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ABSTRACT 

Real-time Simulation (RtS) and Digital Twins (DT) are terms generally associated with hybrid models 

that use real-time data to drive computational models. Additionally, in the case of DTs, real-time data 

is often used to create virtual replicas of the physical system as it progresses through real-time. There 

is an increasing volume of literature on RtS and DT; however, the field of OR/MS is yet to coalesce on 

accepted definitions and conceptualisations. This has arguably led to the cascading usage of these terms. 

The objective of the paper is threefold: (1) distinguish between RtS and DT, (2) present RtS-DT 

conceptualisation in four dimensions, and (3) present methodological and technical insights on 

developing RtS with limited data. We argue that the evolution of conventional simulation models to 

fully-fledged hybrid DTs may necessitate a focus on a transitional stage; namely, RtS models primarily 

driven using historical distributions with limited real-time data feeds.  

Keywords: Real-time Simulation, Digital Twin, Hybrid Modelling, Conceptualisation 

1 INTRODUCTION 

A defining characteristic of the present Millennium is the exponential increase in data availability, made 

possible through advances in data acquisition technologies such as sensors, Global Positioning System 

(GPS)-enabled devices and Radio-frequency identification (RFID) chips and the underlying network 

and communication, storage, and computing infrastructures. Developing novel ways of making sense 

of this explosion of data, often referred to as data deluge (Bell et al., 2009), presents a contemporary 

challenge to researchers. 

 Modelling and simulation (M&S) techniques predates the era of Big Data (Taylor, 2019). The data 

requirements of such conventional simulation models were often limited to distributions computed from 

historical data and observational data, the latter necessary to model the system of interest using an 

overarching M&S methodology. With the increase in both the volume and velocity of data, the 

challenge to our community is to develop hybrid modelling approaches that combine the traditional 

M&S methods (and their reliance on historical distributions) with updated data streams. An example of 

such a hybrid approach is the application of M&S approaches with methods from Data Science, for 

example, machine learning with DES (Elbattah and Molloy, 2016), process mining with DES 

(Abohamad et al., 2017) and neural networks with SD (Abdelbari and Shafi, 2017). However, 
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hybridisation could also be achieved by using values from historical distributions with real-time data 

and using it to drive computer simulations (Powell and Mustafee, 2017). In the M&S community, Real-

time Simulation (RtS) and Digital Twins (DT) are generally recognised as computational models using 

real-time data feeds. However, the lack of common definitions and conceptualisation has, arguably, 

given rise to cascading usage of these terms. To address this gap, the objective of this paper is, first, to 

distinguish between RtS and DT based on the literature; second, to present a conceptualisation of RtS 

and DT based on the following four dimensions of a simulation study – modelling objectives, data 

requirements, implementation, and experimentation. 

 The paper also draws on the authors' experiences in developing a platform that publishes real-time 

data from several NHS Trusts in the South West of England – NHSQuicker (Mustafee and Powell, 

2020) – and using data from NHSquicker in an Accident & Emergency (A&E) model developed using 

AnyLogic™. A conventional Discrete-event Simulation (DES) is used as the core computational model 

(Harper, 2021). The core model is being incrementally developed to integrate “limited” real-time data 

feeds available to the authors. The third objective of the paper is thus to present methodological and 

technical insights from our experience in developing RtS with limited real-time data.  

 For the remainder of the paper, the terms Operations Research/Management Science (OR/MS) DT 

and DT are used as synonyms for digital twins. Similarly, the terms "computational models", 

"conventional models" and OR/MS M&S are used interchangeably and refer to conventional simulation 

models. Finally, RtS refers to OR/MS simulations with limited real-time data feeds. 

2 HYBRID MODELS WITH REAL-TIME DATA STREAMS 

A simulation study comprises several well-defined stages. The model implementation stage concerns 

the development of a computer model using programming languages/libraries and software packages. 

However, prior to implementation, conceptualisations of the system must be developed and translated 

into modelling artefacts. Abstractions built on constructs specific to M&S techniques often lead to 

single-technique implementations. For example, an abstraction of a service delivery system viewed 

through the lens of queues and servers would often lead to a DES implementation; the same system 

could be modelled in agent-based simulation (ABS) if the conceptualisation draws on agent classes, 

inter-agent communication and the concept of emergence. Distinct from such single-technique DES and 

ABS implementations, Hybrid Simulation uses multiple simulation techniques in the context of a single 

simulation study. As reported by Brailsford et al. (2019), since 2000, there has been rapid growth in 

publications that have used combined approaches, such as the use of hybrid agent-based DES (Viana et 

al., 2020), DES with system dynamics (Xu et al., 2018) and mixed DES-ABS-SD modelling (Roemer 

and Strassburger, 2019). 

The combined application of simulation with frameworks, methods, tools, and techniques that have 

been developed outside the field of M&S is referred to as Hybrid Modelling (Tolk et al., 2021). Unlike 

hybrid simulation, which mainly focuses on the model implementation stage, there are opportunities to 

leverage cross-disciplinary methods in conceptual modelling, verification and validation (V&V), 

scenario development, experimentation, and other stages of an M&S study (Powell and Mustafee, 

2017). Mustafee et al. (2020) present several examples of hybrid models from the literature that have 

combined OR/MS simulations with approaches from applied computing, for example, distributed 

simulation, parallel computing, cloud computing, and real-time computing.  

DT and RtS are hybrid models that use real-time data streams. They are considered hybrid models 

since their execution necessitates integration with backend data acquisition systems using distributed 

computing approaches such as socket programming and web application programming interfaces 

(APIs). Database-centric methods (including spreadsheets) could also be used wherein real-time data 

stored in the backend system is accessed using the Open Database Connectivity (ODBC) interfaces 

(Microsoft ODBC, 2022) to specific database management systems. Yet another approach is through 

the development of database triggers which access APIs defined in DT and RtS. A trigger is a code 

snippet stored in a database and executed following a defined database event, for example, an arrival of 

a patient in a hospital or a trigger executed at pre-defined intervals. The triggers are developed using 

procedural languages such as PL/SQL (Oracle) and PL/pgSQL (PostgresSQL). Flat-file-based systems 

(e.g., data from a data acquisition system (DAS) dumped in a shared directory) are yet another option, 

although this often requires parsing the data before being used by DT and RtS.  
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Our discussion has assumed that the front-end DASs were primarily developed to meet an 

organisation's data requirements and that they provide APIs, flat files, ODBC interfaces, etc., for 

external applications to access data. However, our experience working with multiple A&E patient flow 

systems has shown that this may not always be the case. A DAS could be a "closed" system in cases 

where primitive data structures are written in binary format using languages such as C/C++, and thus 

only accessible to program code (other programs cannot decipher records from these data files). On the 

opposite end of the spectrum, bespoke DAS and DT/RtS systems may be developed, which motivates 

the need for strong coupling in the design phases. In such cases, some of the complexities of real-time 

data communication are abstracted through higher-level libraries and API calls. 

3 DEFINITIONS: DIGITAL TWINS AND REAL-TIME SIMULATION 

VanDerHorn and Mahadevan (2021) reviewed 46 definitions of DTs and proposed the following 

generalised definition: "(DT is ) ... a virtual representation of a physical system (and its associated 

environment and processes) that is updated through the exchange of information between the physical 

and virtual systems". Arguably, the authors' definition rests on the characterisation of DT originally 

proposed by Michael Grieves (Grieves, 2014, as cited in VanDerHorn and Mahadevan, 2021), which 

necessitated the existence of a physical system in the real world, the virtual representation of the real 

system, and communication channels between the real and the virtual systems for information 

exchange and synchronisation. In the following paragraphs (including Tables 1 and 2), we critique DT 

and conventional M&S models, as applied to OR/MS, based on Grieves' characterisation of the 

definition of digital twins. Through this critique, we lay the foundation for the definition of real-time 

simulation, or RtS, which is introduced in Section 3.1. 

  Physical Reality: A fundamental difference between M&S and DT is whether the system being 

modelled exists in the real world. For OR/MS simulations, this could be a system that does not yet exist. 

Here the purpose of the simulation study is to experiment with system configurations before 

implementing the physical infrastructure. The work conducted by British Airways' Operations Research 

department is a good example. They developed generic simulation models to assess infrastructure 

requirements, such as the number of check-in counters for the new Heathrow Terminal 5 (Beck, 2011). 

 A physical system, a physical environment and physical processes are identified by VanDerHorn 

and Mahadevan (2021) as the three essential elements of the physical reality and which a DT must 

model. When a physical system does not exist, a DT implementation cannot be realised as there are no 

entities, no physical environment for the entities to reside and interact in, and no existing physical 

processes exist. 

 Virtual Representation: The five definitional elements associated with virtual representation are 

presented in Table 1 (column one). The definition presented by VanDerHorn and Mahadevan (2021) is 

a very broad and encompassing definition of DT. Thus, we assessed the definitions from the standpoint 

of OR/MS researchers. We consider both the traditional OR/MS simulations of physical systems that 

exist in reality (Table 1; column two) and DTs that include an OR/MS focus (Table 1; column three). 

Table 1 A comparison of conventional OR/MS simulation and OR/MS DT based on VanDerHorn and 

Mahadevan (2021) definition of Virtual Representation 

Definitional elements of 

virtual representation 

Conventional OR/MS Simulation of a 

Physical System 

OR/MS DT 

Idealised representation 

of physical reality 

For conventional OR/MS simulation, the 

conceptual modelling stage helps develop 

an abstraction of the system of interest 

based on factors such as the objectives of 

the simulation study. 

The idealised representation of 

physical reality often has to 

consider the real-time data 

available to model the abstraction 

of the physical system in the DT 

model. 

System states and 

parameters 

A simulation model of a physical system 

often requires a modeller to observe the 

real-world system or develop familiarity 

through interaction with the problem 

stakeholders, reading literature, etc. The 

modeller then relies on this understanding 

 A key element of an OR/MS DT is 

to monitor the physical reality as it 

transitions through time (also 

referred to as the wall clock time). 

The terms system states and 

parameters are concepts that are 
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and uses technique-specific constructs 

available to implement a computer model. 

The computer model will include system 

states which will transition through time 

and various parameters, all of which are 

defined based on the modeller’s 

understanding of the system in question. 

used in state space modelling; state 

estimation methodology is 

frequently used in DTs to change 

information between physical 

reality and virtual representation 

(VanDerHorn and Mahadevan, 

2021). 

Virtual system:  

The virtual system 

consists of data and 

models of the entities 

from the physical system 

at the chosen level of 

abstraction. 

Data: For conventional models, the sources 

of data include primary and secondary data, 

observational data, estimates from the 

literature, hypothetical values, expert 

opinion, or a combination. 

Models of Entity: For detailed-level 

DES/ABS modelling, individual entities 

can be modelled as work units and agents. 

SD can provide a higher level of abstraction 

using stocks and flows. Hybrid simulation 

can provide different levels of abstraction. 

Data: Generally acquired from the 

physical reality, e.g., manufacturing 

facility, using data acquisition 

systems. 

Models of Entity: Generally, 

represent the flow of real-world 

entities through physical reality. 

For example, in a manufacturing 

facility for mobile phones, every 

unit of the phone could be modelled 

as a virtual entity that interacts with 

entities that represent 

manufacturing sub-processes. 

Virtual environment: 

Virtual representation of 

the physical environment 

at a chosen level of 

abstraction.  

The objective is for the 

virtual environment to 

mimic the physical 

system's interaction with 

the physical environment 

(if the latter affects the 

former). 

Certain aspects of the physical environment 

(if they are deemed important) can be 

modelled through the conventional OR/MS 

models. For example, virtual representation 

could be spatial in nature. They may include 

the dimensions of a factory floor, machines, 

and conveyor belts. Commercial, off-the-

shelf DES packages often provide options 

for 2D and 3D visual displays (Akpan and 

Brooks, 2012). The use of Virtual Reality 

(VR) in DES is also an active area of 

research (Turner et al., 2016). Spatial 

aspects can also be modelled in a 

conventional way. For example, the 

placement of inventory of semi-finished 

goods may affect the travel time associated 

with moving items from the store for further 

processing. Some packages like Simul8™ 

can include distance travelled which affects 

the overall processing time. 

Sensors can monitor aspects of the 

physical environment like 

occupancy level and air quality. 

Sensor data can thus be used to 

create a virtual environment at the 

chosen level of abstraction. 

However, it is arguable that the 

inclusion of a virtual environment 

may only be necessary if its 

physical counterpart affects either 

the entities or the processes in the 

physical reality. For example, 

monitoring air quality in high-

precision manufacturing facilities 

may be considered important. 

However, occupancy levels at the 

same facility may not have a 

bearing on the physical processes 

and may thus be excluded from the 

virtual environment.  

Virtual processes: 

Virtual processes 

represent the process-

specific interaction 

among the entities that 

together comprise the 

virtual system and/or 

virtual environment. The 

expression of virtual 

processes is often 

achieved through 

computational modelling 

of the underlying 

physical processes 

existing in physical 

reality. 

As these are dynamic models, the time 

element associated with the transformation 

of physical entities (e.g., plastic blocks) 

through a physical process (e.g., a machine 

which melts plastic) is crucial. For example, 

in a DES model, the (virtual) process flows 

are modelled using networks of queues and 

servers; the servers can be initialised with 

distributions that represent the processing 

times of the physical entities. Thus, in an 

OR/MS M&S model, the virtual processes 

are implemented through a combination of 

model-specific values and the underlying 

M&S methodology and a simulation 

engine. 

For OR/MS DTs, it is important to 

consider the granularity of virtual 

process representation. For a plastic 

injection moulding factory, a DT 

that models the physical 

transformation of raw material 

(e.g., polymer) from solid to a 

liquified state and then to the final 

product, may not be essential 

(although this may be possible 

through physics-based modelling). 

Communication Channels for Information Exchange: The third component of the VanDerHorn and 

Manadevan (2021) definition of DT relates to the interconnection between physical reality and its 

virtual DT representation. The information exchange component is subdivided into three elements, 
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physical-to-virtual connections, virtual-to-physical connections, and information fusion (Table 2). 

Similar to our approach in Table 1, we assess the OR/MS conventional models and OR/MS DTs with 

these definitional elements. Our discussion on information fusion is particularly important for the RtS 

definition introduced in section 3.1.    

Table 2 A comparison of conventional OR/MS simulation and OR/MS DT based on VanDerHorn and 

Mahadevan (2021) definition of Information Exchange 

Def. elements of 

info exchange 

Conventional OR/MS Simulation of a 

Physical System 

OR/MS DT 

Physical-to-

virtual 

connection 

Although data can be automatically collected 

from a physical system and stored in a 

database, distribution fitting and other forms 

of analysis will require the intervention of the 

modeller. As there is a manual element, the 

frequency of information exchange is 

minimal. Indeed, numerous OR/MS models 

are driven using distributions computed from 

very old data that were never updated. 

Data acquisition is mostly automatic; 

updating virtual representation using 

measurements derived from the physical 

system does not usually require complex 

analysis; the frequency of data updates is 

in real-time. However, the experimental 

element of a DT will need to include 

distributions for faster than real-time 

simulations. Automation may enable the 

DT distributions to be recomputed at pre-

defined intervals or when new data 

arrives.  

Information 

fusion 

In this paper, we define information fusion as 

combining historical data with real-time data. 

Going by this definition, since conventional 

models only rely on historical data and 

distributions, there is no scope for information 

fusion.    

Synchronisation of the virtual 

representation of the physical systems 

(the digital replica) is usually achieved 

through real-time data. However, for the 

experimental element of the DT, the 

underlying computational model will 

need to use information fusion (i.e., using 

historical data with real-time data). This 

is further explained in the context of RtS 

in the later sections of the paper. 

Virtual-to-

physical 

connection 

The objective of the virtual-to-physical 

connection for information exchange is to 

draw insights from the virtual system and 

make appropriate changes to the physical 

processes to achieve the desired state of the 

physical system (VanDerHorn and 

Mahadevan, 2021). A simulation is a decision 

support system; making changes to the 

physical system based on experiment results 

is the implementation stage of an M&S study. 

However, there is often a time lag due to the 

need for further considerations (including 

investments and stakeholder trust); the 

learnings from a study are often not 

implemented. 

In an OR/MS DT, the virtual-to-physical 

connection often has mechanisms to 

control real-time feedback to the physical 

system based on either the visual replicas 

in DT (e.g., accumulation of stock taking 

place in the physical reality) or through 

faster than real-time experimentation. 

Interfacing of virtual simulation to 

physical systems has also been referred to 

as symbiotic simulation or on-line 

simulation (Aydt et al., 2009; Onggo et 

al., 2018). As DTs are primarily used for 

real-time decision-making, the time lag 

associated with making changes to the 

physical processes is minimal (indeed, it 

may also be automatic, e.g., through 

actuators which receive control feedback 

from DTs). 

3.1  Defining Real-time Simulation (RtS) 

Conventional OR/MS models, in addition to being able to represent “future” systems, are also widely 

implemented to capture “existing” physical realities. Examples include simulation models of hospitals 

and factories, distribution hubs and supply chain networks, airports and container ports. Like DTs, such 

models represent the physical system, the physical environment, and the processes of the physical 

reality (VanDerHorn and Mahadevan, 2021). However, unlike real-time DT execution, OR/MS 

simulations are implemented to execute faster than real-time (also referred to as simulated time).  
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 For short-term decision-making, DTs may include OR/MS models for faster than real-time 

experimentation and optimisation. However, there also exists the opportunity to transition a 

conventional OR/MS simulation model of a physical system (which uses only historical data) to a DT 

(which uses real-time data), such that the former model is incrementally developed by replacing the 

distributions used to drive the model with real-time data feeds, as and when they become available. We 

refer to these transitional models of conventional OR/MS simulations as real-time simulations or RtS. 

To distinguish the conventional models from the hybrid RtS and DTs, we present a conceptualisation 

based on key aspects of a modelling study, which we refer to as its dimensions. This is presented next.  

4 CONCEPTUALISING REAL-TIME SIMULATION AND DIGITAL TWINS 

For this discussion, we define a conventional OR/MS simulation as using historical distributions to 

populate a core computational model. During the experimentation phase, such models are initialised 

with a warmup period, followed by the results collection until the simulation end time—results from 

experimentation inform medium to long-term decision-making. Figure 1 maps the conventional OR/MS 

simulation, depicted as a black circle, along the dimensions of modelling objective, data needs, model 

implementation and experimentation.  
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Figure 1 Conceptualisation of RtS and DT using the dimensions of modelling objective, data 

requirements, model implementation and experimentation.  
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A RtS, illustrated as a concentric circle with a dashed line, has, at its core, the core computational 

model (represented as the black circle), but with some of the historical distributions complemented with 

real-time data feeds. The grey outer circle represents real-time data; the dashed line illustrates that only 

limited real-time data is available to a RtS. Mapping of RtS in the four dimensions shows that such 

models are mostly used for short-term decision-making (modelling objective axis), it is dependent 

mostly on historical data but with some real-time data (data axis); the latter has implications in terms 

of model initialisation as it now includes the added element of making intrusive changes to the model 

state after warmup (experimentation axis). With the implementation axis, we note that RtS have limited 

situational awareness (this is not surprising considering these models have access to minimal real-time 

data), and the core remains the computational model— the conventional OR/MS model discussed in 

the earlier paragraph.  

A DT is shown in Figure 1 as a concentric circle similar to RtS but with two differences. (1) Our 

definition of DT assumes integration with real-time data streams necessary for the virtual representation 

of entities, processes, and resources. As such, the dashed line used for RtS to illustrate information 

deficiency is replaced with a continuous red border. (2) Similar to the illustration for RtS, the grey outer 

circle represents real-time data; however, compared to the former, the latter has a larger diameter. This 

visually represents that the dependency of DT on real-time data is far more than compared to RtS. 

However, similar to RtS, the OR/MS DT also includes a computational model for experimentation 

(represented as a black circle); thus, DTs are equally dependent on distributions computed from 

historical data (refer to the data axis for the DT). Moving on to the modelling objective axis, a DT can 

be especially suited for real-time decision-making, although intuitively, it could also be viable to assist 

decision support in the short-term, for example, 2-4 hours. What is defined as "short-term" is subjective, 

and its viability will generally be determined based on the context of the application. 

We define DT as a situationally aware computational model (implementation axis) that fulfils the 

following two objectives: (1) The virtual representation of the physical elements of a system as it 

evolves through real-time. (2) Faster-than-real-time simulation experimentation at specific pre-defined 

trigger points. (1) is likely to be a critical determinant for (2); for example, in a manufacturing facility, 

bottlenecks identified through the real-time assessment of key performance indicators (KPIs) could 

trigger simulation experiments to inform stakeholders of possible options, thereby assisting in real-time 

decision-making. Compared to DTs, we argue that the primary objective of RtS is (2). The 

experimentation axis notes that a DT will be initialised using real-time data streams, diminishing the 

need for warmup time and model state adjustments. 

5 METHODOLOGICAL AND TECHNICAL INSIGHTS IN DEVELOPING REAL-TIME 

SIMULATION (RTS) 

In Figure 1, the step-wise illustration of conventional simulation (bottom-left), RtS (centre) and DT 

(top-right) represents the evolution of conventional models to hybrid RtS and DT models. Transitioning 

from simulations using only historical distributions to fully-fledged DTs may be challenging since the 

gamut of real-time feeds needed for the DT realisation may not be available. Also, it may be technically 

challenging to integrate the data feeds with DT (refer to section 2). In such cases, a RtS can effectively 

use the real-time values available to the modeller by substituting them, in the underlying computational 

model, for values derived from historical distributions. Indeed, this was the approach taken by the 

authors while developing a real-time model of an A&E department in AnyLogic™. The A&E RtS uses 

secondary data from Symphony (hospital patient flow system) and real-time data from NHSquicker 

(https://nhsquicker.co.uk/). The remainder of this section provides insights on developing RtS based on 

the authors' experience. The discussion is structured around the four dimensions of modelling 

objectives, data needs, implementation, and experimentation. 

5.1  Insights on Modelling Objectives for RtS 

Organisational decisions are often challenged by shifting or competing goals and uncertain, dynamic 

environments. The decision-makers’ situation awareness – an up-to-date state of knowledge about the 

current situation - can be influenced by the provision of appropriate real-time information. This can be 

achieved through descriptive information about the current state of the system, or through predictive 
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information, such as short-term forecasts of system state metrics. Prescriptive information using RtS 

projects the development of a situation over a short time horizon and can support operational decisions 

informing system recovery through model experimentation. For the development of RtS models, 

focusing efforts on technical challenges is essential, however design principles are also required to 

support the needs of decision-makers who will interface with the model for decision-support (Harper, 

Mustafee & Pitt, 2022). Design decisions include, for example, intuitive output presentation and 

visualisations, and should be considered part of the set of modelling objectives from the outset of the 

RtS study. This generally requires a collaborative approach with the aim of satisfying the needs and 

requirements of users that cannot be anticipated at the study outset, and to adapt design as users, needs, 

and environments evolve during the development phases (Barricelli et al., 2019). 

5.2   Insights on Data Requirements for RtS 

One of the four main components of conceptual modelling is the model input; Robinson (2008) defines 

the inputs as those elements that can be altered to improve the problem situation. As an RtS is a 

transition model, a mid-point, in the shift from its current state as a conventional OR/MS 

implementation to the future state of a DT, it uses both historical data and real-time data feeds as inputs. 

An objective of input data analysis for RtS is, thus, to undertake a technical evaluation of the stakeholder 

organisation's data acquisition systems (DAS) for their potential to relay data automatically. From our 

experience, this necessitates broadening the participation from the stakeholder organisation to include 

database managers and technical team leads. For RtS it is assumed that not all data can be captured or 

sent in real-time. For these data points, the traditional mechanisms are to be used. Thus, the inputs in a 

hybrid RtS model will include values extracted from both real-time data and those computed from 

historical distributions. 

5.3 Insights on RtS Implementation 

RtS models will have a limited degree of situational awareness as they include minimal real-time data 

feeds. Even with data received from DAS in real-time (integrated into the RtS models as variable 

values), the stakeholders may determine the frequency of updates since the DAS will have other 

business functions to fulfil. Our implementation of A&E RtS uses feeds from patient flow systems 

(DAS in A&E departments) and includes a backend database trigger fired at a pre-determined 

frequency; the trigger executes a SQL (Structure Query Language) and sends the information through 

a Web API. RtS will also require a parsing function to process the incoming data stream and automation 

that implements a throttling behaviour in terms of model execution, i.e., the RtS is updated as new data 

comes in; the frequency of the update also determines the degree of situational awareness. Yet another 

element of implementation is the definition of trigger points which would start the automated execution 

of experiments. The trigger points are often based on KPIs. The threshold values of the KPIs will 

continually have to be checked by the RtS when new data is received.  

5.4  Insights on RtS Experimentation 

In conventional OR/MS modelling, multiple scenarios are developed for experimentation. The 

scenarios enable the stakeholders to test different strategies for (possible) implementation in the 

medium to long term. In the case of RtS, the objective is to assist the stakeholders with short-term 

decision-making. In RtS, experimentation can be executed automatically when the assessment of new 

data against pre-determined KPIs thresholds indicates a breach. In our experience, it is important to 

associate specific breaches with pre-developed RtS scenarios that must be automatically loaded and 

executed. There are also several challenges associated with model initialisation. For example, before 

experimentation, the current simulation time will need to reflect the time associated with the last tranche 

of data updates; appropriate adjustments to warmup time must be made before experimentation since 

the current time is continually progressing; real-time values for model components like queues and 

servers must be injected into the model, which will override the values assumed by RtS after the model 

warmup. 
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6 CONCLUSION 

The availability of increasing volumes of data presents a challenge to modellers to maximise the value 

that could be potentially derived from this data. The use of real-time data streams with OR/MS 

computational models holds the promise of increasing situational awareness and assisting with near 

real-time decision-making. Implementing such hybrid models requires deploying knowledge from 

Computer Science/Applied Computing, Information Systems/Databases and OR/M&S. In the literature, 

the emergence of the Digital Twins (DT) concept has meant that multiple definitions are being used. In 

this paper, we approach DTs from the standpoint of researchers in OR/MS. We reflect on conventional 

OR/MS simulation models and their meaning in the new DT landscape. We argue that the computational 

model must exist in an OR/MS DT to enable faster than real-time experimentation, although we agree 

that a parallel objective of such DTs is to enable visualisation through virtual replicas of the physical 

system as it transitions through real-time.  

 How might the community transition from the conventional OR/MS approach that relies on 

historical distributions to a fully-fledged OR/MS DT with real-time data sources, the latter realising the 

dual objective of presenting virtual replicas and also enabling situationally aware real-time 

experimentation? From our experience in developing RtS, we identified that the transition from 

conventional models to pure OR/MS DTs might be assisted through the implementation of hybrid 

models that are driven using historical distribution but also include limited real-time data. We define 

these models as real-time simulations (RtS). Further, we have distinguished RtS from OR/MS DTs in 

our conceptualisation of the four modelling dimensions: modelling objectives, data requirements, model 

implementation and experimentation. 

 RtS implementation is technically challenging as it must fuse real-time data with values generated 

from distributions to represent, at the start of the experimentation (and after the model warmup), the 

best possible approximation of the physical system at the current wallclock time. After initialisation, 

the RtS will rely on distributions to populate the stochastic elements in a model. As more data becomes 

available, an RtS could potentially include an element of virtual representation, but distributions and 

model state adjustments will still be necessary for experimentation.  

 Future work will expand on the methodological and technical insights on RtS implementation we 

briefly discussed in section 5 of the paper. Articulation of design principles for RtS is an area of future 

work. Yet another stream of research is empirical work. In a subsequent publication, we will present 

our RtS of an Urgent Care system in the South West of England, which is integrated with NHSquicker 

(Mustafee and Powell, 2020) and which acts as a data acquisition system.  

 System failures associated with data acquisition systems would result in the non-availability of real-

time data, impacting an RtS. Thus, an avenue for future research is to investigate novel algorithms that 

provide the best data estimates during such interruptions. Towards this, researchers could investigate 

using Machine-Learning and AI-based approaches to generate synthetic data for use in RtS and DTs. 

Similarly, Parallel and Distributed Simulation (PADS) techniques, such as optimistic synchronisation 

(Fujimoto, 2001), could enable the rollback of computations when real-time feeds are (eventually) 

restored, which is yet another opportunity for future research. 
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