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Ensuring vertical separation is a key means of
maintaining safe separation between aircraft in
congested airspace. Aircraft trajectories are modelled
in the presence of significant epistemic uncertainty,
leading to discrepancies between observed trajectories
and the predictions of deterministic models, hampering
the task of planning to ensure safe separation. In
this paper a probabilistic model is presented, for the
purpose of emulating the trajectories of aircraft in
climb and bounding the uncertainty of the predicted
trajectory. A monotonic, functional representation
exploits the spatio-temporal correlations in the radar
observations. Through the use of Gaussian Process
Emulators, features that parameterise the climb are
mapped directly to functional outputs, providing a
fast approximation, while ensuring that the resulting
trajectory is monotonic. The model was applied as
a probabilistic digital twin for aircraft in climb and
baselined against the Base of Aircraft Data (BADA),
a deterministic model widely used in industry. When
applied to an unseen test dataset, the probabilistic
model was found to provide a mean prediction that
was 20.56% more accurate, as measured by the mean
absolute error, with data-driven credible intervals that
were 9.54% sharper.
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1. Introduction
Trajectory prediction (TP) plays an important role in the safe management of aircraft and is
used by air traffic controllers to inform decision-making by predicting aircraft trajectories and
detecting potential conflicts [1]. To ensure safety, air traffic controllers strive to maintain either
longitudinal or vertical separation of aircraft [2]. In this context vertical TP, the prediction of an
aircraft’s altitude with time, is especially important as controllers must devise plans that maintain
separation at all times. State-of-the-art TP methods project the future path of an aircraft through
models of the flight mechanics of aircraft, in which an estimate of the present state of the aircraft
is used as an initial condition for the numerical solution of a set of equations approximating the
physics governing the aircraft’s flight (see, e.g. [3–5]). However, there is a high level of epistemic
uncertainty inherent in this approach due to: the simplifications necessarily made by the model;
an uncertain knowledge of the aircraft’s state; lack of knowledge of the pilot’s intentions [6]; and
the unknown influence of environmental effects on the aircraft trajectory [7]. As a consequence a
mismatch between the predictions of physics-based TP methods and the actual path followed by
aircraft can be observed, especially during climbs and descents [8,9].

The observed mismatch between physics-based methods and real trajectories has motivated
the application of machine learning-based methods to TP. In some respects TP is a very amenable
problem for machine learning due to the large quantity of radar observations available to train
models [10–13]. In recent years, methods based on Neural Networks [14,15] have been proposed
for TP. However, there are several challenges facing machine learning methods for TP that must
be addressed. Firstly, given that high levels of epistemic uncertainty contribute so significantly
to model-mismatch in state-of-the-art equations-based models, a probabilistic approach would
appear to be essential. Next generation TP models must be able to efficiently handle uncertainties
and to clearly express the uncertainty in the model predictions [7,16]. This is the motivation for
approaches based on Sequential Monte Carlo sampling [17] and Gaussian Mixture Models in the
TP literature [1,18]. Indeed, several recent reviews of Machine Learning methods have expressed
this same point, that moving away from deterministic black-box machine learning models is
necessary for the massive industrial application of machine learning [19,20], particularly in risk-
averse industries such as aeronautics. Uncertainty estimates in TP for climbing aircraft are not
generally data-driven. For instance, the left panel of Figure 1 illustrates an envelope created
by two runs of a deterministic TP model with minimum and maximum nominal mass, where
the nominal mass refers to the aircraft mass expected by the model. However, this is an over-
conservative approach. What is desired from a probabilistic TP model is illustrated on the right
panel of Figure 1: a data-driven credible interval that trades off some conservatism in favour of
more realistically representing the uncertainty.

In parallel with the continued refinement of TP methods, there has been a drive in recent
years to explore the application of Artificial Intelligence (AI) to emulate the role of an Air
Traffic Controller (ATCO) that has been motivated by the maturity of dynamic optimisation and
reinforcement learning [21,22]. In this context, the probabilistic approach to TP appears to be
particularly useful. During training, an AI agent’s plan is evaluated within a Digital Twin of
an airspace. These plans must be robust to variabilities in the trajectories of aircraft, requiring a
probabilistic digital twin. This offers another area of application for a probabilistic TP model [23].

The second challenge facing ML methods is to guarantee that predicted trajectories satisfy
physical constraints, particularly when testing on unseen data. In the case of TP, there is a
requirement that these trajectories are achievable for the performance envelope of an aircraft.
Simultaneously, there is a qualitative constraint that predicted trajectories correspond to modes of
aircraft operation that are observed in the real-world. In the case of aircraft in climb, a reasonable
expectation is that the altitude of an aircraft will increase monotonically with time, until a target
altitude is reached. Enforcing a monotonicity constraint is straightforward if the ML approach
corrects the parameters of an equation-based model. For instance, Alligier et al. [24,25] proposed
a ML model to better predict the mass and speed intent of climbing aircraft, unknown parameters
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Figure 1: An uncertainty bound for an aircraft climbing between flight levels 200 and 300,
obtained from runs of a deterministic TP code with maximal and minimal mass, compared to the
observed radar data (left). An illustration of the desired data-driven bounds, that better reflects
the observed trajectories (right).

which are then fed into the Base of Aircraft Data (BADA) physics-based model. However, there is
a computational cost associated with the numerical solution of BADA, especially in a probabilistic
approach that might require multiple model evaluations. A fast approximation to BADA is
required, where model inputs are mapped directly to trajectories. However, guaranteeing that
such fast approximations will themselves be monotonic is challenging. Some progress has been
made in this regard in the setting of pointwise data, for example recent work with Gaussian
Process Emulators (GPEs) has found correlation functions that correspond to a monotonic
mean function [26,27]. However, little attention has been paid in the ML literature to fast
approximations with monotonic functional outputs.

Finally, a point prediction approach to TP, for instance by using a neural network to predict
future states of an aircraft, may be limited as it does not fully exploit the spatio-temporal
correlations available in the radar observations [28]. Instead, a functional approach may be a more
natural way to express the predicted trajectory. This is the motivating philosophy in the papers of
Nicol et al. [29,30], in which functional Principal Component Analysis (fPCA) is used to analyse
aircraft trajectories. In this work we propose a method for vertical TP using a functional Gaussian
Process approach in which we marry ideas from Functional Data Analysis (FDA) with Gaussian
Process Emulators. The model produces a functional estimate of a trajectory that is informed by
the physics of the problem, that is, the trajectory is constrained to be monotonic. By exploiting
the posterior variance, the predictive uncertainty of the method can be expressed by sampling the
posterior distribution. The novel contributions of this paper may be summarised as follows:

• A generative model for aircraft in climb that exploits tempo-spatial correlations in the
trajectory data

• Posterior samples from the model are guaranteed to be monotonic, a necessary condition
for them to be considered physically plausible

• Gaussian Process Emulators are used to generate monotonic samples conveniently using
standard choices of kernel functions

In the following section we describe the probabilistic model, before demonstrating its
application to a dataset of real flight data in Section 3, where the model is baselined against BADA,
a deterministic TP code used widely in industry.



4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

2. A Probabilistic model for climbing aircraft
We propose a probabilistic model that can express the flight level, f , as a function of time, t, for
an aircraft that is cleared to climb by an Air Traffic Control Officer (ATCO). Flight levels refer
to the altitude at standard air pressure, expressed in hundreds of feet. A probabilistic model for
the climb is denoted f(t|x), where x∈X ⊆ℜnx represents a set of nx features that parameterise
the climb. In what follows these features are considered to be time independent, consisting of the
instructions issued to the aircraft by the ATCO and the available data pertaining to the aircraft’s
state when the command was issued. The model is trained using a set of radar observations
containing nd monotonically increasing trajectories, D= {(x(i), f (i)(t))}, i= 1 . . . nd. One radar
sweep takes approximately 6 seconds, while the duration of a typical climb in D is of the order
of 5-10 minutes. The method consists of two parts: firstly, trajectories in D are described with
a functional, monotonic representation that is parameterised by a set of hyper-parameters, y ∈
Y ⊆ℜny ; and secondly, a set of ny Gaussian Process Emulators are defined to accomplish the
probabilistic mapping x→ y.

(a) Monotonic representation of functional data
Functional Principal Components Analysis (fPCA) is a popular tool in FDA for performing
dimensionality reduction on functional data. In fPCA a function is expressed as a weighted sum
of orthonormal basis functions, ϕi(t), and a mean function, µ(t):

f(t)≈ µ(t) +

nc∑
i=1

αiϕi(t), (2.1)

whereα∈ℜnc are referred to as the Principal Component scores (withαi denoting the i-th score)
and nc is the number of Principal Components [31]. fPCA has proven to provide successful
representations of functional data, however, the process of finding orthogonal basis vectors is
purely data-driven and is oblivious to the physical constraints on the data generating process.
For instance, in the targeted application of vertical TP it is expected that f(t) will be a smooth
monotonic function, with constraints imposed on its derivative with respect to time, ∂tf , by the
performance of the aircraft. Since they are orthogonal, the fPCA modes, ϕi(t), are oscillatory.
These basis functions are chosen such that they commit the smallest L2 error for each nc among
all possible bases.

In theory an infinite number of modes are required to represent monotonic functions.
However, in practice the summation is truncated and it is therefore possible for the set of
Principal Component scores, α, to correspond to a trajectory that is not monotonic even if all
the trajectories in D are themselves monotonic [32]. For this reason we, instead, employ the
monotonic representation of functional data from Ramsay [33]. Provided that f satisfies the
conditions that:

• log ∂tf is differentiable;
• ∂t log ∂tf = ∂2t f/∂tf is Lebesgue square integrable;

then such a monotonic function may be represented using an integral form:

f(t) = β0 + β1

∫ t
τ0

exp
∫s
τ0

w(u)duds, (2.2)

where β0 and β1 are coefficients to be determined and w(t) represents a square integrable function
such that w= ∂2t f/∂tf . τ0 represents the time when the manoeuvre begins. The second condition
requires that the ratio of the curvature of the trajectory to its slope are bounded. Practically,
satisfying these conditions requires the trajectory to be strictly monotonic (i.e. ∂tf > 0) and that
∂2t f → 0 only if ∂tf → 0. Given that we expect ∂tf to be continuous for an aircraft in climb, these
conditions are considered reasonable for aircraft trajectories. The conditions make it difficult to
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Figure 2: Plot of a trajectory (red) and its reconstructions (blue) using the monotonic
representation proposed here with varying numbers of Fourier modes (left). Associated
weighting functions w(t) (right).

model an aircraft leveling out at its target flight level, because aircraft often level out between
radar measurements and, therefore, have observed first derivative that is discontinuous. In what
follows the trajectory is truncated at the target flight level, instead of modelling the abrupt change
in climb rate. This approach is reasonable given that the target flight level is known a priori, and
the period of the levelling out (shorter than 6s) is much shorter than the period of the entire climb.
Inspired by the work of Shin et al. [34], in which fPCA is used to represent this function, we cast
w(t) as a Fourier series:

w(t) = a0 +

nw∑
i=1

aicos(2πit) + bisin(2πit), (2.3)

where the set of coefficients a, b∈ℜnw , β1, and a0 are determined through Stochastic Gradient
Descent (SGD) for each trajectory in D, in which the residual sum of squares (RSS) loss between
the observations and the functional representation is minimised. ai and bi denote the ith

components of a and b, respectively. In what follows we enforce the initial condition f(τ0 =

0) = fi, where fi represents the flight level of the first observation after the clearance to climb
was issued. As a consequence β0 = fi. Figure 2 illustrates the reconstruction of a normalised
trajectory in D using this formulation and the associated w(t). Note that there is some rigidity
in the representation, in the example shown increasing the number of Fourier modes from 3 to 20
reduces the error in the representation of the data by 62%, which we denote ϵL. However, we do
not expect ϵL → 0 as nw →∞ because of the rigidity.

The rationale for the use of the Fourier series is to select a basis that is guaranteed to
be orthogonal. This addresses a disadvantage of the method proposed by Shin, where a
transformation for the B-splines used as basis functions must be found to orthogonalise them
(which we note has the effect of adding oscillations into the resulting basis). A further benefit
is that w(t) does not need to be integrated numerically as analytical expressions are available.
The Ramsay framework provides a bijective representation of the functional data in D. The
developments in Appendix A detail the SGD procedure used to find the set of optimal parameters
in the representation, ŷ= [β̂1, â0, â, b̂]

⊤, that, when repeated for each of the trajectories in D,
yields the set Dy = {ŷ(i)}, i= 1, . . . , nd (with ny = 2nw + 2).

(i) Dimensional Reduction with Principal Component Analysis

Having described the nd climbs in D with the monotonic framework of Ramsay, a model is
desired to learn the mapping between the features x and the corresponding 2nw + 2 parameters
in this framework. To simplify this mapping, a projection of the data is performed using a
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Principal Component Analysis (PCA) on Dy . Having performed this projection, the coefficients
may be expressed using the finite sum:

y=


β1
a0
a

b

≈
nc∑
k=1

αkψk (2.4)

where α∈ℜnc is a vector of Principal Component (PC) scores and ψk ∈ℜ2nw+2 ⊆Y is the kth

Principal Component. nc ∈ [1, 2nw + 2] is determined through an adaptive process, described in
Appendix B. This projection simplifies the mapping from x because the data is now expressed in
a lower-dimensional, statistically decorrelated basis (assuming nc < 2nw + 2). There are now two
levels of approximation in the model: one in the finite sum in (2.3) and another by the finite sum
in (2.4). Expressing the PC scores as a probabilistic function of x, we can rewrite equations (2.2)
and (2.3) to include a dependence on the features parameterising each climb:

f(t|x) = fi +

nc∑
k=1

αk(x)ψ1,k

∫ t
τ0

exp
∫s
τ0

w(u|x)duds, (2.5)

with

w(t|x) =
2nw+2∑
j=2

nc∑
k=1

αk(x)ψj,kθj(t), (2.6)

whereψj,k refers to the jth element of the kth Principal Component and the vector θ(t)∈ℜ2nw+1

contains the Fourier modes, evaluated at time t, i.e.:

θ(t) = [1, cos(2πt), . . . , cos(2πnwt), sin(2πt), . . . , sin(2πnwt)]
⊤. (2.7)

Projecting each trajectory in D onto this new basis generates the set Dα = {α(i)}, i= 1, . . . , nd.
The sub-set Dx = {x(i)}, i= 1, . . . , nd and Dα are used as the training data for a set of
independent Gaussian Process Emulators (GPEs), that are outlined in the next section.

(b) Gaussian Process Emulators
Having found a monotonic functional representation of each trajectory in D, an interpolation
function, Ψ , is developed for each component of α:

α̂k(x) = Ψk(x) + ϵk, k= 1, . . . , nc, (2.8)

where ϵ∼N (0,diag(σϵ)) is assumed to be independent, identically distributed Gaussian noise
with varianceσ2

ϵ . A set of GPEs are used to find the interpolated PCA scores α̂ for a test parameter
point x∗ ⊆X . We provide a brief summary of GPEs here, the interested reader is referred to the
canonical reference books of Rasmussen and Williams [35] and Santner et al. [36]. A Gaussian
Process prior is assumed over the regression functions, i.e.

[
Ak

α̂k(x
∗)

]
∼N

([
µ(X)

µ(x∗)

]
,

[
K(X,X) K(x∗, X)T

K(x∗, X) K(x∗,x∗)

])
, (2.9)

where µ is a function representing the mean of the process (in what follows we set µ= 0). The
matrix, K, reflects the covariances of the training data, which is organised into a nx × nd matrix
of inputs X = [x(1),x(2), . . . ,x(nd)]⊤ with outputs Ak = [α

(1)
k ,α

(2)
k , . . . ,α

(nd)
k ]. Elements of the
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covariance matrix are given by:

Kij(X,X) = k(x(i),x(j)) + σ2
ϵkδij , (2.10)

where k(.) represents the covariance function and δ the Kronecker delta. In this work squared
exponential kernels were used for the covariance function. The hyperparameters for the GPE are
inferred from the data, at a cost O(n3

d). To mitigate this cost when nd is large (e.g. nd > 103), we
use a stochastic variational regression for the GP hyperparameters. We refer the interested reader
to Blei et al. [37] and Hensman et al. [38] for more details on this. A consequence of assuming a
Gaussian Process prior is that the posterior predictive density is also Gaussian:

α̂k|X,Ak,x
∗ ∼N (µ̂k, σ̂k), (2.11)

where

µ̂k =K(x∗, X)⊤K(X,X)−1Ak, (2.12)

σ̂2
k =K(x∗,x∗)−K(x∗, X)⊤K(X,X)−1K(x∗, X).

This is advantageous for the targeted application because the posterior distribution can be
resampled for negligible cost. For a given set of features, x∗, nmc Monte Carlo samples can be
drawn, giving the set {α(i), . . . ,α(nmc)}. When passed through the monotonic framework of
(2.5) and (2.6) this yields the family of trajectories {f (i)(t|x∗)}, i= 1, . . . , nmc. The main steps of
the model training may be summarised as follows:

Algorithm 1 (Training of a monotonic, functional Gaussian Process Emulator model for aircraft
in climb):
Inputs: Training dataset, D
Outputs: Gaussian Process Emulators N(µ̂k, σ̂k), k= 1, . . . , nc

(i) Obtain parameters of the Ramsay monotonic representation (y= [β1, a0,a, b]
⊤) for each

trajectory in D, using SGD. Collect them as Dy (A 1)
(ii) Perform PCA on Dy (2.4)

(iii) Truncate PC representation (Appendix B)
(iv) Project onto the basis of retained PCs, yielding set of PC scores Dα (2.5) & (2.6)
(v) Extract sub-sequence of clearance instructions Dx from D

(vi) Train set of GPEs to perform the probabilistic mappingx→α using stochastic variational
regression (2.8)

Having described the main features of the algorithm, in the following section we demonstrate
its application to a dataset of radar observations from within a sector of UK airspace.

3. Application to real trajectory data
In this section we demonstrate the application of the probabilistic model to a dataset containing
10,827 aircraft trajectories. This data was harvested from ATC data pertaining to a sector of
UK airspace between January and February 2018. This sector contains one of the UK’s busiest
international airports, and as a consequence, most aircraft in the dataset are climbing to reach their
cruising altitude. From the available data the most suitable features were identified by industry
experts that were expected to parameterise the climbs:

(i) The requested change in flight level, ∆f

(ii) The initial flight level, fi
(iii) The aircraft indicated airspeed, vias
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The three features are collected in the input vector x= [∆f, fi, vias]
⊤. Ideally, industry experts

would recommend working with the true airspeed, rather than the indicated airspeed. Such a
conversion is possible provided that weather data and a model for the measurement uncertainty
in vias is available in the dataset. In what follows we use vias but note that, should it be available,
it would be possible to incorporate this additional data without altering the fundamentals of the
monotonic functional method demonstrated here. Examples of parameters that are understood
to significantly affect the trajectory but are not included in the dataset, because they are either
unknown or proprietary, include:

• The effect of variations in weather on the aircraft
• Mass of the aircraft
• True airspeed of the aircraft
• Aircraft performance settings

Rather than attempt to model the effects of these parameters, or assume probability distributions
for them, the effect of this epistemic uncertainty is absorbed within the posterior distribution of
the GPEs. In this section we test whether such a data-driven approach can provide a credible fast
approximation for the vertical trajectory of an aircraft. The data-driven uncertainty envelope is
compared against one inferred from multiple runs of BADA sampled from a distribution for the
aircraft mass. BADA, the deterministic TP model used as a baseline, is an energy-based model
that relates to the geometrical, kinematic and kinetic aspects of the aircraft motion, allowing the
aircraft performances and trajectory to be predicted. BADA is a deterministic model that is widely
used by industry. Given that the output of BADA is sensitive to the mass variation of the aircraft,
we contrast the probabilistic method proposed with a simple probabilistic model using BADA, in
which the aircraft mass is sampled from a naive probability distribution. This simple probabilistic
model is discussed further in subsection (b). Figure 3 illustrates the ground tracks of the climbs in
the dataset.
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Figure 4: Trajectories in the dataset by aircraft type (types with more than 50 instances plotted)

(a) Comparison with BADA
The outputs of the probabilistic model were first baselined against a single, deterministic run of
BADA, using the nominal mass of the aircraft. For consistency, trajectories from a single aircraft
type, the B738, and a single operator were used. As can be seen from Figure 4, this aircraft
type dominated the dataset: 77.7% of the aircraft in the dataset are B738s and of these 92.5%
are operated by one carrier. From these trajectories, a dataset of 4612 climbs, where the aircraft
received a clearance to climb by 80 or more flight levels, were extracted for use in analysis. The
distribution of ∆f is plotted in the top left panel of Figure 5. The top right panel indicates
the discrepancies in the arrival time at the target flight level between BADA and the dataset,
normalised by the predicted length of the climb. The resulting distribution is Gaussian-like with a
positive mean, indicating that in general BADA over-predicts the arrival time. The bottom panel
of Figure 5 plots this discrepancy as a function of the target flight level, with the shading of
the markers indicating ∆f for each climb. From around flight level 300 onwards the markers
generally lie in the positive half-plane. This would suggest that the sector specific speed profiles
do not exactly match the BADA calibrated speed profiles. While the parameters in the BADA
model are calibrated globally, some local deviation between observed and predicted trajectories
can sometimes be observed, as has been examined in studies such as Alligier and Gianazza [25]
and Sun et al. [43].

The probabilistic model was tested on this dataset of climbs through a five-fold cross-validated
procedure. The dataset consisted of data from 47 days of operations. The probabilistic model was
trained five times, with a different test set of consecutive days’ of data held out each time. In this
way, each of the 4612 climbs was included in a test set. In what follows, the results of the five test
sets are reported together. A set of nmc = 100 posterior samples were drawn from the probabilistic
model for each test trajectory.

A set of performance indicators were used to assess the relative skilfulness of the TP models.
One of the selected indicators was the predicted time for each trajectory to achieve the target
flight level, which we denote ta. Taken together, a set of posterior samples provide a probabilistic
forecast for ta that could be scored using the Continuous Ranked Probability Score (CRPS) [44,45]:

CRPS(i) =

∫∞
−∞

(
F (i)(t)− 1(t− t

(i)
a )

)2

dt, (3.1)

where F (i)(t) is the CDF for ta from the nmc Monte Carlo samples; 1(·) the Heaviside step
function; and t

(i)
a the observed arrival time [39]. For a deterministic forecast (i.e. a single run

of BADA), the CRPS score is equivalent to the L2 error. By taking the ratio of the CRPS score for
the probabilistic model and the equivalent score for BADA, the relative skilfulness of the model
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Figure 5: Top left: distribution of the requested change in flight levels in the dataset. Top right:
Distribution of errors in the arrival time (BADA-data), normalised by the predicted length of the
climb, according to BADA. Bottom: Normalised arrival time error as a function of the target flight
level. Markers are coloured by ∆f for each climb.

may be expressed as a dimensionless skill score:

S(i) = 1− CRPS(i)

(t
(i)
a − t

(i)
a,BADA)2

, (3.2)

where S(i) represents the skill score for the ith trajectory in the test set and t
(i)
a,BADA the arrival

time for that trajectory as predicted by BADA (with nominal mass value). Positive values of S
indicate that the probabilistic model is more skilful. The left panel of Figure 6 is a histogram
displaying the skill scores, with the results from the 5 test datasets amalgamated. The median
skill score was found to be +0.3474, indicating that the probabilistic model was more skilful than
the deterministic run of BADA for this performance indicator.

The offset in the predictions at the arrival time, ∆z, was also used as a performance indicator.
From an ATC perspective this is a useful quantity because it is connected to the flight level
occupancy of the aircraft. For the ith trajectory in the test dataset, with observed arrival time,
ta and estimated arrival time t̂a, this quantity is denoted:

∆z(i) =

{
(fi +∆f)− f(ta|x(i)) if ta ≤ t̂a,

(fi +∆f)− f (i)(t̂a) if ta > t̂a
. (3.3)

Lower values of ∆z indicate that a model has more accurately predicted the flight level occupancy
at the arrival time. The right panel of Figure 6 displays two (normalised) histograms for ∆z,
with ∆z calculated for each trajectory in the test dataset for BADA (green) and for the mean
of the probabilistic model (blue). As can be seen, these discrepancies are comparable, and the
mean discrepancy across all 4612 test flights is tabulated in Table 1. This Table also tabulates the
Mean Absolute Error (MAE) between the means of the models and the observed trajectory. The
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Figure 6: Left: Histogram displaying the distribution of skill scores for the test dataset. The vertical
line indicates the median skill. Right: Histogram displaying normalised histograms of ∆z for the
probabilistic model (blue) versus BADA (green).

mean prediction of the probabilistic model offered a 20.56% improvement in accuracy for this test
dataset.

Figure 7 visualises the output of the probabilistic model for a random selection of eight
trajectories from the first test dataset. The red line indicates the observed radar data, the green
line the solution of BADA for the requested climb, and the blue line the mean prediction of
the generative model. The variance in the arrival time at intermediate flight levels is used to
construct a 2σ credible region for the probabilistic model. Note that in some instances, such as the
second plotted test flight, the data-driven credible interval is sufficiently tight that it contains the
observed trajectory but not the deterministic run of BADA. The skill scores and sharpness of each
test flight are tabulated in Table 2. In the next section, the probabilistic model is compared against
a probabilistic implementation of BADA and the two metrics used to assess the credible intervals
are introduced.

(b) Comparison with BADA using assumed aircraft mass distribution
Having compared the probabilistic model against BADA, run using the nominal mass value for
the aircraft, in this section we make a comparison between the proposed model and a simple
probabilistic implementation of BADA. Given the sensitivity of the BADA predictions to the mass
of the aircraft, we formulate a simple probabilistic model for BADA in which the mass of the
aircraft is sampled from a uniform distribution U(mmin,mmax), where mmin and mmax are the
minimum and maximum masses associated with that aircraft in the BADA model. As before, we
evaluate the two probabilistic models using the arrival time and offset in flight levels at the arrival
time as performance indicators. In this case, the relative skilfulness of the proposed probabilistic
model, baselined by the probabilistic BADA prediction, is denoted:

S
(i)
pb = 1− CRPS(i)

CRPS
(i)
pb

, (3.4)

where Spb refers to the relative skilfulness, baselined by the probabilistic implementation of
BADA, with associated CRPS score CRPSpb. The left panel of Figure 9 indicates the relative
skilfulness for each trajectory in the test set. The median skill score of +0.8917 was higher than
when the probabilistic model was baselined against the deterministic model evaluation. This is
likely due to the much higher variance in the sampled trajectories from the probabilistic BADA,
as can be seen in Figure 8. The CRPS score penalises overly-conservative forecasts. In Figure 8
the 2σ credible region from the probabilistic model is compared to the credible region from
the probabilistic BADA model, with the data-driven bound from the probabilistic model being



12

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0.0 0.2 0.4 0.6 0.8 1.0
t

180

200

220

240

260

280

300

320

f(t
)

Test Flight 1

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

220

240

260

280

300

320

340

f(t
)

Test Flight 2

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

175

200

225

250

275

300

325

350

f(t
)

Test Flight 3

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

200

220

240

260

280

300

f(t
)

Test Flight 4

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

200

225

250

275

300

325

350

f(t
)

Test Flight 5

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

200

220

240

260

280

f(t
)

Test Flight 6

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

200

220

240

260

280

f(t
)

Test Flight 7

GP mean
2  credible region
Data
BADA

0.0 0.2 0.4 0.6 0.8 1.0
t

220

240

260

280

f(t
)

Test Flight 8

GP mean
2  credible region
Data
BADA

Figure 7: Radar data for an unseen trajectory (red), compared to the predicted trajectory by BADA
(green), and the mean of the probabilistic digital twin (blue) for eight trajectories in the test
dataset. The dashed lines indicate the 2σ credible region from 100 posterior samples. Note that
the credible regions are drawn with respect to arrival time, rather than flight level.
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noticeably tighter. These confidence bounds were assessed using the Root Mean Squared Error
of Calibration (RMSEC) [40–42] and the sharpness. The RMSEC quantifies how well calibrated
the two probabilistic TP models are, while the sharpness quantifies the concentration of the
uncertainty. Ideally, we wish for a data-driven model to provide a sharper forecast than BADA,
subject to calibration. Here we find that the data-driven confidence intervals are 9.54% sharper,
with the total calibration error decreasing by 11.49%. To determine these values, a set of 20
intermediate flight levels were chosen for each test flight and the mean and variance of the arrival
time were computed.

Interestingly, the mean of the posterior samples was found to be more accurate than the
nominal BADA mass, as quantified by the MAE. This is because the reference mass used in the
run of BADA with nominal parameters is greater than the mean of the uniform prior for the
aircraft mass. Samples from the prior will in general climb faster than the nominal run of BADA.
Recalling from Figure 5 that BADA with nominal parameters tended to over-estimate the length
of climb, it is to be expected that the mean of these samples will be more accurate.

Finally, the right panel of Figure 9 displays the normalised histograms for ∆z. Note that in this
case ∆z was calculated for each of the posterior samples, rather than the mean estimate, hence the
chart for the probabilistic model differs from that in Figure 6. The data-driven posterior samples
were found to have a much lower average discrepancy.

Table 1: The performance of the probabilistic model, bench-marked against BADA for various
metrics, including: the Mean Absolute Error (MAE), median relative skill score for predicting the
end of climb (for the probabilistic model), flight level discrepancy at the end of climb (∆z), and
Root Mean Squared Error of Calibration (RMSEC). All quantities are averaged over the five folds.
Arrows indicate whether higher or lower values of that metric are preferable.

Method MAE ↓ S ↑ ∆z ↓ RMSEC ↓ Sharpness ↓

Prob. Model 1.9600 - 14.9851 (mean) 0.2173 0.0237
19.0264 (post. samp.)

BADA (nom.) 2.4674 0.3474 13.5139 - -
BADA (prob.) 2.0631 0.8917 18.6779 0.2455 0.0262

Table 2: Skill scores for the eight plotted test flights and the relative sharpness of the methods

Test flight S ↑ Relative sharpness ↓
BADA (nom.) BADA (prob.)

1 0.3621 0.9212 0.8741
2 -0.0518 0.8404 0.7320
3 -0.0376 0.8464 1.0845
4 0.3298 0.9469 0.6695
5 0.0357 0.8480 0.8434
6 -1.9266 0.9400 0.9471
7 -0.6283 0.8943 0.8336
8 0.3552 0.9505 0.7810
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Figure 8: Visual of the predicted trajectories for the same eight test points using the probabilistic
implementation of BADA. The observed trajectory (red), is compared against the BADA run using
nominal mass (green). The credible interval of the model is also plotted (dashed green) versus that
of the proposed model (dashed blue).
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Figure 9: Left: Histogram displaying the distribution of skill scores for the probabilistic model,
baselined by a probabilistic implementation of BADA. Right: Normalised histograms for the
discrepancies in the flight level at the end of climb for the samples.

4. Conclusion
Accurate trajectory prediction for an aircraft in climb is difficult due to the presence of significant
epistemic uncertainty. We have proposed a probabilistic model that employs Gaussian Process
Emulators to give a fast approximation to a trajectory that is functional and monotonic. A
functional approach allows tempo-spatial correlations in the training data to be exploited. In this
paper the proposed method has been baselined against a deterministic TP model, widely used
in industry, in addition to a probabilistic version that exploits the available knowledge of the
aircraft’s mass. Using test datasets containing unseen data, it was found that the proposed model
outperformed both the deterministic and probabilistic versions of BADA, with performance
quantified by several metrics including the relative skill of the model in predicting the arrival
time of an aircraft at its target flight level.

In this paper we have restricted the application of the model to TP for climbing aircraft,
although we note that the method is general and could be applied to any class of problem where a
fast approximation for monotonic functional outputs is required. Finally, in its presented form the
method is completely data-driven. However, we note that a deterministic model could be used
to inform the model by acting as a mean function for the GPEs. In such an instance, it would be
necessary to find a mapping such that solutions of the deterministic model could be expressed in
the coefficient space of the Ramsay framework.

Authors’ Contributions. N.P. Investigation and Writing. M.T. Data curation and Methodology. G.D.
and E.O. Methodology and Software. R.C., R.E., and T.D. Conceptualization and Supervision. All authors
reviewed and edited the manuscript.

Competing Interests. M.T. and R.C. are employed by NATS, the air traffic service provider for the United
Kingdom.

Funding. The work described in this article is primarily funded by the grant “EP/V056522/1 : Advancing
Probabilistic Machine Learning to Deliver Safer, More Efficient and Predictable Air Traffic Control” (aka
Project Bluebird), and EPSRC Prosperity Partnership between NATS, Turing, Exeter and Cambridge. T.D.
acknowledges funds from his UKRI Turing AI Fellowship 2TAFFP\100007.

References
1. Barratt, S., Kochenderfer, M. & Boyd, S. Learning Probabilistic Trajectory Models of Aircraft in

Terminal Airspace From Position Data. IEEE Transactions On Intelligent Transportation Systems.
20 pp. 3536–3545 (2019)

2. Paielli, R., Erzberger, H., Chiu, D. & Heere, K. Tactical Conflict Alerting Aid for Air Traffic
Controllers. Journal Of Guidance, Control, and Dynamics. 32 pp. 184–193 (2009)



16

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

3. Chatterji, G., Sridhar, B. & Bilimoria, K. En-route flight trajectory prediction for
conflict avoidance and traffic management. Guidance, Navigation, And Control Conference.,
https://arc.aiaa.org/doi/abs/10.2514/6.1996–3766

4. Chatterji, G. Short-term trajectory prediction methods. Guidance, Navigation, And Control
Conference And Exhibit., https://arc.aiaa.org/doi/abs/10.2514/6.1999–4233

5. Nuic, A., Poles, D. & Mouillet, V. BADA: An advanced aircraft performance model for present
and future ATM systems. International Journal Of Adaptive Control And Signal Processing. 24,
850–866 (2010), https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.1176

6. Bastas, A., Kravaris, T. & Vouros, G. Data driven aircraft trajectory prediction with deep
imitation learning. ArXiv Preprint ArXiv:2005.07960. (2020)

7. Pang, Y., Zhao, X., Yan, H. & Liu, Y. Data-driven trajectory prediction with weather
uncertainties: A Bayesian deep learning approach. Transportation Research Part C: Emerging
Technologies. 130 pp. 103326 (2021)

8. Baklacioglu, T. & Cavcar, M. Aero-propulsive modelling for climb and descent trajectory
prediction of transport aircraft using genetic algorithms. The Aeronautical Journal. 118, 65–79
(2014)

9. Thipphavong, D., Schultz, C., Lee, A. & Chan, S. Adaptive algorithm to improve trajectory
prediction accuracy of climbing aircraft. Journal Of Guidance, Control, And Dynamics. 36, 15–24
(2013)

10. De Leege, A., Paassen, M. & Mulder, M. A machine learning approach to trajectory prediction.
AIAA Guidance, Navigation, And Control (GNC) Conference. pp. 4782 (2013)

11. Wang, Z., Liang, M. & Delahaye, D. Short-term 4d trajectory prediction using machine
learning methods. Proc. SID. pp. 1–10 (2017)

12. Wu, X., Yang, H., Chen, H., Hu, Q. & Hu, H. Long-term 4D trajectory prediction using
generative adversarial networks. Transportation Research Part C: Emerging Technologies. 136 pp.
103554 (2022)

13. Hernández, A., Casado Magaña, E. & Berna, A. Data-driven Aircraft Trajectory Predictions
using Ensemble Meta-Estimators. 2018 IEEE/AIAA 37th Digital Avionics Systems Conference
(DASC). pp. 1–10 (2018)

14. Zhao, Z., Zeng, W., Quan, Z., Chen, M. & Yang, Z. Aircraft trajectory prediction using deep
long short-term memory networks. CICTP 2019. pp. 124–135 (2019)

15. Shi, Z., Xu, M., Pan, Q., Yan, B. & Zhang, H. LSTM-based flight trajectory prediction. 2018
International Joint Conference On Neural Networks (IJCNN). pp. 1–8 (2018)

16. Liu, W. & Hwang, I. Probabilistic Trajectory Prediction and Conflict Detection for
Air Traffic Control. Journal Of Guidance, Control, And Dynamics. 34, 1779–1789 (2011),
https://doi.org/10.2514/1.53645

17. Lymperopoulos, I. & Lygeros, J. Sequential Monte Carlo methods for multi-aircraft trajectory
prediction in air traffic management. International Journal Of Adaptive Control And Signal
Processing. 24, 830–849 (2010)

18. Paek, H., Lee, K. & Vela, A. En-route Arrival Time Prediction using Gaussian Mixture Model.
(2020)

19. Hüllermeier, E. & Waegeman, W. Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Machine Learning. 110, 457–506 (2021,3),
http://dx.doi.org/10.1007/s10994-021-05946-3

20. Psaros, A., Meng, X., Zou, Z., Guo, L. & Karniadakis, G. Uncertainty Quantification in
Scientific Machine Learning: Methods, Metrics, and Comparisons. (2022)

21. Brittain, M. & Wei, P. Autonomous air traffic controller: A deep multi-agent reinforcement
learning approach. ArXiv Preprint ArXiv:1905.01303. (2019)

22. Ghosh, S., Laguna, S., Lim, S., Wynter, L. & Poonawala, H. A Deep Ensemble Method
for Multi-Agent Reinforcement Learning: A Case Study on Air Traffic Control. Proceedings
Of The International Conference On Automated Planning And Scheduling. 31, 468–476 (2021,5),
https://ojs.aaai.org/index.php/ICAPS/article/view/15993

23. Dodwell, T., Awad, E., Cannon, R., Carvell, B., De Ath, G., Everson, R., Gabasova, E., Girolami,
M., Kamalaruban, P., Mei, P., Pace, A., Pepper, N., Thomas, M., Weller, A., Wordingham, F.
Developing intelligent machines for air traffic control. Nature: Machine Intelligence.

24. Alligier, R., Gianazza, D. & Durand, N. Learning the aircraft mass and
thrust to improve the ground-based trajectory prediction of climbing flights.
Transportation Research Part C: Emerging Technologies. 36 pp. 45–60 (2013),
https://www.sciencedirect.com/science/article/pii/S0968090X13001708



17

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

25. Alligier, R. & Gianazza, D. Learning aircraft operational factors to improve aircraft
climb prediction: A large scale multi-airport study. Transportation Research Part C: Emerging
Technologies. 96 pp. 72–95 (2018)

26. Riihimäki, J. & Vehtari, A. Gaussian processes with monotonicity information. Proceedings Of
The Thirteenth International Conference On Artificial Intelligence And Statistics. pp. 645–652 (2010)

27. Ustyuzhaninov, I., Kazlauskaite, I., Ek, C. & Campbell, N. Monotonic gaussian process flows.
International Conference On Artificial Intelligence And Statistics. pp. 3057–3067 (2020)

28. Benavides, J., Kaneshige, J., Sharma, S., Panda, R. & Steglinski, M. Implementation of
a Trajectory Prediction Function for Trajectory Based Operations. AIAA Atmospheric Flight
Mechanics Conference., https://arc.aiaa.org/doi/abs/10.2514/6.2014-2198

29. Jarry, G., Delahaye, D., Nicol, F. & Feron, E. Aircraft atypical approach detection using
functional principal component analysis. Journal Of Air Transport Management. 84 pp. 101787
(2020)

30. Nicol, F. Functional principal component analysis of aircraft trajectories. ISIATM 2013, 2nd
International Conference On Interdisciplinary Science For Innovative Air Traffic Management. (2013)

31. Ramsay, J. & Silverman, B. Functional Data Analysis. (Springer New York,2006),
https://books.google.co.uk/books?id=REzuyz

32. Han, K., Hadjipantelis, P., Wang, J., Kramer, M., Yang, S., Martin, R. & Müller, H. Functional
principal component analysis for identifying multivariate patterns and archetypes of growth,
and their association with long-term cognitive development. PloS One. 13, e0207073 (2018)

33. Ramsay, J. Estimating smooth monotone functions. Journal Of The Royal
Statistical Society: Series B (Statistical Methodology). 60, pp. 365–375 (1998),
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00130

34. Shin, Y., Zhou, L. & Ding, Y. Joint estimation of monotone curves via functional
principal component analysis. Computational Statistics & Data Analysis. 166 (2022),
https://ideas.repec.org/a/eee/csdana/v166y2022ics0167947321001778.html

35. Rasmussen, C. & Williams, C. Gaussian Processes for Machine Learning. (The MIT Press,2006)
36. Santner, T., Williams, B. & Notz, W. The design and analysis of computer experiments.

(Springer,2003)
37. Blei, D., Kucukelbir, A. & McAuliffe, J. Variational Inference: A Review for Statisticians. Journal

Of The American Statistical Association. 112, pp. 859–877 (2017,4), https://doi.org/10.1080
38. Hensman, J., Matthews, A. & Ghahramani, Z. Scalable Variational Gaussian Process

Classification. (arXiv,2014), https://arxiv.org/abs/1411.2005
39. Gneiting, T. & Raftery, A. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal Of

The American Statistical Association. 102, pp. 359–378 (2007), 10.1198/016214506000001437
40. Chung, Y., Char, I., Guo, H., Schneider, J. & Neiswanger, W. Uncertainty Toolbox: an

Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification.
(ArXiv,2021), https://arxiv.org/abs/2109.10254

41. Tran, K., Neiswanger, W., Yoon, J., Zhang, Q., Xing, E. & Ulissi, Z. Methods for comparing
uncertainty quantifications for material property predictions. Machine Learning: Science And
Technology. 1, 025006 (2020)

42. Kuleshov, V., Fenner, N. & Ermon, S. Accurate Uncertainties for Deep Learning Using
Calibrated Regression. CoRR. abs/1807.00263 (2018), http://arxiv.org/abs/1807.00263

43. Sun, J., Ellerbroek, J. & Hoekstra, J. Modeling aircraft performance parameters with open
ADS-B data. 12th USA/Europe Air Traffic Management Research and Development Seminar. (2017)

44. Matheson, J.E. & Winkler, R.L. Scoring rules for continuous probability distributions.
Management science. 22 (1976)

45. Hersbach, H. Decomposition of the continuous ranked probability score for ensemble
prediction systems. Weather and Forecasting. 15 (2000)

46. Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and
stochastic optimization.. Journal Of Machine Learning Research. 12 (2011)

47. Zhang, J. Machine Learning With Feature Selection Using Principal Component Analysis for
Malware Detection: A Case Study. (arXiv,2019), https://arxiv.org/abs/1902.03639

A. Parameter estimation using SGD
Trajectory data in the training set is collected from radar observations of an aircraft and is
therefore discretised according to the number of radar ‘blips’ during the climb or descent. D
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is more realistically expressed as D= {x(i), f (i)(tj), j = 1 . . . n
(i)
b } where i= 1 . . . nd (there is no

guarantee that each sampled trajectory will have the same number of radar observations). For
the ith trajectory we wish to estimate the parameters in the monotonic representation in (2.2) and
(2.3). This can be cast as the optimisation problem:

min
β1,a0,a,b

Li(β1, a0,a, b), (A 1)

where we define the loss function for the ith trajectory, Li, as the residual sum of squares (RSS)
loss between the observations and the functional representation, i.e.:

Li(β1, a0,a, b) =

n
(i)
b∑

j=1

{f (i)j − f(tj |β1, a0,a, b)}2. (A 2)

Analytic expressions for the derivatives of the loss function are available:

∂Li

∂fj
=−2{f (i)j − fj}, (A 3)

where we have defined fj = f(tj |β1, a0,a, b) for ease of notation. Using the chain rule we can
find derivatives for each of the parameters:

∂Li

∂β1
=

n
(i)
b∑

j=1

∂Li

∂fj

∂fj
∂β1

=−2

n
(i)
b∑

j=1

{f (i)j − fj}
∫ tj
τ0

exp
∫s
τ0

w(u)duds (A 4)

∂Li

∂a0
=

n
(i)
b∑

j=1

∂Li

∂fj

∂fj
∂a0

=−2β1

n
(i)
b∑

j=1

{f (i)j − fj}{exp(tj − τ0)− 1} (A 5)

∂Li

∂ak
=

n
(i)
b∑

j=1

∂Li

∂fj

∂fj
∂ak

=−2β1

n
(i)
b∑

j=1

{f (i)j − fj}
∫ tj
τ0

exp
∫s
τ0

cos(2πku)duds (A 6)

∂Li

∂bk
=

n
(i)
b∑

j=1

∂Li

∂fj

∂fj
∂bk

=−2β1

n
(i)
b∑

j=1

{f (i)j − fj}
∫ tj
τ0

exp
∫s
τ0

sin(2πku)duds (A 7)

Adagrad is a gradient based optimisation algorithm used to update the parameters with a
variable learning rate [46]. At the mth iteration the set of parameters, y= {β1, a0,a, b} is adjusted
according to:

yl,m = yl,m−1 − η√
Gmll + ρ

∂Li

∂yl,m−1
, (A 8)

where Gm is a diagonal matrix, in which the element Gmll contains the sums of the squares of
the past gradients for the lth parameter. The constant ρ is a smoothing constant used to ensure
numerical stability when the gradients are small, while the learning rate η∼O(10−2) is set by the
user. Here we used η= 0.02.

SGD is run to convergence for each trajectory in D, defined by a stopping criterion for the
relative improvement of L, yielding the set of parameters Dy = {ŷ(i)}, i= 1, . . . , nd. In what
has been presented the search for the parameters is unconstrained, although we note that
performance constraints of the aircraft, if known, could be expressed through a bound on w.
Such constraints could be expressed through a feasibility function g(w), yielding the modified
optimisation problem:

min
β1,a0,a,b

Li(β1, a0,a, b) (A 9)

such that g(w|β1, a0,a, b,xper)> 0,

where xper collects the additional performance related data required to evaluate g(·).
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B. Sub-algorithm to truncate Principal Component representation
Section 2(a) discusses how PCA is used to rotate Dy into a basis with statistically independent
components. A further advantage of using the PCA representation is that the PCs are ranked in
terms of the explained variance, allowing PCs that do not contribute significantly to be neglected.
Typically, this is done through an analysis of the explained variance ratio (see, e.g. [47]). However,
in this case it is difficult to quantify how variance in y scales with variance in the generated
trajectories when passed through the monotonic framework. For this reason, we propose a
simple adaptive method for selecting nc, based on the error associated with reconstructing the
trajectories in D after they have been projected into the PC basis. We denote this quantity ϵr ,
calculated through:

ϵr =

nd∑
i=1

n
(i)
b∑

j=1

(
f (i)(tj)− f(tj |x(i),y)

)2

, (A 1)

where

y=

nc∑
k=1

αkψk. (A 2)

We remove PCs until a terminal condition on ϵr is met. PC removal is terminated when the
reconstruction error exceeds 10% of it’s value at nc = 2nf + 2. This is illustrated in Figure 10 for
the first training dataset. For the sake of comparison, we plot the error introduced in the parameter
estimation, ϵL. This is defined as ϵL =

∑nd
i=1 Li and in this case ϵr << ϵL.

0 5 10 15 20
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10 3

10 2

10 1

100
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Figure 10: Plot displaying variation in ϵr and ϵL (scaled by nd and number of radar blips) with
number of principal components. The vertical dashed line indicates the nc chosen by the adaptive
process.
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