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Although chaotic attractors for autonomous dynamical systems show sensitive depen-
dence on initial conditions, they also typically support a physical or natural measure that
characterizes the statistical behavior of almost all initial conditions near the attractor
with respect to a background measure such as Lebesgue. In this paper, we identify con-
ditions under which a nonautonomous system that limits as ¢ — —oo to an autonomous
system with a physical measure is guaranteed to possess a “nonautonomous physical
measure” that limits to the physical measure of the autonomous system.
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1. Introduction

For an autonomous dynamical system, an invariant measure is “physical” or “nat-
ural” (or, assuming some extra properties, “SRB”) [I3] if it describes the long-term
statistics (i.e. statistics after transients have decayed) of a typical trajectory. In
practical terms, one can think of this as the observed statistics in the present of a
typical trajectory that started an arbitrarily long time ago in the past. To apply this
concept to systems where there is time-varying forcing, we need an analogous notion
defined for nonautonomous dynamical systems, where the measure is not fixed but
evolves in time under the action of the nonautonomous system [9]. The significance
of such nonautonomous physical measures for application to interpreting climate
statistics has been highlighted by several authors [3, [6] [7, [T0].
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In the autonomous setting, a physical measure on a local attractor A is defined
as an invariant measure p supported on A such that the trajectory z(t) of Lebesgue-
almost every initial condition in the basin of attraction of A is u-generic; this means
that the empirical measure % fOT dq(t) dt converges weakly to p1as T' — oco. A related
concept to physical measures is what we will call an attracting measure [3]: an
attracting measure on a local attractor A is an invariant measure g such that, if an
initial condition x(0) is selected at random from the basin of attraction of A with
a probability distribution vy that is Lebesgue-absolutely continuous, then the law
v of the position z(t) at time ¢ converges weakly to u as t — oco. The main result
of the classical paper [5] (Theorems 5.1 and 5.3) is that under mild conditions,
an Axiom A attractor supports a mixing invariant measure that is both physical
and attracting. There are also autonomous systems with a non-Axiom A chaotic
attractor supporting an invariant measure that is physical and/or attracting [2, [12].

In the paper [3], the authors proposed a definition for physical measures
and attracting measures supported on local pullback attractors of nonautonomous
dynamical systems that limit to an autonomous system as t — —oo, and showed
that this can be used to define a rigorous notion of “tipping probability” in the case
that the nonautonomous system also limits to an autonomous system in the limit
as t — +o00.

This paper gives sufficient conditions under which one can show that such nonau-
tonomous physical and attracting measures exist. This paper extends existing work
[Il 4] on asymptotically autonomous systems; in particular, [4] considers nonau-
tonomous dynamical systems that limit as ¢ — —oo to an autonomous system with
a stable fixed point, and addresses the question of whether the nonautonomous sys-
tem possesses a singleton pullback-attractor that limits to the fixed point. In this
paper, we now extend these results to a more general case where the nonautonomous
physical measure limits to an autonomous physical measure that will typically be
chaotic. For example, in climate applications one would like to consider models that
have internal chaotic variability associated with turbulent transport and weather
variability, rather than purely static states. One of the main technical tools in our
proofs is application of various versions of Gronwall’s Lemma [8, Sec. 1.1].

The structure of the paper is as follows. In Sec. 21 we give basic definitions
in the abstract setting of continuous autonomous and nonautonomous dynamical
systems on a compact metric space. In Sec. 2] we give general results regard-
ing existence of pullback-attracting orbits and pullback-attracting measure-valued
orbits for nonautonomous systems in this abstract setting. Then, in Sec. B:3] we
obtain results (Theorem 2] regarding existence of nonautonomous physical and
attracting measures in the setting of asymptotically autonomous differential equa-
tions on a compact subset of RY, through application of the abstract results of
Sec. All the results stated in Sec. 2] are proved in Sec. Bl Some final remarks
regarding further questions to address are then given in Sec. @l In Appendix A, we
present an alternative set of sufficient conditions for the conclusions of Theorems 2.1l
and

2350020-2



Stoch. Dyn. Downloaded from www.worldscientific.com
by UNIVERSITY OF EXETER LIBRARY on 04/05/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Physical measures of asymptotically autonomous dynamical systems

2. Nonautonomous Physical Measures and Their Existence

2.1. Notions of attractivity of points and measures in a general
topological setting

Given a compact metric space (X, d), we write Mx for the set of Borel probabil-
ity measures on X. We write 71, m3: X X X — X for the coordinate projections
mi(21,x2) = x;. Given py, uo € Mx, let

J(p1,p2) ={P € Mxxx : mixlP = p; for i = 1,2}.
We equip Mx with the 1-Wasserstein metric dy given by

dw (u1, p2) = pain Epld(my, m2)].
It is well known that the topology induced by dy is precisely the topology of weak
convergence.

For any measurable function f: X — X, we write f,: Mx — Mx for the map
sending a measure u to its pushforward f.u. Note that for measurable functions
f.f:X — X, (fo f)* = f. o f,. Note also that if f is continuous on X then f.
is continuous on Mx; and the dominated convergence theorem gives that if (f,) is
a sequence of measurable functions converging pointwise to f, then f,. converges
pointwise to f..

2.1.1. Autonomous dynamical systems

We first introduce autonomous dynamical systems and related definitions.

Definition 2.1. An autonomous dynamical system on X is a [0, 0o)-indexed family
(®")o<t<oo of continuous functions ®': X — X such that: 5T = &' o d* for all
s,t > 0 and ®° = idx, and the map t — ®(x) from [0,00) to X is continuous
for all z € X. A forward-orbit of the autonomous dynamical system (®%);>¢ is a
[0, 00)-indexed path in X of the form (®'(z)):>¢ for some z € X. A backward-orbit
of (®');>0 is a (—oo,0]-indexed path (zt)i<o in X such that ®*(zs_;) = x, for all
s<0andt>0.

Note that if (®*);>¢ is an autonomous dynamical system on X, then (®%);>¢ is
an autonomous dynamical system on Mx.

Definition 2.2. Given x € X, O C X, and an autonomous dynamical system (®?)
on X, we say that x is eventually in O under (®!) if there exists T > 0 such that
for all t > T, ®(z) € O.

Definition 2.3. Given z,p € X and an autonomous dynamical system (®*) on X,
we say that z is attracted to p under (®*) if ®*(x) — p as t — oco.
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(This implies in particular that p is a fixed point, i.e. ®(p) = p for all t > 0.)

Definition 2.4. Given A € Mx, O C My, and an autonomous dynamical system
(@) on X, we say that \ is Cesaro-eventually in O under (®L) if there exists 71 > 0
such that for all T > Ty and s > 0, £ [/ ®3HAdt € O.

Definition 2.5. Given A, € Mx and an autonomous dynamical system (®') on
X, we say that A is Cesaro-attracted to p under (@) if 1 fOT OINdt — pasT — oo.

(This implies in particular that g is an invariant measure, i.e. ®¢p = p for all
t>0.)

2.1.2. Nonautonomous dynamical systems

We now introduce nonautonomous dynamical systems and analogous related defi-
nitions.

Definition 2.6. A nonautonomous dynamical system on X is a family
(Ps.t)—co<s<t<o Of continuous functions @ : X — X such that: @, ,, = &y, 0 Py,
forall s <t < wu <0 and &4 = idx for all ¢ < 0, and the map ¢ — Pg¢(x)
from [s,0] to X is continuous for all s < 0 and = € X. An orbit of (Ps)s<t<o is a
(—00, 0]-indexed path (z:)i<o in X such that @ 4(xs) = x4 for all s <t <0.

Typically, one defines nonautonomous dynamical systems over two-sided time,
i.e. with subscripts —oo < s < t < +o00; but in this paper it is sufficient just
to consider the past, i.e. with the time subscripts only going up to some finite
number, which without loss of generality we take to be 0. Accordingly, we do not
define “forward orbits”, but use the term “orbit” to refer to what is, in effect, a
backward orbit.

Note that if (Ps;)s<t<o is a nonautonomous dynamical system on X then
(D14 )s<t<o is a nonautonomous dynamical system on Mx.

In analogy to Definition 222 we have the following definition.

Definition 2.7. Given z € X, O C X, and a nonautonomous dynamical system
(®s4) on X, we say that x is pullback-eventually in O under (®s,) if there exist
Ty, T > 0 such that for all t < —T5, for all s <t — T4, @, () € O.

In analogy to Definition 2.3] we can define for nonautonomous systems both a
notion of attraction to a point (Definition 2-§)) and a notion of attraction to an orbit
(Definition [Z)). In our abstract results in Sec.[Z2] the concept in Definition 28 will
appear in the conditions, and the concept in Definition 229 (which is fundamental to
the definition of “attracting measures” in Sec. [Z3]) will appear in the conclusions;
but the attraction described in Definition will itself be verified in the setting of

2350020-4



Stoch. Dyn. Downloaded from www.worldscientific.com
by UNIVERSITY OF EXETER LIBRARY on 04/05/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Physical measures of asymptotically autonomous dynamical systems

asymptotically autonomous differential equations (Sec. 23]) under the conditions of
Theorem 2.4

Definition 2.8. Given z,p € X, a nonautonomous dynamical system (®; ) on X,
and a value r > 0, we say that = is past-attracted to p under (X,d, (Ps,)) with
nonautonomous error of decay rate r if the following statement holds: there exists
a pair of functions Ri, Ro:(0,00) — [0,00) such that for all e1,e5 > 0, for all
t < —Ry(ea), for all s <t — R;(e1), we have

d(Ps,e(1),p) < €1 +e2e™. (2.1)

Remark 2.1. If the nonautonomous dynamical system (P ;)s<i<o reduces to an
autonomous dynamical system (®');> by @5+ = ®'~%, then “removing the nonau-
tonomous error term” recovers the definition of attraction in Definition 223t to be
precise, the statement that x is attracted to p under (®!) is equivalent to the fol-
lowing: There exists a function Ry :(0,00) — [0,00) such that for all € > 0, for all
t <0and s <t— Ry(e), we have

d(®s4(x),p) <e.

Definition 2.9. Given z € X, a nonautonomous dynamical system (®,;) on X,
and an orbit (p¢) of (®s ), we say that x is pullback-attracted to (p;) under (P ;)
if for each t <0, ®; ,(z) — pt as s — —o0.

Remark 2.2. If the nonautonomous dynamical system (P ;)s<i<o reduces to an
autonomous dynamical system (<I>t)t20 by &, = ®!=* then Definition 2.9 reduces
to saying that there exists p € X such that p; = p for all ¢t < 0 and x is attracted
to p under (®?).

In analogy to Definition 2-4], we have the following definition.

Definition 2.10. Given A\ € Mx, O C My, and a nonautonomous dynamical
system (®, ;) on X, we say that A is pullback- Cesaro-eventually in O under (s 1) if
there exist 17, Ty > 0 such that for allo <t < —Ty and T" > T7, % f:_T D, Ads €
0.

Remark 2.3. Suppose O takes the form {\ € My : A(O) = 1} for some Borel set
O C X. If A is pullback-eventually in O under (®; ) then A is pullback-Cesaro-
eventually in O under (@ ¢.) (with the same T3, Ts from Definition 77 working in

Definition Z10]).

In analogy to Definition 2.5 we can define for nonautonomous systems both a
notion of Cesaro-attraction to a measure (Definition [Z11]) and a notion of Cesaro-
attraction to a measure-valued orbit (Definition 2.12)).

Definition 2.11. Given A\, u € Mx, a nonautonomous dynamical system (P ;)
on X, and a value r > 0, we say that M\ is past-Cesaro-attracted to p under
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(Mx,dw, (Ps.tx)) with nonautonomous error of decay rate r if the following state-
ment holds: there exists a pair of functions Ry, Ry :(0,00) — [0, 00) such that for
all 1,69 > 0, for all t < —Ry(e2) and T' > Ry(e1), we have

1 t
dw (— / (I)S’t*A dS, /L) <ée+ 826”. (22)
T t—T

Remark 2.4. If the nonautonomous dynamical system (P ;)s<i<o reduces to an
autonomous dynamical system (®%);>¢ by @5+ = ®'~%, then “removing the nonau-
tonomous error term” recovers the definition of Cesaro attraction in Definition 2.5t
to be precise, the statement that A is Cesaro-attracted to g under (®!) is equivalent
to the following: There exists a function R; : (0, 00) — [0, 00) such that for all € > 0,
for all t <0 and T > Ri(g), we have

1 t
dW(T/ q)s,t*/\ds,u> <e.
t—T

Definition 2.12. Given A € My, a nonautonomous dynamical system (®,,) on
X, and an orbit (u;) of (Ps ), we say that A is pullback-Cesaro-attracted to (pu)
under (s 4. if for each ¢ <0, % ftt,T Dy Ads — py as T — oo.

Remark 2.5. If the nonautonomous dynamical system (®;;)s<i<o reduces to an
autonomous dynamical system (®);>o by @, = ®'~%, then Definition ZI2reduces
to saying that there exists p € Mx such that p = p for all £ <0 and X is Cesaro-
attracted to p under (®%).

2.2. Conditions for existence of pullback-attracting orbits in X
and M x

Definition 2.13. Given r > 0, p € X, and a nonautonomous dynamical system
(®s¢) on X, a nonautonomousness-controller (NAC) of (X, d, (Ps,)) near p of rate
r is a triple (O,T™*,q) consisting of a closed set O C X, a value T* < 0, and a
continuous function ¢: (—oo, T*] — O such that the following statements hold:

(i) for all t <T*, +d(Pys4n(q(t)),q(t)) — 0 as h — 0+;

(i) T d(q(t)p)er! dt < oo;
(ili) ®s4(p) € O for all s <t <T*.

Remark 2.6. Condition (i) says, heuristically, that ¢(¢) is an “equilibrium of the
instantaneous dynamics at time ¢”. In the case that X is a compact subset of R
and (®s.) is the solution flow of a smooth nonautonomous differential equation
#(t) = fe(z(t)), condition (i) is equivalent to saying that fi(q(t)) = 0 for all t < T*.
Condition (ii) describes a kind of “sufficiently fast convergence” of ¢ to p as time
tends to —oo; so p functions as a kind of “approximate equilibrium for large negative
times”. (Of course, condition (ii) does not specify a strict convergence ¢(t) — p
as t — —oo, but this will follow when one assumes the extra condition of being
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“monotone-like” as in Definition 2.T41) It will be important that we do not require
the set O to be a neighborhood of p, but we nonetheless impose condition (iii).

Definition 2.14. We say that a NAC (O,T*,q) of (X,d, (®s.)) near p of rate r
is a monotone-like NAC (MLNAC) if there exists C' > 1 such that for all s < T,
there exists d(s) > 0 such that for all ¢ € (s, s+ ()],

d(q(t),q(s)) < C(d(q(t),p) — d(q(s),p)) (2.3)

Remark 2.7. Definition 2.14] together with the continuity of ¢ implies that the
map t — d(q(t),p) is monotone increasing. If we suppose that O is identified as a
subset of R with d(x,y) = |z — y|, then Definition [Z14] is equivalent to saying that
g is monotone, in which case Eq. (Z3)) holds as an equality with C' = 1.

Definition 2.15. Given r > 0 and a nonautonomous dynamical system (@, ;) on
X, a growth-controller (GC) of (X,d,(®s.)) of rate r is a pair (O,T*) consisting
of a set O C X and a value T* < 0 such that for all ¢ < T* and z,y € O,
liminfp ot 3 [d(Pri4n(2), Peatn(y) — d(z,y)] < rd(z,y).

Remark 2.8. Heuristically, Definition 215 says that in O, the speed of separation
of two trajectories is controlled by their distance from each other. In the case
that X is a compact subset of RY and (®,,) is the solution flow of a smooth
nonautonomous differential equation @(t) = fi(z(t)), it is equivalent to the “one-
sided Lipschitz condition” that (z —y) - (f:(z) — fi(y)) < r|lz — y|? for all t < T*
and z,y € O. The one-sided Lipschitz condition will be discussed further in Sec.
(especially Remark 2Z.10).

Note that

e the “rate” for a MLNAC is really a lower bound: if (O,T*,q) is a MLNAC near
p of some rate 1 > 0, then it is also a MLNAC near p of any rate r € (0,7];

e the “rate” for a GC is really an upper bound: if (O,T%) is a GC of some rate
ro > 0, then it is also a GC of any rate r € [rq, 00).

So, we now consider what happens if, for a given triple (O, T*, ¢), the bounded-above
interval of nonautonomousness-controller rates and the bounded-below interval of
growth-controller rates overlap.

Theorem 2.1. Suppose we have p € X and a nonautonomous dynamical system
(®s,t) on X. Suppose we have r > 0 and a triple (O,T*,q) such that (O, T*,q) is
a MLNAC of (X,d, (®s,)) near p of rate r and (O,T*) is a GC of (X,d, (Ps+)) of
rate r. Then there exists an orbit (p:) of (Pst) such that p is pullback-attracted to
(pt) under (®s). Furthermore, d(ps,p) is o(e") as t — —oc.

Remark 2.9. The condition that the NAC (O, T*, ¢) is monotone-like can also be
replaced with a condition that it controls the instantaneous speed of trajectories
in proportion to their distance from ¢(¢) with constant of proportion r; details of
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this are given in Appendix A. However, as explained in Appendix A, this gives a
generally less applicable result.

Theorem 2.2. Assume the setting of Theorem Bl Suppose we have v € X that is
pullback-eventually in O under (Ps¢) and is past-attracted to p under (X, d, (Ps¢))
with nonautonomous error of decay rate r. Then x is pullback-attracted to (pt)
under (Ps¢).

Now, Theorems 1] and have the following immediate consequences, by
virtue of their application to the system (®s.) on the space of measures Mx.

Corollary 2.1. Suppose we have u € Mx and a nonautonomous dynamical system
(®st) on X. Suppose we have r > 0 and a triple (O, T*,v) such that (O,T*,v)
is a MLNAC of (Mx,dw,(®s)) near p of rate v and (O, T*) is a GC of
(Mx,dw,(®stx)) of rate r. Then there exists an orbit (ui) of (Ps i) such that
w is pullback-attracted to (ui) under (®s ). Furthermore, dw (ut, u) is o(e"™) as
t — —o0.

Corollary 2.2. Assume the setting of Corollary 21 Suppose we have N € Mx
that is pullback-eventually in O under (Ds.) and is past-attracted to p under
(Mx,dw, (Ps,+)) with nonautonomous error of decay rate r. Then X is pullback-
attracted to (py) under (P i4).

Having considered attraction in Corollary 22 we now consider Cesaro-
attraction.

Theorem 2.3. Assume the setting of Corollary 211 Suppose we have N\ € Mx
that is pullback-Cesaro-eventually in O under (s i) and is past-Cesaro-attracted
to p under (Mx, dw, (Ps,+)) with nonautonomous error of decay rate r. Then X is
pullback-Cesaro-attracted to (p;) under (Pg 4y ).

2.3. Application to asymptotically autonomous differential
equations

We now apply the results of Sec. to the case of a nonautonomous dynamical
system arising from a real-time parameter-drift v = I'(¢) through a parameterized
family (f,) ez of vector fields f, with a continuous branch of invariant measures
(#(1))sez-

The special case that (7(v))yez corresponds to a branch of hyperbolic stable
fixed points (with o(~y) simply being the Dirac mass at the stable fixed point of f.)
has been addressed in detail in [4]. Hence, in this paper, we are mainly concerned
about when one is outside that special case.
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Write
Sy :={veRY :|v| =1},
and for each A € RV*XN et

£(A) = max vT Av.
VESN
The value of £(A4) can be computed as the maximum of the eigenvalues of the
symmetric matrix %(A + A™). Given a compact metric space X, let Kx be the set
of non-empty closed subsets of X, which we equip with the Hausdorff metric dy.

2.3.1. Conditions on the parameter-dependent vector field

Suppose that X is a compact subset of RV, with d being the Euclidean distance
d(z,y) = |r — y|. Let F be a set of C! vector fields on RV with the property
that for any T > 0 and any continuously (with respect to the C! topology) [0, T)]-
parameterized family (ﬁs)ogth of members f; of F, any solution z: [0,7] — RN
of the differential equation

i(t) = fil(z(t) (2.4)

with 2(0) € X has {z(t) }o<i<r C X.

Now, suppose we have an interval Z C R that includes its lower end-point vy €
T N JZ, and suppose we have a continuously (with respect to the C! topology) Z-
parameterized family (f,),ez of vector fields f, € F. Suppose we have a continuous
function 7:Z — Mx such that

(a) for each v € Z, p(v) is an invariant measure of the autonomous differential
equation

i(t) = fy(a®), t>0; (2.5)

(b) for each v € Z, Q(7) := supp #(7) is contained in the interior of X relative to
RN'
(¢) the map v — Q(v) is continuous on Z;
(d) writing
1= (%)

P := Q(v0) = supp p,

there exists C' > 1 such that for every 4 € Z there exists () > 0 such that for
all y" € (y,7 +0(7)],

dw (7(7), 7(7)) <
dr(Q(Y),Q()) <

(dw (7(Y"), p) — dw (7(7), ) and

2350020-9
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(In (d), it is sufficient just to consider v € Z\{7o}, since the inequalities with v = g
trivially hold with C' = 1.)
For any non-empty bounded O C R let

L(O) =if{r e R: Va,y € O, (x—y) - (f1(2) = f1 (1) < rlo —yl*}.

Remark 2.10. For any distinct z,y € RY, letting v := ﬁ(w —y) € Sy, the
mean value theorem applied to the map ¢t — v- f, (y+tv) on the interval [0, |z —y|]

gives that
(@ =) - (fr0(2) = fro @) = (W7 (T f50) (€)0)|z — y?

for some ¢ in the line-segment joining x and y. Hence, if O is an open convex set
then
L(0) = max £((J f,)(x))-
€0
More generally, assuming that O contains at least two points, it is possible to cover
O by a finite collection of open convex sets Oy, ..., O, and then L(O) is bounded
above by the finite value

. I,y
|z —y[? @9)

{ (@ = 9) - (f1o(@) = f2o ()

max | max L(O;), min
1<i<n

i=1

Obviously, L(O) is bounded below by any value of @)l =Fa W) Wiy distinet

|z—yl[?

x,y € O. Hence, if O has at least two points then L(O) is finite, and it is then easy
to see that the infimum in the definition of L(O) is, in fact, a minimum. If, on the
other hand, O is a singleton, then L(O) = —oc0.

Now let
ro = max (L(P),I;leag E((Jf%)(x))). (2.6)

Proposition 2.1. If ro < 0 then P is a singleton P = {p} for some hyperbolic
stable fized point p of fy,; and hence, for all v in a neighborhood of vo, Q(7) is a

singleton Q(v) = {q(y)} for some hyperbolic stable fized point G(7y) of f,.

Hence, we will focus on the situation that rg > 0.

2.3.2. The parameter-drift and the resulting nonautonomous dynamical
system

Given an increasing continuous function I': [—oo, 0] — Z with I'(—o0) = 7o, we will
consider the “asymptotically autonomous” differential equation

‘T(t) = fF(t) (x(t))v te (_OO’ 0]' (2'7)
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We define the “past-limit system” as Eq. (23] with v = 7o, i.e.

i(t) = (@), >0, (2.8)

Let (®s4)s<t<o be the nonautonomous dynamical system on X generated by
Eq. @&7), and let (¥');>( be the autonomous dynamical system on X generated
by Eq. 23). As detailed shortly (in Sec. Z333]), we will be concerned with the
relationship between properties of the autonomous system (¥*);>o and analogous
properties of the nonautonomous system (®s¢)s<¢<o. For convenience, write

v(t) == v(I'(1)),

2.3.3. Ezistence of nonautonomous attracting and physical measures

We now give definitions of “natural measure” concepts, first in the autonomous
setting (applied to the past-limit system (2.8])) and then in our nonautonomous
setting.

Definition 2.16. We say that pu is

e an attracting measure of the past-limit system if there exists a neighborhood
U C X of P such that for every Lebesgue-absolutely continuous probability
measure A with A\(U) = 1, X is attracted to p under (V%);

e a physical measure of the past-limit system if there exists a neighborhood U C X
of P such that for Lebesgue-almost all z € U, 4, is Cesaro-attracted to p under
(W2);

e a weakly physical measure (or Cesaro-attracting measure) of the past-limit system
if there exists a neighborhood U C X of P such that for every Lebesgue-absolutely
continuous probability measure A with A\(U') = 1, A is Cesaro-attracted to u under
(wt).

(Note that a weakly physical measure is both physical and attracting.) We now
extend these notions to the nonautonomous setting.

Definition 2.17. An orbit (u;) of (P ) is called

e an attracting measure rooted at p if there exists a neighborhood U C X of P
such that for every Lebesgue-absolutely continuous probability measure A with
AU) =1, X is pullback-attracted to (p¢) under (Ps 44 );

e a physical measure rooted at p if there exists a neighborhood U C X of P such
that for Lebesgue-almost all x € U, 4, is pullback-Cesaro-attracted to () under
((I)s,t*)-

e a weakly physical measure (or Cesaro-attracting measure) rooted at p if there
exists a neighborhood U C X of P such that for every Lebesgue-absolutely
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continuous probability measure A with A(U) = 1, X is pullback-Cesaro-attracted
to (pe) under (®g 1y).

Definition 2.18. We will say that P is Lyapunov-stable under the past-limit system
if for every neighborhood V' of P there exists a neighborhood U C V of P such
that for all t > 0, H(U) C V.

Now, define the pseudometric dx co on the space of continuous vector fields on
RN by

dx,co(f,9) = max|f(z) — g(2)|.

rzeX

Theorem 2.4. Assume that ro > 0, and fix an arbitrary v > rg.

(A) Suppose fi}o dw (v(t), e dt < oo and fi}o di(Q(t), P)e"ldt < co. Then
there exists an orbit (uy) of (Psx) such that p is pullback-attracted to (i)
under (Ps 1), and dy (e, p) is o(e"™) as t — —oc.

(B) Suppose, moreover, that fEm dx.co(fres f,m)e’”‘tl dt < oo and P is Lyapunov-
stable under the past-limit system. If u is an attracting measure (respectively,
physical measure, weakly physical measure) of the past-limit system, then (u) is
an attracting measure (respectively, physical measure, weakly physical measure)
rooted at .

Strategy of the proof. For part (A), we show that there exists a closed neigh-
borhood O of P and a value T* < 0 such that, writing O := {\ € Mx : A\(O) = 1},
(O, T*,v) is a MLNAC of (Mx,dw, (®s,1«)) near p of rate r and (O, T%) is a GC of
(Mx,dw, (Ps.tx)) of rate r; Corollary 2l then gives the desired result. For part (B),
we show that there exists a neighborhood U of P such that for every A € Mx with
AU) =1,

e )\ is pullback-eventually in O under (®; ;s );

e if \ is attracted (respectively, Cesaro-attracted) to u under (V) then X is past-
attracted (respectively, past-Cesaro-attracted) to (u;) under (Mx,dw, (Psx))
with nonautonomous error of decay rate r.

Corollary 22 then gives the desired result for attracting measures, and Theorem [Z3]
(together with Remark [Z3)) for physical and weakly physical measures.

3. Details of Proofs

For a point « € X (respectively, aset A C X) and a value 6 > 0, Bs(x) (respectively,
B;s(A)) denotes the open d-neighborhood of x (respectively, of A) under the metric
d.
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3.1. Proofs of the results for the general topological setting

Lemma 3.1. Suppose we have a nonautonomous dynamical system (®s,) on X, a
point p € X, a value r > 0, and a GC (0,T*) of (X,d,(Ps.)) of rate r.

(A) Forallt <u <T* and all z,y € O, if Dy (z),Pru(y) € O for all v € [t,u),
then

A(Dy (), Ppy(y)) < er(“ft)d(ac,y). (3.9)

Hence, if ®s4(p) € O for all s <t <T* then, in particular, for all s1,s0 <t <
u <T*, setting x := @y, ((p) and y := s, (p) gives

d(q)81,u(p)’ q)sz,u(p)) < er(uit)d(q)sl,t(p)v @82,15(29))' (310)

(B) Suppose furthermore that we have a continuous function q:(—oco,T*] — O
such that for all t < T*, £d(®se4n(q(t)),q(t)) — 0 as h — 0+. Suppose also
that we have C' > 1 such that for all s < T*, there exists 6(s) > 0 such that
for allt € (s,s+ 3(s)], Eq. @3) holds. For all s < u < T*, if each t € [s,u)
has ®,.(p) € O then

u

d(®s,u(p),p) < (C+1)d(q(U),p)+C7'6”/ d(q(t),p)e’dt.  (3.11)

Proof. (A) For each v € [t,u), since Dy, (x), Py, (y) € O, we have

— A(Ptv4n(2), Prvsn(y)) — d(Pr (), Pro(y))
h—0+ h

So by [II, Appendix I, Theorem 2.1], for all v € [t, u],

< T‘d(q)tﬂ,(.%'), cI)t,v (y))

0@y (), Br.o(y)) < d(z.y) + / U rd(@ - (2), By o (y) dr,

and therefore a suitable version of Gronwall’s Lemma [8, Corollary 3] yields the
result. (B) The triangle inequality gives

d(®s.u(p),p) < d(q(u), ®s.u(p)) + d(g(u), p),

and obviously d(q(t), p)e”*l > 0 for all t; so, for the desired conclusion, it is sufficient
that

d(g(w), ®yu(p)) < C (d<q<u>,p> e [ " d(a(t), p)ent dt) L 312)

Writing d; := d(q(t), ®s,.(p)) — Cd(q(t),p), for each t € [s,u) we have

i —dy
et =
d(q(t +h), s e4n(p)) — d(q(t), ®st(p)) — C(d(q(t + h),p)
— iminf —d(q(t),p))
h—0+ h
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d(q(t +h), s t4n(p) — d(g(t), Ps,t(p)) — dq(t + h),q(t))

< liminf
h—0+ h
< lim g X00: Poin () — d(a(t), Pt (1)
h—0+ h
< lim inf 29 Peern(a(t) + d(Pre4n(9(t), Pst+n(p)) — d(g(t), Ps.(p))
_ lminf ( dlg(t), Prn(a(t))
h—0-+ h

—0 as h—0+ by assumption

n d(Pri4+n(q(t)), Pse4n(p)) — d(q(t), q%,t(P)))
h
i A 00, B 0) — dllt) . 0)

h—0+ h
< rd(q(t), ®s.(p)) since P, 4(p) € O,
and so by [I1l Appendix I, Theorem 2.1], for all t € [s,u],
t
dy —d, < / rd(g(r), By.r (p)) dr.

i.e.

d(q(t), ®s:(p)) < Cd(q(t),p) + (1 — C)d(q(s),p) +/ rd(q(7), @5+ (p)) dr
<0 ®

t
< Calalt)p) + [ rdlalr), s (o)
A suitable version of Gronwall’s Lemma [8, Theorem 1] then yields Eq. B12). O

Lemma 3.2. Given r > 0, T* € R and an increasing function d:(—oco,T*] —
[0, 00), if ffm d(t)e"!!l dt < oo, then d(t)e™ — 0 ast — —o0.

(Note that this is not completely obvious, as d(t) is increasing in ¢ but e”l*l is
decreasing in t, and so d(t)e”!*l can be non-monotone.)

Proof. For t <T* — 1, we have

t+1
d(t)e™ = ! d(t)/ el dr
t

1—e "

r

T 1l—eT

t+1
/ d(r)e"ll dr — 0 as t — —oo. 0O
t

We can now prove Theorems 2.1l and
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Proof of Theorem 2.0l By continuity of the mappings ®,;, if the limit p; :=
lims_._ o s 4(p) exists for all ¢ < T™*, then this limit exists for all ¢ < 0 and (p)i<o
is an orbit of (P ;).

We will show that for each ¢ < T, ®,,(p) is d-Cauchy as s — —oo, from
which it follows that the limit p; exists. Fix ¢, and fix any € > 0. We need to find
T < t such that every s1 < so < T has d(®Ds, (p), Ps,..(p)) < . Let C be as in
Definition 2141 As in Remark[2.7] the map 7 +— d(q(7), p) is increasing on (—oo, T];
so the assumption that ffm d(q(7),p)e"!™l dr < oo together with LemmaB2implies
that we can find T < ¢ such that for all s < T,

S

(C + 1)d(q(s), p)el*! + CT/ d(q(r),p)e""ldr < e.

— 00

Lemma BI(B) then gives that for all s1 < s9 < T,
d(Ds, 5, (p),p) < g™ < ge”>271) (3.13)

Hence, Eq. (310) in Lemma B(A) (with “u” set to ¢, and “t” and “s3” both set
to s2) gives that d(®s, +(p), Ps, ¢(p)) < € as required.

We next show that d(ps,p)e”! — 0 as t — —oo. Fixing ¢ and taking T as
above, we have that for all so < T, Eq. (BI3) holds for all s; < s, and therefore
(by taking s; — —00), d(ps,,p) < ge”*2. O

Proof of Theorem First note that since O is closed and @, ¢(p) € O for
all s < ¢t < T%*, it follows that p; € O for all ¢t < T*. Let T1,75 > 0 be as in
Definition 2.7 and let Ry, Ro be as in Definition Due to the continuity of the
mappings ®, , it is sufficient to fix ¢ < min(7™*, —75) and show that @, ,(z) — p;
as s — —oo. Fix € > 0. Since d(ps,p) is o(e™) as s — —oo, we can take a value
7 < min(t, —Ry(4eel’l)) sufficiently large in magnitude that d(ps,p) < see”*="
for all s < 7.

Now take any s < 7—max(T1, Ri(3ee"("=")); we will show that d(®s.¢(z), ps) <
e. For all v in the interval [r,t], we have that v < —Tb (since ¢ < —T3) and
s <wv—T; (since s < 7—1T7), and therefore @, ,(x) € O. Therefore, by Eq. (39) in
Lemma[3I(A), in order to show that d(®s.(x),p;) < € it is sufficient to show that
d(®s,- (), pr) < ee""7Y. But we know that d(p,,p) < ee""""; and Eq. 1)
with “t” set to 7, and with 1 1= 1ee""=% and €5 = Leeml!l] gives d(®, ;(2),p) <
2eem™Y. So d(®, - (2), pr) < ce""7Y) as required. 0

The proof of Theorem is, unsurprisingly, similar in nature to the proof of
Theorem 2.2 but requires a small amount more work.
Lemma 3.3. For any ¢ € [0,1] and p1, po € Mx, letting
ve:=(1—¢e)pus +epz € Mx,
we have

dw (p1,ve) < edw (p1, p2) < ediam(X).
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Proof. Let P; be the pushforward measure of 1 under the map = — (z,z). Let
Py € J(pu1, pi2) be such that dyw (g1, p2) = Ep,[d(71, 72)]. Let P = (1 — &)Py + £Po.
We will show that P € J(u1,v.) and Epld(mi, m2)] = edw (p1, p2).
We have
7'1’1*HD = (1 — 8)7T1*P1 + €7T1*]P)2 = (1 — 8)#1 +€,u1 = U1,

WQ*HD = (1 — 8)7T2*P1 + €7T2*]P)2 = (1 — 8)#1 +€,u2 = Vg,
so P e J(u1,v:). Now

Ep[d(m1,7m2)] = (1 — €)Ep, [d(m1, 72)] + eEp, [d(71, 72)]
= (1—-¢)E,, [d(idx,idx)] + edw (@1, p2)
= edw (p1, p2)-

So we are done. O

Proof of Theorem Just as at the start of the proof of Theorem 22, u; € O
for all t < T*. Let 177,75 > 0 be as in Definition 210, and let Ry, Rs be as in
Definition 21Tl Again due to the continuity of the mappings @, ¢, it is sufficient to
fix t < min(T*, ~T») and show that L [/, ®, ;. ds — py as T — oco. Fix € > 0.
Since dw (s, p) is o(€”*) as s — —oo, we can take a value 7 < min(t, —Ra(%ee!l))
sufficiently large in magnitude that dy (s, 1) < 2ee”=1 for all s < 7.

Now, take any T sufficiently large that

o 7—(t—T) > max(Ty, Ry (3e¢""1)), and

t— : :
o 7 < mm<4diar6n(x) 1);

1 t
dW (—/ (I)S’t*A dS,/,Lt> <E.
T t—T

we will show that

Let

1 t
¢ = —/ O, N ds
T t—T !

~ 1 T
6:7/ Py N ds
T—@t-T) )i—r 7
&1 =B, 4,6 = ! /T Dy Nd
1 — Prtx _Tf(th) o 8,tx S
1 t
g = —— Dy 1A ds.
t—1T1

T
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So, we want dyw (&, pt) < €. Note that

1 T t —(t—T t—
5: ? </ (I)s,t*AdS +/ (I)s,t*AdS) == T ( )51 + T§2
t=T T

and so Lemma gives that

L= 7-diam(X) < <.

dw (£, &) < 1

So, it remains to show that dyw (&1, p¢) < 2. For each v in the interval [r,t], we
have

1 /T
[ ®.,ds
T—0t-T) Ji—r 7

and so, since v <t < =Ty and 7—(t—T) > T1, it follows that <I>m,*5 € O. Therefore,
by Eq. (3) in LemmaBI(A), in order to show that dw (&1, 1) < 2¢ it is sufficient
to show that dw (€, ) < 3ee”™=9. But we know that dw (pr, 1) < tee”™=9; and
Eq. Z2) with “¢” set to 7 and “T” set to 7 — (t — T'), and with e; := tee"""" and
g9 1= tee”ltl, gives dyw (€, 1) < teer™. So dw (€, pir) < 3eem(™Y as required. O

®T,’U*é -

3.2. Proofs of the results for differential equations

Assume the setting presented in Secs. Z3Tland 232 For each v € T, write (¥ );>¢
for the semiflow generated by Eq. (23]), and for every non-empty bounded O c RY
let

L(O;vy) =inf{reR: Va,y € O, (x—y) - (fy(x) — f1(y)) <rlz— y|?}.

Recall that K x denotes the set of non-empty closed subsets of X; likewise, for any
closed G C X, let K be the set of non-empty closed subsets of G. For any v € Z,
we say that Q € Kx is an invariant set of Eq. Z3)) if ¥1(Q) = Q for all > 0. Note
that if v € Mx is an invariant measure of Eq. (21), then supp v is an invariant set

of Eq. ([Z3)).

We start by proving Proposition 2.1l We need the following elementary lemma.

Lemma 3.4. For any A € RVXN | the mazimum of the real parts of the eigenvectors
of A is bounded above by £(A).

Proof. Define ©:CY — R by
O(v) := Re(v)TIm(v).
For each v € CY, the sets
{6 € R:O(ev) >0}
{6 e R:O(ev) <0}
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must both have non-empty interior, since taking 6 = 7 gives
O(iv) = (~Im(v))TRe(v) = —O(v).

Furthermore, if v # 0 then there are at most two values 6 € [0,27) for which e?v
is purely imaginary. Hence, for v # 0, the sets

{6 € R:O(e"v) > 0,Re(v) # 0}
{6 € R:O(e"v) <0,Re(v) # 0}

are both non-empty. Therefore, if we fix any eigenvalue A\ = Are + i\ of A,
we can find a corresponding eigenvector v = vge + vy, such that vre € Sy and
/\Imvgevlm < 0. We have

£(4) > o, Avg,
= v Re(Avge + iAviy, )
= v Re(Av)
= vp.Re(\v)
= Vge(AReURe — Alm¥Im)
= ARe — MmVneVIm

Z )\Re- o

Proof of Proposition 2.l For each z,y € P, writing z; = ¥'(x), y, = ¥i(y)
and d; = x; — y; for all t > 0, we have

.y —dy
}Llf}) —n = fao(®t) — f"/u(yt)
and so
d;
. |dt+h| - |dt| m : (f"/o(wt) - f’Yo(yt)) Ty 7’é Yt
lim ——————— = t
h—0 h
0 Tt = Yt
L(P)|d| x¢ # yt
0 Tt = Yt
< roldy].

Hence, Gronwall’s Lemma (the basic version for linear differential inequalities) gives
that |d;| < etz — y| for all ¢ > 0. Thus

diam(P) = diam(¥*(P)) < e"'diam(P)

for all ¢ > 0. But since r¢ < 0, it follows that diam(P) = 0, i.e. P is a singleton {p}.
Again since rg < 0, Lemma B gives that all the eigenvectors of (Jf,)(p) have

2350020-18



Stoch. Dyn. Downloaded from www.worldscientific.com
by UNIVERSITY OF EXETER LIBRARY on 04/05/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Physical measures of asymptotically autonomous dynamical systems

negative real part, and so p is a hyperbolic stable fixed point of f,,. Furthermore,
it is well known that hyperbolic stable fixed points are robust in the following
sense: there is a neighborhood U of p and a C'-neighborhood V of f,, such that
every f € V has a hyperbolic stable equilibrium g5 € U with the property that
every o € U is the initial condition of an infinite-time solution z:[0,00) — RY
of & = f(x) with z(t) — g as t — oc. Since Q(v) depends dg-continuously on
v and f, depends continuously in the C'! topology on v, every v sufficiently close
to 7o has Q(’y) C U and f, € V; but then, since every initial condition in U is
attracted to the fixed point g, under f., the only invariant probability measure of
[~ supported on U is the Dirac mass at ¢z, and so Q(v) = {qy, }. O

It remains to prove Theorem 24 according to the strategy laid out at the end
of Sec. [2.3.3] We start with the construction of the set O.

Lemma 3.5. For each r > 1y, there exists a neighborhood O of P and a value
T* <0 such that for all t € [—oo,T*], L(O;T'(t)) < r.

Proof. For each v € T and each z,y € RV with x # y, define

(x —y) - (f,(x) = /,(y))

f’Y(I7y)* |$*y|2
It is clear that the map (v, ,y) — f,(x,y) is continuous on Z x {(z,y) : * # y}.

Now since f, has continuous dependence on ~ in the C'-topology, the map
(v,2) — (Jfy)(x) is continuous, and hence the map (v,v,z) — vT(Jf,)(z)v is
continuous; and since Sy is compact, it follows that the map (v, z) — £((J fy)(z))
is continuous. So, since {7y} x P is compact, let § > 0 (taken sufficiently small that
Bs(P) is in the interior of X relative to RY) be sufficiently small that for all v € Z,
x € Pand y € X, if max(y — 7o, |y — z|) < ¢ then

1£((J 1)) = £((J fyo) ()] <7 = ro.
Since £((J f,)(z)) < 79, it then follows that £((Jfy)(y)) < r. So then,
sup  sup L(Bs(x);7y) <. (3.14)
v€ly0,70+6] zEP
Now let {z1,...,z,} C P be a finite set such that P C Bs({x1,...,2,}), and let

n

Do = (P x P\ | J(Bs(w:) x Bs(w:))

i=1

= sup fy(x,9).
(z,y)€Do

Note that v < rg. For each ¢ € (0,9), let

D(e) = (B-(P) x B-(P)) \ | J (Bs(x:) x Bs(w.)

i=1

Tye = sup f’Y(Iv y) (’7 € I)
(z,y)€D(e)
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Since D(e) decreases to the compact set Dy as ¢ — 0 and the map (v, z,y) —
fy(z,y) is continuous, we can find ¢’ € (0,6) such that for all v € [y9,7v0 + ¢'],
tys —t <7 —719. So since t < 1o,

sup vty e < (3.15)
v€ho,v0+6']

Now, let O = By (P). Since

PxPcD(@)U U (Bs(z) x Bs(x)),

reP
Equations (8I4) and [BIH) imply that every v € [y0,70 + '] has L(O;v) < r. So
take T such that every ¢ € [—oo,T*] has I'(t) € [y0,70 + ¢']. |

To verify condition (i) of Definition Z I3 applied to (O, T*,v) (where T* will be
constructed later), we have the following lemma.

Lemma 3.6. For each T € (—00,0), if v € Mx is an invariant measure of Eq. (2.5)
with v :=I(7) then +dw (®r r1nev,v) — 0 as h — 0+.

Proof. For each small h > 0, since \IJZ*V = v, the pushforward measure of v under
the map z — (5 (z), V! (2)) is an element of J(®; r4n.v,v), and so we have

A @) < [ [Brrin(z) = Wh(a)| v(do).
X
Now for each x € X,

lim (I)T’TJrh(x) 7\11’};@) = lim ————
h—0+ h e h h—0+ h

= fy(@) = fy(z) = 0.

We wish to apply the dominated convergence theorem to this; for the integrability

_ah
condition of the dominated convergence theorem, it is sufficient that L(?\P"ﬂ
is bounded in (x, h). For each € X and each h € (0,|7]|], we have that

|¢TT+h(I) —\P’,;(x)| |(I)TT+h(x) 7I| |\I/2(I) 7I|
E < 1) < 2 .
) < h + - < opax |fron (y)]

Hence, the dominated convergence theorem can be applied to give that

! P ryn(z) — U ()]
3 o)t = [ gy et o
and so
. dW(cI)'r T+hxVs V)
1 —_— = 0.
hir& h =
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We next consider how to verify the “growth-control” condition in Definition 2.15

Lemma 3.7. Suppose we have r > 0, t € (—00,0) and Ai,A2 € Mx
with supports contained in a set O C X with L(O;T(t)) < r. Then
lim Suph—>0+ %[dW((I)t,H»h*)\l, (I)t,t+h*)\2) — dw(>\1, )\2)] S ’I‘dw()\l, )\2)

We will only need the result with liminf in place of lim sup, but it is no harder

to obtain the stronger result about limsup. The proof is similar in nature to the
proof of Lemma

Proof of Lemma B2 Let P be a minimizer of P — Eg[|m — ma] on J (A1, A2).
For each h > 0, the pushforward measure of P under the map (x,y) —
(Ppan(x), Prygn(y)) is an element of T (P y+neA1, Pri+nsA2), and so we have

Aw (Pt 1+hs A1, Prprneda) < / [Pt 441 () — Pt egn ()| P(d(z, y)),

XxX
and hence

Aw (Pt t4+hs A1, Prthsr2) — dw (A1, A2)

< /X [Prn(@) = B w)] ~ 2 = 3l Bd(e.)

- / B0 v () — B pen(w)] — o — v Pd(x, ).
Ox0O

Now for each (z,y) € O x O, similarly to in the proof of Proposition 2] we have

lim [Pt t4n(®) = Pratn(y)| — |7 —y
h—0+ h

<rlz—yl.
As in the proof of Lemma[3.6] we wish to apply the dominated convergence theorem.
For each =,y € X and each h € (0, [t]], we have that

[Pt tn(®) — P pyn(y)| — |z —yl - |Prirn(z) — x| |Prarn(y) —yl
h - h + h

IN

2l frim (2)].
Lomax | fren(2)]

Hence the dominated convergence theorem can be applied to give that

1
lim — P - — | —y|P
Jim [ Buana) = )]~ e — ol Pd(e.)

® — 9 -
= /O ; hli%l+ | t,t+h(x) t,;L+h(y)| |'r y' P(d(l,y))
X

< /O ey B(()

- / rlz — y| P(d(z, 1))
XxX
= rdw (A1, A2),

2350020-21



Stoch. Dyn. Downloaded from www.worldscientific.com
by UNIVERSITY OF EXETER LIBRARY on 04/05/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

J. Newman € P. Ashwin

and so

Jim sup W (Pt ha A, PritneA2) — dw (A1, A2)

S wa(Al, )\2)
h—0+ h

a

The main remaining step towards being able to prove Theorem 2Z4(A) is finding
T* such that @ .0 € O for all s <t < T*, as in condition (iii) of Definition 213
It is clearly sufficient to find T* such that ®,,(P) C O for all s <t < T™*.

To do this, we will first need to obtain results for the set-valued dynamics that
are analogous to Lemmas and 37 for the measure-valued dynamics.

Lemma 3.8. For each 7 € (—00,0), if Q € Kx is an invariant set of Eq. (2.3)
with v := (1) then +du(Prr4n(Q), Q) — 0 as h — 0+.

Proof. Fix ¢ > 0, and let 6; > 0 be such that for each t € [7,7 4 0;] and z € X,

|fre)(z) — fy(z)] < 5. Let R be a Lipschitz constant for f.,. The map ¢ +— @, ;(x) —

\II75 T(z) has derlvatlve Jrw (@ri(x)) — f(PL7(x)); and so for each 2 € X and
€ (0,01), we have that

|@T,T+h(w) - \Ifz(iﬁ)l
h
< max | fp)(Pri(x)) — f’y(‘llfy_T(‘/E))'

te[r,7+h]

< (max, 1 (@rs(0)) = @100

+h)

(e, (@000 7))

te([T,7+h]

€
€ R CI).,. o \I/t_T
<37 (te][[?,i)ih]l @) =1 (x)l)
€ t—r
Sgt+R (te][[?,%h] | @7 ¢ (2) — xf + W77 (z) - x')
€
< - +h. (2R max |fF(t)(y)|> .

yEX, te[T,7+61]

::Ll
So taking 0 < § < min(dy, ﬁ), for every h € (0,9) and « € X, we have
|77 n(T) — qj—}yb(x)l
h
Since ‘II?{(Q) = @ for all h > 0, it follows that for h € (0, ), we have

dH ((I)T,T+h(Q)7 Q)
h
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Lemma 3.9. Suppose we haver > 0,7 € (—00,0), and sets A1, Ay € Kx contained
in the interior of a set O C X with sup,c(r r 15 L(O;'(t)) < 1 for some § > 0. Then
limsup, o4 +[du(Prrn(A1), Prrin(A2)) — di (A1, A2)] < rdp(Ar, Az).

(Again, we will only need the result with liminf in place of limsup, but it is no
harder to obtain the stronger result about limsup.)

Proof of Lemma Let 91 € (0,0] be such that @, 4,(A1 U Az) C O for all
h € (0,61]. For each € Ay and y € Ao, writing 2, = ®,4(z), y» = ®,4(y) and
dy = oy — Yy, we have
. diyn —dg
im —————

h—0 L = fry (@) — fr (ve)

for all t € (7,7 + 1). Hence, as in the proof of Proposition 2] for all h € (0, d1],
xr € Ay and y € Ao, we have

|¢T7T+h($) - q)T,T-&-h(y)l < erhlx - yl

For every x € Aj, there exists y € Ay with |2 — y| < diy (A1, A2); and taking any
such y, we then have that for all h € (0, d1],

|¢T,T+h(x) - q)'r,'r+h(y)| S eThdH(AAM AZ)
So then, for all h € (0, 61],

max A( @7 rin (), Prrin(A2)) < edu(Ar, Ag).

The same likewise holds with A; and A, switched round, and so
dH (CI)T,T—i-h(Al)a cI)T,T—i—h(AQ)) S erhdH (Ah AQ)
In particular,

dH(cI)T,T—i-h(Al)a cI)T,T—i—h(AQ)) - dH(Ala AQ) < e'r‘h —1
h - h

and taking the superior limit as h — 0+ gives the desired result. |

dr (A1, Az),

Lemma 3.10. Suppose we have r > 0, a neighborhood O of P, and a value
T* < 0 such that for all t < T*, L(O;T(t)) < r. Suppose furthermore that
ffoo dp(Q(t), P)erltl dt < oo. Then there exists T* < 0 such that for all s <t < T*,
®,.(P) CO.

Proof. Take A > 0 such that Ba(P) C O°; hence in particular, every G € Kx
with dy (G, P) < A is contained in O°. Writing

u

2(u) = (C + V)d (Qu), P) +crem/ du(QL), e,

— 00
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it is clear that d(u) — 0 as u — —o0, so take T* < T* sufficiently large in magnitude
that for all u < T,

o(u) < A. (3.16)

It obviously follows in particular that dg(Q(u), P) < A and hence Q(u) C Ba(P).
Now for each s € (—oco,T*), since I' is continuous let §(s) > 0 be such that for
all t € [s,54 0(s)), T(t) — T'(s) < 6(I'(s)). Defining the nonautonomous dynamical
system (®5%) on Kx by ®3%(G) := @, ;(G), Lemmas B8 and B imply that (®3%)
fulfills the conditions of Lemma BJ[(B) with P in place of p, Km in place of O,
Q(+) in place of ¢(-) and dy in place of d. Hence, Lemma [B.1|(B) gives that for any

s<u<T* if &, 4(P) C Ba(P) for all ¢t € [s,u) then
dig(®s.u(P), P) < 0(u). (3.17)

Since the map u +— @, (P) is continuous for each s, it follows that for every
s<u<T* ®;,(P) C Ba(P) C O: for, otherwise, if we let v’ := min{t € (s,u] :

O, +(P) ¢ Ba(P)}, then @, ,(P) C Ba(P) for all t € [s,u/] and so Egs. (316]) and
BID) give that dg(Ps . (P), P) < A, contradicting that @,/ (P) ¢ Ba(P). |

Proof of Theorem [Z4|(A). Take O and T* as in Lemma B35, with O closed; and
then take T* as in Lemma B0 sufficiently large in magnitude that 7* < T* and
Q(t) C O° for all t < T*. It follows that v(t) € O for all t € [—o0, T*]. The fact that
(O, T*)isa GC of (Mx,dw, (Ps,«)) of rate r is given by Lemma Bl We now verify
the conditions of Definition for (O, T*,v). First note that, by assumption, v
is continuous; condition (i) is given by Lemma B0} condition (ii) is assumed with
0 in place of T, but T* is already less than or equal to 0; condition (iii) follows
immediately from the definition of 7% as given by Lemma So (O, T*,v) is a
NAC of (Mx,dw, (®s,.)) near p of rate r. Furthermore, it is monotone-like, since
one can take 0(s) as in the proof of Lemma B.I0l m|

To prove part (B) of Theorem 241 we need the following lemma.

Lemma 3.11. Suppose we have r > 0 and a neighborhood O C X of P such that
L(O) < r. Then for any x € O and s < u <0, if every t € [s,u) has @, (z) € O
and V'=5(x) € O, then

u

1By 0(2) — T (2)] < 7 / dx.co(friey, o) dt, (3.18)

— 00

Proof. Since dx co(fr(), fﬂm)erm > 0, it is sufficient to show Eq. (BI8)) with f:
in place of [“ . For each t € (s,u), we have

_\h
lim ‘I)s,t+h($) v (‘I)s,t(w))
h—0 h

= fI‘(t)((I)s,t(x)) = f (®s,¢(2)),
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and similarly to in the proof of Proposition 2] we have

h o h+t—s
U@ (@)~ ()
h—0 h

< r|®@g i (z) — W5 (7).

Combining these, we have

o h+t—s
lim s pin(z) =V (z)
h—0 h

Tk
lim ‘I)s,t+h(517) v ((I)s,t(x))
h—0 h

< fr (@se(@)) = fro(Ps,t ()| +7|Ps e (z) — U5 ()]

< dx,co(fre)s fro) + 7P e(x) — U5 ()).
Hence, for all ¢ € [s, ul,

h o h+t—s
U@ (@)~ W)
h—0 h

<

+

t
|s(2) — T (2)] < / dx,co(fr(z)s fro) + 7] ®sr(2) = U775 (2)| dr.

A suitable version of Gronwall’s Lemma [8, Corollary 2] then yields the result. O

Corollary 3.1. Suppose we have r > 0, a neighborhood Uy C X of P, and
a neighborhood O C X of Uy, such that L(O) < r. Suppose furthermore that
fi)oo dx.co(frey, fro)e" !l dt < 0o. Then there exists T < 0 such that for any x € Uy
and s <u < T, if every t € [s,u) has U'=°(z) € Uy then ®, () € O.

Proof. Take A > 0 such that Ba(Up) € O°, and let T be such that for all u < T,

eru/ dX,CU (fp(t), f,yO)er‘tl dt < A. (3.19)

Now, similarly to in the proof of Lemma [B.I0, suppose for a contradiction that
we have z € Uy and s < u < T such that every ¢t € [s,u) has W' ~*(z) € Uy
but @, (z) ¢ Ba(Up). Let v/ := min{t € (s,u] : ®s4(x) ¢ Ba(Up)}. The map
t — @, () is continuous, and so every t € [s,u’] has ®,,(z) € O (as well as, by
assumption, U'=%(z) € Uy C O), and so Lemma B.IT] together with Eq. (ZI9) gives
that

1@, (2) — U¥ ~5(2)] < A.

But % ~%(z) € Up, and hence ®, () € Ba(Uy), contradicting the definition of
u'. O

Proof of Theorem [24(B). Let O and O be as in the proof of Theo-
rem [ZF(A). Fix a neighborhood Uy of P such that Ba(Uy) C O°, and since
f?oo dx,co (fp(t),f%)ewm dt < oo, let T be as given by Corollary Bl Since P
is Lyapunov-stable under the past-limit system, let U C Uy be a neighborhood of
P such that for all ¢ > 0, ¥/(U) C Up. Fix any A € Mx with \(U) = 1. We first
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show that A is pullback-eventually in O under (®; . ). We verify Definition 2.7 with
Ty =0 and Ty = T: every 2 € U has Ui(x) C Up for all t > 0, and therefore by
definition of 7, D, () € Oforals <u< T hence in particular, DA € O
for all s < u < T. Now, suppose furthermore that A is, respectively, attracted or
Cesaro-attracted to p under (¥!). For each ¢ > 0, let Ry(¢) > 0 be such that,
respectively, dy (Vi\ pu) < e for all ¢ > Ri(e), or dw (% fOT UIAdr, p) < e for all
T > Ry(e). For each € > 0, let Ra(g) > |T'| be such that

7R2(€)
/ dx,co(fre), f'yo)er‘tl dt <e.

Now fix £1,&2 > 0. First, consider the case that A is attracted to u under (¥%). Fix
t < —Rs(e2) and s <t — Ry(e1); we need to show that

dW(q)s,t*)\vﬂ) <er+ EQert-
By the triangle inequality,
dw (Ps e\, 1) < d (WE5N, 1) + d (s g X, TETEN).

Since t — s > Ri(e1), dw (¥ X\ u) < e1. So, it is sufficient to show that
dw (P 1A, PL75N) < e9€™. The pushforward measure of A\ under the map = —
(Ps,(z), U%(z)) is an element of J (P 1A, PL75N), and so

dw (Ps e, ULT5N) < / |Ps ¢ (x) — U 5(2)| A(dx)
X

_ /U 1@y 1(2) — U ()] A(der).

For all z € U and 7 € [s,t], we have (by definition of U) that ¥"~*(x) € Uy C O,
and since 7 < T', we have that @ -(z) € O. Hence, by Lemma B.11] every x € U
has

t
1B, (z) — T (2)] < e / dx.co(froys Fro )7 d7 < 267,

— 00

So dw (Ps 1\, PL5N) < £2€™ as required. Now consider the case that A is Cesaro-
attracted to g under (V!). Fix t < —Ra(e2) and T > Ri(e1); we need to show
Eq. (Z2). By the triangle inequality

1/t 1 [t
dw (—/ D, *)\ds,u> < dw (—/ \Ilis)\ds,u>
T Ji—r ! T Ji—r
+d (1/t O, N d 1/t \Ilt_sAd)
W\ = s,t* Sy 7 * S .
T Ji—r ! T Ji—r
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Again, we wish to show that the two terms on the right-hand side are bounded
above by €1 and e9e™, respectively. Since T > Ri(e1),

d <l/t Ui=s\d ) d 1/T\I/T)\d <e
w m * S K| = aw al * T, 1-
T )i T Jo

Letting u;—7; be the normalized Lebesgue measure on [t — T, t], the pushforward
measure of A ® u;_r; under the map (z,s) — (P (), U*~%(z)) is an element of

1 [t 1 [t
J (—/ D, *)\ds,—/ \I/is)\ds>,
T Ji—r ! T Ji—r
and so

I L 1T .
d —/ D, 1A ds, —/ ‘l/*_sx\ds) < —/ / D i(x) — U 3(2)| AM(dx) ds.
v (T t—T ' T Jir T Jir Ju 2. (@)| Mda)

By the same argument as before, every x € U and s < t has |®, ;(z) — U'5(z)| <

I IR .
dw (—/ Dy 1A ds, —/ \P*S)\ds> < gqge™.
T Ji—r T Ji—r =

4. Final Remarks

gge”t, and so

We have been able to demonstrate existence of nonautonomous physical measures
in the context of a class of nonautonomous continuous-time systems with asymp-
totically autonomous past limits that have physical measures in the usual sense;
still, there remain a number of challenges.

Firstly, we expect there are connections between the “monotone-like” hypothe-
ses used to obtain Theorems 211 and 2.4] and more general assumptions on linear
response; it would be helpful to clarify whether this is the case and/or whether the
existence of a nonautonomous physical measure can be usefully proven under weaker
assumptions. In particular, we anticipate that there may be ways in which more
standard linear response assumptions can give rise to the conclusions of Theorem [2.4]
in place of having to verify a “monotone-like” assumption. (As in Remark [Z9 and
Appendix A, we have already seen that it is possible to obtain an alternative con-
dition to the “monotone-like” hypothesis in order to obtain the conclusions of The-
orem 2T} but, as detailed in Appendix A, this alternative condition will generally
not be applicable to obtaining the existence of nonautonomous physical measures
other than time-dependent Dirac measures.)

Secondly, Theorem 4] relies on the existence of an autonomous past-limiting
system: the natural next step is to consider other important cases, such as nonau-
tonomous random dynamical systems with an autonomous random past limit.
However, we do not expect it to be possible to formulate a useful notion of nonau-
tonomous physical measures without making at least some assumption on past-
limiting behavior.
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Appendix A. Alternative Conditions for the Conclusion of
Theorems [2.7] and

Definition A.1. Given r > 0 and a nonautonomous dynamical system (P )
on X, an equilibrated growth-controller (EGC) of (X,d,(®s.)) of rate r is a
triple (O,T*,q) consisting of a GC (O,T*) of (X,d,(®s,)) of rate » and a
continuous function ¢:(—oo,T*] — O such that for all t < T* and =z € O,
liminfp_oy +d(Pe4n(2), 2) < rd(z,q(t)).

Heuristically, Definition [A-T] says that in O, not only is the speed of separation of
two trajectories controlled by their distance from each other, but also the absolute
speed of each trajectory is controlled by its distance from the “equilibrium ¢(t)
of the time-t instantaneous dynamics”. It is reasonable to expect this behavior
in finite-dimensional settings: e.g., if X is a compact subset of RV and (@) is
the solution flow of a smooth nonautonomous differential equation &(t) = fi(x(t)),
then the condition liminf, o4 Fd(®se4n(z),2) < rd(z,q(t)) is equivalent to the
condition that |f:(x)| < r|z — q(t)|. However, in infinite-dimensional settings, one
cannot so readily expect this kind of “continuously differentiable” behavior, even
for autonomous systems. We now give an example of this, for dynamical systems
on the space Mx of probability measures on a compact space X.

Proposition A.1. Let f be a locally Lipschitz vector field on RN, and let X be a
compact subset of RN such that every xo € X is the initial condition of an infinite-
time solution (x(t))i>o of ©(t) = f(x(t)) with z(t) € X for allt > 0. Let (¥*);>¢ be
the semiflow on X generated by f. Let p € Mx be an invariant measure of (¥*)¢>o,
i.e. a fized point of the autonomous dynamical system (¥1);>o on Mx. Then for
any sequence py, € Mx of finitely supported probability measures converging weakly
to u, we have that

. dW(\Ithn ,un) /
1 — e = dpin A1l
AT h 1 (A1)
for each n, and hence
. dw (Y, ) /
1 lim ——————~ = dp. A2
A T Ml (4.2)

In particular, if fX [fldw # 0 then

limy, oy 7 dw (V] i, i)

— 00 asn — oo. (A.3)
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Proof. Fixing n, let P,, = supp i, let £, > 0 be such that the family of ¢,,-balls
(B., (%))zep, is mutually disjoint, and let 4, > 0 be such that for all z € P,,
{Uh(2)}o<n<s, C Be,(x). Then for each h € (0,d,], for each P € J(V"u,, u,),
P-almost every (z,y) € X x X has either

o r=VU"(y)and |z —y| < &,, or
o v # Uh(y) and |z —y| > e,.

Hence the minimizer of the map P+ Ep[|m — m2|] over J (W) 1y, p1) is precisely
the pushforward measure of j,, under the map z — (¥"(x), ), and

o (U 1, 1) = /X W () — ] dya.

Dividing by h and taking the limit as h — 0+ then gives Eq. (AJ). Since |f]| is
continuous, Eq. (A.2) then follows by definition from the fact that u, converges
weakly to p. If [ |f|dp # 0, then for all sufficiently large n, [y |f|du, # 0, ie.
limp ot +dw (U2, 1) # 0, but dw (9", 1) = dw (p, 1) = 0 for all h, and so
tn # p. Thus, the ratio on the left-hand side of Eq. (A3)) is well-defined, with a
numerator that converges to a positive value while the denominator converges to
0, and so the ratio tends to oo. O

Accordingly, the following result may be a useful alternative to Theorem 2.1] for
finite-dimensional dynamical systems, but the analogous corollary to Corollary 211
for measure-valued dynamics is generically inapplicable (except trivially when just
considering Dirac masses).

Theorem A.1. Suppose we have p € X and a nonautonomous dynamical system
(®st) on X. Suppose we have r > 0 and a triple (O,T*,q) that is both a NAC
of (X,d,(®s+)) near p of rate r and an EGC of (X,d, (®s+)) of rate r. Then the
conclusions of Theorem 211 hold, namely there exists an orbit (p:) of (Ps:) such
that p is pullback-attracted to (p:) under (®s4), and d(pt,p) is o(e™) as t — —oo.

Additionally, in this setting, any x € X fulfilling the hypotheses of Theorem
fulfills the conclusion, namely that x is pullback-attracted to (p;) under (Dgy).

As in Remark 2.9 the key difference between Theorems A.1 and 2.l is that we
have removed the “monotone-like” condition, and instead strengthened the require-
ment that (O, T*) is a GC to requiring that (O, T*,q) is an EGC.

Proof of Theorem A.1

We have the following analogous lemma to Lemma BIi(B).

Lemma A.1. Suppose we have a nonautonomous dynamical system (Ps¢) on X,
a point p € X, a set O C X, and values T* < 0 and r > 0. Suppose we have
a continuous function q:(—o0,T*] — O such that for all t < T* and x € O,
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lim infy, o4 %d((I)t,Hh(gc),x) < rd(x,q(t)). Then for all s < u < T*, if each t €
[s,u) has @, .(p) € O then

u

d(®su(p),p) < re™ / d(q(t), p)e™ dt. (A.4)

— 00

Proof. Since d(q(t), p)e"*! > 0 for all ¢, it is sufficient to show Eq. (&) with "
in place of [“ . For each t € [s,u),

(0] —d(®
hmlnf d( S,t-‘rh(p)?p) d( sj(p)»p) S hmlnf
h—0+ h h—0+

< rd(q(t), ..+ (p))

< rd(q(t),p) + rd(®s,¢(p), p),
and so by [I1l Appendix I, Theorem 2.1], for all ¢ € [s, u],

d(®s,141(p), Pst(p))
h

A(®,,(p).p) < / rd(q(r), p) + rd(®s . (p), p) dr,

and therefore a suitable version of Gronwall’s Lemma [8, Corollary 2] yields the
result. O

The proof of the first part of Theorem [A1] proceeds exactly as in the proof of
Theorem 1] except that instead of choosing T' so that every s < T has

S

(C + 1)d(q(s),p)e"*! + cr/ d(q(7),p)e dr < e,

— 00

we choose T' so that every s < T has

7‘/ d(q(r),p)e’ M dr < e.
(Of course, this is equivalent to saying more simply that r f_TOO d(q(t),p)e”lldr <
e.) Then, applying Lemma A.1 in place of Lemma BI|(B) then recovers Eq. (B13).
The proof of the second part of Theorem A.1 is then identical to the proof of
Theorem 2.2] since, given the conclusion of Theorem P11 the proof of Theorem 2.2
makes no further reference to the fact that the NAC (O, T*, ¢) is monotone-like.
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