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Abstract
Immersive technologies, like virtual and mixed reality, pose a novel challenge for our sensorimotor systems as they deliver 
simulated sensory inputs that may not match those of the natural environment. These include reduced fields of view, missing 
or inaccurate haptic information, and distortions of 3D space; differences that may impact the control of motor actions. For 
instance, reach-to-grasp movements without end-point haptic feedback are characterised by slower and more exaggerated 
movements. A general uncertainty about sensory input may also induce a more conscious form of movement control. We 
tested whether a more complex skill like golf putting was also characterized by more consciously controlled movement. 
In a repeated-measures design, kinematics of the putter swing and postural control were compared between (i) real-world 
putting, (ii) VR putting, and (iii) VR putting with haptic feedback from a real ball (i.e., mixed reality). Differences in putter 
swing were observed both between the real world and VR, and between VR conditions with and without haptic information. 
Further, clear differences in postural control emerged between real and virtual putting, with both VR conditions characterised 
by larger postural movements, which were more regular and less complex, suggesting a more conscious form of balance con-
trol. Conversely, participants actually reported less conscious awareness of their movements in VR. These findings highlight 
how fundamental movement differences may exist between virtual and natural environments, which may pose challenges for 
transfer of learning within applications to motor rehabilitation and sport.
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Introduction

There is growing interest in virtual reality (VR) as a tool 
for training movement skills for applications in areas like 
rehabilitation and sport (Adamovich et al. 2009; Gray 2017; 
Neumann et al. 2018; Kim et al. 2019; Michalski et al. 2019; 
Harris et al. 2020; Wood et al. 2020; Alrashidi et al. 2022). 
VR offers many new possibilities for controlling the training 
environment and can be more cost effective than physical 
training. However, VR replaces the sensory inputs that guide 
online movement control with computer generated ones. 
This creates an altered perceptual environment, where inputs 

are different, uncertain, or missing (Bingham et al. 2001; 
Harris et al. 2019, 2020; Wijeyaratnam et al. 2019; Giesel 
et al. 2020). These perceptual deficits include unnatural or 
conflicting depth cues (e.g., see Wann et al. 1995), limited 
field of view, missing or inaccurate haptic information, dis-
tortions of space, and small rendering lags (see Harris et al. 
2019 for review). Crucially, it is unknown how these percep-
tual deficits impact the control of goal-directed movements. 
If motor movements are performed differently in VR, it 
may limit how well skills learned in these environments can 
transfer back to the real world, which would have significant 
practical implications. The aim of this study was, therefore, 
to explore potential movement differences in the execution 
of a self-paced motor skill (golf putting) between the real 
world and VR, to understand how virtual environments may 
influence the control of action.

While VR technologies continue to develop at a rapid 
pace, the lack of realism, or even total absence, of haptic 
information may be one of the largest hurdles for motor 
learning applications. Previous work has examined how the 
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absence of end-point haptic feedback may impair simple 
reaching movements, which tend to become more simplified 
or exaggerated (Goodale et al. 1994; Whitwell et al. 2015). 
Broadly similar, although somewhat inconsistent, results for 
reach-to-grasp movements in VR have subsequently been 
found (Viau et al. 2004; Gerig et al. 2018; Furmanek et al. 
2019). For instance, Magdalon et al. (2011) found that when 
reaching to grasp objects in a virtual environment, reaching 
and grasping coordination was preserved but movements 
were slower and had longer deceleration times compared 
to the physical environment. This is despite receiving some 
end-point feedback in VR via a haptic glove. A review by 
Harris et al. (2019) suggested that the combination of unnat-
ural cues to depth and impaired or absent haptic information 
could bias users towards a more deliberate, conscious mode 
of action control, that makes greater use of the ventral visual 
stream (due the added uncertainty of visual cues and lack 
of haptics), as opposed to normal online control of visu-
ally guided action by the dorsal stream (Goodale and Milner 
1992; Goodale 2017). The slower more exaggerated move-
ments observed in reach-to-grasp studies are consistent with 
this hypothesis, but relatively few studies have examined 
more complex whole-body movements like sporting skills.

Existing studies that have compared more complex move-
ments between real and VR environments have indicated that 
differences may be present here too. For instance, Bufton 
et al. (2014) compared children’s table tennis shots in the 
real world with three gaming environments (Nintendo Wii, 
Xbox Kinect, Sony Move), finding that the wrist angle range, 
elbow angle range, hand path distance, average speed, and 
maximum speed of shots were all higher than in the real 
world. These results are again consistent with more exag-
gerated, consciously controlled movements in virtual envi-
ronments. Differences in the success of balance, grasping, 
and throwing skills in real and VR settings have also been 
reported by Pastel et al. (2020), particularly when body visu-
alization was absent from the VR environment.

A study by Naylor et al. (2021) explicitly examined the 
role of haptic feedback in mixed reality golf putting. The 
authors compared conditions where contact between a vir-
tual putter with a virtual ball either was or was not paired 
with contact between a physical putter and a real ball. The 
authors predicted that integrating sensory information from 
different modalities could resolve perceptual ambiguities and 
improve action execution (Lalanne and Lorenceau 2004), but 
the haptic condition was actually detrimental to performance 
in VR, resulting in larger radial errors of the (virtual) ball 
from the hole. The authors suggested that minor incongru-
ences between the visual and tactile cues could be respon-
sible for this effect.

Consequently, we still have a limited understanding of 
how movement skills are affected by VR, how the pres-
ence or absence of haptic feedback impacts movement, and 

whether movements tend to be more exaggerated and con-
sciously controlled in the virtual environment. We aimed to 
address these questions in the current work. As discussed, 
several previous studies have examined simple reaching 
tasks in VR, but so far there has been relatively little inves-
tigation of more complex movements that are representa-
tive of real-world applications of VR training (e.g., sport 
and rehabilitation). In addition, studies to date have focused 
on snapshot or summary measures of movement, like peak 
reach velocity or mean joint angles, rather than more con-
tinuous movement profiles. Therefore, as well as studying 
a more complex movement skill in VR, we aimed to sup-
plement some traditional movement measures with more 
continuous comparisons of movements made possible by 
statistical parametric mapping (Friston et al. 2011).

Whether or not VR induces movements that are different 
from the real world will depend, in part, on the specifics of 
the skill and the technologies used. Consequently, making 
generalisations across tasks about the effect of VR is diffi-
cult. Therefore, our intention here was to begin to examine 
whether there are particular patterns of movement that sug-
gest fundamentally different control strategies, such as more 
conscious and exaggerated movement, as has been suggested 
by Harris et al. (2019). We, therefore, assessed two aspects 
of movement during the golf putting task, the swing of the 
putter and the control of posture, and whether they differed 
between the real world and VR, both with and without haptic 
feedback.

We compared the following  variables between VR, VR 
Haptic, and real-world conditions:

(i) Summary measures of acceleration and jerk of the 
putter swing, previously used to characterise exper-
tise (Mackenzie and Evans 2010; Sim and Kim 2010; 
Moore et al. 2012) and variance in the sagittal plane 
(i.e., perpendicular to the downswing);

(ii) Continuous time-series of putter swing accelerations 
using statistical parametric mapping (Friston et al. 
2011);

(iii) The amplitude of postural sway and measures of total 
postural adjustments (centre of pressure path length and 
area of the 95% confidence ellipse of centre of pres-
sure);

(iv) The complexity (entropy) of postural sway to index 
more automatic (i.e., less consciously processed) pos-
tural control (Borg and Laxåback 2010);

(v) Self-reported conscious awareness of movement.

In line with findings from the previously discussed stud-
ies on reaching in VR, and the hypotheses outlined in Harris 
et al. (2019), it was predicted that club swings in VR would 
tend to be slower and more controlled, postural adjust-
ments would be larger and more consciously controlled, 
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and participants would be more consciously aware of their 
movements.

Methods

Design

We used a repeated measures design in which participants 
completed three putting conditions in a counterbalanced 
order determined by a Latin squares design. The three con-
ditions were: (1) real-world putting; (2) VR putting; and (3) 
VR putting with haptic feedback (VR Haptic). The primary 
outcome measures were clubhead acceleration and centre 
of pressure data and the secondary outcome measure was 
self-reported conscious movement processing.

Participants

Twenty one undergraduate student par ticipants 
were recruited to take part in the study (20  M, 1F; 
Mage = 21.22 ± 1.06). All participants were novice golfers, 
defined as individuals with no official golf handicaps or 
prior formal golf putting experience (as in Moore et al. 2012; 
Harris et al. 2020). One participant had no data for accel-
erometery variables and five had no data for the pressure 
plate, due to recording errors. A series of power curves (see: 
https:// osf. io/ h8az7/) for linear mixed effects models were 
generated using the simr package for R (Green and MacLeod 
2016). These analyses indicated that given 20 trials per par-
ticipant we had > 90% power to detect small differences in 
accelerations down to 1 m/s2 and ~ 80% power for differences 
as low as 0.5 m/s2. Therefore, even with some data loss for 
some variables we were still well powered to detect even 
small between-condition differences. Ethical approval was 
provided by the University Ethics Committee before data 
collection and participants gave written informed consent 
prior to taking part.

Tasks

VR golf putting

The VR golf putting simulation (as used in Harris et al. 
2020; see Fig. 1) was developed using the gaming engine 
Unity 2019.2.12 (Unity technologies, CA) and C#. The sim-
ulation was displayed using an HTC-Vive Pro Eye (HTC, 
Taiwan), a 6-degrees of freedom, consumer-grade VR-sys-
tem which allows a 360° environment and  110o field of view. 
Graphics were generated with an HP EliteDesk PC running 
Windows 10, with an Intel i7 processor and Titan V graphics 
card (NVIDIA Corp., Santa Clara, CA). The VR putter was 
animated by attaching a Vive tracker to the head of a real 

golf club. Participants putted from 10ft (3.05 m) to a target 
the same size and shape (diameter 10.80 cm) as a standard 
hole and were instructed to land the ball as close as possible 
to the target (the ball did not drop into the hole). Auditory 
feedback mimicking the sound of a club striking a ball was 
played concurrently with the visual contact of the club with 
the ball. The environment also featured ambient environ-
mental noise to simulate a real-world golf course. Testing 
of the construct validity of an earlier version of this task for 
simulating putting is described in Harris et al. (2021).

Real golf putting

Real-world putts were taken on an indoor artificial putting 
green from a distance of 10 ft (3.05 m) to a target of diam-
eter 10.80 cm (regulation hole size). Participants were not 
given verbal feedback about the radial errors of puts, but the 
landing position of the ball was apparent (as it was in VR). 
Participants used a Cleveland Classic Collection HB 1 put-
ter, and standard size (4.27 cm diameter) white golf balls.

Measures

Clubhead accelerometery variables

Accelerations of the clubhead of the putter were recoded 
using a lightweight (9.5  g) inertial measurement unit 
(Blue Trident; Vicon, Auckland, New Zealand) using low-
g (± 16 g) triaxial accelerometers, capable of recording up 
to 1125 Hz. The accelerometer was attached to a consist-
ent location on the back of the putter. Acceleration data 
were processed using bespoke analysis scripts in MATLAB 
(R2019a; Mathworks, US) (available from: https:// osf. io/ 
h8az7/). Imported accelerometery files were first resampled 
to ensure a consistent recording rate then filtered with a 
2nd order, 3 Hz Butterworth low pass filter to reduce noise 
(Mayagoitia et al. 2002). Each putting motion was identified 
from spikes in the y-axis of the accelerometer signal (i.e., 
the vertical direction corresponding to coronal plane of the 
body). The pre-contact phase of the swing was extracted 
for each putt where this spike could be reliably identified 
and metrics for the forward (i.e., along the transverse plane 
of the body) and sideways (i.e., sagittal plane of the body) 
movement of the putter was calculated.

We then calculated mean values for transverse and sagit-
tal accelerations at moment of impact, variance in sagittal 
accelerations during the swing, and mean transverse and 
sagittal jerk (Jerk = ΔAcc/ΔTime). Continuous data across 
the whole of the pre-contact swing for transverse and sagittal 
accelerations and jerk were also extracted for statistical para-
metric mapping analysis. These measurements were chosen 
based on previous work identifying the relationship between 
putting expertise and clubhead accelerations (Mackenzie 

https://osf.io/h8az7/
https://osf.io/h8az7/
https://osf.io/h8az7/


 Experimental Brain Research

1 3

and Evans 2010; Sim and Kim 2010; Moore et al. 2012). 
Reduced transverse and sagittal accelerations are generally 

indicative of better putter control so these variables, as well 
as their derivative jerk, were recorded.

Fig. 1  The VR golf environment (top right) and examples of individual trial signals for clubhead acceleration and jerk in a single participant 
(bottom)
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Pressure plate variables

Centre-of-pressure (COP) data, which reflect the weighted 
average of pressure applied by the feet onto the support 
surface (sampled at 300 Hz), were recorded using a Mate-
rialise Footscan 9 pressure plate (488 × 325 mm active sen-
sor area; Materialise Ltd, Rotheram, UK). The location of 
the COP on the pressure plate, expressed in 2-dimensional 
coordinates (x,y), was recorded and low-pass (5 Hz) fil-
tered offline with a second-order Butterworth filter (as in 
Ellmers et al. 2021; Ellmers et al. 2022). Postural control 
variables (sway amplitude, complexity of sway, COP path 
length, and COP ellipse area) were then calculated for 
transverse (y) and sagittal (x) directions. Putting trials on 
the pressure plate were manually segmented based on foot 
lifts made by the participant prior to each putt.

Postural sway amplitude To assess the magnitude of 
changes in balance during putting we calculated the ampli-
tude of COP adjustments, using the root-mean-square 
(RMS) of COP (with respect to the COP mean position; 
Zaback et al. 2019; Ellmers et al. 2022).

Complexity of postural sway Complexity of postural sway 
was assessed by calculating sample entropy (SampEn) of 
COP data. For static tasks, higher SampEn values reflect 
greater complexity and irregularity of postural adjust-
ments characteristic of more automatic postural control 
(Borg and Laxåback 2010). High-complexity of postural 
sway generally manifests as more frequent smaller adjust-
ments to posture that happen automatically to maintain 
balance, whereas lower complexity is typical of larger 
but less frequent (over)adjustments, such as when we are 
fatigued or consciously controlling movement (Roerdink 
et al. 2011; Jie et al. 2023). As per previous research (Lake 
et al. 2002; Roerdink et al. 2011) pressure plate data were 
down-sampled to 100 Hz when calculating SampEn.

COP path length To measure total postural movement 
during the putt we calculated COP path length, which rep-
resents the distance travelled in the 2-dimensional plane 
of the pressure plate. Path length was calculated from the 
cumulative sum of the filtered COP signal (in mm; Ellm-
ers et  al. 2020), and therefore indexes when the centre 
of balance moved around the pressure plate to a greater 
degree.

Ellipse area In addition to the total path length, we also 
quantified the area covered by the COP as a 95% confi-
dence interval (CI) ellipse around the COP path, calcu-
lated from a principal components analysis of the COP 
position data (as described in Duarte 2015).

Conscious movement processing (CMP) questionnaire

Conscious movement processing was measured using a 
version of the conscious motor processing subscale of the 
Movement Specific Reinvestment Scale (MSRS; Orrell et al. 
2009) specifically adapted for use in a golf putting task (see-
Cooke et al. 2011; Vine et al. 2013). Participants were asked 
to reflect on the previous block of trials in relation to 6 items, 
for example “I reflected on my technique” and “I was aware 
of the way my body was working”. Items were scored on 
a 5-point Likert scale (1 = Strongly Disagree; 5 = Strongly 
Agree). Participants completed the scale after each condition 
(Real-world putting; VR putting; and VR putting with haptic 
feedback) and a mean score for the six items was included 
in subsequent analysis.

Procedure

Participants attended the lab on a single occasion for approx-
imately 1 h. All participants provided written informed con-
sent before the start of the study. Participants were given 
one familiarisation putt when in the real world, VR with a 
real-world ball, and VR with no real-world ball. They then 
completed 20 putts in each condition, in an order that was 
counterbalanced across participants. Participants were asked 
to aim to land the ball as near to the ‘hole’ as possible. After 
each condition, participants completed the conscious move-
ment processing questionnaire.

Data analysis

Statistical parametric mapping

Statistical parametric mapping (SPM) is a form of inferential 
testing for continuous time series data sets that controls the 
type 1 error rate by treating data as a topographical map and 
then correcting for clusters of values that cross a signifi-
cance threshold (Friston et al. 2011). SPM was originally 
devised for brain imaging data (Friston et al. 2011) but has 
since been applied to other biological time series like EMG 
and joint biomechanics (Pataky 2010; Robinson et al. 2015). 
These types of data pose an analysis challenge when we wish 
to compare entire time series recordings between groups 
without inflating the type 2 error rate with overly conserva-
tive corrections for a large number of pairwise comparisons 
across timeseries. As biological data tend to exhibit spati-
otemporal correlation (local smoothness) differences occur 
not at a single timepoint but in clusters. By treating the dif-
ferences between timeseries as a topographical map (in two, 
three, or more dimensions) the error rate can be controlled. 
Conceptually the analysis is similar to a t-test, but an output 
statistic is calculated for each timepoint (creating the statisti-
cal ‘map’) and then adjusted based on local covariance. SPM 
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enables the full data field to be examined in a non-directional 
hypothesis test without any ad-hoc assumptions regarding 
the spatiotemporal foci of interest. SPM also enables move-
ment data to remain in the biomechanically meaningful sam-
pling space (Pataky 2010). See Pataky (2010) or Robinson, 
Vanrenterghem and Pataky, (2015) for further explanation. 
The open source spm1D (v4.0) Matlab package (https:// 
spm1d. org/ index. html) was used to calculate the scalar test 
statistic SPM{F} to compare swing kinematics between the 
conditions. The resultant p-value indicates the probability 
that smooth, random continua would produce a supra-thresh-
old cluster in the map as broad as the observed cluster.

Statistical analysis

Data analysis was performed in RStudio v1.0.143 (R Core 
Team 2017). The data were first screened for outlying values 
more than 3 standard deviations from the mean (Tabach-
nick & Fidell 1996), which were replaced with a Winsorized 
score by changing the outlying value to a value 1% larger (or 
smaller) than the next most extreme score. A series of linear 
mixed effects models (LMMs; fitted using restricted maxi-
mum likelihood in the lme4 package (Bates et al. 2014)) 
were used to examine the effect of putting condition on put-
ter swing variables. Model fit checks were performed using 
the ‘performance’ package (Lüdecke et al. 2021) and can be 
accessed from the supplementary materials (https:// osf. io/ 
h8az7/). When reporting results of the LMMs, we followed 
the effect size rules of thumb outlined in Acock (2014) that 
standardised beta effect sizes can be interpreted similarly to r 
(i.e., < 0.2 is weak, 0.2–0.5 is moderate, and > 0.5 is strong). 
In essence, a standardised beta of 0.5 indicates that a one 
standard deviation change in the predictor variable equates 
to a half standard deviation change in the outcome variable.

Results1

Downswing acceleration at impact

Transverse

We fitted a linear mixed effects model to explain clubhead 
accelerations in the transverse (forward) plane at impact 
(Fig. 2, top and Table 1). The best fitting model included 
random intercepts for the participant factor. Within this 
model, the effect of VR (p < 0.001; std. beta =  – 0.55) and 
VR Haptic (p = 0.05; std. beta =  – 0.16) were both signifi-
cant. Bonferroni corrected pairwise comparisons indicated 

higher accelerations in the real world compared to VR 
(p < 0.001) and in VR Haptic compared to VR (p < 0.001), 
but no difference real world and VR Haptic (p = 0.15).

Sagittal

A LMM predicting sagittal (lateral) acceleration at con-
tact (with participant as random effect) indicated that the 
effect of both VR (p < 0.001; std. beta = 0.65) and VR Hap-
tic (p < 0.001; std. beta = 0.57) was statistically significant 
and large. Bonferroni corrected comparisons confirmed 
higher accelerations in both VR (p < 0.001) and VR Haptic 
(p < 0.001) compared to the real world, but not between VR 
and VR Haptic (p = 0.50).

Sagittal variance

We fitted a LMM to predict the log of variance in lateral 
accelerations during the swing with random intercepts for 
participants (see Fig. 2, middle and Table 1). Within this 
model, the effect of both VR (p < 0.001; std. beta = 0.39) 
and VR Haptic were statistically significant (p < 0.001; 
std. beta = 0.31). Bonferroni corrected pairwise compari-
sons indicated significantly higher variances in both VR 
(p < 0.001) and VR Haptic (p < 0.001) compared to the 
real world. VR also had higher variance than VR Haptic 
(p = 0.001).

Jerk

Transverse

A LMM with random slopes and intercepts for partici-
pants showed that the effect of VR on jerk in the transverse 
plane was statistically significant and large (p = 0.01; std. 
beta = 0.61) but the effect of VR Haptic was non-significant 
(p = 0.60; std. beta = 0.15). Bonferroni-corrected pairwise 
comparisons indicated a significant difference in transverse 
jerk between VR and VR Haptic (p = 0.01), but not between 
real world and VR (p = 0.07), or between VR Haptic and 
real world (p = 1.00).

Sagittal

A LMM with random slopes and intercepts for participants 
indicated that the effect of both VR Haptic (p = 0.51; std. 
beta = 0.18) and VR (p = 0.27; std. beta = 0.29) on sagittal 
jerk were statistically non-significant.

1 Model summaries are reported in Table 1, only effect sizes and sig-
nificance values for the main effects are reported in the text.

https://spm1d.org/index.html
https://spm1d.org/index.html
https://osf.io/h8az7/
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Fig. 2  Boxplots with overlaid data points for acceleration and jerk data. *p < .05; **p < .01;***p < .001
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Statistical parametric mapping analysis

Transverse

For the transverse plane of the swing, SPM{F} analysis 
indicated differences at two topographical locations. These 
clusters (see Fig. 3, top right) corresponded to accelera-
tions around the completion of the backswing of the club 
(p = 0.007) and the rate of the downswing of the club 
(p < 0.001). Pairwise SPM{t} indicated that there were 
clear differences at these two locations for real world 
compared to VR (p = 0.008 and p < 0.001), and a narrowly 
significant difference at the downswing for real world ver-
sus VR Haptic (p = 0.02), but no differences between VR 
and VR Haptic (see Fig. 3, bottom panels). The nature of 
these differences displayed in Fig. 3 (top middle panel) 
suggests that the backswing of the club was more exagger-
ated for both VR conditions (greater and earlier accelera-
tions at ~ 50% of the swing) and the downswing was more 

pronounced (greater and earlier accelerations at ~ 80% of 
the swing).

Sagittal

For the sagittal plane (see Fig. 4), there were no clusters that 
crossed the significance threshold, suggesting no points in 
the swing were different between conditions.

Postural sway amplitude

Transverse

A LMM to predict postural sway in the transverse plane 
with condition and participant as random effects showed 
that the effect of VR was statistically significant and moder-
ate (p = 0.01; std. beta = 0.42) but the effect of VR Haptic 
was statistically non-significant (p = 0.05; std. beta = 0.46). 
Following Bonferroni-corrections for pairwise comparisons, 

Table 1  Summary of model coefficients and variance explained

Dependent variable Total R2 Marginal R2 Intercept (Condition = real world) Group effects

Clubhead kinematic variables
 Transverse accelerations at 

impact
0.21 0.05 3.69 (95% CI [3.12, 4.27], 

p < .001)
VR β =  – 1.47, 95% CI [ – 1.87, – 1.06]
VR Haptic β =  – 0.42, 95% CI [ – 0.83, – 1.30e-

04]
 Sagittal accelerations at impact 0.43 0.07 0.95 (95% CI [0.55, 1.35], 

p < .001)
VR β = 0.90, 95% CI [0.71, 1.08]
VR Haptic β = 0.78, 95% CI [0.60, 0.97]

 Sagittal variance 0.38 0.17 2.21 (95% CI [ – 2.47, – 1.94], 
p < 0.001)

VR β = 1.20, 95% CI [1.04, 1.36]
VR Haptic β = 0.95, 95% CI [0.79, 1.11]

 Transverse jerk 0.48 0.06 14.58 (95% CI [12.42, 16.75], 
p < .001)

VR β = 3.36, 95% CI [0.67, 6.05]
VR Haptic β = 0.85, 95% CI [ – 2.28, 3.98]

 Sagittal jerk 0.36 0.01 3.82 (95% CI [3.08, 4.56], 
p < .001)

VR β = 0.53, 95% CI [ – 0.40, 1.45]
VR Haptic β = 0.33, 95% CI [ – 0.64, 1.29]

Postural control variables
 Transverse postural sway 0.46 0.04 9.49 (95% CI [7.49, 11.49], 

p < .001)
VR β = 2.63, 95% CI [0.57, 4.69]
VR Haptic β = 2.87, 95% CI [ – 4.70e-03, 5.74]

 Sagittal postural sway 0.50 0.04 11.71 (95% CI [9.31, 14.11], 
p < .001)

VR β = 4.73, 95% CI [0.74, 8.73]
VR Haptic β = 3.00, 95% CI [ – 0.57, 6.58]

 Transverse postural sway com-
plexity (SampEn)

0.93 0.09 7.39 (95% CI [5.56, 9.21], 
p < .001)

VR β = 1.75, 95% CI [0.74, 2.76]
VR Haptic β = 1.73, 95% CI [0.68, 2.77]

 Sagittal postural sway complex-
ity (SampEn)

0.96 0.10 8.92 (95% CI [6.51, 11.34], 
p < .001)

VR β = 2.77, 95% CI [1.46, 4.09]
VR Haptic β = 2.04, 95% CI [0.73, 3.35]

 COP path length 0.61 0.16 139.90 (95% CI [119.62, 160.18], 
p < .001)

VR β = 106.62, 95% CI [65.28, 147.96]
VR Haptic β = 85.59, 95% CI [30.70, 140.47]

 COP ellipse area 0.60 0.05 7.12 (95% CI [6.77, 7.47], 
p < .001)

VR β = 0.59, 95% CI [0.32, 0.85]
VR Haptic β = 0.35, 95% CI [ – 0.04, 0.74]

Self-report
 Conscious movement processing 0.76 0.12 20.28 (95% CI [18.98, 21.58], 

p < .001)
VR β =  − 2.34, 95% CI [− 3.30, − 

1.38]
VR Haptic β =  − 2.06, 95% CI [ – 3.02,  – 1.10]
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there were no differences between any pairs of conditions 
(ps > 0.11).

Sagittal

A LMM to predict sagittal sway amplitude with condition 
and participant as random effects showed that the effect of 
VR was narrowly significant (p = 0.02; std. beta = 0.49), 
but VR Haptic was not (p = 0.10; std. beta = 0.31). 

Bonferroni-corrected pairwise comparisons indicated no 
differences between any pairs of conditions (ps > 0.12).

Postural sway complexity

Transverse

A general linear mixed model (Gamma family) with par-
ticipant as a random factor indicated that the effect of both 
VR (p < 0.001; std. beta = 1.75) and VR Haptic (p < 0.001; 

Fig. 3  Results of the SPM{F} and SPM{t} analyses for forward swing of the putter (transverse plane). The first two panels show the raw and 
mean acceleration signals, and panels four to six show the clusters of the topographical map that crossed the corrected alpha threshold

Fig. 4  Results of the SPM{F} analyses for sideways swing of the putter (sagittal plane), showing raw (left) and mean (middle) acceleration sig-
nals, and the test values of the statistical parametric map (right)
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std. beta = 1.73) were statistically significant. Bonferroni-
corrected pairwise comparisons indicated higher entropy in 
Real compared to VR (p = 0.002) and VR Haptic (p = 0.003), 
but no difference between VR and VR Haptic (p = 1.00) (see 
Fig. 5).

Sagittal

A general linear mixed model (Gamma family) with partici-
pant as a random factor indicated that the effect of both VR 
(p < 0.001; std. beta = 2.77) and VR Haptic were statistically 
significant (p = 0.002; std. beta = 2.04). Bonferroni-corrected 
pairwise comparisons indicated significantly higher entropy 
for Real compared to VR (p < 0.001) and Real compared to 
VR Haptic (p = 0.004), but no difference between VR and 
VR Haptic (p = 0.55) (see Fig. 5, top).

COP path length

A linear mixed model with condition and participant as ran-
dom effects indicated that the effect of both VR (p < 0.001; 
std. beta = 0.95) and VR Haptic (p = 0.002; std. beta = 0.76,) 
was statistically significant and represented large effects. 
Bonferroni-corrected pairwise comparisons indicated 
longer COP path lengths for VR (p = 0.03) and VR Hap-
tic (p < 0.001) compared to real world, but no difference 
between the two VR conditions (p = 0.87) (see Fig. 5).

COP 95% CI ellipse area

A linear mixed model predicting log transformed area 
ellipse values with participant as random effect indicated 
that the effect of VR was statistically significant (p < 0.001; 
std. beta = 0.22) but VR Haptic was not (p = 0.08; std. 
beta = 0.20). Bonferroni corrected contrasts confirmed a 
larger ellipse area in VR compared to real (p = 0.006) but 
not between real and VR Haptic (p = 0.33) or between the 
two VR conditions (p = 0.67).

Conscious movement processing

We fitted a LMM to predict conscious movement processing 
(see Fig. 6; Table 1), with participant as a random factor. 
Within this model, the effect of both VR (p < 0.001; std. 
beta =  – 0.79) and VR Haptic was statistically significant 
(p < 0.001; std. beta = -0.70). Bonferroni-corrected pair-
wise comparisons indicated significantly higher CMP in 
real world compared to VR (p < 0.001) and in real world 
compared to VR Haptic (p < 0.001). There was no significant 
difference between the two VR conditions (p = 1.00).

Discussion

Virtual reality poses a novel problem for our sensorimo-
tor system, as it replaces our normal sensory inputs with 
computer generated ones. It is unclear how much, and in 
what way, this affects the control of goal-directed move-
ment. Previous research on reach-to-grasp movements has 
suggested that real world reaches without haptic feedback 
(Goodale et al. 1994; Whitwell et al. 2015) and reaches 
in VR (Viau et al. 2004; Gerig et al. 2018; Furmanek 
et al. 2019) tend to be slower, more exaggerated, and con-
sciously controlled. We aimed to extend this work to a 
more complex movement, golf putting, to test whether 
all movements tend to be slower and more consciously 
controlled. In short, our results suggested that VR putting 
swings tended to be more variable, more exaggerated, and 
slower at contact when haptic feedback was absent. Pos-
tural control variables indicated more postural movements 
in VR and that those movements may be more consciously 
controlled (reduced complexity). Self-reported conscious 
awareness of the movement was not, however, increased 
in VR but was decreased. We discuss these findings and 
their implications in more detail below.

Firstly, we examined the summary measures of putter 
head control. Higher transverse accelerations at impact 
were found for real world compared to VR, which partially 
supported the hypothesis that movements in VR tend to 
be slower. However, the finding that VR Haptic was also 
higher than VR (and no different from real world) sug-
gests that this could be due to the presence/absence of the 
physical ball, rather than due to other features of VR such 
as the visual presentation. This finding also suggests the 
addition of haptics in the mixed reality paradigm may have 
elicited more realistic downswings, and aligns with the 
findings of Whitwell et al. (2020) that the addition of hap-
tic information can quickly enable participants to switch 
back to a natural mode of action control. Greater accel-
erations of the clubhead in the sagittal plane are likely to 
be detrimental to the execution of the putt as they show 
that the clubhead was hitting across rather than making a 
clean contact with the ball (Mackenzie and Evans 2010; 
Sim and Kim 2010). Greater accelerations of this nature 
were observed for both VR conditions relative to the real 
world, suggesting an impairment of swing execution in 
VR, which was likely due to the visual presentation (as 
no VR v VR Haptic differences were present). Not only 
were sagittal accelerations at impact greater in the VR 
conditions, but the variance over the whole swing was also 
greater in both VR conditions.

The subsequent SPM analysis indicated different 
movement profiles for the transverse plane of the swing 
between real and VR conditions. Figure 3 (top middle 



Experimental Brain Research 

1 3

Fig. 5  Centre of pressure data. The top left panel shows an example 
of centre of pressure data being recorded from the pressure plate, 
with centre of pressure marked for each foot and overall. Top right 

shows an example of the COP path length for a single trial, and the 
95%CI ellipse of the path. Lower panesl show boxplots with overlaid 
data points for postural control data. *p < .05; **p < .01;***p < .001
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panel) suggests that both the backswing and downswing 
of the club was more exaggerated for both VR conditions 
relative to the real world. There were no differences in the 
sagittal plane. As the putter was exactly matched between 
conditions (and there were no differences between VR 
and VR Haptic) this suggests that differences in the visual 
presentation of the environment generated different swing 
patterns.

Analyses of postural control also revealed important dif-
ferences between real and VR conditions. Firstly, some small 
differences in postural sway between real and VR conditions 
were found, but they did not persist after correction for mul-
tiple comparisons. There were, however, clear differences 
in the total movement of the COP during the putting trials. 
COP path lengths were longer for both VR conditions rela-
tive to the real world, and 95%CI ellipses covered a wider 
area for VR compared to the real world. This shows greater 
postural movement in VR. Crucially, higher entropy val-
ues also indicated reduced complexity of COP for both VR 
conditions. This suggests simpler and more regular postural 
adjustments in VR, characteristic of less automatic (i.e., 
more consciously processed) postural control (Borg and 
Laxåback 2010), in line with our predictions. The absence 
of differences between the two VR conditions indicates that 
the control of posture during the putt was not affected by 
the presence/absence of haptic feedback and instead other 
features of VR were responsible for the postural changes. 
Further investigations into the exact cause of these differ-
ences in balance control may require more closely matched 
environmental features, in case background visual informa-
tion (e.g., scenery) could influence balance.

Our findings point to haptic information as the source of 
some of the movement differences in VR but suggest that 
other factors (e.g., visual features) might be responsible for 
other disparities. For instance, for several of the putting 

kinematic variables (e.g., transverse accelerations and jerk), 
the VR Haptic condition was more similar to the real world, 
suggesting that increasingly realistic haptics could remove, 
or at least minimise, differences between these aspects of 
real world and VR action control. For the postural control 
measures, however, there was very little difference between 
the VR conditions, indicating that haptic information was 
not the cause and visual features of the VR environment 
such as distortions of space or vergence-accommodation 
conflict were most likely responsible. We cannot, however, 
draw definitive conclusions about the origins of these dif-
ferences. Indeed, some differences could even be independ-
ent of perceptual distortions and instead simply due to the 
participant’s knowledge that the environment they are in is 
not real. Consequently, it will be crucial for future work to 
further unpick the source of these observed differences.

In stark contrast to our prediction, self-reported conscious 
processing of movement was not higher in the two VR con-
ditions. In fact, CMP scores were observed to be higher 
in the real-world condition than either VR or VR Haptic 
(see Fig. 6). This result seems to conflict with the observed 
decrease in postural sway complexity signalling more con-
sciously controlled balance. While unexpected, this effect 
could plausibly be an artefact of the absence of any body 
visualization in our VR tasks. Previous work has examined 
how the presence or absence of a visual representation of 
the body in VR can affect the sense of ‘embodiment’ in VR 
(Kilteni et al. 2012), which refers to the user’s perception of 
the avatar as collocated with their physical body, and that 
they own the body. The lack of an avatar might have meant a 
lack of embodiment and reduced awareness of the body and 
subsequently reduced the perception of ‘inclusion’ in the 
virtual environment (Sallnäs et al. 2000). Body visualization 
has been found to impact performance in sport-related VR 
tasks (Pastel et al. 2020) so comparisons of tasks with and 
without body visualizations could be important in future 
work. Speculatively, this reduction in bodily awareness 
could present an opportunity for promoting more implicit 
motor skill learning in VR and reducing subsequent risk of 
reinvestment (e.g., see (Maxwell et al. 2000)). This effect 
may be particularly beneficial to persons with a high propen-
sity for conscious movement processing (Zhu et al. 2011).

Conclusion

In summary, VR and related immersive technologies offer 
new opportunities for learning motor skills in more flexible 
ways, but there is still a significant gap in our understanding 
of whether skills performed in VR are similar to those in the 
real world (Harris et al. 2019). As such, applications to sport 
and rehabilitation could be disrupted without a better under-
standing. Here, we found that there were clear differences in 

Fig. 6  Boxplot with overlaid data points for conscious movement pro-
cessing questionnaire
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the execution of a visuomotor skill when performed in the 
real world, in VR, and in VR Haptic conditions. While the 
addition of haptic information in VR brought swing kine-
matics more in line with the real world, there were persistent 
postural control differences in VR. There results supported 
the broad hypothesis that movements in VR tend to be more 
exaggerated and consciously controlled. Further work is, 
however, needed to determine which particular features of 
VR (e.g., impoverished haptics, missing depth cues, reduced 
field of view) are directly responsible for these differences.
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