

so that the threshold could adapt to the time-varying characteristic of flow data caused by environmental factors (such as
weather change). If the window length is too short, there are not enough data samples for accurate statistics estimation,
but if the window length is too long, the assumption about stationery could be easily disobeyed. Furthermore, the three

Figure 5 | Monitoring data of area A of L-Town with six leakages: (a) flow data; (b) leakage profile.
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Table 1 | Leak information considered in Dataset 0

Leak Type
Leak diameter
(mm)

Peak leak volume
(m3/h)

Peak leak volume
of average demand Start time Peak time End time

Leak growth volume
(m3/h /day)

Leak growth volume
of average demand

1 Gradual 20.11 37.97 23.55% 1 May 09:20 12 May 16:05 17 May 09:20 ≈3.366 2.09%

2 Gradual 17.39 28.40 17.61% 20 Jun. 15:45 6 Jul. 15:45 10 Jul. 10:25 ≈1.775 1.10%

3 Burst 20.00 24.98 15.49% 3 Aug. 07:00 3 Aug. 07:00 3 Aug. 11:00 ≈24.96 15.48%

4 Gradual 22.92 49.32 30.59% 28 Aug. 10:35 10 Sep. 02:45 15 Sep. 17:30 ≈3.884 2.41%

5 Gradual 19.04 34.06 21.12% 06 Oct. 02:35 10 Nov. 02:35 15 Nov. 13:35 ≈0.973 0.60%

6 Burst 20.00 24.61 15.26% 15 Dec. 13:00 15 Dec. 13:00 15 Dec. 17:00 ≈24.61 15.26%
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parameters have influences on each other. Therefore, these three parameters need to be tuned to achieve a relatively high DP,
low number of false alarms per year, and quick DT.

From Figure 6, it could be observed that the proposed method is robust to threshold scalar settings and outlier tolerance
settings with a designated rolling window length. For example, when the window length equals 10 days and 20 days, the DP is
maintained at 100% no matter the value of k and N (within a certain range). In most parameter settings, the number of false

alarms is less than five per year. Based on the sensitivity analysis, there are two parameter sets that could achieve 100% accu-
racy and 0 false alarm at the same time: (1) k ¼ 2.5, N ¼ 4, l ¼ 20 and (2) k ¼ 2.75, N ¼ 6, l ¼ 10. Table 2 shows the final
detection results for Dataset 0 based on the two potential parameter settings. It could be observed that parameter set (2)
has outperformed parameter set (1) in DT for all gradual leakage events, but is slightly lower for burst detection. Since

this paper aims to develop an early warning system for gradual leakage, DT for gradual leakage events is one of the primary
considerations for the proposed method. Therefore, the EWMA-enhanced Tukey method’s parameters k, N, l were set to 2.5,
4, 20, respectively.

Comparison between EWMA-based method and Shewhart-based method

Conventional Shewhart-based method or three-sigma rule only uses the last data sample to make decisions and does not have

any memory of previous data (Kadri et al. 2016). In contrast, EWMA-based monitoring charts take into account the historical
information by using a weighted average of past observations, which makes it more suitable for detecting gradual anomalies.

Figure 6 | EWMA-enhanced Tukey method’s detection performance for different threshold scaler k, outlier tolerance N, and online window
length l: (a) l ¼ 10 days; (b) l ¼ 20 days; (c) l ¼ 30 days; (d) l ¼ 40 days; (e) l ¼ 50 days.

Table 2 | Detection results for dataset 0 based on two different parameter settings of the proposed method

Leak Type DT (Parameter 1) DT (Parameter 2)

1 Gradual 3 d 3 h 40 min 5 d 55 min

2 Gradual 3 d 14 h 3 d 16 h 25 min

3 Burst 3 h 50 min 1 h 55 min

4 Gradual 2 d 18 h 40 min 3 d 18 h 10 min

5 Gradual 9 d 3 h 9 d 3 h 10 min

6 Burst 2 h 45 min 2 h
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In order to compare the proposed EWMA-enhanced Tukey method to the commonly-used three-sigma rule (Dunn 2019) in

detecting gradual leakage events, the Shewhart method has been extended with the proposed online framework using the
same pre-processing stage and the parameter updating sub-system.

Figure 7(a) shows the detection results of the online detection process by the proposed method. The blue line represents the

EWMA statistics for the transformed flow data obtained from the pre-processing stage. The green and orange dashed lines
represent the UCL and the LCL calculated online for the EWMA statistics, respectively. The red line represents the final
alarm generated by the proposed algorithm. The alarm is generated as a binary result, which means that there is no leakage
when the alarm is 0. Otherwise, the alarm will be raised when the algorithm detects leakage. Compared Figure 7(a) and 7(b),

it could be observed that Shewhart method fails to detect several leakage events due to its inefficiency in dealing with data
noise and data uncertainties. Furthermore, the Shewhart method is based only on the current data, and all past information is
ignored, which makes it unsatisfactory when used for detecting small changes (Harrou et al. 2020). However, the gradual

leakage event does not have the ‘spike’ that distinguishes the event from the normal condition. Because of the nature of
slow-changing pattern of gradual leakage events, the probability of the Shewhart method detecting leakage events is low.
In contrast, the proposed EWMA-enhanced Tukey method considers the historical information by assigning weights to

past observations.
Table 3 shows the detection results of the proposed method and the online version of the Shewhart method. As shown in

Table 3, the Shewhart method detects gradual leakage events at a much lower rate than the proposed EWMA-enhanced

Tukey method. The proposed method successfully detects all the leakage events within a short duration. All burst events
are successfully detected, and almost all gradual leakage events are detected within 4 days, except leak No. 5. The DT of
leak No. 5 is around 9 days. This is because the daily growth rate of leak No. 5 is about 0.5% of the average water
demand, which is a very small¼ increase. Table 3 also shows the amount of leakage flowrate when the leakage is first

being detected. The proposed method detects all gradual leakage events before they reach 4 m3/h. However, the Shewhart
method raises alarms when flow rates of leakages reach more than 15 m3/h. The results show the superiority of the
EWMA-based method for gradual leakage events detection.

Figure 7 | Detection process based on (a) the proposed EWMA-enhanced Tukey method; (b) the Shewhart-based method. Please refer to the
online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2022.079.
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Comparison between EWMA-enhanced Tukey method with or without data differencing

Data differencing is one of the important parts of the proposed leakage detection method. Seasonal differencing can effec-
tively reduce the influence of global trends in the data caused by weather factors. Water usage increases from spring to
summer and decreases from summer to winter gradually. One difficulty for gradual leakage detection is that the global

trend could be easily confused with the increasing trend caused by gradual leakage. In order to satisfy the assumption of sta-
tionarity (or as close as possible), data differencing is used in this paper to eliminate the global trend in the flow data while
preserving the increasing trend caused by gradual leakages. To evaluate the usefulness of this procedure, methods without

data differencing and methods with data differencing were compared.
The performance of the differencing-based and the non-differencing-based EWMA-enhanced Tukey method is demon-

strated in Figure 8. Figure 8(a) shows the detection process based on the proposed EWMA-enhanced Tukey method with
data differencing, and Figure 8(b) shows the detection process based on the EWMA-enhanced Tukey method without data

Table 3 | Detection results for dataset 0 based on the proposed method and the Shewhart method

Leak Type Peak leak volume (m3/h) DT (EWMA-enhanced Tukey) LF (EWMA-enhanced Tukey) DT (Shewhart) LF (Shewhart)

1 Gradual 37.97 3.16 days 3.35 7.03 days 15.16

2 Gradual 28.40 3.61 days 1.43 13.57 days 20.42

3 Burst 24.98 3.83 h 24.98 – –

4 Gradual 49.32 2.78 days 2.37 7.61 days 17.83

5 Gradual 34.06 9.16 days 2.32 – –

6 Burst 24.61 2.75 h 24.61 – –

– means the detection method fails to detect the leakage event.

LF means the amount of leakage flowrate when first being detected (m3/h).

Figure 8 | Detection process based on (a) the proposed EWMA-enhanced Tukey method; (b) non-differencing-based EWMA-enhanced Tukey
method.
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differencing. In Figure 8(b), the false alarm lasts for months after detecting the first gradual leakage. Gradual leakage could be

extended for weeks or months, and the global trend is coupled with the trend caused by leakage events. Thus, right after the
leakage events are finished, it is not easy to estimate the threshold accurately with the existence of a global trend. Figure 8(a)
shows that data differencing has eliminated most of the global trends compared with non-differencing statistics. Therefore, it

could be concluded that data differencing has ensured the accurate detection of the proposed method.

Comparison between EWMA-enhanced Tukey method with or without robust statistics

Another important part of the proposed methodology is the adoption of robust statistics. The use of robust statistics in the data
transformation and the use of the Tukey method in the threshold setting stage enhanced the robustness of the proposed online
leakage detection method. The traditional methods (Jung et al. 2015; Ahn & Jung 2019; Nam et al. 2019) use non-robust stat-

istics such as mean and standard deviation that are not robust to noises or outliers, leading to unsatisfying detection
performance. Therefore, the proposed method uses robust statistics, such as the median, which is robust against noise.

Figure 9(b) shows the detection results based on non-robust statistics. Compared with Figure 9(a), it could be observed that

without using robust statistics, the results generated by the proposed method contained more uncertainties and have
obviously generated more false alarms. The results show that robust statistics have greatly reduced false alarms from 7 per
year to 0 per year during the detection process. Compared Figures 5(a)–9(a), the proposed EWMA-enhanced Tukey
method has successfully transformed the raw data and highlighted the abnormal behaviour caused by leakage events. Further-

more, the parameter updating sub-system ensured the proposed method could process data in real-time and automatically
include the information of new data.

Detection ability

In order to show the robustness of the proposed method, all six leakage events in Table 1 have been shuffled randomly in the

dataset. The order of the six leakage events and the start time of each leakage event have been shuffled randomly three times.
Table 4 shows the detection results of three shuffled datasets. According to Table 4, the proposed algorithm maintained 100%
DP while the Shewhart-based method missed several leakage events on each dataset. The proposed algorithm did not raise

Figure 9 | Detection process based on (a) the proposed EWMA-enhanced Tukey method; (b) non-robust statistics-based EWMA detection
method.

Journal of Hydroinformatics Vol 25 No 1, 65

Downloaded from http://iwaponline.com/jh/article-pdf/25/1/51/1167151/jh0250051.pdf
by UNIVERSITY OF EXETER user
on 02 February 2023



any false alarms except one false alarm in shuffled dataset 2, while the Shewhart-based method did not raise any false alarms.

Furthermore, for the detected leakage events, the proposed method detected all leakage events quicker than the Shewhart-
based method all the time.

From Tables 3 and 4, it can be observed that for a small leakage event, the method needs a longer time to detect its

occurrence. For example, the No. 5 leakage event has the most prolonged grow duration and relatively small magnitude,
making it the most difficult to detect. When the amplitude of a leakage event becomes too small, it could be easily confused
with normal consumption behaviour or variation caused by weather and resulting in undetectable leakages. To demonstrate
the limit of the proposed methods, another 40 datasets that contain leakage events with different diameter

{13mm, 14mm, 15mm, . . . , 22mm} and different grow duration {10 days, 15 days, 20 days, 25 days} have been used. The
grow duration is defined as the duration between the leak start time and leak peak time. Table 5 shows the detection results

Table 4 | Detection results of three shuffled datasets based on the EWMA-enhanced Tukey test and the Shewhart-based method

Shuffled dataset

NF (per year)

Leak Type
Leak growth volume of
average demand

DT

EWMA-enhanced Tukey Shewhart EWMA-enhanced Tukey Shewhart

1 0 0 1 Burst 15.26% 1 h 1.83 h
2 Gradual 2.41% 4.73 days 8.80 days
3 Burst 15.48% 2.75 h –

4 Gradual 0.60% 20.12 days –

5 Gradual 2.09% 5.18 days 10.28 days
6 Gradual 1.10% 8.56 days –

2 1 0 1 Gradual 2.41% 3.73 days 7.69 days
2 Burst 15.26% – –

3 Gradual 2.09% 5.01 days 8.05 days
4 Gradual 0.60% 9.05 days –

5 Burst 15.48% 0.92 h 2.25 h
6 Gradual 1.10% 8.60 days –

3 0 0 1 Burst 15.48% 1.5 h –

2 Gradual 2.09% 4.10 days 9.01 days
3 Gradual 0.60% 25.13 days –

4 Burst 15.26% 1.58 h –

5 Gradual 1.10% 8.48 days –

6 Gradual 2.41% 5.85 days 8.69 days

– means the detection method fails to detect the leakage event.

Table 5 | Average DT for dataset 1–40 based on EWMA-enhanced Tukey test and the Shewhart-based method

Leak diameter (mm) Peak leak magnitude (m3=h)

DT based on the proposed method DT based on the Shewhart-based method

d¼ 10 d¼ 15 d¼ 20 d¼ 25 d¼ 10 d¼ 15 d¼ 20 d¼ 25

13 10.63 4.82 – – – – – – –

14 12.32 4.78 6.77 – – – – – –

15 14.14 4.75 6.76 – – – – – –

16 16.08 4.67 6.76 19.73 – 13.75 – – –

17 18.14 4.62 6.76 19.73 – 13.73 – – –

18 20.33 2.96 5.74 12.86 – 13.73 14.77 – –

19 22.64 2.96 4.82 6.76 – 12.78 14.77 – –

20 25.06 2.96 4.78 6.76 26.69 12.78 19.73 – –

21 27.61 2.95 4.78 6.76 26.69 6.75 19.73 – –

22 30.27 2.88 4.77 6.76 12.86 6.72 19.73 – –

– means the detection method fails to detect the leakage event.

d means the time duration it takes for the leak to grow to its maximum value.
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for those 40 datasets. Each dataset contains two leakage events with the same growth duration and amplitude, but one hap-

pened in summer, and one happened in winter.
Table 5 shows that the DT could be affected by both leakage magnitude and leakage growth rate. As the leakage magnitude

becomes smaller, the DT could be delayed and eventually it will remain undetectable in the system. This is because the leak-

age volume is small, and it will be regarded as normal water consumption by the algorithm. Furthermore, as the leakage
growth duration becomes longer, the DT could also be delayed and eventually fail to raise the alarm. This is because the grow-
ing trend caused by leakage is too small, and eventually, it becomes indistinguishable from the growing trend caused by
weather factors. In most cases, the detection algorithm could raise the alarm at least 13 days before the leakage reaches

its maximum level.
In comparison, the detection results based on the traditional Shewhart method are presented in Table 5. It could be

observed that the traditional method failed to detect most of the gradual leakage events, especially when the growing

trend of the leakage is relatively slow. In addition, the DT based on the Shewhart-based method is much slower than the pro-
posed method, with detection times at least 10 days slower in each case.

CONCLUSIONS

Gradual leakage events are more challenging to be detected than burst events due to their long-term influence and unnotice-
able behaviour. This study proposed a novel EWMA-enhanced Tukey method to detect gradual leakage events in a real-time

manner for water distribution systems. This method used simple, computationally lightweight but powerful and robust stat-
istics to detect leakage events in the WDS. First, the raw monitoring data were pre-processed using data differencing and
data transformation techniques. Then, the transformed data were processed based on the EWMA-enhanced Tukey
method. Based on the results of the online leakage detection, parameter updating was proposed to update the model auto-

matically and ensure the proposed method could process streaming data in an online manner.
The proposed method has been successfully applied for a case study with a year of monitoring data and proved effective in

real-time monitoring. The 1-year monitoring datasets contain four gradual leakage events and two burst events, and the detec-

tion results showed that the proposed method has successfully detected all leakage events. All leakage events were detected
with a short DT and did not generate any false alarms in a year, which showed a promising future for this method.

The comparison analysis showed that the improvement of the method had a significant impact on the detection perform-

ance. Data differencing has proven effective when dealing with seasonal behaviour in the consumers’ demand, and it ensured
the proposed algorithm could be successfully applied in real-time. Robust statistics have proved to be helpful in eliminating
the influence of data uncertainties and reducing the number of false alarms.

There is no leakage detection method that could detect all leaks of any magnitude. Therefore, in this paper, the detection

ability was tested for the proposed method. In this study, leakage events that continuously happened for weeks have been
successfully detected with leak diameter larger than 20 mm or growth duration less than around 20 days.

It should be noted that even though the proposed methodology has presented promising behaviour in dealing with the real-

time gradual leakage event detection, the real-life monitoring data may contain more challenging uncertainties, such as miss-
ing data, system changing operation, and human behaviour changing caused by pandemics such as Covid-19. This will be
studied in our future research. In addition, the proposed detection algorithm could be failed if the leakage event is too

small or slowly happens in the system, and a method with higher accuracy could be further developed in future research.
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