
Stateful Protocol Composition in Isabelle/HOL

ANDREAS V. HESS, DTU Compute, Technical University of Denmark, Denmark

SEBASTIAN A. MÖDERSHEIM, DTU Compute, Technical University of Denmark, Denmark

ACHIM D. BRUCKER, University of Exeter, United Kingdom

Communication networks like the Internet form a large distributed system where a huge number of components run in

parallel, such as security protocols and distributed web applications. For what concerns security, it is obviously infeasible to

verify them all at once as one monolithic entity; rather, one has to verify individual components in isolation.

While many typical components like TLS have been studied intensively, there exists much less research on analyzing and

ensuring the security of the composition of security protocols. This is a problem since the composition of systems that are

secure in isolation can easily be insecure. The main goal of compositionality is thus a theorem of the form: given a set of

components that are already proved secure in isolation and that satisfy a number of easy-to-check conditions, then also their

parallel composition is secure. Said conditions should of course also be realistic in practice, or better yet, already be satisied

for many existing components. Another beneit of compositionality is that when one would like to exchange a component

with another one, all that is needed is the proof that the new component is secure in isolation and satisies the composition

conditionsÐwithout having to re-prove anything about the other components.

This paper has three contributions over previous work in parallel compositionality. First, we extend the compositionality

paradigm to stateful systems: while previous approaches work only for simple protocols that only have a local session state,

our result supports participants who maintain long-term databases that can be shared among several protocols. This includes

a paradigm for declassiication of shared secrets. This result is in fact so general that it also covers many forms of sequential

composition as a special case of stateful parallel composition. Second, our compositionality result is formalized and proved in

Isabelle/HOL, providing a strong correctness guarantee of our proofs. This also means that one can prove, without gaps, the

security of an entire system in Isabelle/HOL, namely the security of components in isolation, the composition conditions, and

thus derive the security of the entire system as an Isabelle theorem. For the components one can also make use of our tool

PSPSP that can perform automatic proofs for many stateful protocols. Third, for the compositionality conditions we have also

implemented an automated check procedure in Isabelle.

CCS Concepts: · Networks→ Security protocols; Protocol testing and veriication; · Security and privacy→ Formal

security models; Logic and veriication.

Additional Key Words and Phrases: protocol composition, stateful security protocol, Isabelle/HOL

1 INTRODUCTION

The typical use of communication networks like the Internet is to run a wide variety of security protocols in
parallel. While the security properties of many of these protocols, e.g., TLS, have been analyzed in great detail,
much less research has been devoted to their parallel composition.

Authors’ addresses: Andreas V. Hess, DTU Compute, Technical University of Denmark, Richard Petersens Plads, Building 324, Kgs. Lyngby,

DK-2800, Denmark, avhe@dtu.dk; Sebastian A. Mödersheim, DTU Compute, Technical University of Denmark, Richard Petersens Plads,

Building 324, Kgs. Lyngby, DK-2800, Denmark, samo@dtu.dk; Achim D. Brucker, University of Exeter, Streatham Campus, Innovation Centre,

Rennes Drive, Exeter, EX4 4RN, United Kingdom, a.brucker@exeter.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2471-2566/2023/1-ART $15.00

https://doi.org/10.1145/3577020

ACM Trans. Priv. Sec.

HTTPS://ORCID.ORG/0000-0001-6312-6311
HTTPS://ORCID.ORG/0000-0002-6901-8319
HTTPS://ORCID.ORG/0000-0002-6355-1200
https://orcid.org/0000-0001-6312-6311
https://orcid.org/0000-0002-6901-8319
https://orcid.org/0000-0002-6355-1200
https://doi.org/10.1145/3577020
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577020&domain=pdf&date_stamp=2023-01-25

2 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

It is far from self-evident that the parallel composition of secure protocols is still secure, in fact one can
systematically construct counter-examples. One such problem is if protocols have similar message structures of
diferent meaning, so that an attacker may be able to abuse messages, or parts thereof, that they have learned in
the context of one protocol, and use them in the context of another where the same structure has a diferent
meaning. Thus, we have to exclude that the protocols in some sense łinterferež with each other. However, it is
unreasonable to require that the developers of the diferent protocols have to work together and synchronize with
each other. Similarly, we do not want to reason about the composition of several protocols as a whole, neither in
manual nor automated veriication. Instead, we want a set of suicient conditions and a composition theorem
of the form: every set of protocols that satisies the conditions yields a secure composition, provided that each
protocol is secure in isolation. The conditions should be realistic so that many existing protocols like TLS actually
satisfy them, and they should be simple, in the sense that checking them is a static task that does not involve
considering the reachable states.
One main contribution of this paper is the extension of the compositionality paradigm to stateful protocols,

where participants may maintain a database (e.g., a list of valid public keys). Such databases do not necessarily
grow monotonically during protocol executionÐwe allow, e.g., negative membership checks and deletion of
elements from databases. Moreover, we allow databases to be shared between the protocols to be composed. For
instance, in the example of public keys, there could be several protocols for registering, certifying, and revoking
keys that all work on the same public-key database. Since such a shared database can potentially be exploited
by the intruder to trigger harmful interference, an important part of our result is a clear coordination of the
ways in which each protocol is allowed to access the database. This coordination is based on assumptions and
guarantees on the transactions that involve the database. Moreover, this also allows us to support protocols
with the declassiication of long-term secrets (e.g., that the private key to a revoked public key may be learned
by the intruder without breaking the security goals). The result is so general that it actually also covers many
forms of sequential composition as a special case, since one can for instance model that one protocol inserts keys
into a database of fresh session keys, and another protocol łconsumesž and uses them. In more detail, our main
contributions are:

(1) We extend the compositionality paradigm to stateful protocols. In particular, our result supports participants
who maintain long-term databases that can be shared among several protocols, and a paradigm for declassi-
ication of shared secrets. Our result is so general that it also covers various forms of sequential composition

as a special case.
(2) Our compositionality result is formalized and proved in the interactive theorem prover Isabelle/HOL,

providing a strong correctness guarantee of our proofs. This means that one can prove the security of a
composed protocol in Isabelle by proving the security of the components in isolation and checking the
compositionality conditions, and thus derive the security of the composition as an Isabelle theorem.

(3) We implemented checks for the compositionality conditions in Isabelle/HOL, so that they can be checked
automatically.

(4) We have connected the compositionality result to our tool PSPSP [25] that can perform automatic proofs
for many stateful protocols in Isabelle. This extends PSPSP (for protocols supported by PSPSP) with a
composable veriication method.

All of our theory and proofs are published and maintained in the Archive of Formal Proofs (AFP) [28, 30]. The
overall formalization is over 27000 lines of code (over 8000 more lines than the conference version) and took
about 36 person months to develop.

The main advancements of this paper over the underlying conference version [31] are: Firstly, we have extended
the Isabelle proofs; the result is now completely formalized in Isabelle. Secondly, we generalized our formalization
to use an arbitrary set of labels, providing improved support for composing more than two protocols. Thirdly,

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 3

we added support for a transaction-based protocol model and its protocol speciication language by connecting
our work to PSPSP [25]. Fourthly, we implemented automated checks in Isabelle/HOL of the compositionality
requirements. Moreover, there are numerous smaller enhancements such as supporting a more general constraint
syntax and an improved leakage deinition.
The rest of the paper is organized as follows. In Sec. 2 we introduce our speciication language for stateful

protocols and deine its semantics via intruder constraints. In Sec. 3 we summarize a typing result, namely that
every satisiable constraint has a well-typed model, provided that the protocol fulills some simple conditions.
In Sec. 4, we introduce composition of security protocols by an example. In Sec. 5 we formally deine protocol
composition, in particular the concept of shared terms, declassiication, and the requirements on disjointness.
We then present our main result for parallel composition. The idea is to show that, if an intruder constraint
of a composition is satisiable, then the projections to each component are satisiable, again provided that the
components fulill a number of easy-to-check conditions. In Sec. 6, we explain how checking these compositionality
conditions can be automated. As a last contribution of the paper, we discuss in Sec. 7 how our result for parallel
composition can also be applied to other forms of protocol compositionÐin particular, sequential composition.
Finally, we conclude in Sec. 8 and discuss related work.

2 LANGUAGE AND MODEL

We start with the irst contribution: a slight generalization of the speciication language for stateful protocols that
we introduced in [25, 31]. With stateful we mean that the protocols do not necessarily consist of independent
sessions but that participants may maintain databases that are modeled as sets of messages. In every transaction,
besides sending and receiving messages, one can retrieve messages from the databases, or modify the databases.
In [25] we have developed a irst version of this language for automated veriication in Isabelle/HOL. This irst
version was tailored to the needs of automated veriication, in particular, it requires to ix the number of sets,
and the elements of the sets have to be atomic values. For the present work, we do not need these restrictions
and thus generalize the language. We also introduce some additional notation that is later useful for the parallel
composition.

We now irst deine this language by example and then give its semantics by translating to a symbolic transition
system with intruder constraints (which we also formally deine). The constraint representation is in fact a key
idea to proving the compositionality result.

A protocol speciication consists of the following elements:

• Enumerations, which are named (potentially ininite) sets of constants like user = {a, b, i}.
• A set of atomic types like pkey. The types are initially only an annotation and the semantics does not take
them into account. We will, however, in Sec. 3 use them in a typing result.

• A declaration of the available function symbols, e.g., sign. With every function symbol we also specify
the arity, whether the function symbol is public or private (informally, public function symbols can be
applied by the intruder, if they know the necessary arguments; in contrast, private function symbols cannot
be applied), and an analysis theory (i.e., under what circumstances the intruder can obtain parts of such
messages). This will be deined in detail below in Sec. 2.2.2.

• A declaration of sets that the protocol participants can insert messages into, remove from, and check for
containment. In order to allow an ininite number of such sets, e.g. key set ring(�) for every agent �, we
declare a number of function symbols with their arities here (e.g. ring/1). While PSPSP [25] is limited to
enumeration constants as parameters to the set function symbols, the compositionality result allows for
arbitrary messages, both as arguments of the set function symbols and as contents of the sets.

• Last but not least, we have to specify a set of transactions.

ACM Trans. Priv. Sec.

4 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

outOfBand1 (� : hon, � : ser)

new PK : pkey

insert PK ring(�)

★ insert PK valid(� , �)

★ insert PK begin1 (� , �)

★ insert PK end1 (� , �)

★ send PK .

outOfBandD1 (

� : dis, � : ser, PK : pkey)

receive PK

★ PK notin valid(_)

★ insert PK valid(� , �) .

intruderKeygen1 ()

new PK : pkey

★ send PK, inv(PK) .

keyUpdateServer1 (

� : hon, � : ser, PK,NPK : pkey)

receive sign(inv(PK), pair(� ,NPK))

★ PK in valid(� , �)

★ NPK notin valid(_)

NPK notin revoked(_)

★ NPK in begin1 (� , �)

★ NPK notin end1 (� , �)

★ delete PK valid(� , �)

★ insert NPK valid(� , �)

insert PK revoked(� , �)

★ insert NPK end1 (� , �)

★ send inv(PK) .

atackDef1 (� : hon, � : ser, PK : pkey)

receive inv(PK)

★ PK in valid(� , �)

atack1 .

keyUpdateUser1 (� : hon, � : ser, PK : pkey)

PK in ring(�)

new NPK : pkey

delete PK ring(�)

insert NPK ring(�)

★ insert NPK begin1 (� , �)

★ send NPK

send sign(inv(PK), pair(� ,NPK)) .

keyUpdateServerD1 (� : dis, � : ser, PK,NPK : pkey)

receive sign(inv(PK), pair(� ,NPK))

★ PK in valid(� , �)

★ NPK notin valid(_)

NPK notin revoked(_)

★ delete PK valid(� , �)

★ insert NPK valid(� , �)

insert PK revoked(� , �) .

Fig. 1. A keyserver protocol consisting of seven transactions.

A transaction consists of any combination of the following: input messages to receive, checks on the sets,
modiications of the sets, and output messages to send. A transaction can only be executed atomically, i.e., it
can only ire when input messages are present, such that the checks are satisied, and then they produce all
changes and the output messages in one state transition. Security goals are formulated by a special kind of attack
transactions: they consist only of receiving messages and checks on sets and then reveal a special constant atack
to the intruder. (In fact, later in protocol composition, we will instead have atack� where � is the name or index
of the protocol specifying the attack rule, so we can easily talk about which protocol’s goal has been violated.)
We say a protocol is secure if the intruder cannot obtain atack in any protocol run.

2.1 A Keyserver Example

Before we proceed with the formal deinitions we illustrate the transaction language through a simple keyserver
example (adapted from [25, 31]) shown in Fig. 1. Here users can register public keys at trusted keyservers and
these keys can later be revoked. The users are modeled with two enumerations: one named hon containing the
honest users, and dis containing the dishonest users. The set of keyservers is deined as the enumeration ser.
Each honest user � has an associated keyring ring(�) with which it keeps track of its keys. (The elements of
ring(�) are actually public keys; we implicitly assume that the user� knows the corresponding private key.)

First, in the protocol, we model a mechanism outOfBand1 by which an honest user� can register a new key PK
at the keyserver � out-of-band, e.g., by physically visiting the keyserver. The user� irst constructs a fresh public
key PK and inserts PK into its keyring ring(�). We model that the keyserverÐin the same transactionÐlearns
the key and adds it to its database of valid keys for user � , i.e., into a set valid(� , �). Finally, PK is published.
There are also several gray-shaded actions in the protocol; we explain these later in Sec. 4 when we compose
the keyserver protocol with another protocolÐsimilarly, we defer the explanation of the ★ annotations until
later (in a nutshell, the ★-labeled actions are those that are relevant to all component protocols because they act

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 5

on shared sets or terms). There is also a corresponding rule of outOfBand1 for dishonest users: outOfBandD1.
Dishonest users may register in their name any key they know (hence the receive PK action), so the key is not
necessarily freshly created; also we do not model a key ring for them. However, dishonest users can only register
a key PK out of band if it is not yet known as valid at the server. The same check is not necessary in the honest
out-of-band rule, because there the key is guaranteed to be freshly created. This rule allows the dishonest agents
to use any known key that is currently not valid and register it, but so far they could only use keys that others
have created; we thus enter also a rule that allows the dishonest agents to generate arbitrarily many fresh key
pairs: intruderKeygen1.

Note that there is no built-in notion of set ownership, or who exactly is performing an action: we just specify
with such transactions what can happen. The intuition in this example is that ring(�) is a set of public keys
controlled by � (and� has the corresponding private key of each) while valid(� , �) is controlled by server � . By
putting it into a single transaction we model that this happens in collaboration between a user and a server.

We model a key update mechanism that allows for registering a new key while simultaneously revoking an old
one. Here we model this as three transactions, one for the (honest) users keyUpdateUser1 and two for the servers
keyUpdateServer1 and keyUpdateServerD1 (one for each kind of user), since here we model a scenario where user
and server communicate via an asynchronous network controlled by the intruder. To initiate the key revocation
process with transaction keyUpdateUser1 the honest user� irst picks and removes a key PK from its keyring to
later revoke, then freshly generates a new key NPK and stores it in its keyring. (Again the corresponding private
key inv(NPK) is known to � , but this is not explicitly described.) As a inal step the user signs the new key
with the private key inv(PK) of the old key and sends this signature to the server � by transmitting it over the
network. The check PK in ring(�) represents here a non-deterministic choice of an element of ring(�). (A user
can register any number of keys with the outOfBand1 transaction.) For keyUpdateUser1 there is no equivalent
for the dishonest agents, since the intruder’s ability to craft update request messages from their knowledge
already subsumes this.

Continuing in the protocol executionwith keyUpdateServer1 (which is deined for honest usersÐkeyUpdateServerD1

is the pendant for dishonest users), when server � receives the signed message, it checks that PK is indeed a valid
key, that NPK has not been registered earlier, and then revokes PK and registers NPK . To keep track of revoked
keys, � maintains another database revoked(� , �) containing the revoked keys of� at � . In this transaction the
notation � notin � (_) expresses that � must not be in any set of the form � (�). As a last action, the old private key
inv(PK) is revealed. This is of course not what one would do in a reasonable implementation, but it allows us to
prove that the protocol is correct even if the intruder obtains all private keys to revoked public keys. (This could
also be separated into a rule that just leaks private keys of revoked keys.) The diference in the dishonest-user
version, keyUpdateServerD1, is only in the goals (that we will discuss later in Sec. 4) and that we do not reveal
inv(PK) (because it is a key associated to the intruder anyway).

Finally, we deine that there is an attack if the intruder learns a valid key of an honest user. This, again, can be
modeled as a sequence of actions in which we check if the conditions for an attack hold, and, if so, transmit the
constant atack1 that acts as a signal for goal violations. This is all deined in atackDef1 where the last action
atack1 is just syntactic sugar for send atack1.

2.2 Symbolic Constraints and Intruder Model

We now deine our formal model in a bottom-up fashion, starting with the intruder constraints and conclude
with a formal deinition of the transactions we have seen in the previous section.

2.2.1 Terms and Substitutions. A transaction speciication gives rise to a set Σ of function symbols with their
arities (where constants are function symbols of arity 0): these are the functions and constants explicitly declared,
the countable set of constants that arise from ininite enumerations like user = {..}, and freshly generated

ACM Trans. Priv. Sec.

6 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

constants during protocol execution. Disjoint from Σ, we have a countable set V of variables (that includes the
ones from the speciication). By convention, in protocol speciications, elements of Σ start with a lower-case
letter and are written in sans serif style, and elements ofV start with an upper-case letter.

A term is either a variable � ∈ V or a composed term of the form � (�1, . . . , ��) where � ∈ Σ
� and �� are terms

and Σ
� denotes the symbols in Σ of arity �. We also write C for Σ0, the set of constants. The set of variables of a

term � is denoted by fv(�) and if fv(�) = ∅ then � is ground. Both of these notions are extended to sets of terms.
By ⊑ we denote the subterm relation.
Substitutions are deined as functions from variables to terms. The domain of a substitution � is denoted by

dom(�) and is deined as the set of variables that are not mapped to themselves by � : dom(�) ≡ {� ∈ V | � (�) ≠ �}.
The substitution range, ran(�), is then deined as the range of dom(�) under � : ran(�) ≡ � (dom(�)). If the range of
� is ground then � is said to be ground. If ran(�) ⊆ V and � is injective then � is a variable-renaming. Additionally,
we deine an interpretation to be a substitution that assigns a ground term to every variable: I is an interpretation
if dom(I) = V and ran(I) is ground. We extend substitutions to functions on terms and sets of terms as
expected. The substitution composition � · � of two substitutions � and � is deined as (� · �) (�) ≡ � (� (�)). For �
with inite domain we usually use the common value mapping notation: � = [�1 ↦→ �1, . . . , �� ↦→ ��]. Finally, a
substitution � is a uniier of terms � and � ′ if � (�) = � (� ′).

2.2.2 The Intruder Model. We use a Dolev-Yao-style intruder model, i.e., the intruder can encrypt and decrypt
terms where they have the respective keys, but they cannot break the cryptography. We deine the intruder
deduction relation ⊢ as the least relation satisfying the rules of Deinition 2.1:

Deinition 2.1 (Intruder model).

� ⊢ �
(Axiom),
� ∈ �

� ⊢ �1 · · · � ⊢ ��
� ⊢ � (�1, . . . , ��)

(Compose),
� ∈ Σ

�
pub

� ⊢ � � ⊢ �1 · · · � ⊢ ��
� ⊢ �

(Decompose),Ana(�) = (�, �),
� ∈ �, � = {�1, . . . , ��} □

Here � ⊢ � means that an intruder who knows the set of terms � can derive the term � . The rule (Axiom)

simply says that the intruder can derive any term that is already in their knowledge� . For composing messages
it is common to give a rule for each operator, like encryption, that is available to the intruder. In order to have a
result that is parameterized over an arbitrary signature Σ of functionsÐso one does not need to adapt the proofs
of the compositionality result whenever a new operator shall be addedÐthe modeler should simply declare a
subset of Σ to be public functions, and we write Σ�

pub
for the public functions that take � arguments. The rule

(Compose) now says that the intruder can apply public functions to any derivable terms and the result is also
derivable. In fact most functions on messages, like encryption and signing, will be public, while we will have a
private function inv that maps public keys to their corresponding private keys. Obviously if inv were a public
function, then the (Compose) rule would allow the intruder to know all private keys to which they know the
public keys and trivially break all asymmetric cryptography.
For decryption, (Decompose), things are a bit more involved. Many approaches use algebraic reasoning here,

e.g. with equations like dcrypt(inv(�), crypt(�,�)) = �, but this is rather complex to formalize in Isabelle and it
is not really necessary for many standard operators. The idea is that one does not necessarily use an explicit
decryption operator, but rather has further decryption rules of the form: if the intruder knows crypt(�,�) and
inv(�), then they also know �. To formulate such rules without specializing to particular operators, we ask the
modeler to deine a function Ana such that Ana(�) = (�, �) means: the given term � allows for decryption if the
intruder knows all the keys in � , then they obtain every message in �. This is formalized by the rule (Decompose).

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 7

Example 2.2. For most of the paper, we will use the public function symbols crypt, sign, upd, and pair and the
private symbol inv. In addition, we model the set-family symbolsÐring, valid, and revokedÐas private symbols.
Decomposition of terms we model with the following Ana theory:

Ana(crypt(�,�)) = ({inv(�)}, {�}),

Ana(sign(�,�)) = (∅, {�}),

Ana(upd(�, �, �, �)) = (∅, {�, �, �, �}),

Ana(pair(�, � ′)) = (∅, {�, � ′}),

and where Ana(�) = (∅, ∅) for all other terms � .

This means that for decrypting a message encrypted with public key � , one needs the corresponding private key
inv(�). In a signature sign(�,�),� can directly be retrieved without knowing any key. This models signature
schemes where� is provided in clear along with the signed hash of�. Note that this is independent of signature
veriicationwhich is done by pattern matching in the transaction rules like in all free-algebra approaches. Consider
for instance in the keyserver example the rule keyUpdateServer, where � receives sign(inv(PK), pair(� ,NPK)):
here the server � accepts only a signature with some private key inv(��) of a cleartext that has to be a pair and
the components are any values� and NPK . Then the server checks that PK in valid(� , �) and that NPK is not
yet known. Note that operationally, the server would irst obtain the cleartext of the signature, obtain every
public key PK associated with the (claimed) user � , and check if the signature veriies with some PK . With upd
and pair we have transparent functions: they are public and one can obtain all their arguments without knowing
a key. □

Our results rely on the following requirements on Ana:

(1) Ana(�) = (∅, ∅) for � ∈ V ∪ C, i.e. for variables and constants,
(2) Ana(� (�1, . . . , ��)) = (�, �) implies � ⊆ {�1, . . . , ��}, inite � , and fv(�) ⊆ fv(� (�1, . . . , ��)),
(3) Ana(� (�1, . . . , ��)) = (�, �) implies Ana(� (� (�1, . . . , ��))) = (� (�), � (�)).

Ana must be deined for arbitrary terms, including terms with variables (while the standard Dolev-Yao deduction
is typically applied to ground terms). The three conditions regulate that Ana is also meaningful on symbolic
terms. The irst requirement says that we cannot analyze a variable or a constant. The second requirement says
that the results of the analysis are immediate subterms of the term being analyzed, and the keys can be any inite
set of terms (including composed terms, e.g., inv(�)), but built with only variables that occur in the term being
analyzed. We use the fact that for most constructor-destructor theories it holds that the intruder cannot learn
something new from encrypting a term and then decrypting it again. Without the second condition, we would
however allow for theories that violate this principle, e.g., Ana(� (�(�))) = (∅, {�}), an intruder who knows �(�)
could obtain � by irst applying � . The third requirement says that analysis does not change its behavior when
instantiating a term (that is not a variable).

2.2.3 Symbolic Constraints. To reason about protocol executions, we use symbolic constraints which essentially
are a sequence of transactions (with their variables appropriately renamed to avoid clashes) from the point of
view of the intruder: every message sent by a transaction is received by the intruder, and every message received
by a transaction is sent by the intruder. This is a constraint in that every message the intruder sends must be
generated from the messages that the intruder has received before that point. An attack is deined by satisiability
of a constraint in which the intruder produces a special secret.
Formally, symbolic constraints are deined as inite sequences A of actions built from the following grammar

where � and � ′ range over terms and �̄ over inite variable sequences �1, . . . , �� :

A ::= send �1, . . . , �� · A | receive �1, . . . , �� · A | � � � ′ · A | � in � ′ · A |

(∀�̄ . �neg) · A | insert � � ′ · A | delete � � ′ · A | 0
�neg ::= � ̸� � ′ | � notin � ′ | �neg ∨ �

′
neg

ACM Trans. Priv. Sec.

8 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Instead of ∀�̄ . �neg we may write �neg whenever �̄ is the empty sequence. We may also write � notin � (_)
for � ∈ Σ

� as an abbreviation of ∀�1, . . . , �� . � notin � (�1, . . . , ��) where the �� do not occur in � . The intruder
knowledge of a constraint A, denoted by ik(A), is deined as the set of those terms that occur in receive actions
of A. The bound variables of A consist of its variable sequences while the remaining variables, fv(A), are the
free variables. Also, by trms(A) we denote the set of terms occurring in A and the set of set operations of A,
called setops(A), is deined as follows where (·, ·) ∈ Σ

2
pub

is a ixed function symbol:

setops(A) ≡ {(�, �) | insert � � or delete � � or � in � occurs in A, or there exists
�neg and �̄ such that � notin � occurs in �neg and ∀�̄ . �neg occurs in A}

For the semantics of constraints we irst deine a predicate J�,� ;AK I, where� is a ground set of terms (the
intruder knowledge), � is a ground set of tuples (the state of the sets),A is a constraint, and I is an interpretation
as follows:

J� ; � ̸� � ′K I if I(�) ≠ I(� ′)

J� ; � notin �K I if I((�, �)) ∉ �

J� ;�1 ∨ �2K I if J� ;�1K I or J� ;�2K I
J�,� ; 0K I if true

J�,� ; send �1, . . . , �� · AK I if � ⊢ I(��) for all � ∈ {1, . . . , �}, and J�,� ;AK I
J�,� ; receive �1, . . . , �� · AK I if J{I(�1), . . . ,I(��)} ∪�,� ;AK I

J�,� ; � � � ′ · AK I if I(�) = I(� ′) and J�,� ;AK I
J�,� ; insert � � · AK I if J�, {I((�, �))} ∪ � ;AK I
J�,� ; delete � � · AK I if J�,� \ {I((�, �))};AK I

J�,� ; � in � · AK I if I((�, �)) ∈ � and J�,� ;AK I
J�,� ; (∀�̄ . �) · AK I if J� ;�K (� · I) for all ground substitutions � with domain �̄,

and J�,� ;AK I

We then deine that I is a model of A, written I |= A, if J∅, ∅;AK I.
It is common in symbolic approaches to require a form of well-formedness for constraints. First, one typically

requires that the intruder knowledge grows monotonically over time. This is already built-in in our formalism:
observe that the intruder knowledge� in the above semantics has indeed this property. Second, we require that
every variable irst occurs in a message the intruder sends, or in a positive check like � � � ′ or � in � . This is
formalized as follows:

Deinition 2.3 (Constraint well-formedness). A constraint A is well-formed w.r.t. the set of variables � (or just
well-formed if � = ∅) if the free variables and the bound variables of A are disjoint and wf � (A) holds where:

wf � (0) if true

wf � (receive �1, . . . , �� · A) if fv({�1, . . . , ��}) ⊆ � and wf � (A)

wf � (send �1, . . . , �� · A) if wf �∪fv ({�1,...,�� })
(A)

wf � (� � �
′ · A) if

{

wf �∪fv (�) (A) if fv(� ′) ⊆ �

wf � (A) otherwise

wf � (insert � �
′ · A) if fv(�) ∪ fv(� ′) ⊆ � and wf � (A)

wf � (� in �
′ · A) if wf �∪fv (�)∪fv (� ′) (A)

wf � (� · A) if wf � (A) otherwise □

This allows to łintroducež variables in a send action, on the left-hand side of an equation, or in a positive
set-membership check. In this paper, we will work only with well-formed constraints.

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 9

Example 2.4. The constraints send � · receive � (�) and receive � · � � � (�) · send � and � in ��� · send � are all
well-formed, while receive � is not: it would correspond to the intruder receiving an arbitrary (unconstrained)
value. □

2.3 Syntax and Semantics of Protocols

We now deine the syntax of transactions in our transaction-based language as follows:

Deinition 2.5. A transaction has the form �(�1 : �1, . . . , �� : ��) �� where �� is a transaction strand built from
the following grammar where �, � ′, �� range over terms, � over atomic types, � over variables, �̄ over variable
sequences, and where (�)∗ denotes inite sequences of the form� · . . . ·� :

�� ::= �� · �� · � � · �� · ��
�� ::= (receive �1, . . . , ��)

∗

�� ::= (� � � ′ | � in � ′ | ∀�̄ . ��)
∗

�� ::= � ̸� � ′ | � notin � ′ | �� ∨ �
′
�

� � ::= (new � : �)∗

�� ::= (insert � � ′ | delete � � ′)∗

�� ::= (send �1, . . . , ��)
∗

The preix �(�1 : �1, . . . , �� : ��) gives the transaction a name � and declares parameters �� . The corresponding ��
are either enumerations or types from the type system we deine in the following section. In the case of types,
this is just an annotation irrelevant for the semantics for now, but in the case of enumerations, we consider the
instantiation of the transaction with any substitution � such that � (��) ∈ �� for those � where�� is an enumeration.
The functions trms(·) and setops(·) are extended to transactions, rules, and protocols as expected. □

Example 2.6. Consider the keyUpdateServer1 transaction from Sec. 2.1.With the transaction syntax just deined,
it could be written as follows:

keyUpdateServer1 (� : hon, � : ser, PK : pkey,NPK : pkey) �� · �� · �� · ��

where its transaction strand �� · �� · �� · �� consists of the following action sequences:

�� = receive sign(inv(PK), pair(� ,NPK))
�� = PK in valid(� , �) · ∀�,� . NPK notin valid(�,�) · ∀�,� . NPK notin revoked(�,�) ·

NPK in begin1 (� , �) · NPK notin end1 (� , �)
�� = delete PK valid(� , �) · insert PK revoked(� , �) · insert NPK valid(� , �) ·

insert NPK end1 (� , �)
�� = send inv(PK) □

Note that the actions that �� is composed of are very similar to the intruder constraints we have introduced
before. In fact, we will now deine the semantics of transactions in terms of the intruder constraints that they
induce: to execute a transaction, we will add a copy (with variables freshly renamed) to the intruder constraint
with just two alterations: for every new � : � , we instantiate � with a fresh constant (by default, our model is
untyped, and the use of typing is discussed in the next section). Every message that is sent by the transaction is
received by the intruder and vice-versa. For that purpose, we deine the dual of a transaction strand or constraint
� , written dual(�), as łswappingž the direction of the sent and received messages of � :

dual(send �1, . . . , �� · �) = receive �1, . . . , �� · dual(�),
dual(receive �1, . . . , �� · �) = send �1, . . . , �� · dual(�), and

dual(� · �) = � · dual(�) otherwise.

Note that we impose an order on the kind of actions in a transaction: we start with receiving terms (��), then
perform checks (��), then generate fresh constants (� �), then manipulate sets (��), and inally send out some
messages (��). In fact, transactions are atomic in the sense that if any of the requirements fail, the transaction is
not performed at all (so the state of all sets remains unchanged), otherwise it is performed as a whole.

ACM Trans. Priv. Sec.

10 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Deinition 2.7. Given a protocol P, the semantics is a transition relation ⇒P where states are constraints,
the initial state is the empty constraint 0, and the transition relation ⇒P is deined as follows: A ⇒P A ·

dual(� (� (�� · �� · �� · ��))) holds if there exist �, �� , �� , � � such that:

(1) �(�1 : �1, . . . , �� : ��) �� · �� · � � · �� · �� ∈ P,
(2) � has the following properties:
(a) For every �� : �� for which �� is an enumeration set it holds that � (��) ∈ �� .
(b) For every new � : � occurring in � � it holds that � (�) is a fresh constant of type � .
(c) No other variables are in the domain of � .

(3) � is a variable-renaming of the variables of fv(�� · �� · � � · �� · ��) \ dom(�) such that the variables in
ran(�) do not occur in � (�� ·�� ·� � ·�� ·��), and that preserves the type of variables (i.e., it is łwell-typedž)
in a typed model. □

According to this semantics, each transition can only perform a transaction in its entirety (by being augmented
to the intruder constraint accordingly). Thus, there cannot occur any race-conditions between transactions that
are working on the same sets: every transaction irst imposes constraints on the sets and then performs updates
without other transactions disturbing it. This is equivalent to process calculi where each transaction irst locks
the sets it wants to access, and unlocks the sets at the end of the transaction. Note that each transaction rule can
be executed arbitrarily often and so we support an unbounded number of łsessionsž. For instance, the transaction
outOfBand1 (� : hon, � : ser) of the keyserver example models that each honest agent � ∈ hon can register one
fresh key at server � ∈ ser during each application of the transaction by inserting the fresh key into its keyring
ring(�) while the server inserts it into the set of valid keys valid(�, �). The transaction can be executed any
number of times with any agent � (�) ∈ hon, server � (�) ∈ ser, and a fresh value � (PK) for the key PK each
time.

We say that a constraint A is reachable in protocol P if 0 ⇒∗
P
A where ⇒∗

P
denotes the transitive relexive

closure of ⇒P .
We need to ensure that these constraints are well-formed and we will therefore always assume the following

suicient requirements on the protocols P that we work with:

Deinition 2.8 (Transaction well-formedness). For any transaction �(�1 : �1, . . . , �� : ��) �� · �� · � � · �� · �� of
P the constraint dual(�� · �� · �� · ��) must be well-formed w.r.t. the variables {�1, . . . , �� , �1, . . . , ��} where
�1, . . . , �� are exactly those variables among �1, . . . , �� declared as ranging over enumerations, and �1, . . . , �� are
those variables that occur in � � .
Additionally, we require that the variables �1, . . . , �� in the transaction preix are all distinct, and that the

variables of � � are all distinct and that they do not occur in �� , �� , and {�1, . . . , ��} (i.e., they irst occur in � �).
Note also that well-formedness implies that the free variables and the bound variables of the transaction are
disjoint. □

The irst requirement means that each free variable must either irst occur in a receive step or a positive
check, be declared as ranging over an enumeration, or occur in a new action. Note that this still allows for
non-determinism: for instance the check � in � allows for choosing an arbitrary element from � (that is compatible
with the rest of the transaction); the requirement only forbids that variables can stand for completely arbitrary
terms. The second requirement is just for convenience of further deinitions and comes at no loss of generality.

Example 2.9. Continuing Example 2.6we have for keyUpdateServer1 that dual(�� ·�� ·�� ·��) = send sign(inv(PK), pair(� ,NPK))·
�� · �� · receive inv(PK). This is a well-formed constraint w.r.t. {� , �}. The other well-formedness requirements
are also satisied for keyUpdateServer1. As another example, the constraint receive PK, inv(PK) is well-formed
w.r.t. {PK}, and so the transaction intruderKeygen1 of Fig. 1 is well-formed. In fact, all transactions of Fig. 1 are
well-formed. □

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 11

To model goal violations of a protocol P we irst ix a special private constant unique to P, e.g., atackP . These
attack constants are supposed to be used only to signal that a goal violation has occurred, and so we require that
they only occur in actions of transactions of the form send atackP . The protocol then has a (well-typed) attack
if there exists a reachable constraint A such that A · send atackP is (well-typed) satisiable. A protocol with no
attacks is secure.

With sets we can also model events, e.g., asserting an event � amounts to inserting � into a distinguished set of
events while checking whether � has previously occurred (or not) corresponds to a positive (respectively negative)
set-membership check. We therefore support all security properties expressible in the geometric fragment [2].
This covers many standard reachability goals such as authentication. It seems that any signiicantly richer
fragment of irst-order logic would be incompatible with our result. We do not currently support privacy-type
properties, i.e., where goal violations occur if the observable behavior of protocols can be distinguished.

3 A TYPING RESULT

Type-law attacks are a nuisance in many formal arguments and there are relatively cheap ways to get rid of
them once and for all. For instance, a classical example is in the Otway-Rees protocol [39]: here � sends irst a
message of the form

�,�, �, scrypt(sk(�, �),NA, �,�, �)

to the server � containing a fresh session identiier� , a fresh nonce NA, the name �, and a shared key sk(�, �) of
� and � . Note that the names and session identiier are also transmitted in clear text. The only other action that �
is involved in is receiving a message from the server of the form

�,�, �, scrypt(sk(�, �),NA,KAB)

containing a new shared keyKAB for use with �. Due to the similarity of the messages, if pure string concatenation
is used and if the key KAB can have the same length as �,�, �, there is a simple relection attack where the
intruder just sends back the message that� sent in the irst step, so that� would accept as KAB the concatenation
�,�, � which the intruder knows.

An easy way to prevent this is to use simple tags in the encrypted messages, e.g.,

scrypt(sk(�, �), 1,NA, �,�, �) and scrypt(sk(�, �), 2,NA,KAB) .

This is for instance suggested by [5]. This, however, does not considermany other problems of plaintext structuring,
e.g., pure string concatenation is associative and so it is not in general clear how to parse a string unless all terms
have ixed size (which we do not have in practice). Moreover, this form of tagging is imposing a particular way
of preventing type-law attacks, and there may be other ways to do it such as ASN.1 or XML. For this reason,
we like to use a more general concept of formats, i.e., free function symbols that represent arbitrary real-world
structuring mechanisms. Under the assumption that these are unambiguous (any string can be parsed in only
one way for a given format) and pairwise disjoint (any string can be parsed for at most one format), there is
a soundness result for this modeling [36]. The function symbols are transparent, i.e., they are both public and
the intruder can destruct them like a pair. For instance, for Otway-Rees we may deine formats �1 (NA, �,�, �)
and �2 (NA,KAB). In this generality, many existing protocols (like TLS) do not require any changes in order to
satisfy the type-law resistance requirement we deine below. After this deinition we can show a typing result: a
type-law resistant protocol that has an attack has a so-called well-typed attack, i.e., where the intruder did not
send any ill-typed messages. Thus, it is sound to verify the protocols under the restriction to a typed model: if
they do not have a well-typed attack, then they have no attack at all. In this way we simply get rid of a lot of
łgarbagež.

ACM Trans. Priv. Sec.

12 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Type Expressions. Type expressions are terms built over the function symbols of Σ\C and a inite set�� of atomic

types like enum and pkey. Further, we deine a typing function Γ that assigns to every variable a type, to every
constant an atomic type, and that is extended to composed terms as follows: Γ(� (�1, . . . , ��)) = � (Γ(�1), . . . , Γ(��))
for every � ∈ Σ

� \ C and terms �� . We also require that {� ∈ Cpub | Γ(�) = �} is ininite for each � ∈ �� , thus

giving the intruder access to an ininite supply of terms of each atomic type.1

We furthermore ix an atomic type atacktype ∈ �� and assign this type to all attack constants: Γ(atack�) =
atacktype. For the transactions � = �(�1 : �1, . . . , �� : ��) �� · �� · � � · �� · �� that we consider in this paper we
will assume that they satisfy the following conditions:

(1) For each new � : � action occurring in � the type � is an atomic type.
(2) For each declared variable �� : �� the following two conditions hold:
(a) If �� is a type then Γ(��) = �� .
(b) If �� is an enumeration set then Γ(��) = {Γ(��)} and Γ(��) must be an atomic type.

(3) No variable of � contains in its type the atomic type atacktype.

The suicient condition for a protocol to satisfy the typing result is now based on the following notions. A
substitution � is well-typed if Γ(�) = Γ(� (�)) for all � ∈ V . Given a set of messages that occur in a protocol we
deine the following set of sub-message patterns, intuitively the ones that may occur during constraint reduction:

Deinition 3.1 (Sub-message patterns). The sub-message patterns SMP (�) for a set of messages� is deined as
the least set satisfying the following rules:

(1) � ⊆ SMP (�).
(2) If � ∈ SMP (�) and � ′ ⊑ � then � ′ ∈ SMP (�).
(3) If � ∈ SMP (�) and � is a well-typed substitution then � (�) ∈ SMP (�).
(4) If � ∈ SMP (�) and Ana(�) = (�, �) then � ⊆ SMP (�). □

The suicient condition for the typing result is now that non-variable sub-message patterns have no uniier
unless they have the same type:

Deinition 3.2 (Type-law resistance). We call a term � generic for a set of variables � , if � = � (�1, . . . , ��) for
some public � , � > 0, and �1, . . . , �� ∈ � . We say that a set � of messages is type-law resistant if ∀�, � ′ ∈

SMP (�) \ V . (∃�. � (�) = � (� ′)) −→ Γ(�) = Γ(� ′). We may also apply the notion of type-law resistance to a
constraint A to mean that:

(1) trms(A) ∪ setops(A) is type-law resistant, and
(2) for all � � � ′ occurring in A, if � and � ′ are uniiable then Γ(�) = Γ(� ′), and
(3) for all ∀�̄ . �neg occurring in A, and for all � ̸� � ′ and � notin � ′ occurring in �neg, no subterm of (�, � ′) is

generic for �̄ .2

Type-law resistance is extended to transactions as expected. A protocol P is type-law resistant if trms(P) ∪

setops(P) is type-law resistant and all transactions of P are type-law resistant. □

The main type-law resistance condition states that matching pairs of messages that might occur in a protocol
run must have the same type. For equality checks � � � ′ the terms � and � ′ must have the same type if they

1Note that [27] in contrast considers only public function symbols; one can simulate, however, a private function symbol of arity � by a

public function symbol of arity � + 1 where the additional argument is used with a special constant that is never given to the intruder; in this

way all results can be lifted to a model with both private and public function symbols. For instance, we can encode inv ∈ Σ
1 in terms of a

public symbol inv′ ∈ Σ
2 and a special secret constant secinv.

2In fact, we have also proved in Isabelle that our typing result also works when allowing additionally the following form of negative checks:

�neg is of the form �1 ̸� � ′1 ∨ · · · ∨ �� ̸� � ′
�
and Γ (fv (�neg) \ �̄) ⊆ �� . While this is in speciications of relatively little value, it may be

helpful in other contexts.

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 13

are uniiable. For negative checks ∀�̄ . �neg we only need to require that there are no composed subterms of
set-operations and inequalities in �neg whose immediate parameters are all bound variables (i.e., generic for �̄).
Together with the requirements on the typed model, this ensures that there always exist well-typed models of
satisiable type-law resistant negative checks. Note that the remaining actions on setsÐinsert, delete, and inÐare
also covered by condition 3.2(1): by requiring that the set trms(A) ∪ setops(A) is type-law resistant we have
that uniiable set operations in A must have the same type.

Example 3.3 (Type-law resistance of the keyserver protocol). As an example we show that the keyserver protocol
is type-law resistant. That is, we show that the set of terms and set-operations of the keyserver protocol is
type-law resistant (condition 3.2(1)), and that the actions of its transactions are type-law resistant. Condition
3.2(2) is vacuously satisied since there are no equality checks in the protocol. For the last condition notice that
each negative check in the protocol is either of the form � notin � (�) or of the form ∀�. � notin � (�), where �
is one of the set-family symbols. The only subterm of (�, � (�)) or (�, � (�)) that could potentially be generic is
� (�). Recall, however, from Example 2.2 that all set-family symbols are deined as private function symbols; thus
the term � (�) cannot be generic for �. Hence condition 3.2(3) is satisied for the keyserver protocol.
To prove the main condition 3.2(1) one approach is to compute a inite set that subsumes the sub-message

patterns of the protocol as well-typed instances. In fact, we will later show how to automatically compute such a
set and prove that checking type-law resistance of this set is indeed suicient. For the keyserver protocol notice
that all terms and set-operations occurring in the protocol are well-typed instances of terms from the following
set:

� = {atack,� , �, PK,NPK, ring(�), valid(� , �), revoked(� , �), (PK, ring(�)), (PK, valid(� , �)),
(PK, revoked(� , �)), sign(inv(PK), pair(� ,NPK)), inv(PK), pair(� ,NPK)}

where Γ(PK) = pkey, Γ(NPK) = pkey, Γ(�) = enum, and Γ(�) = enum.
Since� is closed under subterms, and all variables in� are atomic, and since no term in� requires keys to

analyze, then� subsumes all the sub-message patterns of the protocol as well-typed instances of terms in� .
What remains to be shown is that each pair of matching composed terms in� (after suicient variable-renaming)
have the same type, and this is trivial to verify. Thus, the keyserver protocol is type-law resistant. □

With this deinition we can now state and prove the actual typing result: that for type-law resistant protocols
it is safe to only verify that no well-typed attack exists. A recurrent idea (that we also employ when proving the
compositionality result) is to irst prove the result on the constraint-level and then lift it to the protocol-level.
One of the beneits of our constraint-based protocol model is actually that performing this lifting is relatively
straightforward. The constraint-level typing result then says that satisiable type-law resistant constraints always
have well-typed models:

Theorem 3.4 (The typing result on the constraint level). If A is a well-formed, type-law resistant

constraint, and if I |= A, then there exists a well-typed interpretation I� such that I� |= A.

This constraint-level theorem is then lifted to the protocol-level. First, a type-law resistance preservation
lemma needs to be proven:

Lemma 3.5 (Well-formedness and type-flaw resistance preservation). If P is a well-formed and type-law

resistant protocol, and if A is a reachable constraint of P, then both A and A · send atackP are well-formed and

type-law resistant.

Finally, the protocol-level theorem follows from Lemma 3.5 and Theorem 3.4:

Theorem 3.6 (The typing result, for protocols). Let P be a well-formed and type-law resistant protocol. If

P is well-typed secure then P is also secure in the untyped model.

ACM Trans. Priv. Sec.

14 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Discussion. In contrast to with most other type-law prevention results like [5], we do not prescribe a particular
tagging scheme but merely require that (sub-)messages of diferent types are always discernible. This makes
the result directly applicable to many protocols without changes and the use of formats also takes care of most
problems of parsing. Our result requires formats also on the top-level, i.e., unencrypted plaintext messages.
Obviously tagging at that level does not give any additional security (nor does it hurt) since the intruder can
easily manipulate plaintext messages, e.g., changing tags. We do this for uniformity: we do not build an exception
into our deinition, and in fact it is good practice to be clear also on the cleartext level how the message is meant.
Note that [13] uses an idea similar to our typing system, except that they do not require formats on the plaintext
level. Moreover, [13] can handle equivalence properties. On the other hand, our result supports protocols that
use databases.

4 COMPOSITION: EXAMPLE AND ILLUSTRATION

In this section, we extend and adapt our keyserver example (Sec. 2.1) to illustrate the composition of security
protocols: we deine two keyserver protocols that share the same database of valid public keys registered at the
keyserver. In a nutshell, the irst protocol Pks,1 allows users to register public keys out of band and to update an
existing key with a new one (revoking the old key in the process), while the second protocol Pks,2 uses a diferent
mechanism to register new public keys. Thus, both protocols use the shared database valid.
There are three atomic types used in the example: the type of agents enum (which is also the type of the

enumeration constants), public keys pkey, and the type atacktype of the atack� constants. We partition the
constants of type enum into the honest users hon, the dishonest users dis, and the keyservers ser. There are sets
for authentication goals named begin1, end1, begin2, and end2, and all protocol actions related to these sets are
highlighted in gray; let us irst ignore these.

Protocol Pks,1. The protocol Pks,1 is an extension of the keyserver example from Sec. 2.1 and includes the
transactions from Fig. 1. Observe that some actions in the transactions of Fig. 1 are labeled with a ★. In a nutshell
those actions are relevant also to the other protocol in composition: this is because the set valid, e.g., will be
shared with the other protocol, so an insertion is relevant; similarly, in outOfBand1, all newly created keys like
PK are by default secret, and by the ★ label we declare that it is immediately declassiied (as it is expected for
a public key), while the corresponding private key inv(PK) remains a secret. This will be explained in more
detail below (as well as the gray-shaded actions related to the authentication goals). Note also that the intruder
learns in outOfBandD1 both PK and inv(PK) and they are both declassiied, i.e., it does not count as an attack
that the intruder knows key pairs that dishonest users generated. Also, we reveal in keyUpdateUser1 the private
key inv(PK), in order to specify that the protocol must ensure forward secrecy: even when old private keys are
leaked, none of the security goals are violated. In fact, that this action is labeled ★ is a textbook example for
declassiication of a secret: after this transaction, the intruder does know inv(PK) and this does not count as an
attack.

Protocol Pks,2. The second protocolÐFig. 2Ðhas another mechanism to register new keys: every user has a pass-
word pw(�, �)with the server. The intruder gets the password of every dishonest agent�with rule passwordGenD2.

Instead of using a (possibly weak) password for an encryption, the registration message is encrypted with the
public key of the server. For honest agents this is deined in rule updateKeyPw2.

For uniformity, we model the server’s public keys in a set pubkeys(�) that is initialized with rule pubkeysGen2
(in fact, � may thus have multiple public keys), and as in the irst protocol we also have a rule in Pks,2 that gives
the intruder arbitrarily many fresh key pairs. Note that thus pubkeys(�) is a set that is shared in the sense that all
honest agents can read it, and � can insert new keys into it. This is an easy way to abstract from how the public

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 15

passwordGenD2 (� : dis, � : ser)

send pw(�, �) .

intruderKeygen2 (� : dis)

new PK : pkey

★ send PK, inv(PK) .

pubkeysGen2 (� : ser)

new PK : pkey

insert PK pubkeys(�)

★ send PK .

updateKeyPw2 (� : hon, � : ser, PK : pkey)

PK in pubkeys(�)

new NPK : pkey

★ insert NPK begin2 (�, �)

★ send NPK

send crypt(PK, upd(�, �,NPK, pw(�, �))) .

updateKeyServerPw2 (

� : hon, � : ser, PK,NPK : pkey)

receive crypt(PK, upd(�, �,NPK, pw(�, �)))

PK in pubkeys(�)

NPK notin pubkeys(_)

NPK notin seen(_)

★ NPK in begin2 (�, �)

★ NPK notin end2 (�, �)

★ insert NPK end2 (�, �)

★ insert NPK valid(�, �)

insert NPK seen(�) .

atackDef2 (� : hon, � : ser, PK : pkey)

receive inv(PK)

★ PK in valid(�, �)

atack2 .

updateKeyServerPwD2 (

� : dis, � : ser, PK,NPK : pkey)

receive crypt(PK, upd(�, �,NPK, pw(�, �)))

PK in pubkeys(�)

NPK notin pubkeys(_)

NPK notin seen(_)

★ insert NPK valid(�, �)

insert NPK seen(�) .

Fig. 2. The second keyserver protocol Pks,2. In addition to the transactions shown in this figure the protocol also contains
transactions for authentication goals.

key of the server itself is securely distributed. However, this set is local to Pks,2: the other keyserver protocol
does not use it.
Similar to Pks,1 we give the dishonest agents the ability to generate their own fresh key pairs with rule

intruderKeygen2. This is necessary since we want to be able to run Pks,2 also in isolation.
Rule updateKeyServerPw2 models how the server receives a registration request (in case of honest usersÐ

updateKeyServerPwD2 is the pendant for the dishonest users). To protect against replay, the server uses a set
seen of seen keys (this may in a real implementation be a bufer-timestamp mechanism). The diference to the
honest-agent version is in the goal sets.

Secrecy. If a valid private key of an honest agent becomes known to the intruder then there is an attack. Such a
secrecy goal is deined with rule atackDef� , where � = 1 in Pks,1 and � = 2 in Pks,2.

Authentication. Besides the secrecy goal atackDef� that no valid private key of an honest agent may ever
be known by the intruder, the crucial authentication goal is that all insertions into valid(�, �) for honest � are
authenticated. This authentication goal is in particular relevant for the composition, because the valid set family
is shared, and thus neither protocol can work properly if the other would insert unauthenticated keys into valid.
Actually, compositionality requires even more about the shared sets, but at least some form of authentication is
obviously needed.

We shall now look at the gray-shaded lines in all the previous rules that we skipped in previous explanations.
First, in every rule where an honest agent � intends to introduce a key PK , they will insert this key into a special
set begin� (�, �) (for � being the protocol identiier). This is a set that would not exist in a real implementation
and that we simply use here to formulate the security goals: in other words the begin� (�, �) set contains the keys
that � would like to use with � as public keys of �. We will never delete from this set, so it contains also past
keys that � has actually already deleted. Note that for dishonest � we do not have any such sets, since the goals
are concerned with guarantees for the honest agents only.

Symmetrically, the set end� (�, �) represents the keys that server � has accepted as (apparently) coming from
an honest agent �. In the out-of-band rule outOfBand1, we have that the key is directly inserted into both

ACM Trans. Priv. Sec.

16 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

begin� (�, �) and end� (�, �), because this rule formalizes that � and � by some other means (e.g. physical visit)
directly agree on a public key for �. In all other rules, the insertion into end� (�, �) happens when the server
receives a message that seems to indicate that � wants to introduce some key, and all conditions for accepting
it are met. Observe, however, that these requirements include also some conditions on the authentication-sets
themselves: for instance, the rule keyUpdateServer1 requires that the received NPK that � apparently wants to
use as her new public key shall both be in begin� (�, �) and not be in end� (�, �). Suppose the situation that all
conditions of rule keyUpdateServer1 were met, except that NPK ∉ begin� (�, �). That would mean that the server
were to accept at this moment NPK (since, as far as the server can see, the key is legitimate) while � has never
meant to use this key in this way. We would regard this as an authentication attack, more precisely as a violation
of the goal of non-injective agreement in Lowe’s hierarchy [34]. We formalize this by the following attack rules
(rule authAtack1 and rule authAtack2 for the analogous situation of protocol 2):

authAtack1 (� : hon, � : ser, PK,NPK : pkey)

receive sign(inv(PK), pair(�,NPK))
★ PK in valid(�, �) .
★ NPK notin valid(_)

NPK notin revoked(_)
★ NPK notin begin1 (�, �)

atack1 .

authAtack2 (� : hon, � : ser, PK,NPK : pkey)

receive crypt(PK, upd(�, �,NPK, pw(�, �)))

PK in pubkeys(�)
NPK notin pubkeys(_)
NPK notin seen(_)

★ NPK notin begin2 (�, �)
atack2 .

Going back to keyUpdateServer1, there is also the condition NPK ∉ end� (�, �). Suppose now that all other
conditions of the rule were met but NPK ∈ end� (�, �). This would mean that, as far as the server � can tell, the
key is legitimate and � would accept it, and indeed � at some point in the past has meant to use this key (and
thus NPK ∈ begin� (�, �)). However, � has already accepted it before, because it is already in end� (�, �). This
would be a violation of injective agreement: the server has been made to accept a key more often than it was
meant to be used. We can only do this, because the keys of an update request message are supposed to be fresh,
i.e., an honest agent will never request an update to an old key; thus, when a server is made to accept the same
key twice from an honest agent it must be a replay attack. This is captured by the following two rules:

authInjAtack1 (� : hon, � : ser, PK,NPK : pkey)

receive sign(inv(PK), pair(�,NPK))
★ PK in valid(�, �)
★ NPK notin valid(_)

NPK notin revoked(_)
★ NPK in begin1 (�, �)
★ NPK in end1 (�, �)

atack1 .

authInjAtack2 (� : hon, � : ser, PK,NPK : pkey)

receive crypt(PK, upd(�, �,NPK, pw(�, �)))

PK in pubkeys(�)
NPK notin pubkeys(_)
NPK notin seen(_)

★ NPK in begin2 (�, �)
★ NPK in end2 (�, �)

atack2 .

Observe that for protocol 1, the rules keyUpdateServer1, authAtack1, and authInjAtack1 together handle all
cases where the server would accept the incoming public key NPK : either everything is ine as far as the authen-
tication goals are concerned (keyUpdateServer1) or there is a non-injective agreement violation (authAtack1),
or an injective agreement violation (authInjAtack1) (and similarly for the second protocol). Notice that our
rules thus do not allow for an unauthenticated key to be inserted into the shared set valid: if the protocol due
to a security law could insert an unauthenticated key, then only the attack rule can ire. This is crucial for
composition as this allows us a kind of łcontractž between the protocols that they comply with certain rules, e.g.
inserting only authenticated keys into the valid set and the veriication of this compliance is then a problem we
can check for each protocol in isolation.

5 THE COMPOSITIONALITY RESULT

The core deinition of this section is rather simple: We deine the parallel composition P1 ∥ P2 of two protocols P1

and P2 as their union: P1 ∥ P2 ≡ P1 ∪ P2. Protocols P1 and P2 are also referred to as the component protocols of

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 17

the composition P1 ∥ P2. To express composition of more than two protocols we parameterize our theory over a
set L of indices. The only requirement on the set L is that it has at least two elements and we usually use natural
numbers to denote the elements of L. The parallel composition of all protocols indexed by L is then denoted by
∥�∈L P� and is again deined as the union of the component protocols: ∥�∈L P� ≡

⋃

�∈L P� . If L = {1, . . . , � } for
some � (i.e., if L is inite) then we may also use the notation P1 ∥ · · · ∥ P� .
For composed protocols ∥�∈L P� the reachable constraints will in general contain actions originating from

multiple component protocols. To keep track of where an action in a constraint originated we assign to each
action a label ℓ , and we use the notation ℓ : � to denote that action � has label ℓ . The actions that are exclusive to
the �-th component are marked with � . For that reason we also refer to the indices L as the protocol-speciic labels.
In addition to the protocol-speciic labels L we also have the special label ★. Labels ℓ then range over L ∪ {★}

unless otherwise speciied. The formal transaction language deined in Sec. 2.3 is also extended to allow labeling
of actions.

Let A be a constraint with labels and ℓ be a label. We deine A|ℓ to be the projection of A to the steps labeled
ℓ or ★ (so the ★-steps are kept in every projection). We extend projections to transaction rules and protocols as
expected. We may also write P★ instead of P|★.

Example 5.1. In the composed keyserver example we have two protocol speciic labels: L = {1, 2}. Note that
we omitted the protocol-speciic labels when deining the transactions. This is because each protocol has a unique
protocol-speciic label and so it is unambiguous which label to assign to the actions that do not carry the ★-label.
Note also that all new actions are implicitly labeled with a ★: it is necessary for our compositionality result
that they occur in all projections, and so we usually omit explicitly labeling them. For instance, in the formal
transaction syntax the pubkeysGen2 transaction is written as follows, and its projection pubkeysGen′2 to label 1
preserves only the irst and the last of its actions:

pubkeysGen2 (� : ser) ★ : new PK : pkey · 2 : insert PK pubkeys(�) ·★ : send PK

pubkeysGen′2 (� : ser) ★ : new PK : pkey ·★ : send PK □

An important property of projections is that projected reachable constraints are reachable in projected protocols:

Lemma 5.2. If A is a constraint reachable in the protocol P and ℓ is a label, then the projected constraint A|ℓ is

reachable in the projected protocol P|ℓ .

With stateful protocols and parallel composition deined we can now formally deine the concepts underlying
our results and state our compositionality theorems. We irst provide a result on the level of constraints and
afterwards show our main theorems for stateful protocols.

5.1 Protocol Abstraction

All actions containing the valid set family in our keyserver example have been labeled with★. Labeling operations
on the shared sets with ★ is an important part of our compositionality result.
Essentially, compositionality results aim to prevent that attacks can arise from the composition itself, i.e.,

attacks that do not similarly work on the components in isolation. Thus, we want to show that attacks on the
composed system can be suiciently decomposed into attacks on the components. This, however, cannot directly
work if the components have shared sets like valid in the example: if one protocol inserts something into a set
and the other protocol reads from the set, then this trace in general does not have a counter-part in the second
protocol alone. We thus need a kind of interface to how the two protocols can inluence their shared sets. In the
keyserver example, both protocols can insert public keys into the shared set valid; the irst protocol can even
remove them. The idea is now that we develop from each protocol an abstract version that subsumes all the
modiications that the concrete protocol can perform on the shared sets. This can be regarded as a łcontractž

ACM Trans. Priv. Sec.

18 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

for the composition: each protocol guarantees that it will not make any modiications that are not covered by
its abstract protocol, and it will assume that the other protocol only makes modiications covered by the other
protocol’s abstraction. We will still have to verify that each individual protocol is also secure when running
together with the other abstract protocol, but this is in general much simpler than the composition of the two
concrete protocols.

In general, the abstraction of a component protocol P is deined by restriction to those steps that are labeled
★, i.e., P★. We require that at least the modiications of shared sets are labeled ★. In the keyserver example we
have also labeled the operations on the authentication-related sets with a ★ (everything highlighted in gray): we
need to ensure that we insert into the set of valid keys of an honest agent only those keys that really have been
created by that agent and that have not been previously inserted. So the contract between the two protocols is
that they only insert keys that are properly authenticated, but the abstraction ignores how each protocol achieves
the authentication (e.g., signatures vs. passwords and seen-set). Some outgoing messages are also labeled with ★
which we discuss later.

Example 5.3. Consider the abstractions of rules updateKeyPw2 and updateKeyServerPw2:

updateKeyPw2 (� : hon, � : ser)

new NPK : pkey
★ insert NPK begin2 (�, �)
★ send NPK .

updateKeyServerPw2 (� : hon, � : ser,NPK : pkey)

★ NPK in begin2 (�, �)
★ NPK notin end2 (�, �)
★ insert NPK valid(�, �)
★ insert NPK end2 (�, �).

The gray actions prevent unauthenticated key registration because keys can only be registered if inserted into
begin2 by an honest agent. If we did not ensure such authenticated key-registration then the intruder would be
able to register arbitrary keys in P★

ks,2
. This would lead to an attack on secrecy in the protocol Pks,1 ∥ P★

ks,2
.

One may wonder why there is no similar speciication for secrecy, i.e., that inv(NPK) is secret for every key
NPK that is being inserted into valid. In fact, below we will declare all private keys to be secret by default. Thus,
unless explicitly declassiied, they are (implicitly) required to be secret. □

5.2 Shared Terms

The main restriction that most compositionality results require is that the messages of the component protocols
are suiciently disjoint, so that the intruder cannot use messages (or sub-messages) of one component in another.
(As discussed in Sec. 3, one can achieve this using formats.) One typically needs to make at least some exceptions
from disjointness, e.g., agent names and ixed long-term keys. However, as we have seen in the previous examples,
we want in this work to also (for instance) consider freshly generated keys that are part of shared sets. In fact,
any kind of data shared via the sets cannot be unique to a component. Therefore, our approach uses a generalized
way of handling such shared terms.

First, let us call basic public terms those that the intruder can derive without any prior knowledge: ∅ ⊢ � . This
could for instance contain agent names. Second, the modeler shall choose a set of ground terms S, called the

shared terms, and S is a parameter of our compositionality result. In fact, our only requirement is that every
ground protocol message is either unique to a single protocol, or it is a basic public term, or it is in S. For our
keyserver example, we have the freshly generated public and private keys as part of S, while the more complex
messages like signatures are unique to one component. Note that one may well have also more complex terms in
S, e.g., key certiicates if they are used by several protocols. For reasons that we explain below in more detail, one
may want to keep S as small as possible, because all messages in there require special care in the composition. In
Sec. 6 we discuss how a suitable representation of S can be computed automatically.

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 19

More formally, we irst deine the ground sub-message patterns (GSMP) of a set of terms� as GSMP (�) ≡ {� ∈

SMP (�) | fv(�) = ∅}. This deinition is extended to constraints A as the set GSMP (A) ≡ GSMP (trms(A) ∪

setops(A)) and similarly for protocols.

Example 5.4. We will typically study the ground subterms of each individual protocol in parallel with the
abstraction of the other. For the example, the set GSMP (Pks,1 ∥ P★

ks,2
) is the closure under subterms of the

following set:

{atack1, sign(inv(pk), pair(a, npk)), (pk, ring(a)), (pk, � (a, s)) | pk, npk, a, s ∈ C,

Γ({pk, npk}) = {pkey}, Γ({a, s}) = {enum}, � ∈ {valid, revoked, begin� , end� }, � ∈ {1, 2}}

and GSMP (P★

ks,1
∥ Pks,2) is the closure under subterms of the following set:

{atack2, inv(pk), crypt(pk, upd(a, s, npk, pw(a, s))), (pk, pubkeys(s)), (pk, � (a, s)) | pk, npk ∈ C,

a, s ∈ C, Γ({pk, npk}) = {pkey}, Γ({a, s}) = {enum}, � ∈ {valid, seen, begin� , end� }, � ∈ {1, 2}} □

Let S be a set of ground terms disjoint from the set of basic public terms. For composition we will require that
component protocols are disjoint in their ground sub-message patterns except for basic public terms and shared
terms:

Deinition 5.5 (GSMP disjointness). Given two sets of terms�1 and�2, and a ground set of terms S, we say that
�1 and�2 are S-GSMP disjoint if GSMP (�1) ∩GSMP (�2) ⊆ S ∪ {� | ∅ ⊢ �}. Furthermore, given two constraints
A1 and A2 we say that they are S-GSMP disjoint if the sets trms(A1) ∪ setops(A1) and trms(A2) ∪ setops(A2)

are S-GSMP disjoint. This is similarly extended to protocols as expected. □

5.3 Declassification and Leaking

As the public and private keys in the keyserver example illustrate, we want in general that some of the shared
terms S are secret from the intruder, while others may be known to the intruder, and in fact it can be crucial
for the interplay of the components which ones are which. Also one may want to allow in some cases that the
intruder may learn old keys, e.g., the private keys to a revoked key in the keyserver example. To allow for such a
dynamic secrecy status, we deine the following policy about the secrecy of terms in S: initially, all elements of S
are considered secret, and a protocol can explicitly declassify elements of S. It is considered a leak if the intruder
can ind out an element of S that has not been declassiied, and we will require as part of the composition that
no component protocol (in isolation) leaks. In the keyserver example, all public keys are immediately declassiied
in the transition where they are created. If the creator is dishonest, then also the corresponding private key is
declassiied. Finally, when keys are revoked, then also the private key to the revoked key is declassiied.
The notation for such declassiication of a message � is simply ★ send � : the message is sent out, so the

intruder can see it, and the★ label ensures that all declassiications that occur in a protocol (or in a constraint) are
visible in its abstraction. This means that all declassiications are part of the interface that the protocol provides
to other protocols, and the proof of security thus ensures that each component is secure in the presence of all
declassiications that the other protocols may perform. In the keyserver example, P★

ks,1
guarantees that it will

only declassify private keys (via intruderKeygen1) where they are freshly created and not member of any set and
(via keyUpdateUser1) in a transition where they have been in valid for an honest � before and are just removed.
Together with the abstraction of the other transactions we get an interface that allows to verify in P★

ks,1
∥ Pks,2

that no private key can ever be leaked while the corresponding public key is in the valid set of an honest agent.
Observe that this leakage policy can play a crucial role in the goals of a protocol composition, but we may

have secrecy goals that are łlocalž to a protocol, i.e., that afect data that is not in S. This would in fact be the
case for the secrecy goal of classical parallel protocol composition where all messages are disjoint and no shared
sets are used.

ACM Trans. Priv. Sec.

20 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

For a constraint A with model I we formally deine the set of terms that has been declassiied in A under I:

Deinition 5.6 (Declassiication). Let A be a labeled constraint and I a model of A. Then the set of declassiied
secrets of A under I is deined as follows:

declassiied (A,I) ≡ {� | {�1, . . . , �� | ★ : receive �1, . . . , �� occurs in I(A)} ⊢ �} □

Given a protocol P, a reachable constraint A (i.e., 0 ⇒∗
P
A), and a model I of A, then I(A) represents a

concrete protocol run and the set declassiied (A,I) represents those terms that are derivable from the messages
that have been declassiied by honest agents during the protocol run. By deinition the basic public terms are
therefore also declassiied. Note also that in this deinition we have reversed the direction of the declassiication
transmission, because the send and receive steps of reachable constraints are duals of the transaction rules they
originated from.

Declassiication also allows us to share terms that have secrets fromS as subterms but which are not themselves
meant to be secret. For instance, public key certiicates have as subterm the private key of the signing authority,
and such certiicates can be shared between protocols by modeling them as shared secrets that are declassiied
when irst published.

Finally, if the intruder learns a shared term that has not been declassiied then it counts as an attack. We say
that protocol P leaks a secret � if there is a reachable satisiable constraint A where the intruder learns � before
it is declassiied:

Deinition 5.7 (Leakage). Let A be a labeled constraint with model I and let S be a set of shared terms. A
leaks a secret from S under I if there exists � ∈ S \ declassiied (A,I) and a protocol-speciic label ℓ ∈ L such
that I |= A|ℓ · send � . □

Our notion of leakage requires that one of the components in isolation leaks a secret. This may seem like an
undue restriction (that it counts only as a leakage if one protocol alone can leak), but we will make this as one of
the prerequisites of composition, i.e., a quite weak requirement that can be checked for each protocol in isolation.
Then the compositionality result ensures that the composition does not leak the shared terms. Note also that the
set declassiied (A,I) is unchanged during projection of A, and so it suices to pick the leaked � from the set
S \ declassiied (A,I) instead of S \ declassiied (A|� ,I).

Example 5.8. The terms occurring in the GSMP intersection of the two keyserver protocols are (a) public keys
pk, (b) private keys of the form inv(pk), (c) agent names, and (d) operations on the shared set families valid,
begin� , and end� . Agent names are basic public terms in our example, i.e., ∅ ⊢ a for all constants a of type agent.
The public keys are initially secret, but we immediately declassify them whenever they are generated. To satisfy
GSMP disjointness of Pks,1 ∥ P★

ks,2
and P★

ks,1
∥ Pks,2 it thus suices to choose the following set as the set of shared

terms:

S = {pk, inv(pk), (pk, � (a, s)), � (a, s) | Γ({a, s}) = {enum}, Γ(pk) = pkey,
� ∈ {valid, begin1, end1, begin2, end2}, pk, a, s ∈ C}

Note that we want the set symbols like valid to be private. This is because terms like (pk, valid(a, s)) occurs as a
GSMP term in both component protocols, and so we have to prevent the intruder from constructing such terms
even after declassiication of keys pk. Hence, we model the set expressions like valid(a, s) as secrets to prevent
the intruder from constructing (pk, valid(a, s)) when the intruder knows the constants pk, a, and s. □

5.4 Parallel Compositionality for Constraints

With these concepts deined we can list the requirements on constraints that are necessary to apply our result on
the constraint level:

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 21

Deinition 5.9 (Parallel composability). Let A be a constraint and let S be a ground set of terms disjoint from
the set of basic public terms. Then (A,S) is parallel composable if

(1) for all protocol-speciic labels ℓ, ℓ ′ ∈ L, if ℓ ≠ ℓ ′ then A|ℓ and A|ℓ ′ are S-GSMP disjoint,
(2) for all ℓ : (�, �), ℓ ′ : (� ′, �′) ∈ labeledsetops(A), if (�, �) and (� ′, �′) are uniiable then ℓ = ℓ ′,
(3) A is type-law resistant and well-formed,

where labeledsetops(A) ≡ {ℓ : (�, �) | ℓ : insert � � or ℓ : delete � � or ℓ : � in � occurs in A or
there exists �neg and �̄ such that � notin � occurs in �neg and ℓ : ∀�̄ . �neg occurs in A}. □

The irst requirement is at the core of our compositionality result and states that the protocols can only share
basic public terms and shared terms. The second condition is our requirement on stateful protocols; it implies that
shared sets must be labeled with a ★. Finally, the third and last condition is needed to apply the typing result and
it is orthogonal to the other conditions; it is indeed only necessary so that we can apply Theorem 3.4 and restrict
ourselves to well-typed attacks. Typing results with diferent requirements could potentially be used instead.

With the composability requirements deined we can state our main result on the constraint-level:

Theorem 5.10 (Parallel Compositionality on the Constraint-Level). If (A,S) is parallel composable

and I |= A then there exists a well-typed interpretation I� such that either I� |= A|ℓ for all protocol-speciic labels

ℓ ∈ L or some preix A′ of A, that ends in a receive action, leaks a secret from S under I� .

That is, we can obtain a well-typed model of all projections A|ℓ , ℓ ∈ L, for satisiable parallel composable
constraints AÐor one of the projections has leaked a secret. In other words, if we can verify that a parallel
composable constraint A does not have any well-typed model of all protocol-speciic projections, and no preix
of A leaks a secret under any well-typed model, then it is unsatisiable, i.e., there is no łattackž.

5.5 Proving Parallel Compositionality on the Constraint-Level (Theorem 5.10)

In the following, we present a high-level proof of Theorem 5.10 (for the detailed proof in Isabelle, see [28]).
Readers not interested in the proof details might want to continue directly with Sec. 5.6.

As an intermediate result we irst prove the theorem for łstatelessž constraints, i.e., for constraints that do not
contain any inserts, deletes, and positive and negative set-membership actions. Then the theorem is established
by lifting the intermediate result to stateful constraints using a variant of a constraint reduction technique
from [27].

5.5.1 Proving Parallel Compositionality on the Constraint-Level for łStatelessž Constraints. For Theorem 5.10
we need to show that for satisiable parallel composable constraints A with shared terms S we can obtain a
well-typed model of all projections A|ℓ , ℓ ∈ L, or A has leaked a secret in one of the projections. In a nutshell
we show that any term �� occurring in a ℓ : send �1, . . . , �� action of A needs only to be constructed from terms of
protocol ℓ , unless leakage has occurred previously. Given a constraint A and a set of shared terms S we now
deine a useful variant ⊢A

GSMP
of the intruder deduction relation ⊢ as the restriction of ⊢ to the GSMP terms of A

only. This relation has a useful property:

Lemma 5.11. Let � ∈ GSMP (A) and let� ⊆ GSMP (A). Then� ⊢ � if� ⊢A
GSMP

� .

Note that for well-typed I the intruder knowledge I(ik(A)) is a subset of GSMP (A), and for all send �1, . . . , ��
actions occurring in A the ground messages I(��) are also in GSMP (A). Lemma 5.11 is therefore useful because
we can prove that, under well-typed models, all terms occurring in send actions can be derived purely through
derivation of other GSMP terms, without ever deriving, as an intermediate step, a term outside of the GSMP
set. In other words, for parallel composable constraints under well-typed models we can reduce the intruder
derivation problem to ⊢A

GSMP
.

ACM Trans. Priv. Sec.

22 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

One of the most diicult parts of the parallel compositionality proof is to show that the messages that the
intruder must produce in a constraint can be derived under all projections or are leaked, and this part we
canÐthanks to the previous lemmaÐstate as a property of ⊢A

GSMP
:

Lemma 5.12. Let (A,S) be parallel composable. Furthermore, letI be a well-typed model ofA. IfI(ik(A)) ⊢A
GSMP

� , then either

(�1) � ∉ S \ declassiied (A,I), and

(�2) for all � ∈ L, if � ∈ GSMP (A|�) then I(ik(A|�)) ⊢
A
GSMP

� ,

or there exists � ∈ S \ declassiied (A,I) and � ∈ L such that I(ik(A| �)) ⊢
A
GSMP

� .

With Lemma 5.11 we can then prove the following easily-established but important consequence of Lemma 5.12:

Lemma 5.13. Let (A,S) be parallel composable, I be a well-typed model of A, � ∈ L be a label, and � a term

such that � ∈ GSMP (A|�). If I(ik(A)) ⊢ � then either I(ik(A|�)) ⊢ � or there exists � ∈ S \ declassiied (A,I)

and � ∈ L such that I(ik(A| �)) ⊢ � .

Now we can use Lemma 5.13 to show that the models I of parallel composable constraints A are also models
of the projections A|� , or some secret is leaked:

Lemma 5.14. Let (A,S) be parallel composable and let I be a well-typed model of the stateless constraint A.

Then either I |= A|ℓ , for all ℓ ∈ L, or some preix A′ · � : receive �1, . . . , �� of A leaks a secret from S under I.

Finally, we can use Theorem 3.4 (the typing result) to relax the well-typedness assumption of Lemma 5.14 and
prove the result on the level of łstatelessž constraints:

Lemma 5.15. Let (A,S) be parallel composable and let I be a model of the stateless constraintA. Then there exists

a well-typed interpretation I� of A such that either I� |= A|ℓ for all ℓ ∈ L or some preix A′ · � : receive �1, . . . , ��
of A leaks a secret from S under I� .

5.5.2 Proving Parallel Compositionality on the Constraint-Level for Stateful Constraints. For stateful constraints
the proof idea is to use a variant of a reduction technique introduced in [27] to reduce the compositionality
problem for stateful constraints to the compositionality problem for łstatelessž constraints, i.e. constraints without
set-operations:

Deinition 5.16 (Translation of symbolic constraints). Given a set � = {ℓ1 : (�1, �1), . . . , ℓ� : (��, ��)}, where � is
inite, each �� and �� are terms, and ℓ� ∈ L ∪ {★} are labels, we deine the projection of � to ℓ , written |� |ℓ , as
follows: |� |ℓ = {ℓ ′ : � ∈ � | ℓ = ℓ ′}. For a constraint A its translation into (initely many) stateless constraints is
denoted by tr (A) = tr∅ (A) where:

tr� (0) = {0}

tr� (ℓ : insert � � · A) = tr�∪{ℓ : (�,�) } (A)

tr� (ℓ : delete � � · A) = {

ℓ : (�, �) � �1 · . . . · ℓ : (�, �) � �� · ℓ : (�, �) ̸� ��+1 · . . . · ℓ : (�, �) ̸� �� · A
′ |

|� |ℓ = {ℓ : �1, . . . , ℓ : �� , . . . , ℓ : ��}, 0 ≤ � ≤ �,A′ ∈ tr�\{ℓ : �1,...,ℓ : �� } (A)}

tr� (ℓ : � in � · A) = {ℓ : (�, �) � � · A′ | ℓ : � ∈ |� |ℓ ,A
′ ∈ tr� (A)}

tr� (ℓ : (∀�̄ . � ∨ �1 notin �1 ∨ · · · ∨ �� notin ��) · A) = {

ℓ : (∀�̄ . � ∨�1) · . . . · ℓ : (∀�̄ . � ∨��) · A
′ |

�1 ∧ · · · ∧�� is the conjunctive normal form of
∨

�∈{1,...,�}

∧

ℓ : �∈ |� |ℓ (�� , ��) ̸� �,

� = � ′1 ̸� �
′
1 ∨ · · · ∨ � ′� ̸� �′�,A

′ ∈ tr� (A)}

tr� (ℓ : � · A) = {ℓ : � · A′ | A′ ∈ tr� (A)} otherwise □

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 23

tr (A) reduces A into a inite set of constraints without set-operations, and these constraints have together
exactly the same models as A. The idea is, in a nutshell, that for a given A, only initely many set updates have
occurred, and so one can convert each set-operation that occur in A into initely many � and ̸� actions that
together preserve the meaning of the original set-operation.

Note that we apply projections |� |ℓ when translating set operations with label ℓ . Hence, we never łmixž two
set operations with diferent labels in the reduction. A crucial point here is that the parallel compositionality
conditions make such mixing unnecessary, and this enables us to prove a strong relationship between translated
constraints and projections:

Lemma 5.17. Let � ∈ L be a label. If B ∈ tr� (A) then B|� ∈ tr |� |�∪|� |★ (A|�).

By a straightforward induction proof over the structure of constraints we can also prove that tr preserves the
properties we need for our compositionality result:

Lemma 5.18 (Preservation of well-formedness and compositionality). If A is well-formed and parallel

composable, and if B ∈ tr (A), then B is well-formed and parallel composable.

Now the core idea is to reduce the compositionality problem for stateful constraints to stateless constraints
using the translation tr . For that reason we need to show that the translation is correct, i.e., that the set of models
of the input constraint is exactly the set of models of the translation:

Lemma 5.19 (Semantic eqivalence of constraint reduction). LetA be a constraint and let� = {ℓ1 : (�1, �1), . . . ,

ℓ� : (��, ��)}. Assume that all uniiable set operations occurring inA and� carry the same label, i.e., if ℓ : (�, �), ℓ ′ : (� ′, �′) ∈

labeledsetops(A) ∪ � and ∃�. � ((�, �)) = � ((� ′, �′)) then ℓ = ℓ ′. Assume also that the set of variables occurring

in � is disjoint from the bound variables of A. Then the models of A are the same as the models of tr (A), i.e.,

J�,I(�);AK I if there exists B ∈ tr� (A) such that J�, ∅;BK I.

5.5.3 Puting Everything Together. For proving Theorem 5.10 we now only need to lift Lemma 5.15 to stateful
constraints. That is, given I |= A we obtain B ∈ tr (A) such that I |= B. For B we can apply Lemma 5.15; either
I� |= B|� for all � ∈ L or B leaks, under some well-typed model I� . Finally, with Lemma 5.19 and 5.17 we can
show that either I� |= A|� for all � ∈ L or A leaks. Thus, the compositionality result on the constraint-level is
established.

5.6 The Main Result and Proof: Parallel Compositionality for Protocols

Until now our parallel compositionality result has been stated on the level of constraints. As a inal step we now
explain how we can use Theorem 5.10 to prove a parallel compositionality result for protocols. We irst deine our
compositionality requirement on protocols that ensures that all reachable constraints are parallel composable:

Deinition 5.20 (Parallel composability). Let P = ∥�∈L P� be a composed protocol and let S be a ground set of
terms disjoint from the basic public terms. Then (P,S) is parallel composable if

(1) for all protocol-speciic labels ℓ, ℓ ′ ∈ L, if ℓ ≠ ℓ ′ then P|ℓ and P|ℓ ′ are S-GSMP disjoint,
(2) for all ℓ : (�, �), ℓ ′ : (� ′, �′) ∈ labeledsetops(P), if (�, �) and (� ′, �′), after having their variables renamed apart,

are uniiable then ℓ = ℓ ′,
(3) P is type-law resistant and well-formed,
(4) for each transaction � of P, only the irst send action occurring in � may carry the ★ label,
(5) for each transaction� of P and for each action ℓ : � of� , if an attack constant of the form atack� occurs in

� then ℓ = � . □

Note that, for a protocol P, the terms occurring in P★ is a subset of the terms occurring in P. So for composed
protocols ∥�∈L P� and any protocol-speciic label ℓ ∈ L the terms occurring in the projected protocol ∥�∈L P� |ℓ is

ACM Trans. Priv. Sec.

24 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

equal to the terms occurring in the protocol Pℓ ∥ P★

1 ∥ · · · ∥ P★

ℓ−1 ∥ P★

ℓ+1 ∥ P★

ℓ+2 ∥ · · · . When L = {1, 2} the irst
condition of Deinition 5.20 becomes the requirement that P1 ∥ P★

2 and P★

1 ∥ P2 are S-GSMP disjoint.
Note also that we in condition two need to ensure that the set-operations we are checking have disjoint sets of

variables. The reason is that set-operations occur alpha-renamed in the reachable constraints, and so we have to
consider that here as well.

For protocols we also need to require that their composition is type-law resistant. It is not suicient to simply
require it for the components in isolation; uniiable messages from diferent components might break type-law
resistance otherwise. Note also that type-law resistance of a protocol P implies that the constraints reachable
in P are type-law resistant, because SMP (A) ⊆ SMP (P) for any constraint A reachable in P and because
these constraints consist of instances of the duals of transactions occurring in P; likewise for GSMP disjointness.
Thus if (∥�∈L P� ,S) is parallel composable then (A,S) is parallel composable for any constraint A reachable in
∥�∈L P� .
Condition four is technically not required to establish the compositionality result, but it is beneicial as it

allows for a simpler requirement on leakage than what is given in Theorem 5.10, namely one for which we do
not need to involve preixes of constraints, as the following illustrates:

Example 5.21. Let S be the set {�} for a ground term � that is not a basic public term. Consider two protocols
P and P′, both consisting of a single transaction: P contains the transaction with the transaction strand
1 : send � ·★ : send � while P′ contains the reversed transaction★ : send � ·1 : send � . The irst protocol P does not
satisfy condition four of Deinition 5.20 because the second send action is labeled with★, but the second protocol
P′ does. Since transactions are executed atomically the ordering of the send actions in transactions makes no
diference. However, the constraint 1 : receive � ·★ : receive � is reachable in P, and has a proper preix that leaks
� , namely 1 : receive � . This leakage can never occur in an actual run of P since the preix is not reachable in
P. The preix is also not reachable in P′Ðin fact, no preix of a reachable constraint in P′ leaks � . Thus it is
suicientÐand beneicialÐto only require that reachable constraints of parallel composable protocols do not leak,
rather than requiring it for all preixes of the reachable constraints. □

Note that condition four is not a restriction; since transactions are executed atomically the ordering of the
send actions has no efect on the result of taking a transaction.

Finally, condition ive states that each attack constant is supposed to carry within it the label of the component
protocol it occurs in. This is so that we can later express, by using the appropriate attack constant, that a particular
component protocol has an attack. We therefore require that attack constants share the labels of the actions they
occur in. Note that, by well-formedness, attack constants can only occur in actions of the form send atack� , and
condition ive then implies that for composed protocols attack constants can only occur in actions of the form
� : send atack� . While this condition restricts where attack constants can occur, note that those constants exist
solely to express when an attack has happened and condition ive still allows for that.

Example 5.22. Continuing Example 5.8 we now show that Pks,1 ∥ Pks,2 is parallel composable, i.e., that it
satisies the conditions of Deinition 5.20. We have previously shown type-law resistance and well-formedness for
a similar keyserver protocol in Example 3.3 and so we focus on the remaining conditions here. GSMP disjointness
of the composed keyserver protocol was explained in Example 5.8. Hence the irst condition of Deinition 5.20 is
satisied. Note that labeledsetops(Pks,1 ∥ Pks,2) consists of instances of labeled terms from the following set:

{1 : (PK0, ring(�0)), 1 : (PK1, revoked(�1, �1)), 2 : (PK2, seen(�2, �2)),

★ : (PK3, valid(�3, �3)),★ : (PK
�
4, begin� (�

�
4, �

�
4)),★ : (PK

�
5, end� (�

�
5, �

�
5)) | � ∈ {1, 2}}

For all pairs ℓ : (�, �), ℓ ′ : (� ′, �′) in this set we have that ℓ = ℓ ′ if (�, �) and (� ′, �′) are uniiable (note that we do not
need to apply variable-renaming because each pair of distinct elements in the set already have disjoint variables).
Hence condition two is satisied. Finally, the fourth and ifth conditions are satisied since for each � ∈ {1, 2} the

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 25

constant atack� only occurs in Pks,� and each transaction with send actions only has the irst of those labeled
with ★. □

Two useful properties of parallel composable protocols are that their reachable constraints are also parallel
composable and that attack constants actually denote that attacks have happened in those component protocols
that share their labels:

Lemma 5.23. If (P,S) is parallel composable then all constraints reachable in P are parallel composable.

Lemma 5.24. If (P,S) is parallel composable, A is reachable in P, and if I(ik(A)) ⊢ atackℓ , then the action

ℓ : receive atackℓ occurs in A (and therefore also occurs in A|ℓ).

Coming back to the problem of leakage on the protocol-level we now deine a notion of leakage for protocols
that does not involve preixes of constraints, but only those constraints that are reachable in the given protocol:

Deinition 5.25 (Well-typed leakage-free protocol). Let S be a set of ground terms and let P be a protocol. Then
P is well-typed leakage-free if for all reachable constraints A in P of the form A = A′ · � : receive �1, . . . , �� ,
there does not exist a well-typed interpretation I� and a � ∈ S \ declassiied (A,I�) such that I� |= A · send � .

This is compatible with the notion of leakage on the constraint-level, as the following two lemmata show:

Lemma 5.26. Let (∥�∈L P� ,S) be parallel composable, and let P be either the composed protocol ∥�∈L P� or a

projection ∥�∈L P� |ℓ for a ℓ ∈ L. Let furthermore A be reachable in P, A′ be a preix of A, I an interpretation,

and let � ∈ S \ declassiied (A′,I), such that I |= A′ · send � . Then there exists a preix B of A with the following

properties:

• B is reachable in P.

• B ends in a receive action.
• declassiied (B,I) = declassiied (A′,I).

• I |= B · send � .

Lemma 5.27. Let P = ∥�∈L P� be a composed protocol, S be a set of shared terms, and let (P,S) be parallel

composable. If all projections P|ℓ , ℓ ∈ L, are well-typed leakage free then no preix of a constraint reachable in P

leaks a secret from S under any well-typed model.

As a consequence of Theorem 5.10 and Lemma 5.27 we have that any protocol P� , where � ∈ L, can be safely
composed with any number of other protocols ∥�∈L\{� } P� provided that P� ∥ (∥�∈L\{� } P

★

�) = ∥�∈L P� |� is
secure and that none of the projected protocols ∥�∈L P� |ℓ , where ℓ ∈ L, leak a secret:

Theorem 5.28. Let P = ∥�∈L P� be a composed protocol and let � ∈ L. If (P,S) is parallel composable, P|� is

well-typed secure in isolation, and if for all ℓ ∈ L the protocol P|ℓ is well-typed leakage-free, then all goals of P�
hold in P (even in the untyped model).

Note that the only requirement on the projected protocols ∥�∈L P� |ℓ is that they do not leak any shared terms
(before declassifying), but we do not require that they are completely secure. This means that, if we have a secure
protocol P1, then the goals of P1 continue to hold in any composition with another protocol P2 that satisies
the composability conditions and does not leak shared terms, even if P2 has some attacks. This is in particular
interesting if we run a protocol P1 in composition with numerous other protocols that are too complex to verify
in all detail.

As a corollary we have that the composition of composable and secure protocols is secure:

Corollary 5.29. If (P1 ∥ · · · ∥ P� ,S) is parallel composable and if for all � ∈ {1, . . . , � } the protocol

P★

1 ∥ · · · ∥ P★

�−1 ∥ P� ∥ P★

�+1 ∥ · · · ∥ P★

�
is well-typed secure in isolation and well-typed leakage-free then the

composition P1 ∥ · · · ∥ P� is also secure (even in the untyped model).

ACM Trans. Priv. Sec.

26 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

5.7 Discussion & Limitations

Our result requires that the messages shared between protocols are either public or initially secret (but can be
declassiied at a later point). Our result allows both keys and even more complex messages to be shared between
protocols, and these messages can even be declassiied dynamically.
Additionally, we allow for sharing of sets. This is already much more general than the existing works, but of

course there are requirements on the shared sets that are necessary for the composition to work, e.g., the protocol
designer has to provide the right interface to the sets and the component protocols must adhere to this interface.

One limitation of our result lies in the supported primitives. With Ana we can model the standard decryption
operations, which allows us to model and analyze a wide range of protocols. Still, there are also relevant and
important protocols that we cannot model: since we are working in the free algebra, terms are equal if and only if
they are syntactically equal, and so we cannot directly model, for instance, that some operators are commutative,
which is needed for Diie-Hellman or blind signatures. We are currently working on a result that supports
algebraic properties; this requires generalizations at every level of the Isabelle formalization, e.g., from terms to
equivalence classes of terms.

6 CHECKING THE CONDITIONS AUTOMATICALLY

While the results established in the previous section comprise our main compositionality theorems, actually
applying them in practice requires a bit more work: GSMP disjointness and type-law resistance, in particular,
are non-trivial to prove. In this section we show how these syntactic checks can be fully automated. As with all
the other theory in this paper, everything has been formalized in Isabelle/HOL and integrated with PSPSP [25].
But note that the following is not limited by the restrictions of the automated veriication approach of PSPSP: we
can still model protocols and check the compositionality conditions even if we cannot automatically verify their
security goals.

6.1 Finite SMP Representations

We irst tackle the issue of automatically checking type-law resistance. The only diiculty with checking type-
law resistance of a protocol P (and of transactions) is that the set of its sub-message patterns, SMP (trms(P) ∪

setops(P)), is usually ininite. One solution [27] is to instead compute a inite set that represents, as well-typed
instances, all the sub-message patterns of P, and then substitute this set for the set of sub-message patterns when
checking type-law resistance. To that end we irst deine what it means for a term to be a well-typed instance:

Deinition 6.1 (Well-typed term instance). A term � is a well-typed instance of � if � matches � and Γ(�) = Γ(�)

(i.e., there exists a well-typed substitution � such that � = � (�)). Moreover, if � and� are sets of terms then � is
a well-typed-instance subset of � if for all � ∈ � there exists an � ∈ � such that � is a well-typed instance of
� . □

One issue with inding a inite set to represent the sub-message patterns of a protocol P is that the set of
sub-message patterns is closed under both subterms and well-typed instances. Since there may be variables with
composed type in P, all proper subterms of well-typed instances of those variables occur in SMP (P) as well. To
actually cover these terms we need to ensure that there exist instances of the composed-typed variables that
are łas general as possiblež, and for that reason we deine the following notion of a set being closed under such
instances:

Deinition 6.2 (Composed-type-instance closed). A set of terms� is composed-type-instance closed if for all
� ∈ fv(�) with a composed type of the form Γ(�) = � (�1, . . . , ��) there exists a term � (�1, . . . , ��) ∈ � where
the variables �1 . . . , �� are distinct and where each �� has type �� . □

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 27

Now we can deine what it means for a inite set� to represent the sub-message patterns of a protocol. Since
the SMP set is closed under both subterms and analysis keys we need to, in particular, require that those terms
are covered by the set� . In addition, the set needs to be composed-type-instance closed. We call such sets inite
SMP representations:

Deinition 6.3 (Finite SMP representations). A inite set of terms� is called an SMP representation if the following
conditions are satisied:

(1) subterms(�) and {� ∈ � | Ana(�) = (�, �), � ∈ �} are well-typed-instance subsets of� .
(2) � is composed-type-instance closed.

Furthermore,� is called an SMP representation for the protocol P if� is an SMP representation and trms(P) ∪

setops(P) is a well-typed-instance subset of� . □

The following lemma states that such inite SMP representations are indeed suicient for checking type-law
resistance:

Lemma 6.4 (Computable type-flaw resistance of sets). Let� be a inite set of terms and let � be a well-typed

variable-renaming such that fv(�) ∩ fv(� (�)) = ∅. Then� is type-law resistant if the following conditions hold:

(1) � is a inite SMP representation.

(2) For all �, � ∈ � \ V , if � and � (�) are uniiable then Γ(�) = Γ(�).

A simple algorithm for computing SMP representation sets is to compute the following inductively deined set
whose rules mimic those for the SMP set but restricts instantiation to only those terms that are needed to ensure
that composed-typed variables are suiciently instantiated:

Deinition 6.5 (Computing SMP representation sets). Let � be a inite set of terms and let ��� , for any � , be a
distinct variable of type � that does not occur in� (i.e., ��� ≠ ��� whenever � ≠ �). Then SMP0 (�) is deined as

the least set closed under the following rules:

(1) � ⊆ SMP0 (�).
(2) If � ∈ SMP0 (�) and � ⊑ � then � ∈ SMP0 (�).
(3) If � ∈ SMP0 (�) and Ana(�) = (�, �) then � ⊆ SMP0 (�).
(4) If � ∈ SMP0 (�) ∩ V and Γ(�) = � (�1, . . . , ��), � > 0, then � (��11 , . . . , �

��
�) ∈ SMP0 (�). □

Note that SMP0 is closed under analysis keys and so SMP0 (�) is not guaranteed to be inite. For instance, the
rule Ana(� (�)) = ({� (� (�))}, �) would technically lead to an ininite SMP0 (�) set if a term of the form � (�)

occurs in� . Besides such artiicial examples, however, the set will be inite.

6.2 Automating the Parallel Composability Conditions

With type-law resistance solved we can now consider the remaining conditions that are needed for parallel
compositionality. Here there are two issues that need to be solved. First, the set of shared terms isÐlike the set of
sub-message patternsÐan ininite set in general, and we again want to instead consider a symbolic inite set that
represents the set of shared terms. For such a inite set � a reasonable choice is to consider it a representation of
the set of shared terms consisting of all the well-typed ground instances of terms in � that are not basic public
terms:

Deinition 6.6 (Finite shared terms representation). Let � be a inite set of symbolic terms and let � be the
function deined as � (�) ≡ {� (�) | fv(� (�)) = ∅, Γ(� (�)) = Γ(�)} for all terms � . Then � is a inite shared terms

representation of the set S� deined as S� ≡ {� ∈ � (�) | � ∈ �} \ {� | ∅ ⊢ �}. □

ACM Trans. Priv. Sec.

28 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Second, we need to initely represent GSMP sets as well. Fortunately, we can here directly reuse the no-
tion of inite SMP representations since GSMP sets consist, after all, of ground SMP terms. To automate the
GSMP disjointness condition we then need to deine a variant of GSMP disjointness that works on inite SMP
representations:

Deinition 6.7 (Computable GSMP disjointness). Let � be a inite shared terms representation of S� , let�1 and
�2 be two sets of terms, and let P1 and P2 be two protocols. Then P1 and P2 satisfy the computable GSMP
disjointness conditions w.r.t. � ,�1, and�2 if the following conditions hold:

(1) fv(�1) ∩ fv(�2) = ∅, and
(2) �1 is a inite SMP representation for P1 and�2 is a inite SMP representation for P2, and
(3) for all �1 ∈ �1 and �2 ∈ �2, if �1 and �2 are of the same type and uniiable then either ∅ ⊢ �1 and ∅ ⊢ �2 or

there exists a � ∈ � such that �1 and �2 are well-typed term instances of � . □

Note that determining if a term is a basic public term, i.e. if ∅ ⊢ � , is easy: since the intruder knowledge is
here empty, and since nothing new can be derived by decomposing something that has just been composed,
deriving � can be accomplished solely by repeatedly applying the (Compose) rule of Deinition 2.1. In other words,
∅ ⊢ � (�1, . . . , ��) if � ∈ Σ

�
pub

and ∅ ⊢ �� for all � ∈ {1, . . . , �}.

Finally, we can now prove the following lemma that gives suicient conditions for checking GSMP disjointness:

Lemma 6.8 (Automated GSMP disjointness). Let � be a inite shared terms representation of S� , let�1 and

�2 be two sets of terms, and let P1 and P2 be two protocols. If P1 and P2 satisfy the computable GSMP disjointness

conditions w.r.t. � ,�1, and�2, then P1 and P2 are S� -GSMP disjoint.

The remaining parallel compositionality conditions are trivially automated, and so we have the following
lemma that gives suicient computable conditions for parallel compositionality to hold:

Lemma 6.9 (Sufficient parallel compositionality conditions). Let � be a inite shared terms representation

of S� . Let P be a composed protocol and let � ⊆ L, |� | ≥ 2, be the set of protocol-speciic labels occurring in P. For

each ℓ ∈ � let�ℓ be a inite set of terms. If

(1) for all ℓ, ℓ ′ ∈ �, if ℓ ≠ ℓ ′ then P|ℓ and P|ℓ ′ satisfy the suicient GSMP disjointness conditions w.r.t. � ,�ℓ , and

�ℓ ′ , and

(2) conditions (2), (3), (4), and (5) of Deinition 5.20 hold for P,

then (P,S�) is parallel composable.

7 OTHER FORMS OF COMPOSITION

There have been several works that consider other forms of composition, e.g., [11] for sequential composition,
i.e., where one protocol, say, exchanges a session key, and another protocol uses that key. The generality of our
resultÐthat we can compose protocols that share setsÐallows to simply express this as a special case of parallel
composition (with shared sets): one protocol performs a key exchange and puts the key into a set (on the sender
and receiver side), the other protocol obtains the key from there. The particular advantage is that we can support,
in fact, arbitrary interactions of the protocols, not necessarily strictly sequential ones, without having to prove a
new result for that form of composition.

As an example, we have modeled a simpliied version of TLS 1.2 for an unauthenticated user negotiating shared
keys with a web server. (TLS 1.3 requires algebraic properties, support for which we are currently working on.)
Moreover, we have modeled the SAML Single-Sign On protocol, that assumes two unilaterally authenticated
channels like TLS provides them: 1. between a user and an identity provider on which the user authenticates
themselves using a password, 2. between the user and a relying party on which the user forwards a credential
from the identity provider. As an interface between the two protocols we use shared sets where TLS delivers

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 29

initialKnowledge(� : dis)

★ send inv(pk(�)) .

clientHello(� : hon, � : hon)

new � : skey

★ insert � clientSessionKeys(�, �)

send crypt(pk(�), newSession(�, �,�)) .

serverRcv(� : agent, � : hon, � : skey)

receive crypt(pk(�), newSession(�, �,�))

★ insert � serverSessionKeysUnauth(�) .

authGoal(�, � : hon, �′ : agent, � : skey)

★ � in clientSessionKeys(�, �)

★ � in serverSessionKeysUnauth(�′)

★ � ̸� �′

atack.

intruderGen()

new � : skey

★ insert � dishonest

★ send �.

clientHelloD(� : hon, � : dis)

new � : skey

★ insert � clientSessionKeys(�, �)

★ send �

send crypt(pk(�), newSession(�, �,�)) .

secrecyGoal(� : hon, � : hon, � : skey)

receive �

★ � in clientSessionKeys(�, �)

atack.

Fig. 3. A key-exchange protocol without client authentication

negotiated keys, and SSO picks them up. We have checked in Isabelle that they satisfy the requirements of our
compositionality result.

The speciications are too long to present here in full; it is found in the additional material [29]. Instead, we give
a simpler example of a key exchange with unilateral authentication (a trivialized TLS if you will) and compose it
with a simple login. This still allows for illustrating the essentials of sequential-style composition.

7.1 A Sequential Composition Example

The irst protocol is shown in Fig. 3. Let the set of shared terms S consist of all private constants of type skey
(since they will represent shared keys) and the private keys inv(pk(�)) of every agent �. We also consider pk as
a public function here, so that all public keys are public terms. We will also consider passwords, pw, but they are
not part of S since they only occur in the second protocol. The initialKnowledge rule is releasing the private
key of every dishonest agent � and, in the login protocol, every password that � has with an honest agent �.
The rule intruderGen allows the intruder to create fresh keys and insert them into a special set dishonest that
contains all intruder-generated keys.

Next, the rule clientHello deines how an honest sender� can start the protocol with an honest �:� generates a
fresh key � and inserts it into its clientSessionKeys set, and this step is labeled★ as we use this set as an interface
to the subsequent protocol. Finally, � sends a message encrypted with the public key of � and containing �
under a format newSession. The rule clientHelloD is the same for the case that � is dishonest. The diference to
the previous rule is only that � is released here. Note that one could have uniied this rule with the previous
clientHello by simply setting � : agent; the intruder can obtain the � from the encrypted message since they
have inv(pk(�)) for every dishonest �. However, the ★-labeled step send � means � is explicitly declassiied;
without this, the protocol would actually be leaking a secret (since all keys are in S).

Note that these rules do not authenticate �, but intuitively in some sense � is authenticated, because only
the intended recipient can read the key generated by �. This is best observed in the following rule serverRcv:
here an honest server � receives a message from any client � (honest or dishonest) and stores it in the set
serverSessionKeysUnauth(�). Note that this set is parameterized only over the name �, in contrast to its counter-
part clientSessionKeys(�, �) that has both names as parameters. This is because the server cannot be sure about
the identity of �, and the server does not even note the name that the sender claims to be. (We could, in fact,
omit the sender-name in the encrypted message without introducing a vulnerability.)

ACM Trans. Priv. Sec.

30 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

initialKnowledge′ (� : hon, � : dis)

★ send inv(pk(�))

send pw(�,�) .

sendPW(� : hon, � : agent, � : skey)

★ � in clientSessionKeys(�, �)

send scrypt(�, login(�, �, pw(�, �))) .

authenticateKey(� : hon, � : hon, � : skey)

receive scrypt(�, login(�, �, pw(�, �)))

★ � in serverSessionKeysUnauth(�)

★ � in clientSessionKeys(�, �)

★ delete � serverSessionKeysUnauth(�)

★ insert � serverSessionKeysAuth(�, �) .

agreementLogin1(� : hon, � : hon, � : skey)

receive scrypt(�, login(�, �, pw(�, �)))

★ � in serverSessionKeysUnauth(�)

★ � notin clientSessionKeys(�, �)

atack.

intruderGen′ ()

new � : skey

★ insert � dishonest

★ send �.

authenticateKeyD(� : dis, � : hon, � : skey)

receive scrypt(�, login(�, �, pw(�, �)))

★ � in serverSessionKeysUnauth(�)

★ delete � serverSessionKeysUnauth(�)

★ insert � serverSessionKeysAuth(�, �) .

secrecyLogin(� : hon, � : hon, � : skey)

receive �

★ � in serverSessionKeysAuth(�, �)

atack.

agreementLogin2(� : hon, � : hon, � : skey)

★ � in serverSessionKeysAuth(�, �)

★ � notin clientSessionKeys(�, �)

atack.

Fig. 4. A login protocol for sequential composition with the key-exchange from Fig. 3.

This models an almost trivial key-exchange protocol without client authentication; note it does not even
prevent replay. It is somewhat similar to what old TLS up to version 1.2 did, i.e., the client generating a (basis for)
the symmetric key, and encrypting it with the public key of the server.

We deine two goals here: secrecyGoal simply states that the intruder must not obtain the session key that an
honest� has generated for an honest �; note this goal expresses basically�’s point of view. That this corresponds
also to �’s view then follows from the authGoal, namely that if an honest � has generated a key for an honest
�, then no other honest agent �′ ≠ � can receive this key. This is a variant of standard non-injective (i.e., not
counting replay as an attack) authentication, adapted to unilateral authentication.
As protocol to sequentially compose, we consider now the login protocol shown in Fig. 4. It has the same

intruder rules as the key-exchange protocol. The irst step of this protocol is sendPW, where an honest client �
who wants to log in to the server � (who could be honest or dishonest) takes one of the clientSessionKeys(�, �)
(i.e., that were negotiated by the key-exchange protocol) and encrypts its password pw(�, �) with it (and structure
the message with the format login).

There are several rules that describe how an honest server � can receive such a message. First, authenticateKey
checks that there is a key � in serverSessionKeysUnauth(�) (i.e., that has been negotiated previously with
somebody). Before this transaction, the key � is unauthenticated, i.e., � cannot be sure who created � (the person
claiming to be �). Decisive for the authentication is that this message contains the password pw(�, �) (and, if the
protocol works correctly, it is not known to the intruder unless � or � is dishonest). The rule authenticateKey
is for a particular case only: that � is honest and � in clientSessionKeys(�, �). Recall that clientSessionKeys
is actually a set maintained by � (containing the keys � has created for use with �), so the server � would
not be able to check this condition. However, observe that in the case � notin clientSessionKeys(�, �) the
rule agreementLogin1 is applicable, i.e., then we would have a violation of authentication, because � would be
accepting at this point a key � as authenticated by � while � has actually not created this key for use with
�. Since the case � notin clientSessionKeys(�, �) triggers an attack, it is without loss of attacks to restrict the
authenticateKey rule to the case� in clientSessionKeys(�, �), i.e., that� has indeed meant� for communication
with �. In this case, � moves the key � from serverSessionKeysUnauth(�) to serverSessionKeysAuth(�, �), i.e.,
registering the key as authenticated.

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 31

The case of � receiving the login from a dishonest� is modeled by the rule authenticateKeyD. Here, the server
directly registers � as authenticated by �. Finally, we have the following additional goals about keys that end
up in the set of authenticated keys between honest � and �: secrecyLogin says they must not be known by an
intruder, and agreementLogin2 means that the client � indeed created them for use with �, i.e., the standard
non-injective agreement on the key.
Call �1 the key-exchange from Fig. 3 and call �2 the login from Fig. 4. We have veriied in Isabelle with

PSPSP [25] for two honest agents and one dishonest agent that �1 ∥ �★2 and �★1 ∥ �2 are secure, i.e., each protocol
in parallel with the abstraction of the other is secure. With the composition framework we have further proved
automaticallyÐwithout any bounds on the number of agentsÐthat �1 and �2 are parallel composable with respect
to the set of shared terms consisting of the private keys, the passwords, and the symmetric keys. Further, since
�1 and �2 do not leak we have that �1 ∥ �2 is secure, which models in fact a sequential composition where �1
establishes shared keys and �2 uses them.
Observe that the key-exchange protocol �1 can in fact be replaced by any key-exchange protocol � ′1 that

induces the same abstraction �★1 , and similar for the login �2 (and of course the parallel composability conditions
have to hold, but that is essentially that the message formats of the protocols do not interfere). Let us thus review
these interface �★1 and �★2 again more closely, i.e., restricting the protocols to ★-labeled steps.
�★1 says that the private key and passwords of the intruder are declassiied and that the intruder can generate

new keys that are inserted into the set dishonest (rules initialKnowledge and intruderGen). Moreover, any agent
can create fresh keys and insert them into clientSessionKeys(�, �), and if � is dishonest, these keys are declassiied
and given to the intruder (rules clientHello and clientHelloD). Since the protocol must not leak shared terms, it is
an implicit consequence of this speciication that all other keys must thus be kept secret. Moreover, an honest
� will accept arbitrary keys into serverSessionKeysUnauth (rule serverRcv). (The attack rules secrecyGoal and
authGoal do not contribute to �★1 , since their consequence atack is not labeled ★.)

In �★2 , sendPW and the attack rules are not contributing for the same reason. The two rules authenticateKey
and authenticateKeyD in the abstracted versions now say that any unauthenticated key � at server � can be
moved to the authenticated keys for an agent �, if � is honest and indeed considers � as a session key with �, or
if � is dishonest.
Both protocols’ interfaces thus completely abstract from the way this is implemented: they only talk about

asymmetric keys and passwords only as far as what the intruder initially knows.3

In the additional material [29] you can ind an example that goes beyond the simple sequential composition by
adding another protocol that updates keys for the above composition.

7.2 Vertical Composition

In [19] we have considered vertical compositionality, where vertical means that we have one łhigh-levelž appli-
cation protocol that uses a łlow-levelž channel protocol for tasks like secure transport, e.g., a banking service
running over TLS. The vertical composition paper, in fact, is building on the compositionality result of this paper:
it uses the parallel composition as one step in its construction, where sets act as an interface between high-
and low-level protocols, similar to what we have done in this section. The particular diiculty is that, due to
the vertical nature of this composition, the low-level protocol embeds the messages of the high-level protocol,
and thus the messages of the high-level protocol need to be part of S to satisfy our composition requirements.
[19] therefore extends the typing system to allow for an abstract payload data type (so that one can use an
arbitrary high-level protocol), and then shows in several transformation steps that it is suicient to verify the

3One can easily improve the key-exchange so that it satisies injective agreement as well (i.e., old keys are not accepted by a server a second

time). The keyserver example from the previous section achieves this.

ACM Trans. Priv. Sec.

32 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

low-level protocol with nonces as payloads, though one has to allow for both fresh and repeated nonces, as well
as for both secret and public nonces to cover all cases of payloads in an abstract way.

8 CONCLUSION AND RELATED WORK

Our composition theorem for parallel composition is the latest in a sequence of parallel composition results,
each of them pushing the boundaries of the class of protocols that can be composed [2ś4, 12, 14, 15, 21ś23]. The
irst results simply require completely disjoint encryptions; subsequent results allowed the sharing of long-term
keys, provided that wherever the common keys are used, the content messages of the diferent protocols are
distinguished, for instance by tagging. Other aspects are which primitives are supported as well as what forms of
negative conditions, e.g., to support as goals the full geometric fragment [2], and under which conditions privacy
properties can be preserved under protocol composition [4].
Our result lifts the common requirement that the component protocols only share a ixed set of long-term

public and private constants. Our result allows for stateful protocols that maintain databases (such as a key
server) and the databases may even be shared between these protocols. This includes the possibility to declassify
long-term secrets, e.g., to verify that a protocol is even secure if the intruder learns all old private keys. Both
databases, shared databases, and declassiication are considerable generalizations over the existing results.

Like [2] our result links the parallel compositionality result with a typing result such as the result of [27], i.e.,
essentially requiring that all messages of diferent meaning have a distinguishable form. Under this requirement
it is sound to restrict the intruder model to using only well-typed messages which greatly simpliies many related
problems. While one may argue that such a typing result is not strictly necessary for composition, we believe
it is good practice and also its well with disjointness requirements of parallel composition. Moreover, many
existing protocols already satisfy our typing requirement, since, unlike tagging schemes, this does not require a
modiication of a protocol as long as there is some way to distinguish messages of diferent meaning.

There are other types of compositionality results for sequential and vertical composition, where the protocols
under composition do build upon each other, e.g., one protocol establishes a key that is then subsequently used
by another protocol [3, 11, 15, 18ś20, 37]. This requires that one protocol satisies certain properties (e.g. that the
key exchange is authenticated and secret) for the other protocol to rely on.

As the example of sequential composition in Sec. 7 shows the support of shared databases in a compositionality
result opens a whole alley of applications: we can use the databases as an interface between components of
a system. Here, the system thus work in parallel but not independent of each other. In all examples in this
paper, each database has been modeled as belonging to one particular agent. Thus, when using databases as
an interface between components, they are in fact not communications between diferent agents (via shared
memory), but communications through an interface between components belonging to a single agent. Each of
these components, however, can communicate over the normal network with components at other agents. Hence,
this allows for integrating into the security question more traditional compositionality aspects from software,
that are not concerned with a notion of attackers [7, 8, 16, 17, 35].
So far, compositionality for security protocols results are almost exclusively łpaper-and-pencilž proofs. The

proof arguments are often quite subtle, e.g., given an attack where the intruder learned a nonce from one protocol
and uses it in another protocol, one has to prove that the attack does not rely on this, but would similarly work
for distinct nonces. It is not uncommon that parts of such proofs are a bit sketchy with the danger of overlooking
some subtle problems as for instance described in [26]. For this reason, we have formalized the compositionality
result in the proof assistant Isabelle/HOL [38], extending the formalization of [24, 26, 27], giving the extremely
high correctness guarantee of machine-checked proofs. To our knowledge, this work is the irst such formalization
within the symbolic model of a compositionality result in a proof assistant, with the notable exception of a study
in Isabelle/HOL of compositional reasoning on concrete protocols [10].

ACM Trans. Priv. Sec.

Stateful Protocol Composition in Isabelle/HOL • 33

Besides the symbolic model, there are several works about compositionality in the cryptographic research [6,
9, 32, 33]. Here, one describes components both in terms of a real system and an ideal functionality and in
the composition one basically proves that the real system is indeed indistinguishable for an attacker from the
ideal system. There are irst works [1] towards formalizing this step in a theorem prover. Then in proving the
high-level system one can instead rely on the ideal functionality of the low-level components. In this way one
can work in a security proof upwards in several layers from a low cryptographic layer to the high application
layer. There is a similarity in the real vs. ideal paradigm and our paradigm of a protocol P and its abstraction P★

and the fact that in a compositionality proof we can rely on P★. However, the setup is substantially diferent:
P★ represents the declassiications and changes that the protocol P can make to databases shared with another
protocol P′ and the compositionality proof then shows that P′ is secure when the environment only makes
declassiications and changes contained in P★ (and vice-versa for P and P′★). While an ideal system may abstract
communicated messages, hiding the cryptographic implementation in the abstract version, our approach rather
has to give verbatim the interaction that happens. This means also that we have the concept of shared messages
and declassiication when a message is available to the intruder. Thus, the cryptographic compositionality
frameworks are closer to vertical composition in the sense of [19]. While the cryptographic compositionality
frameworks perform proofs on the cryptographic level, our work is on a symbolic (term-algebra) level. This
makes many arguments easier for us and allows us to argue on a transition system level where the interaction
with shared databases can be expressed at least much easier.

This has indeed another advantage of the present approach: our result is closely linked to automated methods
for protocol veriication, in particular our PSPSP tool [25] that allows for automated veriication of a large class of
stateful protocols. This means that not only can a complex systemÐcomposed of several component protocolsÐbe
proved correct entirely in Isabelle, but also that this proof can be obtained automatically.

ACKNOWLEDGMENTS

This work was supported by the Sapere-Aude project łComposec: Secure Composition of Distributed Systemsž,
grant 4184-00334B of the Danish Council for Independent Research and by the łCyberSec4Europež European
Union’s Horizon 2020 research and innovation programme under grant agreement No 830929. We thank Luca
Viganò, Anders Schlichtkrull, and the reviewers for helpful comments.

REFERENCES
[1] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Catalin Hritcu, Kenji Maillard, and

Bas Spitters. 2021. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq. In CSF. IEEE, 1ś15.

[2] Omar Almousa, Sebastian Mödersheim, Paolo Modesti, and Luca Viganò. 2015. Typing and Compositionality for Security Protocols. In

ESORICS (LNCS, Vol. 9327). Springer, Heidelberg, Germany, 209ś229.

[3] Suzana Andova, Cas J. F. Cremers, Kristian Gjùsteen, Sjouke Mauw, Stig Fr. Mjùlsnes, and Saša Radomirović. 2008. A framework for

compositional veriication of security protocols. Inf. Comput. 206, 2-4 (2008), 425ś459.

[4] Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. 2015. Composing Security Protocols: From Conidentiality to Privacy. In POST,

Riccardo Focardi and Andrew Myers (Eds.). Springer, Heidelberg, Germany, 324ś343.

[5] Myrto Arapinis and Marie Dulot. 2014. Bounding messages for free in security protocols - extension to various security properties. Inf.

Comput. 239 (2014), 182ś215.

[6] Michael Backes, Birgit Pitzmann, and Michael Waidner. 2007. The reactive simulatability (RSIM) framework for asynchronous systems.

Inf. Comput. 205, 12 (2007), 1685ś1720.

[7] Manfred Broy. 1997. Interactive and Reactive Systems: States, Observations, Experiments, Input, Output, Nondeterminism, Composi-

tionality and all That. In Foundations of Computer Science (LNCS, Vol. 1337), Christian Freksa, Matthias Jantzen, and Rüdiger Valk (Eds.).

Springer, Heidelberg, Germany, 279ś286.

[8] Achim D. Brucker and Burkhart Wolf. 2008. An Extensible Encoding of Object-oriented Data Models in HOL. Journal of Automated

Reasoning 41 (2008), 219ś249. Issue 3.

[9] Chris Brzuska, Antoine Delignat-Lavaud, Konrad Kohbrok, and Markulf Kohlweiss. 2018. State-Separating Proofs: A Reduction

Methodology for Real-World Protocols. IACR Cryptol. ePrint Arch. 306 (2018).

ACM Trans. Priv. Sec.

34 • Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

[10] Denis Frédéric Butin. 2012. Inductive analysis of security protocols in Isabelle/HOL with applications to electronic voting. Ph. D. Dissertation.

Dublin City University.

[11] V. Cheval, V. Cortier, and B. Warinschi. 2017. Secure Composition of PKIs with Public Key Protocols. In CSF. IEEE, 144ś158.

[12] Céline Chevalier, Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. 2013. Composition of password-based protocols. Formal Methods

in System Design 43, 3 (2013), 369ś413.

[13] Rémy Chrétien, Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. 2020. Typing Messages for Free in Security Protocols. ACM

Trans. Comput. Log. 21, 1 (2020), 1:1ś1:52. https://doi.org/10.1145/3343507

[14] Véronique Cortier and Stéphanie Delaune. 2009. Safely composing security protocols. Formal Methods in System Design 34, 1 (2009),

1ś36.

[15] Ştefan Ciobâcă and Véronique Cortier. 2010. Protocol Composition for Arbitrary Primitives. In CSF. IEEE, 322ś336.

[16] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. 2012.

Concurrency Veriication: Introduction to Compositional and Non-Compositional Methods. Cambridge University Press, USA.

[17] Hartmut Ehrig, Bernd Mahr, Ingo Claßen, and Fernando Orejas. 1992. Introduction to Algebraic Speciication. Part 1: Formal Methods

for Software Development. Comput. J. 35, 5 (1992), 460ś467.

[18] Santiago Escobar, Catherine A. Meadows, José Meseguer, and Sonia Santiago. 2010. Sequential Protocol Composition in Maude-NPA. In

ESORICS. Springer, Heidelberg, Germany, 303ś318.

[19] Sébastien Gondron and Sebastian Mödersheim. 2021. Vertical Composition and Sound Payload Abstraction for Stateful Protocols. In CSF.

IEEE, 1ś16. https://doi.org/10.1109/CSF51468.2021.00038

[20] T. Groß and S. Mödersheim. 2011. Vertical Protocol Composition. In CSF. IEEE, 235ś250.

[21] Joshua D. Guttman. 2009. Cryptographic Protocol Composition via the Authentication Tests. In FOSSACS. Springer, Heidelberg, Germany,

303ś317.

[22] Joshua D. Guttman and F. Javier Thayer. 2000. Protocol Independence through Disjoint Encryption. In CSFW. IEEE Computer Society,

24ś34. https://ieeexplore.ieee.org/xpl/conhome/6924/proceeding

[23] N. Heintze and J. D. Tygart. 1994. A model for secure protocols and their compositions. In Security and Privacy. IEEE, 2ś13.

[24] Andreas Viktor Hess. 2019. Typing and Compositionality for Stateful Security Protocols. Ph. D. Dissertation. Technical University

Denmark.

[25] Andreas Viktor Hess, Sebastian Alexander Mödersheim, Achim D. Brucker, and Anders Schlichtkrull. 2021. Performing Security Proofs

of Stateful Protocols. In CSF. IEEE, United States, 1ś16.

[26] Andreas Viktor Hess and Sebastian Mödersheim. 2017. Formalizing and Proving a Typing Result for Security Protocols in Isabelle/HOL.

In CSF. IEEE, 451ś463.

[27] Andreas Viktor Hess and Sebastian Mödersheim. 2018. A Typing Result for Stateful Protocols. In CSF. IEEE, 374ś388.

[28] Andreas V. Hess, Sebastian Mödersheim, and Achim D. Brucker. 2020. Stateful Protocol Composition and Typing. Archive of Formal

Proofs (April 2020). https://isa-afp.org/entries/Stateful_Protocol_Composition_and_Typing.html.

[29] Andreas V. Hess, Sebastian Mödersheim, and Achim D. Brucker. 2022. Stateful Protocol Composition in Isabelle/HOL - Supplementary

Material. https://people.compute.dtu.dk/samo/StateParCompAdditionalMaterial.tgz.

[30] Andreas V. Hess, Sebastian Mödersheim, Achim D. Brucker, and Anders Schlichtkrull. 2020. Automated Stateful Protocol Veriication.

Archive of Formal Proofs (April 2020). https://isa-afp.org/entries/Automated_Stateful_Protocol_Veriication.html.

[31] Andreas Viktor Hess, Sebastian Alexander Mödersheim, and Achim D. Brucker. 2018. Stateful Protocol Composition. In ESORICS 2018

(LNCS, Vol. 11098). Springer, Heidelberg, Germany, 427ś446. Extended version [?].

[32] Ralf Küsters and Max Tuengerthal. 2011. Composition Theorems Without Pre-established Session Identiiers. In CCS. ACM, New York,

NY, USA, 41ś50.

[33] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. 2020. The IITM Model: A Simple and Expressive Model for Universal Composability.

J. Cryptol. 33, 4 (2020), 1461ś1584.

[34] Gavin Lowe. 1997. A Hierarchy of Authentication Speciications. In CSFW. IEEE, 31ś44.

[35] Robin Milner. 1989. Communication and concurrency. Prentice Hall, Saddle River, NJ, USA.

[36] Sebastian Mödersheim and Georgios Katsoris. 2014. A Sound Abstraction of the Parsing Problem. In CSF. IEEE, 259ś273.

[37] S. Mödersheim and L. Viganò. 2009. Secure pseudonymous channels. In ESORICS (LNCS, Vol. 5789). Springer, Heidelberg, Germany,

337ś354.

[38] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL ś A Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283.

Springer, Heidelberg, Germany.

[39] David J. Otway and Owen Rees. 1987. Eicient and Timely Mutual Authentication. ACM SIGOPS Oper. Syst. Rev. 21, 1 (1987), 8ś10.

ACM Trans. Priv. Sec.

https://doi.org/10.1145/3343507
https://doi.org/10.1109/CSF51468.2021.00038
https://ieeexplore.ieee.org/xpl/conhome/6924/proceeding
https://isa-afp.org/entries/Stateful_Protocol_Composition_and_Typing.html
https://people.compute.dtu.dk/samo/StateParCompAdditionalMaterial.tgz
https://isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html

	Abstract
	1 Introduction
	2 Language and Model
	2.1 A Keyserver Example
	2.2 Symbolic Constraints and Intruder Model
	2.3 Syntax and Semantics of Protocols

	3 A Typing Result
	4 Composition: Example and Illustration
	5 The Compositionality Result
	5.1 Protocol Abstraction
	5.2 Shared Terms
	5.3 Declassification and Leaking
	5.4 Parallel Compositionality for Constraints
	5.5 Proving Parallel Compositionality on the Constraint-Level (Theorem 5.10)
	5.6 The Main Result and Proof: Parallel Compositionality for Protocols
	5.7 Discussion & Limitations

	6 Checking the Conditions Automatically
	6.1 Finite SMP Representations
	6.2 Automating the Parallel Composability Conditions

	7 Other Forms of Composition
	7.1 A Sequential Composition Example
	7.2 Vertical Composition

	8 Conclusion and Related Work
	Acknowledgments
	References

