
1

Faster Federated Learning with Decaying
Number of Local SGD Steps

Jed Mills, Jia Hu, Geyong Min

Abstract—In Federated Learning (FL) client devices connected over the internet collaboratively train a machine learning model without
sharing their private data with a central server or with other clients. The seminal Federated Averaging (FedAvg) algorithm trains a
single global model by performing rounds of local training on clients followed by model averaging. FedAvg can improve the
communication-efficiency of training by performing more steps of Stochastic Gradient Descent (SGD) on clients in each round.
However, client data in real-world FL is highly heterogeneous, which has been extensively shown to slow model convergence and harm
final performance when K > 1 steps of SGD are performed on clients per round. In this work we propose decaying K as training
progresses, which can jointly improve the final performance of the FL model whilst reducing the wall-clock time and the total
computational cost of training compared to using a fixed K. We analyse the convergence of FedAvg with decaying K for
strongly-convex objectives, providing novel insights into the convergence properties, and derive three theoretically-motivated decay
schedules for K. We then perform thorough experiments on four benchmark FL datasets (FEMNIST, CIFAR100, Sentiment140,
Shakespeare) to show the real-world benefit of our approaches in terms of real-world convergence time, computational cost, and
generalisation performance.

Index Terms—Federated Learning, Deep Learning, Edge Computing, Computational Efficiency.

✦

1 INTRODUCTION

F EDERATED Learning (FL) is a recent distributed Machine
Learning (ML) paradigm that aims to collaboratively train

an ML model using data owned by clients, without those clients
sharing their training data with a central server or other partic-
ipating clients. Practical applications of FL range from ‘cross-
device’ scenarios, with a huge number of unreliable clients each
possessing a small number of samples, to ‘cross-silo’ scenarios
with fewer, more reliable clients possessing more data [1]. FL
has huge economic potential, with cross-device tasks including
mobile-keyboard next-word prediction [2], voice detection [3],
and even as proof-of-work for blockchain systems [4]. Cross-silo
tasks include hospitals jointly training healthcare models [5] and
financial institutions creating fraud detectors [6]. FL has been
of particular interest for training large Deep Neural Networks
(DNNs) due to their state-of-the-art performance across a wide
range of tasks.

Despite FL’s great potential for privacy-preserving ML, there
exist significant challenges to address before FL can be more
widely adopted at the network edge. These include:

• Heterogeneous client data: each client device generates its own
data, and cannot share it with any other device. The data be-
tween clients is therefore highly heterogeneous, which has been
shown theoretically and empirically to harm the convergence
and final performance of the FL model.

• High communication costs: many FL algorithms operate in
rounds that involve sending the FL model parameters between
the clients and the coordinating server thousands of times.

• J. Mills, J. Hu and G. Min are with the Department of Computer Science,
University of Exeter, EX4 4QF, United Kingdom. E-mail: {jm729, j.hu,
g.min}@exeter.ac.uk. Corresponding authors: Jia Hu, Geyong Min.

Considering the bandwidth constraints of wireless edge clients,
communication represents a major hindrance to training.

• High computation costs: training ML models has a high compu-
tational cost (especially for modern DNNs with a huge number
of parameters). FL clients are typically low-powered (often
powered by battery), so computing the updates to the FL model
is a substantial bottleneck.

• Wireless edge constraints: clients are connected to the network
edge and can range from modern smartphones to Internet-of-
Things (IoT) devices. They are highly unreliable and can leave
and join the training process at any time.

To address some of the above challenges, McMahan et al. pro-
posed the Federated Averaging (FedAvg) algorithm [7]. FedAvg is
an iterative algorithm that works in communication rounds, where
in each round clients download a copy of the ‘global model’ to be
trained, perform K steps of Stochastic Gradient Descent (SGD)
on their local data, then upload their models to the coordinating
server, which averages them to produce the next round’s global
model. Therefore, FedAvg works similarly to distributed-SGD
(dSGD) as used in the datacentre, but more than one gradient is
calculated by clients per communication round. Using K > 1
local steps improves the per-round convergence rate compared
to dSGD (hence saving on communication), and FedAvg only
requires a fraction of all clients to participate in each round,
mitigating the impact of unreliable clients and stragglers.

Increasing K improves the convergence rate (in terms of com-
munication rounds) of FedAvg, however it has been demonstrated
that it comes at the cost of harming the minimum training error
and maximum validation accuracy than can be achieved, especially
when client data is heterogeneous [1], and large values of K
show diminishing returns for convergence speed. Therefore the
total amount of computation performed to reach a given model
error can be significantly greater compared to datacentre training,

2

leading to concerns over the energy cost of FL [8]. Furthermore,
the computation time on low-powered FL clients is not negligible,
so improving communication-efficiency by using larger K can
lead to a long training procedure [9], [10].

The primary reason behind the performance degradation with
increasing K is ‘client-drift’ [11]: as the data between clients is
non-Independent and Identically Distributed (non-IID), the mini-
mum point(s) of each client’s objective will be different. During
local training, client models diverge (drift) towards their disparate
minimisers, and the average of these disparate models may not
have good performance. The extent of client-drift has been shown
theoretically to be proportional to the level of heterogeneity
between client data, the client learning rate (η), and K [11], [12].

One theoretically-justified method of addressing the problem
of client-drift is to reduce η during training. Intuitively, if the
learning rate is smaller then client models can move less far apart
during the local update. Previous works have shown that decaying
η is required for the error of the global model to converge to 0.
In this paper, we propose instead decaying K to achieve a similar
goal. Decreasing K addresses client-drift whilst reducing the real-
time and computational cost of each FedAvg round. We show in
experiments using benchmark FL datasets that decaying K can
match or outperform decaying η in terms of time to converge to
a given error, total computational cost, and maximum validation
accuracy achieved by the model. The main contributions of this
paper are as follows:

• We analyse the convergence of FedAvg when using a decreasing
value of K for strongly-convex objectives, which provides
novel insight into the constraints on K and η, and intuitively
demonstrates why and demonstrates the impact of K > 1 on
convergence.

• We derive the optimal value of K for any point during the
training runtime, and use this optimal value to propose two
theoretically-motivated approaches for decaying K based either
on the communication round or the relative FL model error. We
also use the analysis to derive the optimal value of η for later
comparison.

• We perform extensive experiments using four benchmark FL
datasets (FEMNIST, CIFAR100, Sentiment140, Shakespeare)
to show that the proposed decaying-K scheme can reduce the
amount of real-time taken to achieve a given model error, as
well as improving final model validation performance.

• We present a further practical heuristic for decaying K based on
training error which also shows excellent performance in terms
of improving the validation performance of the FL model on the
four benchmark datasets.

The rest of this paper is organised as follows: in Section 2 we cover
related works that analyse the convergence properties of FedAvg,
algorithms designed to address client-drift, and relevant develop-
ments in datacentre-based training; in Section 3 we formalise the
FL training objective, analyse the convergence of FedAvg using
our proposed decaying-K schedule, derive the optimal value of K
during training, and use this to motivate three K-decay schemes;
in Section 4 we present an experimental evaluation of the proposed
schemes; and in Section 5 we conclude the paper.

2 RELATED WORK

In this section, we cover works that study the theoretical conver-
gence properties of FedAvg (and related algorithms) and client-

drift, algorithms that improve the convergence of FL, and works
that study related problems in the datacentre setting.

2.1 Analysis of FedAvg

There has been significant research efforts in theoretically
analysing the convergence of FedAvg. Li et al. [12] proved a
convergence rate of O(1/T) (where T is equal to the number of
total iterations, rather than communications rounds) on strongly-
convex objectives. Their analysis suggests that an optimal number
of local steps (K) exists to minimise the number of communica-
tion rounds to reach ϵ-precision, and the authors highlighted the
need to decay the learning rate (η) during training. Non-dominant
convergence in terms of total iterations remains an open problem
within FL. Karimireddy et al. [11] added a server learning rate
to FedAvg to prove its convergence for nonconvex objectives.
Charles and Konecný [13] analysed the convergence of Local-
SGD methods (including FedAvg) for quadratic objectives to gain
insights into the trade-off between convergence rate and final
model accuracy. Malinovsky et al. [14] generalised Local-SGD
methods to generic fixed-point functions to analyse the effect of
K on the ϵ-accuracy. Yang et al. [15] were the first to achieve
linear speedup in terms of number of participating workers for
FedAvg on nonconvex objectives. However, when considering
partial worker participation (which is a key element of the FL
scenario), their analysis does not show speedup with respect to
K . Previous works have also analysed the convergence of FedAvg
from perspectives such as minimising the total energy cost and
optimal resource allocation [16].

While the above works analyse the convergence of FedAvg in
terms of total iterations and/or communication rounds, the runtime
of FedAvg is affected by multiple factors: model convergence
rate, total number of local SGD steps, communication bandwidth,
model size, and the compute power of client devices. These factors
must all be considered if the objective is to improve the runtime
of FedAvg, as we do in this work.

2.2 Novel FL Algorithms

Due to FL’s long training times and the challenging distributed
edge environment, a large number of novel algorithms have been
designed to improve the convergence rate of FedAvg. Li et al. [17]
proposed FedProx, which adds a proximal term to client objectives
penalising the distance to the current global model. Karimireddy
et al. [11] added Stochastic Variance-Reduced Gradients (SVRG)
to FedAvg in SCAFFOLD, demonstrating significant speedup
on popular FL benchmarks. Empirical convergence rates have
also been improved by adding adaptive optimisation to FedAvg
both locally [10] and globally [18]. Adaptive optimisation has
also been implemented during the server-update of FedAvg [19],
which can accelerate convergence without increasing the per-
round communication or computation costs for clients. A recent
survey covering developments in FL algorithms and their relation
to the communications properties of FL is given in [20].

The above algorithms can be considered variants of FedAvg
in that they perform rounds of local training and model averaging.
Our proposed method of decaying the number of local steps during
training could in principle be used with any FedAvg variant, which
is a potential avenue for future research.

3

2.3 Datacentre Training
Distributed training in the datacentre shares similarities with the
FL scenario, and there exists a substantial body of work studying
datacentre training. The classic datacentre-based algorithm is
distributed-SGD (dSGD), where nodes each compute a single
(often very large) minibatch gradient and send it to the parameter
server for aggregation. Woodworth et al. [21] proved for quadratic
objectives that Local-SGD methods (which perform multiple steps
of SGD between aggregations) converge at least as fast as dSGD
(in terms of total iterations), but that Local-SGD does not dom-
inate for more general convex problems. Similarly, Wang et al.
[22] unified the analysis of various algorithms related to Local-
SGD, covering different communication topologies and non-IID
clients, achieving state-of-the-art rates for some settings. Lin et al.
[23] presented a thorough empirical study showing that local-SGD
methods generalise better than large-batch dSGD, motivating their
approach of switching from dSGD to local-SGD during the later
stages of training. Another approach to improve the generalisation
performance of large-batch dSGD are ‘extra-gradient’ methods
that compute gradient updates after a step of SGD before applying
them to the global model [24].

While these works present methods that variously improve
runtime or generalisation performance, their findings cannot be
directly applied to FL. From a theoretical perspective, the primary
differences are FL’s highly non-IID clients and very low per-
round participation rates (which can be as low as 0.1% [25]).
FL client also have much lower communication bandwidth and
computational power compared to datacentre compute nodes.

3 FEDAVG WITH DECAYING LOCAL STEPS

We now formally describe the FL optimisation problem, theoreti-
cally analyse the convergence of FedAvg with a decaying number
of local SGD steps, and present theoretically-motivated schedules
based upon the analysis.

3.1 Problem Setup
In FL there are a large number of clients that each possess a small
number of local samples. The objective is to train model x to
minimise the expected loss over all samples and over all clients,
namely:

F (x) =
C∑

c=1

pcfc(x) =
C∑

c=1

pc

[
nc∑
n=1

f(x, ξc,n)

]
, (1)

where C is the total number of FL clients, pc is the fraction of
all samples owned by client c (such that

∑C
c=1 pc = 1), f is the

loss function used on clients, and {ξc,1, · · · , ξc,nc} represent the
training samples owned by client c.

To minimise F (x) in a communication-efficient manner, Fe-
dAvg (presented in Algorithm 1) performs multiple steps of SGD
on each client between model averaging. FedAvg operates in
communication rounds, where in each round r a subset of clients
Cr download the current global model xr (line 5), perform Kr

steps of SGD on their local dataset (lines 6-8), and then upload
their new models to the coordinating server (line 9). The server
averages the received client models to produce the next round’s
global model (line 11).

FedAvg is typically described and analysed as selecting a
subset of clients uniformly at random to participate in each com-
munication round (line 3). However in real-world FL deployments,

clients generally do not participate uniformly at random due to
their behaviour, communication and compute capabilities. The
non-uniform participation of FL clients has lead to the research
direction of ‘fair’ FL [26].

Algorithm 1: Federated Averaging [7]

1 input: initial global model x0, learning rate schedule
{ηr}, local steps schedule {Kr}

2 for round r = 1 to R do
3 select round clients Cr
4 for client c ∈ Cr in parallel do
5 download global model xr

6 for local SGD step k = 1 to Kr do
7 xc

r,k ← xr − ηr∇f(xc
k, ξ

c
k)

8 end
9 upload local model xc

r,Kr
to server

10 end
11 update global model xr+1 ← 1

|Cr|
∑

c∈Cr
xc
r,Kr

12 end

The updates to clients models within the FedAvg process can
be viewed from the perspective of communication rounds (as
shown in most FL works and presented in Algorithm 1), but can
also be reformulated in terms of a continuous sequence of SGD
steps on each client, with updates periodically being replaced by
averaging. Suppose we reindex the client models from xc

r,k to
xc
t where t is the global iteration, t ∈ {1, · · · , T}. Note that∑
r{Kr} = T . For a given FL client i and local SGD step t the

update to the local model xi
t can be given as:

yi
t+1 = xi

t − ηt∇f(xi
t, ξ

i
t),

xi
t+1 =

{∑
c∈Ct

pcy
c
t+1 if t ∈ I,

yi
t+1 otherwise,

(2)

where I is the set of indexes denoting the iterations at which
model communication occurs (which will be equal to the cu-
mulative sum of {Kr}). This formulation states that clients not
participating in the current round compute and then discard some
local updates, which is not true in reality but makes analysis more
amenable and is theoretically equivalent to FedAvg as presented
in Algorithm 1. We define the average client model at any given
iteration t using (2) as: x̄t =

∑C
c=1 pcx

t
c.

3.2 Runtime Model of FedAvg

Inspecting Algorithm 1 shows that the nominal wall-clock time
for each client c to complete a communication round r is:

W c
r =

|x|
Dc

+Krβ
c +
|x|
U c

, (3)

where |x| is the size of the FL model (in megabits), U c and Dc

are the upload and download bandwidth of client c in megabits
per second, and βc is the per-minibatch computation time of
client c. The nominal time to complete a round for client c is
therefore the sum of the download, local compute, and upload
times. Furthermore, as FL clients are usually connected wirelessly
at the network edge and geographically dispersed, we assume that
U c and Dc are independent of the total number of participating
clients. For wireless connections, typically Dc >> U c.

4

For a single round, the server must wait for the slowest client
(straggler) to send its update. Therefore the time taken to complete
a single round Wr is:

Wr = max
c∈Cr

{W c
r } . (4)

To simplify the FedAvg runtime model, we assume that all clients
have the same upload bandwidth, download bandwidth, and per-
minibatch compute time. That is, U c = U , Dc = C , and βc =
β, ∀ c. Using these simplifications, the total runtime W for R
communication rounds of FedAvg are:

W =
R∑

r=1

Wr = R

(|x|
D

+
|x|
U

)
+ β

R∑
r=1

Kr. (5)

Previous works consider a fixed number of local steps during
training: Kr = K, ∀ r. There are extensive works showing that
a larger K can lead to an increased convergence rate of the global
model [7]. However, large K means that fewer communication
rounds can be completed in a given timeframe. Previous works
have shown that due to the low computational power of FL
clients, the value of β can dominate the per-round runtime [9].
Therefore by decaying Kr during training, a balance between fast
convergence and higher round-completion rate can be achieved,
which is the primary focus of this work.

3.3 Convergence Analysis

We now present a convergence analysis of FedAvg using a
decaying number of local steps Kr and constant learning rate η.
We make the following assumptions, which are typical of within
the theoretical analysis within FL.

Assumption 1: Client objective functions are L-smooth:

fc(x) ≤ fc(y) + (x− y)⊤∇fc(y) +
L

2
∥x− y∥2.

As F (x) is a convex combination of fc, then it is also L-smooth.

Assumption 2: Client objective functions are µ-strongly convex:

fc(x) ≥ fc(y) + (x− y)⊤∇fc(y) +
µ

2
∥x− y∥2,

with minima f∗
c = min fc. As F (x) is a convex combination of

fc, then it is also µ-strongly convex.

Assumption 3: For uniformly sampled data points ξck on client c,
the variance of stochastic gradients on c are bounded by:

E∥∇fc(x; ξck)−∇fc(x)∥2 ≤ σ2
c .

Due to analysing gradient descent on an L-smooth function, the
magnitude of the gradient is naturally bounded by the distance
between the first iterate x1 and the minimiser:

∥∇F (x)∥2 ≤ L2∥x1 − x∗∥2.

In our later analysis we define G2 = L2∥x1 − x∗∥2 for
convenience, i.e. the maximum norm of the gradient during
training.

As per [12], we quantify the extent of non-IID client data with:

Γ = F ∗ −
C∑

c=1

pcf
∗
c ,

where F ∗ is the minimum point of F (x). Γ ̸= 0 when the
minimiser of the global objectives is not the same as the average
minimiser of client objectives. Γ = 0 if the FL data is IID over
the clients.

Assumption 2 states that our analysis considers strongly-
convex objectives. Although FL is typically used to train large
DNNs (with nonconvex objectives), strongly-convex models
are widely-used, for example in Support Vector Machines.
Furthermore, the starte-of-the-art in analysing FedAvg’s
convergence behaviour lags behind the empirical developments,
with contemporary anlyses also making the convex assumption
[12] [16]. The experimental evaluations in Section 4 consider
one convex model (Sentiment 140) and three nonconvex DNNs.
We leave it to future work to derive optimal K schedules for
nonconvex objectives.

Theorem 1: Let Assumptions 1-3 hold, and define κ = L/µ. The
expected minimum gradient norm of FedAvg using a monotonically
decreasing number of local SGD steps Kr and fixed stepsize η ≤
1/4L after T total iterations is given by:

min
t
{E
[
∥∇F (x̄t)∥2

]
} ≤ 2κ(κF (x̄0)− F ∗)

ηT

+ ηκL

[
C∑

c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2

∑R
r=1 K

3
r∑R

r=1 Kr

]
. (6)

Proof: See Appendix A.2.

The above theorem provides some useful insights into the
convergence properties of FedAvg when using multiple local
steps. Some of these are detailed below.

Remark 1.1: relation to centralised SGD. With a fixed learning
rate and decreasing Kr , Theorem 1 shows that FedAvg converges
with O(1/T) + O(η). This result reflects the classical result of
centralised SGD with a fixed learning rate (albeit with different
constants due to non-IID clients and Kr > 1). Previous works
have shown (like in centralised SGD) the requirement for η to
be decayed to allow FedAvg to converge arbitrarily close to the
global minima [11], [12]. However in this work we are interested
in the runtime and computational savings available when decaying
Kr , so do not feel the need to prove the already-covered decaying
η result here.

Remark 1.2: benefit of K > 1. When using a decreasing η,
previous analyses have shown that K > 1 acts to reduce the
variance introduced by client stochastic gradients (the

∑C
c=1 p

2
cσ

2
c

term) [11], [12]. Dividing (6) by Kr (to achieve the convergence
result in terms of total number of rounds) shows the same benefit
in our analysis. We also observe empirically that Kr > 1 helps to
reduce the variance of the global model updates even with a fixed
η. Similarly a large number of clients participating per round
(N) helps to reduce the variance that is introduced by performing
Kr > 1 steps. FedAvg deployments can therefore benefit more
from sampling a larger number of clients per round N when the
number of local steps Kr is large.

5

Remark 1.3: drawback of K > 1. The second term of
Theorem 1 shows that using Kr > 1 harms the convergence
of FedAvg in terms of total number of iterations T . This is the
case for all state-of-the-art analyses save for quadratic objectives
[21]. However, in FL we wish to minimise the number of
communication rounds (due to the quantity of communicated
data and impact of stragglers etc.) alongside the total number of
iterations (both of which affect the runtime of FedAvg).

Remark 1.4: real-world participation rates. Our formulation of
FedAvg our analysis assumes a constant participation rate, but in
real-world FL the round participation rate varies [25]. Setting Kr

to a large value makes more progress in a round, but fewer clients
will be able to complete the round in a given timeframe. This
poses an interesting trade-off between Kr and N , which could be
a potential avenue for future research.

3.4 Optimal Values of Kr and ηr

FedAvg is an iterative algorithm with each round starting from
a new global model. Therefore, each iteration can be viewed as
restarting the algorithm, using model xt0 ,∀t0 ∈ I . Using this
formulation, we can indepedently derive what the optimal fixed
value of K would be at the start of any communication round
during training. As training progresses and new rounds of training
are completed, this value of K can therefore vary. When using a
fixed number of local steps Kr = K and communication rounds
R, the total number of FedAvg iterations is T = KR. Substituting
this into (5) gives the total runtime W of T iterations of FedAvg:

W =
T

K

[|x|
D

+
|x|
U

+ βK

]
. (7)

Setting Kr = K and substituting (7) into Theorem 1 gives us the
convergence of t rounds of FedAvg for fixed K and η in terms
of the runtime, starting from an arbitrary round in the training
process xt0 ,∀t ∈ I , rather than the number of iterations:

min
t>t0
{E
[
∥∇F (x̄t)∥2

]
}

≤ 2κ(κF (x̄t0)− F ∗)

ηWK

[|x|
D

+
|x|
U

+ βK

]
+ ηκL

[
C∑

c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
. (8)

As (8) gives the convergence of t rounds of FedAvg, starting from
arbitrary point xt0 , with a fixed K and η. If the round index is
instead substituted with a time index (with xw corresponding to
the value of xt at time w), (8) can be used to determine what
the optimal fixed valued of K looking forward would be for any
point in time during the training process, K∗

w.

Theorem 2: Let Assumptions 1-3 hold and define κ = L/µ. For
fixed η ≤ 1/4L, the optimal number of local SGD steps K to
minimise (8) is given by:

K∗
w = 3

√
(κF (x̄t0)− F ∗)

8η2L (1 + 1/2N)

(|x|/D + |x|/U)

W
. (9)

Proof: See Appendix A.3.

Theorem 2 shows that K∗
w decreases at least as fast as O(1/ 3√

W),
motivating the principal of decreasing the number of local

steps during FedAvg. The decreasing value of the global model
objective F (x̄t0) also influences K∗

w. The implications of
Theorem 2 are discussed in the following Remarks.

Remark 2.1: relation to other works. Wang and Joshi [27]
investigated variable communication intervals for the Periodic
Averaging SGD (PASGD) algorithm in the datacentre, and found
that the optimal interval decreased with O(1/ 2√

W). K∗
w decreases

slower in FedAvg due to the looser bound on client divergence
between averaging (scaling with K2 rather than K).

Remark 2.2: dependence on client participation rate. As the
number of clients participating per round (N) increases, K∗

w

increases. This is because a higher number of participating clients
decreases the variance in model updates (which is especially
significant considering the non-IID client data).

Remark 2.3: reformulation using communication rounds. In
FL, it is typically assumed that the local computation time is
dominated by the communication time due to the low-bandwidth
connections to the coordinating server. If we consider the case
where (|x|/D + |x|/U >> βK), then W ≈ R (|x|/D + |x|/U).
This means:

K∗
r = 3

√
κF (x̄t0)− F ∗

8η2L (1 + 1/2N)

1

R

≤ 3

√
κF (x̄0)− F ∗

8η2L (1 + 1/2N)

1

R
, (10)

where the inequality comes from the fact that F (xt) ≤ F (x0)
given Assumption 1 and an appropraitely chosen stepsize η. K∗

r

is not dependent on the local computation time, only the total
number of rounds R. Using (10) as a decay scheme produces
a fairly aggressive decay rate, and is tested experimentally in
Section 4 using a variety of model types (which have different
communication and computation times).

A similar approach can be taken to find the optimal value of η∗r
at each communication round. Although the focus of this paper
is on decaying K to improve the convergence speed of FL, we
compare it to the effect of decaying η as well as constant η and K .

Corollary 2.1: Let Assumptions 1-3 hold and define κ = L/µ.
Given stepsizes ηr ≤ 1/4L, the optimal value of η at any point in
time during training to minimise (8) is given by:

η∗w =

√
2(κF (x̄t0)− F ∗)

LZ

(|x|/D + |x|/U + βK)

W
,

where Z =
C∑

c=1

p2cσ
2
c + 6LΓ + (8 + 4/N)G2K2. (11)

Proof: See Appendix A.4.

Corollary 2.1 shows that the optimal value of η decreases with
O(1/√W). Several insights from Corollary 2.1 are given below.

Remark 2.1.1: impact of round time. (11) shows that η∗w is
directly affected by the per-round time: as any of the upload,
download or computation time increases, η∗w increases. This is
because less progress is made over time (due to longer rounds) so

6

TABLE 1: Datasets and models used in the experimental evaluation (DNN = Deep Neural Network, CNN = Convolutional Neural
Network, GRU = Gated Recurrent Network). K0 and η0 are the initial number of local steps and initial learning rate used.

Task Type Classes Model
Model

Total Clients
Clients Samples

K0 η0Size (Mb) per Round per Client
Sent140 Sentiment analysis 2 Linear 0.32 21876 50 15 60 3.0

FEMNIST Image classification 62 DNN 6.71 3000 60 170 80 0.3
CIFAR100 Image classification 100 CNN 40.0 500 25 100 50 0.01

Shakespeare Character prediction 79 GRU 5.21 660 10 5573 80 0.1

a larger η∗ +W compensates by making more progress per SGD
step.

Remark 2.1.2: dependence on client participation rate. Similar
to K∗

w, a larger number of clients participating per round (N)
allows for a smaller η∗w by reducing variance due to client-drift.
Larger K in (11) also allows for smaller η as more progress is
made per round.

Remark 2.1.3: reformulation using communication rounds.
Making the same assumption as in (10) (|x|/D + |x|/U >> βK)
gives a decay schedule for ηr in terms of the number of commu-
nication rounds:

η∗r =

√
2(κF (xt0)− F ∗)

LZ

1

R

≤

√
2(κF (x0)− F ∗)

LZ

1

R
, (12)

where Z is defined in (11), and the inequality again comes
from using F (xt) ≤ F (x0). This decay schedule is also tested
empirically in Section 4.

3.5 Schedules Based on Training Progress

In practice the values of κ, F ∗, and L are difficult or impossible
to evaluate due to complex nonlinear models (i.e. DNNs) and
data privacy in FL. Therefore, appropriate values of K and η are
chosen via grid-search or some other method (such as Bayesian
Optimisation). Denote K0 as a ‘good’ value of K at W = 0
(found via grid search), and Kr as the value of K to be used for
round r. Each successive round of FedAvg can be considered as
a new optimisation procedure with starting model x̄r . If we make
the further assumption that F ∗ = 0, substituting these two sets of
values into (9) and dividing gives us Kr in terms of K0:

K∗
r =

⌈
3

√
F (x̄r)

F (x̄0)
K0

⌉
. (13)

A similar process can be applied to find ηr in terms of η0:

η∗r = 2

√
F (x̄r)

F (x̄0)
η0. (14)

F (x̄r) is the training loss of the global model at the start of
round r. Practically, an estimate of F (x̄r) can be obtained by
requiring clients c ∈ Cr to send their training loss after the first
step of local SGD to the server each round: fc(x̄r, ξc,0), where
E [fc(x̄r, ξc,0)] = F (x̄r). This is only a single floating-point
value that does not require any extra computation and negligibly
increases the per-round communication costs.

Due to only a small fraction of the non-IID clients being sam-
pled per round, the per-round variance of 1

N

∑
c∈Cr

fc(x̄r, ξc,0)
can be very high. Therefore, we propose a simple rolling-average
estimate using window size s:

F (x̄r) ≈
1

sN

r∑
i=r−s

∑
c∈Ci

fc(x̄i, ξc,0). (15)

Our experiments in Section 4 use a window size s = 100, where
our experiments run for at least R = 10, 000 communication
rounds. For the first s rounds when (15) cannot be computed, we
keep Kr = K0.

When using a fixed value of K , Theorem 1 shows that the
minimum gradient norm converges with O(1/T) + O(ηK2). As
noted earlier, this result is analogous to the classical result of
dSGD using a fixed learning rate. In the datacentre, the practical
heuristic of decaying the learning rate η when the validation
error plateaus is commonly used to allow the model to reach a
lower validation error. We can therefore use a similar strategy for
FedAvg: once the validation error plateaus we decay either K
or η. We investigate this heuristic alongside the decay schedules
presented above in Section 4.

4 EXPERIMENTAL EVALUATION

In this section, we present the results of simulations comparing
the three decaying-K schemes proposed in Section 3 to evaluate
their benefits in terms of runtime, communicated data and compu-
tational cost on four benchmark FL datasets. Code to reproduce
the experiments is available from: github.com/JedMills/Faster-FL.

4.1 Datasets and Models
To show the broad applicability of our approach, we conduct
experiments on 4 benchmark FL learning tasks from 3 Machine
Learning domains (sentiment analysis, image classification,
sequence prediction) using 4 different model types (simple linear,
DNN, Convolutional, Recurrent).

Sentiment 140: a sentiment analysis task of Tweets from a large
number of Twitter users [28]. We limited this dataset to users with
≥ 10 samples, leaving 22k total clients, with 336k training and
95k validation samples, with an average of 15 training samples
per client. We generated a normalised bag-of-words vector of
size 5k for each sample using the 5k most frequent tokens in the
dataset. We train a binary linear classifier (i.e. a convex model)
using 50 clients per round (0.2% of all clients) and a batch size
of 8.

FEMNIST: an image classification task of (28 × 28) pixel
greyscale (flattened) images of handwritten letters and numbers
from 62 classes, grouped by the writer of the symbol [28]. We

7

Fig. 1: Cumulative lowest training cross-entropy error over time of FedAvg using different schedules for Kr and ηr. Curves show mean
over 5 random trials. Vertical line shows the communication round where the validation error plateaus.

used 3k total clients, with a total of 501k training and 129k
validation samples, with an average of 170 training samples per
client. We sample 60 clients per round (2% of all clients) with a
batch size of 32. We train a DNN comprising a 200-unit ReLU
Fully-Connected layer (FC), a second 200-unit ReLU FC layer,
and a softmax output layer.

CIFAR100: an image classification task of (32 × 32) pixel
RGB images of objects from 100 classes. We use the non-IID
partition first proposed in [19], which splits the images into 500
clients based on the class labels. There are 50k training and 10k
validation samples in the dataset, with each client possessing 100
samples. We select 25 clients per round (5% of all clients). We
train a Convolutional Neural Network (CNN) consisting of two
(3 × 3) ReLU convolutional + (2 × 2) Max-Pooling blocks, a
512-unit ReLU FC layer, and a softmax output layer. As per other
FL works [19], [18] we apply random preprocessing composed
of a random horizontal flip and crop of the (28 × 28) pixel
sub-image to improve generalisation.

Shakespeare: a next-character prediction task using the complete
plays of William Shakespeare [28]. The lines from all plays are
partitioned by the speaking part in each play, and clients with ≤ 2
lines are discarded, leaving 660 total clients. Using a sequence
length of 80, there are 3.7m training and 357k validation samples,
with an average of 5573 training samples per client. We sample
10 clients per round (1.5% of all clients) with a batch size of
32. We train a Gated Recurrent Unit (GRU) DNN comprising
a 79 → 8 embedding, two stacked GRUs of 128 units, and a
softmax output layer.

4.2 Simulating Communication and Computation

The convergence of FedAvg for the learning tasks was simulated
using Pytorch on GPU-equipped workstations. However, real-
world FL runs distributed training on low-powered edge clients
(such as smartphones and IoT devices). These clients exhibit
much lower computational power and lower bandwidth to the
coordinating server compared to datacentre nodes.

To realistically simulate real-world FedAvg, we use the run-
time model presented in Section 3.2 and Equation (5). We assume
that each client has a download bandwidth of D = 20 Mbps
and an upload bandwidth of U = 5 Mbps. These are typical
values for wireless devices connected via 4G LTE in the United
Kingdom [29]. To determine the runtime of a minibatch of SGD on
a typical low-powered edge device (β), we ran 100 steps of SGD
for each learning task on a Raspberry Pi 3B+ with the following
configuration:

• 1.4GHz 64-bit quad-core Cortex-A53 processor.
• 1GB LPDDR2 SDRAM.
• Ubuntu Server 22.04.1.
• PyTorch 1.8.2.

Table 2 presents the values of β recorded.
As shown in Table 2, there is a large difference in the

minibatch runtimes between the tasks. This is due to the relative
computational costs of the models used: the Sent140 task uses
a simple linear model, whereas the Shakespeare GRU model
requires a far larger number of matrix multiplications for a single
forward-backward pass.

8

Fig. 2: Cumulative highest validation top-1 accuracy over time of FedAvg using different schedules for Kr and ηr. Curves show mean
and shaded regions show 95% confidence intervals of the mean over 5 random trials.

TABLE 2: Mean and standard deviation of runtimes for a mini-
batch of SGD for each learning task using a Raspberry Pi 3B+.

Task Mean (s) Std (s)
Sent140 5.2× 10−3 2.1× 10−4

FEMNIST 0.017 5.1× 10−4

CIFAR100 0.31 1.7× 10−2

Shakespeare 1.5 8.5× 10−2

4.3 Kr and ηr Decay Schedules

For each learning task, we ran FedAvg for 10k communication
rounds using fixed Kr = K0 and ηr = η0 (henceforth ‘Kη-
fixed’). The number of rounds reflects typical real-world deploy-
ments (which are on the order of thousands of rounds) [25]. We
selected K0 and η0 via grid-search such that the validation error
for each task could plateau within the 10k rounds, and present the
values in Table 1. We also ran dSGD (FedAvg with Kr = 1) to
show the runtime benefit of using K > 1 local steps.

We then ran FedAvg using the three schedules for Kr and the
three schedules for ηr as discussed in Section 3.4 and 3.5. Table
3 shows the different decay schedules tested and the name we
denote each one by in Section 4.4. We also tested jointly decaying
Kr and ηr during training. However decaying either Kr or ηr
decreases the amount of progress that is made during each training
round as the global model changes less. We found empirically that
decaying both lead to training progress slowing too rapidly, so
have not included the results in Section 4.4.

TABLE 3: Values of Kr and ηr for given communication round r
as tested in the experimental evaluation.

Schedule Kr ηr

dSGD 1 η0

Kη-fixed K0 η0

Kr-rounds (10) ⌈ 3
√
1/r K0⌉ η0

Kr-error (13) ⌈ 3
√

Fr/F0 K0⌉ η0

Kr-step K0/10 if converged η0

ηr-rounds (12) K0
2
√
1/r η0

ηr-error (14) K0
2
√

Fr/F0 η0

ηr-step K0
η0/10 if converged

4.4 Results

Figure 1 shows the minimum cumulative training error achieved
by FedAvg for the different Kr and ηr schedules (as shown
in Table 3). Confidence intervals for Figure 1 were omitted for
clarity due to the larger number of curves. For all tasks other than
Shakespeare, FedAvg with Kη-fixed (solid grey curve) increases
the convergence rate compared to dSGD (dashed grey curve).
For Shakespeare (Figure 1 (d)), Kη-fixed improved the initial
convergence rate but was overtaken by dSGD at approximately
2500 minutes. This is likely because of the very high computation
time for Shakespeare (see Table 2) relative to the other datasets
(due to the very high computational cost of the GRU model).

For Sentiment 140 (Figure 1 (a)) and Shakespeare (Figure 1

9

TABLE 4: Total SGD steps performed during training for each K-
decay schedule relative to Kη-fixed for different learning tasks.

Task Schedule
Relative

SGD Steps

Sentiment 140
Kr-rounds 0.21
Kr-error 0.99
Kr-step 0.68

FEMNIST
Kr-rounds 0.11
Kr-error 0.80
Kr-step 0.44

CIFAR100
Kr-rounds 0.090
Kr-error 0.57
Kr-step 0.40

Shakespeare
Kr-rounds 0.74
Kr-error 0.99
Kr-step 0.96

(d)), decaying either Kr or ηr during training lead to smaller
improvements in the training error that was achieved. However,
for FEMNIST and CIFAR100, the Kr-rounds scheme lead to
lower training error compared to Kη-fixed. For CIFAR100, an
improvement was also seen with ηr-rounds. Both FEMNIST and
CIFAR100 are image classification tasks, so it be may the case
that decaying Kr or ηr during training is beneficial for computer
vision tasks, which could be investigated further in future works.

Figure 2 shows the impact on validation accuracy for the
tested decay schedules. The Kη-fixed schedule shows faster initial
convergence for all tasks, but it is overtaken by dSGD in the later
stages of training. For FEMNIST, CIFAR100 and Shakespeare, the
aggressive Kr-rounds and Kr-step schemes improved the conver-
gence rate compared to dSGD, with very significant improvement
for CIFAR100. A marked increase in convergence rate can be seen
in Figure 1 (c) at 1000 minutes when Kr-step is decayed.

In all tasks, all K-decay schemes were able to match or
improve the validation accuracy that Kη-fixed achieved whilst
performing (often substantially) fewer total steps of SGD within
a given runtime. Table 4 shows the total SGD steps performed
by the K-decay schemes relative to the total steps performed
by Kη-fixed over the 10k communication rounds (all the η-
decay schemes perform the same amount of computation as Kη-
fixed). The fact that K-decay schemes can outperform Kηfixed
with lower total computation indicates that much of the extra
computation performed by FedAvg is wasted when considering
validation performance. CIFAR100 using Kr-rounds for example
achieved over 18% higher validation accuracy compared to Kη-
fixed whilst performing less than 10% of the total steps of SGD.
Similarly, Kr-step achieved the same validation accuracy as Kη-
fixed whilst performing only 68% of the total SGD steps.

5 CONCLUSION

The popular Federated Averaging (FedAvg) algorithm is used
within the Federated Learning (FL) paradigm to improve the
convergence rate of an FL model by performing several steps of
SGD (K) locally during each training round. In this paper, we
analysed FedAvg to examine the runtime benefit of decreasing
(K) during training. We set up a runtime model of FedAvg and
used this to determine the optimal value of K (and learning rate η)

at any point during training under different assumptions, leading
to three practical schedules for decaying K as training progresses.
Simulated experiments using realistic values for communication-
time and computation-time on 4 benchmark FL datasets from 3
learning domains showed that decaying K during training can
lead to improved training error and validation accuracy within a
given timeframe, in some cases whilst performing over 10× less
computation compared to fixed K .

6 ACKNOWLEDGEMENTS

This work was supported in part by EPSRC New Horizons Grant
No. EP/X019160/1, UKRI Grant No. EP/X038866/1, EPSRC DTP
studentship, and Horizon EU Grant No. 101086159.

REFERENCES

[1] P. Kairouz, H. B. McMahan et al., “Advances and open problems
in federated learning,” Foundations and Trends in Machine Learning,
vol. 14, no. 1-2, pp. 1–210, 2021.

[2] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv e-prints arXiv:1811.03604, 2018.

[3] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Feder-
ated learning for keyword spotting,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6341–6345,
2019.

[4] X. Qu, S. Wang, Q. Hu, and X. Cheng, “Proof of federated learning:
A novel energy-recycling consensus algorithm,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 8, pp. 2074–2085, 2021.

[5] M. Sheller, B. Edwards, G. Reina, J. Martin, S. Pati, A. Kotrotsou,
M. Milchenko, W. Xu, D. Marcus, R. Colen, and S. Bakas, “Feder-
ated learning in medicine: facilitating multi-institutional collaborations
without sharing patient data,” Scientific Reports, vol. 10, pp. 1–12, 12
2020.

[6] W. Yang, Y. Zhang, K. Ye, L. Li, and C.-Z. Xu, “Ffd: A federated learning
based method for credit card fraud detection,” in Big Data – BigData
2019. Springer International Publishing, 2019, pp. 18–32.

[7] B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” International Conference on Artifical Intelligence and Statistics
(AISTATS), pp. 1273–1282, 2017.

[8] X. Qiu, T. Parcollet, D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane,
“Can federated learning save the planet?” in NeurIPS - Tackling Climate
Change with Machine Learning, 2020.

[9] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of feder-
ated mobile devices under computational and statistical heterogeneity,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2,
pp. 394–410, 2021.

[10] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in IoT,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2020.

[11] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in International Conference on Machine Learning (ICML),
vol. 119, pp. 5132–5143, 2020.

[12] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations (ICLR), 2020.

[13] Z. Charles and J. Konečný, “Convergence and accuracy trade-offs in fed-
erated learning and meta-learning,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), vol. 130,
2021, pp. 2575–2583.

[14] G. Malinovskiy, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik,
“From local SGD to local fixed-point methods for federated learning,”
in Proceedings of the International Conference on Machine Learning
(ICML), vol. 119, 2020, pp. 6692–6701.

[15] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-IID federated learning,” in International
Conference on Learning Representations (ICLR), 2021.

[16] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Transactions
on Networking, vol. 29, no. 1, pp. 398–409, 2021.

10

[17] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proceedings of
Machine Learning and Systems (MLSys), vol. 2, pp. 429–450, 2020.

[18] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. Reddi, S. U.
Stich, and A. T. Suresh, “Breaking the centralized barrier for cross-
device federated learning,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 34, 2021, pp. 28 663–28 676.

[19] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
International Conference on Learning Representations (ICLR), 2021.

[20] J. Mills, J. Hu, and G. Min, “Client-side optimization strategies
for communication-efficient federated learning,” IEEE Communications
Magazine, vol. 60, no. 7, pp. 60–66, 2022.

[21] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan,
O. Shamir, and N. Srebro, “Is local SGD better than minibatch SGD?”
in International Conference on Machine Learning (ICML), vol. 119, pp.
10 334–10 343, 2020.

[22] J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the
design and analysis of local-update sgd algorithms,” Journal of Machine
Learning Research (JMLR), vol. 22, no. 213, pp. 1–50, 2021.

[23] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large
mini-batches, use local sgd,” in International Conference on Learning
Representations (ICLR), 2020.

[24] T. Lin, L. Kong, S. Stich, and M. Jaggi, “Extrapolation for large-
batch training in deep learning,” in International Conference on Machine
Learning (ICML), vol. 119, 2020, pp. 6094–6104.

[25] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný et al., “Towards federated learning
at scale: System design,” in Proc. Conference on Machine Learning and
Systems (SysML), 2019.

[26] L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. S.
Ng, “Towards fair and privacy-preserving federated deep models,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 11, pp.
2524–2541, 2020.

[27] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proceedings of
Machine Learning and Systems (MLSys), vol. 1, pp. 212–229, 2019.

[28] S. Caldas, P. Wu, T. Li, J. Konecný, H. B. McMahan, V. Smith, and
A. Talwalkar, “Leaf: A benchmark for federated settings,” in NeurIPS
Workshop on Federated Learnign for Data Privacy and Confidentiality,
2019.

[29] “United kingdom mobile network experience report,” Open Signal,
Tech. Rep., 9 2021, accessed 01/08/2022. [Online]. Available: https:
//www.opensignal.com/reports/2021/09/uk/mobile-network-experience

Jed Mills is a Computer Science Ph.D. student
in the Department of Computer Science at the
University of Exeter, UK. He received a B.Sc.
in Natural Science from the University of Exeter
in 2018. His research interests include machine
learning, federated learning and mobile edge
computing.

Jia Hu is a Senior Lecturer in Computer Sci-
ence at the University of Exeter. He received
his Ph.D. degree in Computer Science from the
University of Bradford, UK, in 2010, and M.Eng.
and B.Eng. degrees in Electronic Engineering
from Huazhong University of Science and Tech-
nology, China, in 2006 and 2004, respectively.
His research interests include edge-cloud com-
puting, resource optimization, applied machine
learning, and network security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science at the University of Exeter,
United Kingdom. He received his Ph.D. degree in
Computing Science from the University of Glas-
gow, United Kingdom, in 2003, and the B.Sc.
degree in Computer Science from Huazhong
University of Science and Technology, China, in
1995. His research interests include Computer
Networks, Wireless Communications, Parallel
and Distributed Computing, Ubiquitous Comput-

ing, Multimedia Systems, Modelling and Performance Engineering.

11

APPENDIX A
PROOF OF THEOREMS

A.1 Key Lemmas

Previously, Li et al. [12] analysed the per-iteration convergence of
FedAvg for µ-strongly convex functions when using a decreasing
stepsize. Their result was the first to prove convergence for
non-IID clients with partial participation. We make assumptions
that are at least as strong as Li et al., so can use their intermediary
result bounding the distance to the global minimiser when using
partial client participation:

Lemma 1: Given Assumptions 1 - 3, the expected distance
between average client model x̄t and the global minimiser x∗

is upper-bounded by:

E
[
∥x̄t+1 − x∗∥2

]
≤ (1− ηtµ)E

[
∥x̄t − x2∥2

]
+ η2t

(C∑
c=1

p2cσ
2
c + 6LΓ

+ 8(Kt − 1)2G2 +
C −N

N − 1

4

N
K2

t G
2
)
. (16)

Proof: See Appendix B.3 of [12].

Lemma 2: Given Assumptions 1 - 3, the sum of expected gradient
norms over T iterations of the average client model x̄t is upper-
bounded by:

T∑
t=1

ηtE
[
∥∇F (x̄t)∥2

]
≤ 2κ(κF (x̄0)− F ∗)

+ κL
(C∑

c=1

p2cσ
2
c + 6LΓ

+ 8(Kt − 1)2G2 +
4

N
K2

t G
2
) T∑

t=1

η2t . (17)

Proof : Rearranging Lemma 1 and then defining for notational
convenience

D =

(
C∑

c=1

p2cσ
2
c + 6LΓ + 8(Kt − 2)2G2 +

C −N

N − 1

4

N
K2

t G
2

)
,

the recursive definition can be written as:

ηtµE
[
∥x̄t − x∗∥2

]
≤ E

[
∥x̄t − x∗∥2

]
− E

[
∥x̄t+1 − x∗∥2

]
+ η2tD. (18)

Using Assumption 1 (L-smoothness), we have:

ηtµ

L2
E
[
∥∇F (x̄t)∥2

]
≤ E

[
∥x̄t − x∗∥2

]
− E

[
∥x̄t+1 − x∗∥2

]
+ η2tD. (19)

Summing up the T iterations and telescoping the distance terms
gives:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ E

[
∥x̄0 − x∗∥2

]
− E

[
∥x̄T − x∗∥2

]
+D

T∑
t=1

η2t . (20)

Using Assumption 1 (L-smoothness) and Assumption 2 (µ-strong
convexity) to bound the distance terms now gives:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ 2

µ
[F (x̄0)− F ∗]

− 2

L
[F (x̄T)− F ∗] +D

T∑
t=1

η2t , (21)

which can be simplified by noting that µ ≤ L, so that:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ 2

µ
F (x̄0)−

2

L
F (x̄T)

+D
T∑

t=1

η2t . (22)

Multiplying both sides of the inequality by L2/µ, using the lower-
bound F ∗ ≤ F (x̄T), the definition κ = L/µ, and the fact that
C−N
N−1 ≤ 1 completes the proof.

A.2 Proof of Theorem 1
The bound on gradient norms given in Lemma 2 uses the global
index t that denotes the global SGD step that each client evaluates
(irrespective of communication rounds). However, FedAvg clients
participate in communication rounds. The values of ηt and Kt

are therefore fixed for each communication round. To account for
this, Lemma 2 can be reindexed using the given communication
round r and local step k: t = I + k, where where I =

∑r
i=1 Ki.

The total number of communication rounds is R, therefore T =∑R
r=1 Kr . Using this to reindex Lemma 2:

R∑
r=1

ηr

Kr∑
k=1

E
[
∥∇F (x̄I+k)∥2

]
≤ 2κ(κF (x̄0)− F ∗)

+ κL
(C∑

c=1

p2cσ
2
c + 6LΓ + 8(Kr − 1)2G2

+
4

N
K2

rG
2
) R∑

r=1

η2rKr

≤ 2κ (F (x̄0)− F ∗)

+ κL

(
N∑

n=1

p2nσ
2
n + 6LΓ

)
R∑

r=1

η2rKr

+ 16κLG2
R∑

r=1

η2rK
3
r .

Diving both sides through by
∑

r=1 ηrKr:∑R
r=1 ηr

∑Kr

k=1 E
[
∥∇F (x̄I+k)∥2

]∑R
r=1 ηrKr

≤ 2κ (F (x̄0)− F ∗)∑R
r=1 ηrKr

+ κL

(
N∑

n=1

p2nσ
2
n + 6LΓ

) ∑R
r=1 η

2
rKr∑R

r=1 ηrKr

+ 16κLG2

∑R
r=1 η

2
rK

3
r∑R

r=1 ηrKr

.

12

Using a fixed ηr = η ≤ 1/4L, then the above inequality can be
simplified as: ∑R

r=1

∑Kr

k=1 E
[
∥∇F (x̄I+k)∥2

]∑R
r=1 Kr

≤ 2κ (F (x̄0)− F ∗)

η
∑R

r=1 Kr

+ ηκL

(
N∑

n=1

p2nσ
2
n + 6LΓ

)

+ 16ηκLG2

∑R
r=1 K

3
r∑R

r=1 Kr

.

Reindexing using the fact that
∑R

r=1 Kr = T gives:∑T
t=1 E

[
∥∇F (x̄t)∥2

]
T

≤ 2κ (F (x̄0)− F ∗)

ηT

+ ηκL

[
N∑

n=1

p2nσ
2
n + 6LΓ + 16G2

∑R
r=1 K

3
r∑R

r=1 Kr

]
.

Using min{E
[
∥∇F (x̄t)∥2

]
} ≤ E

[
∥∇F (x̄t)∥2

]
then completes

the proof.

A.3 Proof of Theorem 2

We start from the bound on gradient norms using a constant Kw

(within a communication round) and η (8):

min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

≤ 2κ(κF (x̄t0)− F ∗)

ηWKw

[|x|
D

+
|x|
U

+ βKw

]
+ ηκL

[
C∑

c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

w

]
. (23)

Taking the first derivative with respect to K gives:

d min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

dKw

=
−2κ(κF (x̄t0)− F ∗)

ηWK2
w

[|x|
D

+
|x|
U

+ βKw

]
+ 2ηκL

(
8 +

4

N

)
G2Kw. (24)

Taking the second derivative with respect to Kw gives:

d2 min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

dK2
w

=
4κ(κF (x̄t0)− F ∗)

ηWK3
w

[|x|
D

+
|x|
U

+ βKw

]
+ 2ηκL

(
8 +

4

N

)
G2. (25)

Considering (F (x̄t0)− F ∗) > 0 and all the constants in (25) are
> 0, then inspection of (25) shows that the second derivative with
respect to Kw is greater than 0, and hence (23) is convex. Solving
d min

t>t0
{E[∥∇F (x̄t0

)∥2]}/dKw = 0 gives Theorem 2.

A.4 Proof of Corollary 2.1
As with the proof of Theorem 2, we start with the bound on gra-
dient norms using a constant K and ηw (within a communication
round) given in (8):

min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

≤ 2κ(κF (x̄t0)− F ∗)

ηwWK

[|x|
D

+
|x|
U

+ βK

]
+ ηwκL

[
C∑

c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
. (26)

Taking the first derivative with respect to ηw gives:

d min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

d ηw

=
−2κ(κF (x̄t0)− F ∗)

η2wWK

[|x|
D

+
|x|
U

+ βK

]
+ κL

[
C∑

c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
. (27)

Taking the second derivative with respect to ηw gives:

d2 min
t>t0
{E
[
∥∇F (x̄t0)∥2

]
}

d η2w

=
4κ(κF (x̄t0)− F ∗)

η3wWK

[|x|
D

+
|x|
U

+ βK

]
.

(28)

Noting that (F (x̄t0) − F ∗) > 0 and all the constants in (28)
are > 0, then inspection of (28) shows that the second derivative
with respect to ηw is > 0 and hence (27) is convex. Solving
d min

t>t0
{E[∥∇F (x̄t0)∥

2]}/dηw = 0 yields Corollary 2.1.

